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The localization properties of one-dimensional degenerate Fermi gases with cavity-assisted nonlocal
quasiperiodic interactions are numerically studied. Although the cavity-induced interaction is typically nonlocal,
it is proved that the eigenstate thermalization hypothesis is still applicable in our system depending on the
system parameters. We also find the segment of the spectrum corresponding to infinite effective temperature
varies for different system parameters, which indicates the spectral range employed in the spectral statistical
analysis should be varied accordingly. The features of many-body localization (MBL) are numerically identified
by analyzing the spectral statistics and the entanglement entropy using exact diagonalization. These features are
further confirmed by our time-evolution results. In addition, the number of cavity photons are found stable over
long-time dynamics in the MBL phase. Such a feature cannot only be utilized to nondestructively diagnose the
MBL phase by monitoring the number of leaking photons from the cavity but leveraged for constructing a device
to produce a stable number of photons.
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I. INTRODUCTION

The enduring research interests in exploring localized
phases are triggered by the seminal work of Anderson [1] in
which the localization of a free particle wave function in a
random potential was characterized. Interactions can easily
break the integrability of a quantum system and fuzz the
concept of constructive interference, a key mechanism of
leading single-particle localizations. Thus, the localization of
an interacting many-body system [2,3], known as many-body
localization (MBL), is highly nontrivial. Understanding the
effects of different types of interactions is a basic task in the
study of MBL nowadays.

In contrast to MBL in systems with short-range interac-
tions, the phase boundary of MBL in systems with long-range
interactions has been actively under study today. Intuitively,
it is expected that the formation of localization will be sup-
pressed with increasing interaction range [4]. For power-law
interactions, the critical range can be estimated based on per-
turbation analysis in the strong-disorder limit [5–8], which has
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been confirmed numerically [9]. For completely nonlocal in-
teractions as are usually found in cavity-atom-hybrid systems,
it is shown that the MBL phase of bosons with cavity-assisted
quasiperiodic nonlocal interactions is unstable (stable) in the
thermodynamic limit with (without) the condition that the
interaction strength scales with the system size [10]. Com-
pared to intracavity ultracold Bose gases [11–13], degenerate
Fermi gases (or hard-core bosons [14]) coupled to cavity
photons show distinct atom-photon scattering behaviors. For
example, the critical atom-photon coupling strength for the
superradiant phase transition vanishes in a cavity-confined
one-dimensional Fermi gas given the cavity photon wave-
length commensurate with the Fermi wavelength [15–21].

Inspired by recent experimental realizations of intracavity
Fermi gases [21–23], this paper studies the localization of
one-dimensional Fermi gases with long-range quasiperiodic
interactions. We confirm that the eigenstate thermalization hy-
pothesis (ETH) is still applicable for the intracavity Fermi gas,
although the system is subject to interparticle interactions of
boundless ranges. The features of MBL are numerically iden-
tified by analyzing the spectral statistics and the entanglement
entropy using exact diagonalization. One observation is that
the segment of the spectrum corresponding to infinite temper-
ature moves toward the high-energy direction with increasing
interaction strength which implies that the states involved in
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FIG. 1. (a) Illustration of the proposed model: A quasi-one-
dimensional Fermi gas is trapped in an optical cavity. The level
configuration of the atoms is shown in (b). A laser �b with far-off
resonant frequency with respect to the cavity mode �c is applied to
generate a background lattice. The cavity-atom hybridized system is
driven by the nearly resonant transverse laser �p. The wavelengths of
�p and �b are incommensurate which gives rise to the quasiperiodic
cavity-assisted interaction (derived in Appendix). A typical distribu-
tion of the quasiperiodic interaction Vi j is illustrated in (c).

the spectral statistical analysis should be adjusted accordingly.
Finally, we find that the number of cavity photons in the MBL
phase is almost stationary with time evolution. Such a feature
cannot only be utilized to nondestructively diagnose the MBL
phase by monitoring the number of leaking photons from the
cavity but leveraged for producing a stable number of cavity
photons given a carefully designed atomic initial state.

In the following, we introduce our model in Sec. II. The
applicability of ETH and the segment of the spectrum corre-
sponding to infinite temperature are discussed in Sec. III. In
Sec. IV we show the exact diagonalization results in identi-
fying the MBL phase. Section V presents the time-evolution
results. Finally, a summary is given in Sec. VI.

II. MODEL

Our system consists of a quasi-one-dimensional degenerate
Fermi gas with three atomic energy levels (|g〉, |e1〉, and |e2〉)
confined in an optical cavity in the x direction [see Figs. 1(a)
and 1(b)]. A longitudinal standing-wave �b ∝ cos(k0x) is
present in the cavity to form a background optical lattice
(the blue curves in Fig. 1). An external driving laser field
�p ∝ cos(kz) is applied along the z direction to nearly reso-
nantly couple the cavity mode �c ∝ cos(kx + φ) via a Raman
process between states |g〉 and |e1〉 [see Fig. 1(b)]. To obtain
randomness in the effective atom-atom interaction term, the
wave-number k0 of �b is adjusted to be incommensurate with
that of the cavity mode �c, i.e., irrational value of k/k0.
All the possible one-photon processes involving the optical
lattice beam, the cavity mode, and the driving laser beam
are far detuned from any of the atomic resonance transitions,
ensuring that the high-lying states |e1,2〉 can be adiabatically
eliminated [10,24].

The Hamiltonian of our model reads (see Appendix for the
detailed derivation)

Ĥ = t
L∑

j=1

(ĉ†
j ĉ j+1 + H.c.) +

L∑
i �= j

Vi j n̂in̂ j, (1)

where ĉ j (ĉ†
j ) and n̂ j = ĉ†

j ĉ j denote the annihilation (creation)
operators of an atom and the particle number operator at
the jth site ( j = 1–3, . . . L), t is the hopping coefficient, L
is the total number of lattice sites, and Vi j = MiMj/�c =
V0 cos(iπβ + φ) cos( jπβ + φ) is the quasiperiodic interac-
tion strength [see Fig. 1(c)] with Mi = M0 cos(iπβ + φ)/

√
L,

β = (
√

5 − 1)/2, and �c = ωp − ωc. Here φ is the relative
phase between the background lattice and the cavity field
which can be random in experiment due to the independence
of the two involved laser beams. The randomness of φ pro-
vides us a source of statistical fluctuations in the interaction
term which leads to an ensemble of spectra used in the level
statistical analysis. The connection of our model to the spin
model can be found in Appendix A 3.

The extensive nature of the system energy is guaranteed
by observing that the interaction strength Vi j is inversely
proportional to the system size, i.e., Vi j ∝ 1/L based on the
fact that the single-photon Rabi frequency Mi j is inversely
proportional to the square root of the cavity size [25]. Such an
observation shows one of the distinctive features in taking the
thermodynamic limit of atomic systems confined in an optical
cavity. In reality, a cavity-confined quantum gas has a finite
system size, typically in the scale of micrometers, usually
corresponding to tens of lattice sites [26,27]. In this paper,
we deal with a finite-sized system with L ranging from 6 to
14 and fairly compare these numerical results under the same
interaction strength V0 = M2

0/�cL.

III. EIGENSTATE THERMALIZATION HYPOTHESIS
AND EFFECTIVE TEMPERATURE

Ergodicity as the essential underlying mechanism for clas-
sical thermalization, ensures that the thermal equilibrium of
a classical system is independent of the initial state. Whereas
for an isolated quantum system, the unitary nature of the dy-
namics fixes the population of the evolved system over various
eigenstates. Although there exist some numerical and exper-
imental evidences for the thermalization of isolated quantum
systems after long-time dynamics [28,29], it is still an open
question whether the thermal state derived from the isolated
quantum systems is consistent with that of the classical pre-
diction, in general. The ETH [30–34], which is introduced to
provide us a route to approaching the final answer, states that
any local observables are independent of the initial state after
long-time dynamics. The rigorous ETH [28,30–34] requires
both that the diagonal matrix elements of the relevant opera-
tor calculated over various eigenstates change smoothly and
that the off-diagonal ones are much smaller compared to the
diagonal ones. Those requirements ensure that the long-time
average of any local observables, O = limt0→∞ t−1

0

∫ t0
0 O(t )dt ,

can be predicted by the microcanonical ensembles OME =
Tr(ρ̂MEÔ) with the microcanonical density operator ρ̂ME.
Moreover, the temporal fluctuation of O(t ) is negligible such
that one has O(t � trelaxation ) 	 O 	 OME for each instant of
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FIG. 2. Distributions of the matrix element of the local particle number operator n6,αβ for the sixth lattice site (central site) calculated using
eigenstates (indexed by α and β). The lattice length is L = 12. The interactions are V0/t = 0.1 (a1) and (a2), 5 (b1) and (b2), and 40 (c1) and
(c2). Panels (a2), (b2), and (c2) are the diagonal elements (α = β) extracted from Panels (a1), (b1), and (c1), respectively.

time after relaxation, i.e., no time averaging is needed to eval-
uate the local observable O in the long-time limit. Whereas
the ETH condition is satisfied for many systems [28,29], it
still lacks a universal proof for a generic many-body system.
For example, it is not obvious whether the ETH can be ap-
plied to the system with nonlocal quasiperiodic interactions as
considered in this paper. However, we can have some insights
based on our numerical results. Recently, it is found that some
long-range interacting systems, such as trapped ions can hold
strong ETH [35]. Figure 2 shows the absolute value of the
matrix elements of the particle number operator |n6,αβ | for the
sixth lattice site, i.e., the middle one for the L = 12 system, in
the eigenstate basis. Here, α, β = 1–4, . . . marks the labeling
of the eigenstates. The first row of Fig. 2 shows the full two-
dimensional map of |n6,αβ |. Whereas the second row of Fig. 2
corresponds to the diagonal parts of the first row. From the first
row of Fig. 2, we can see that the off-diagonal elements are
greatly suppressed in our system, i.e., most of the off-diagonal
elements are much smaller than the diagonal ones. To show
this observation more clearly, we average over all the off-
diagonal elements and obtain |n6,αβ | = ∑

α �=β |n6,αβ |/Noff =
(0.69, 0.52, 0.022)10−2 for V0/t = (0.1, 5, 40) with Noff the
total number of the off-diagonal elements. For the diag-
onal elements, the averaged values are |n6,αα| = 0.5 for
all the cases. Thus, we get the ratios |n6,αβ |/|n6,αα| =
(0.014, 0.010, 0.00045) which shows that the second ETH
condition is always satisfied for our system. From the sec-
ond row of Fig. 2, we can see that the distributions of the
diagonal elements |n6,αα| between adjacent eigenstates {|α〉}
show smooth variation [Fig. 2(a2)], smooth-jumping mixed
variation [Fig. 2(b2)], and jumping variation [Fig. 2(c2)] with
increasing interaction strength. The disappearance of such a

smooth variation feature indicates the breakdown of ETH. In
the strongly interacting regime [Fig. 2(c2)], the |n6,αα| almost
jumps between 0 and 1. In such a limit, the eigenstates are
close to Fock states or the standard spatial localized states.
Thus, the expectation value of the density operator does pro-
vide us evidence for the validity of ETH in our system. In
the next section, we numerically show that the system is
characterized by MBL in the ETH breakdown regime.

IV. NUMERICAL SIGNATURES OF THE MBL PHASE

In order to gain the insight into the localization features
of the eigenstates, we analyze the spectral statistics of the
system Hamiltonian in Eq. (1) using the exact diagonaliza-
tion method for a set of random generated φ and various
system sizes L. In the pioneering numerical MBL work [36],
the existrnce of the MBL phase was suggested in the finite
temperature by numerically testing it at infinite temperature.
In later works [8,9,37,38], only the high effective temperature
eigenstates, which usually distribute near the center of the
energy spectrum, are considered in the spectral analysis. If
the system can be described by ETH, then the effective tem-
perature characterizes the temperature of any subsystem that
is in equilibrium with the rest of the whole system [32]. The
eigenstates with high effective temperatures are expected to
correspond to thermal equilibrium states of high temperatures
provided that ETH is applicable and, thus, the analysis focus-
ing on these states is believed to provide sufficient evidences
in terms of diagnosing the emergence of MBL. Mathemati-
cally, we consider the system initialized in the nth eigenstate
and then we can rebuild its eigenvalue En by equilibrating the
system to a heat bath with temperature Tn which is defined via

023307-3



JIE, GUAN, AND PAN PHYSICAL REVIEW A 106, 023307 (2022)

FIG. 3. Effective temperatures calculated with canonical ensemble [see Eq. (2)]. n is the index of the eigenstates sorted by eigenvalues.
(a1)–(a3): The spectra for different interaction strengths. (b1)–(b3): The effective temperatures. The blue points are the eigenstates without
well-defined effective temperatures. The spectra marked by the red color are selected in the spectral analysis in this paper. The black points are
eigenstates with lower effective temperatures and are dropped in the statistical analysis. The lattice length is L = 12.

thermodynamic average [9],

En = Tr[Ĥe−βnĤ ]

Tr[e−βnĤ ]
=

∑
m

Eme−βnEm

∑
m

e−βnEm
, (2)

where we have βn = 1/(kBTn). We call Tn the effective tem-
perature of the nth eigenstate .

Figure 3 shows En (the first row) and Tn (the second
row) for three interaction strengths covering weak, medium,
and strong interaction regimes. We can find the segment of
eigenstates with effective temperature close to infinity moves
toward the upper boundary of the spectra with increasing
interaction strength. It implies the portion of the spectra we
selected in our analysis should not be fixed. We choose 1/3 of
the states (marked with the red color) among the whole spectra
in the following spectral analysis.

The statistics of adjacent energy levels is one basic quantity
to characterize the MBL phase transition [36]. The dimen-
sionless version of the adjacent energy-level statistics is the
adjacent min-to-max gap ratio,

rn(φ) = Min[δn(φ), δn−1(φ)]

Max[δn(φ), δn−1(φ)]
∈ [0, 1], (3)

where δn(φ) = En(φ) − En−1(φ) with En(φ) as the nth
eigenenergy in an ascending order for the system with a
random phase parameter φ. Here we put the φ dependence
explicitly to emphasize that all the statistical analysis on the
spectrum are performed by considering the randomness of φ.
We calculate the average value [r] of rn via

[r] = 1

M

M∑
m=0

[
1

N

N∑
n=0

rn(φm)

]
, (4)

where the φm’s are randomly generated from a uniform dis-
tribution between 0 and 2π , i.e., one sampling is given by

one phase φm which corresponds to one specific Hamiltonian
Ĥ (φm). The average value of [r] shown in Fig. 4 is obtained
using all of the selected levels (see the red points in Fig. 3).
The number M of the φ samples is 9000, 2500, 1000, 200
for L = (8, 10, 12, 14), respectively. We find [r] approaches
0.386 (0.53) for strong (weak) interaction strengths as shown
in Fig. 4 with increasing L which indicates a transition to the
MBL (thermal) phase. Similar to the case with a random local
potential [36], the crossing points of various [r] curves for
different L move toward the larger V0 and smaller [r] regime
(also see the zoom-in plot in Fig. 4). Such an observation
indicates the MBL phase transition is unlikely to be extracted
from the finite-size scaling of the spectral statistics. Another
signature of rn statistics for the MBL (thermal) phase is that
it obeys the Poisson distribution (Wigner-Dyson distribution).
The upper right inset plots of Fig. 4 show that the distribution
of rn changes from Wigner-Dyson distribution to the Pois-
son distribution which signals the transition from the thermal
phase to the MBL phase with increasing V0.

Bipartite entanglement entropy as another popular measure
to signal the MBL phase transition can be calculated by di-
viding the whole system into two subsystems S and S̄. The
Von Neumann entanglement entropy for S and S̄ reads SVon =
tr(ρs ln ρs), where ρs is the reduced density matrix of the
subsystem S. Since the localized states are close to Fock states
(well described by the localized Wannier orbitals), the two
spatially far-separated states are weakly entangled with each
other. Therefore, the entanglement entropy obeys the area law
in the MBL phase and the volume law in the thermal phase
for either varying the size of the entire system or shifting the
boundary between S and S̄ [32]. Specifically, in the noninter-
acting limit, the bipartite entanglement entropy is close to the
value of (L ln 2 − 1)/2, which is the classical entropy at infi-
nite temperature [39]. Figures 5(a) and 5(b) show SVon and its

statistical variance �SVon =
√∑

α (SVon,α − S̄Von)2/(D − 1).
Here the parameters α and D correspond to the index of the
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FIG. 4. Spectral statistics [r] as a function of interaction strength V0. The [r] curves for various system sizes exhibit a crossover that moves
from the value of about rWD = 0.53 in the small V0 regime to that of about rp = 0.386 in the large V0 regime. The two limits correspond to the
Wigner-Dyson distribution and Poisson distribution as illustrated in the upper right insets. Here the system sizes L = 8, 10, 12, 14 are used.
Lower left inset: Zoom-in plot in the regime 3 � V0/t � 5.

selected eigenstates and the system dimension, respectively.
The mean value S̄Von of SVon is also calculated using the same
selected eigenstates. Similarly, we also estimate the sample
average [SVon] and [�SVon] for the Von Neumann entangle-
ment entropy and its fluctuation over randomly generated
φ. In the weak (strong) interaction regimes, the extended
(localized) eigenstates dominate the energy spectrum which
yields high (low) Von Neumann entanglement entropy per
site [SVon]/L and, hence, corresponds to the thermal (MBL)
phase. In between, the numbers of extended eigenstates and
localized eigenstates are comparable which leads to the peak
in [�SVon]. This observation can be used to characterize the

MBL phase transition. In the inset plot of Fig. 5(a), we provide
the finite-size scaling analysis for the entanglement entropy.
Here we take SVon(L,V0) = L f [(V0 − Vc)L1/ν/t] as scaling
function and extract the critical interaction strength Vc/t =
5.3 ± 1.9 and the critical exponent ν = 2.2 ± 1.7 based on
the collapsing behavior shown in the inset plot of Fig. 5(a).
Figure 5(b) and the inset indicate the critical point of our
model is located in the regime of 3 < V0/t < 4, which is
consistent with the estimation regime of critical interaction
strength Vc/t . Figures 5(c) and 5(d) show that [SVon] obeys
the volume law in the thermal phase (weak interaction) and
the area law in the MBL phase (strong interaction) with either
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FIG. 5. Entanglement entropy. (a) The average entanglement entropy per site [SVon]/L and (b) the statistical invariance of the entanglement
entropy [�SVon] as functions of interaction strength V0. A peak in the regime of 3 < V0/t < 4 can be identified in panel (b) which corresponds
to the critical point of the MBL phase. The positions of the peaks are shown in the inset of (b). Panel (b) shares the same legend as panel
(a). Panels (c) and (d) show the [SVon] as a function of the lattice length Ls of the subsystem and the total system size L, respectively. Panel
(d) shares the same legend as panel (c). The definitions of [SVon] and [�SVon] can be found in the main text.
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FIG. 6. (a) The time evolution of density imbalance ratio I , (b) photon numbers Np, (c) entanglement entropy SVon(τ ), and (d) density for
lattice sites n5 (solid lines) and n6 (dashed lines) for the charge-density-wave initial state. Panels (b) and (c) share the same legend as panel
(a). I saturates to a finite value in the long-time limit which is guided by the dashed horizontal lines. The dashed lines in panel (c) is used to
indicate the logarithmic increase in [SVon] which typically features the MBL phases. The system size L = 10 is used here.

varying the system size L [Fig. 5(c)] or varying the boundary
between S and S̄ [Fig. 5(d)].

V. TIME EVOLUTION

The MBL phase manifests itself in the memory of the
initial condition after a long-time dynamics [32]. Here the
density imbalance ratio,

I (τ ) = N1(τ ) − N0(τ )

N1(τ ) + N0(τ )
(5)

is employed to characterize the memory of the initial density
distribution. Here N1(τ ) [N0(τ )] is the number of particles at
the initially occupied (unoccupied) lattice sites. The bracket
is also used here to denote the sample average over φ. As
shown in Fig. 6(a), the [I (τ )] of the charge-density-wave state
initially oscillates in the range of several tunneling times,
much shorter than the oscillation time in the case of random
short-range interaction [40]. We see that [I (τ )] finally drops to
zero in the weak interaction limit and rises to the initial value
in the strong interaction limit which corresponds to the ther-
mal phase and the MBL phase, respectively. Another indicator
of MBL is the logarithmic spreading behavior of the [SVon] for
an initial product state [32]. As shown in Fig. 6(b), the [SVon]
saturates after two periods especially in the large V regime.
For the case with mediate strong interaction, the growth of
the entanglement entropy is logarithmic before reaching sat-
uration which is one of the signature of MBL phase. In the
strong-interaction limit, we find the saturation value of [SVon]
almost vanishes, namely, the entanglement entropy has no
space to increase at all. As shown in Figs. 6(c) and 6(d),
the MBL phase also manifests itself in the conservation of
the number Np of photons in the cavity [see panel (c)] and

the conservation the local atomic density ni in the long-time
evolution [see panel (d)]. We would like to emphasize that the
stability of Np in the MBL phase may inspire two potential
applications. It cannot only be utilized to nondestructively
diagnose the MBL phase by monitoring the number of leak-
ing photons from the cavity but leveraged for constructing a
device to produce a stable number of photons [41].

VI. SUMMARY

To summarize, we study the localization properties of
one-dimensional degenerate Fermi gases confined in an op-
tical cavity which effectively leads to all-to-all quasiperiodic
interactions. Using exact diagonalization, we find that the
eigenstate thermalization hypothesis is still applicable al-
though the cavity-induced interaction is nonlocal and that the
spectrum corresponding to the effective infinite temperature
is shifted for varying interaction strengths. We also prove
that the system experiences a MBL transition for increasing
atom-cavity coupling strength. The signatures of MBL phase
are captured by analyzing the spectral properties, entangle-
ment entropy, and time-evolved observables. In this paper, we
mainly focus on the finite-size system which is typically the
case for the current experiments of intracavity quantum gases.
Our paper may inspire the potential applications to nonde-
structively detect MBL phase with photons leaking from the
cavity and to produce a stable number of photons with atomic
gases in the MBL phase.
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APPENDIX: DERIVATION OF THE HAMILTONIAN WITH
ALL-TO-ALL QUASIPERIODIC INTERACTION IN EQ. (1)

Our strategy of realizing the one-dimensional (1D) lattice
system with all-to-all quasiperiodic interaction as described
in Eq. (1) is schematically shown in Fig. 1. We propose
to use cavity confined atoms in the presence of an external
driving field �p and a background lattice potential formed by
the lattice beam �b. The pump laser �p induces the cavity
photon �c via the superradiance effect and share the same
wave-vector k as �c [11,15–18]. The �p and �c couple the
single-particle ground-state |g〉 to the single-particle excited-
state |e1〉. Here, the all-to-all interaction between the confined
atoms is yielded via absorbing and emitting cavity photons.
The randomness in the interaction term is guaranteed by
having the wave-number k0 of the lattice beam �b incommen-
surate to that of the cavity mode �c (i.e., the factor β = k/k0

is an irrational number). The 1D geometry of the system can
be experimentally realized by tuning the transverse optical
trap strength stronger enough to avoid any excitation in the
direction perpendicular to the cavity axis. In this Appendix,
we show the derivation of the effective single-particle and
many-body Hamiltonians.

1. Effective single-particle Hamiltonian

Typical wavelengths for the driving laser field, the cavity
mode, and the background lattice discussed in this paper are
in the order of a few hundred of nanometers which are much
larger than the typical size of the confined atoms. Therefore,
the electric dipole approximation can be used to derive the
atom-light interaction. We denote the electric fields of the
three lasers,

Eb = E0
b êz cos(ωbt ) cos(k0x), (A1)

Ep = E0
p êy cos(ωpt ) cos(kz), (A2)

Ec = E0
c êz(â† + â) cos(kx + φ), (A3)

where â (â†), φ, E0
b,p,c, and ωb,p are the annihilation (creation)

operator of the cavity mode, the phase of the cavity mode �c

relative to �b, the field amplitudes, and the field frequencies,
respectively. The E0

c is related to the the cavity mirror area
Sc, the cavity length Lc, and the vacuum permittivity ε0 via

E0
c =

√
h̄ωc

ScLcε0
.

In the Schrödinger picture, the single-particle Hamiltonian
is given by

Ĥs = h̄ωcâ†â +
∑
i=1,2

h̄ωei |ei〉〈ei| + {[h̄�c(â† + â)

+ h̄�p cos(ωpt )]|e1〉〈g|
+ h̄�b cos(ωbt )|e2〉〈g| + H.c.}, (A4)

where the first, second, and the last terms correspond to the
cavity mode of frequency ωc, the atomic energy levels h̄ωei

(the energy of |g〉 is set to zero), and the atom-light coupling
terms, respectively. The coupling strength or the correspond-
ing Rabi frequencies read

�b = 〈e2|d̂ · êzE0
b cos(k0x)|g〉
h̄

, (A5)

�p = 〈e1|d̂ · êyE0
p cos(kz)|g〉
h̄

, (A6)

�c = 〈e1|d̂ · êzE0
c cos(kx + φ)|g〉

h̄
. (A7)

To keep the notation simple, we use the same notation to
denote the labeling of lasers and their corresponding Rabi
frequencies here. In the spirit of the rotating-wave approxi-
mation (RWA), the high-frequency part of the laser fields can
be rotated away leading to the Hamiltonian,

ĤRWA
s = h̄ωcâ†â +

∑
i=1,2

h̄ωei |ei〉〈ei|

+
[(

h̄�câ + h̄�p

2
e−iωpt

)
|e1〉〈g|

+ h̄�b

2
e−iωbt |e2〉〈g| + H.c.

]
. (A8)

Furthermore, the time dependence in ĤRWA
s can be removed

by transferring to the rotated frame,

ĤRWA
Rot = Û †

RotĤ
RWA
s ÛRot = −h̄�câ†â −

∑
i=1,2

h̄�ei |ei〉〈ei|

+
[(

h̄�câ + h̄�p

2

)
|e1〉〈g| + h̄�b

2
|e2〉〈g| + H.c.

]
,

(A9)

where

ÛRot = e−i(ωpâ†â+ωp|e1〉〈e1|+ωb|e2〉〈e2|), (A10)

and �c = ωp − ωc,�e1 = ωp − ωe1 , and �e2 = ωb − ωe2 .
In our setup, the atoms are strongly confined to the x

axis (the cavity axis) to realize the effective 1D system, we
can evaluate �p at z = 0 without loss of generality. The
laser fields are far-off resonance from the atomic transitions
which guarantees the validity of the adiabatic elimination
approximation method [42] in removing the excited-states
|e1,2〉 from the Hamiltonian ĤRWA

Rot . With these considerations,
the effective low-energy single-particle Hamiltonian for the
atomic ground state after eliminating the atomic excited states
is given by

Ĥeff,1b = P2
x

2M
+ Vx cos2(k0x) − h̄[�c − �0 cos2 (kx + φ)]

× â†â + h̄η(â† + â) cos (kx + φ), (A11)

where P2
x /2M is the kinetic energy and M is the atomic mass.

Here we have the effective single-photon Rabi frequency,

�0 =
∣∣〈e1|d̂zE0

c |g〉∣∣2

h̄2�e1

, (A12)
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the effective atom-cavity coupling coefficient,

η = 〈g|d̂yE0
p |e1〉〈e1|d̂zE0

c |g〉
2h̄2�e1

, (A13)

and the lattice potential,

Vx = |〈e2

∣∣d̂zE0
b |g〉∣∣2

4h̄2�e2

. (A14)

This model reduces to the Aubry-André model [43] or the
Harper model [44] in the limit without cavity backaction.
Recently, Anderson-like localization has been predicted in
the single-particle case [45]. In this paper, we focus on the
many-body regime where the impact of the atomic interaction
induced by the cavity backaction is non-negligible.

2. Effective many-body Hamiltonian: All-to-all
quasiperiodic interaction

The second-quantization many-body system Hamiltonian
of model (A11) is given by

Ĥ =
∫

dx �̂†(x)[Ĥeff,1b + g�̂†(x)�̂(x) − μ]�̂(x), (A15)

where g is related to the s-wave interaction strength as via
g = 4π h̄2as/M, μ is the chemical potential, and �̂(x) [�̂†(x)]
is the field annihilates (creates) operator. For simplicity, we
assume that the lattice potential Vx is much stronger than
the effective single-photon Rabi frequency �0. Under this
assumption, the tight-binding approximation to the system is
applied, i.e., by expanding �̂(x) and �̂†(x) in the basis of
Wannier functions {W (x − ja0)} associated with the lowest
Bloch band (s band) of the background Hamiltonian,

Ĥ0
eff,1b = P2

x

2M
+ Vx cos2(k0x). (A16)

The expansion reads

�̂(x) =
L∑

j=1

W (x − ja0)ĉ j, (A17)

where a0 = π/k0 is the lattice constant, L = Lc/a0 is the
number of the lattice sites, and ĉ†

j (ĉ j) are the creation
(annihilation) operators of an atom at lattice site j. Keeping
the nearest-neighbor tunneling of the single-particle terms, the
on-site s-wave interaction, and the on-site energy induced by
the cavity field, we get

Ĥ = t
L∑

j=1

(ĉ†
j+1ĉ j + H.c.) + Us

2

L∑
j=1

n̂ j (n̂ j − 1) − �̃câ†â

+
L∑

j=1

M1, j n̂ j (â
† + â) + (E1b + μ)N, (A18)

where the first term is the tunneling term induced by the back-
ground Hamiltonian Ĥ0

eff,1b with the tunneling coefficient t ,

the second term is the on-site s-wave interaction with the local
density operator n̂ j = ĉ†

j ĉ j , the third term is the cavity field
with the effective cavity detuning �̃c = h̄�c − ∑

j M2, j n̂ j ,
the forth term is the atom-cavity coupling with effective
on-site coupling coefficient M1, j , and the last terms are the
constant terms with the total atom number N . The coefficients
in the Eq. (A18) are given by

t =
∫

W ∗(x − ja0)

[
P2

x

2M
+Vx cos2(k0x)

]
W [x−( j+1)a0]dx,

(A19)

Us = g
∫

|W (x − ja0)|4dx, (A20)

M1, j = h̄η

∫
|W (x − ja0)|2 cos(kx + φ)dx, (A21)

M2, j = h̄�0

∫
|W (x − ja0)|2 cos2(kx + φ)dx, (A22)

E1b =
∫

|W (x − ja0)|2
[

P2
x

2M
+ Vx cos2(k0x)

]
dx. (A23)

Here, M1, j and M2, j are randomness coefficients which arise
from two aspects: One is the irrational value of the ratio k/k0

which gives the on-site randomness (Ma,i �= Ma, j for any i �=
j and a = 1, 2); another is the randomness of the phase φ and
which leads to M (A)

a,i �= M (B)
a, j with any 〈i, j〉 combination for

different theoretical samples or experimental measurements
(A) and (B).

Usually, the timescale of the atomic dynamics (τa) is much
larger than the relaxation time of the cavity (τc), i.e., τa � τc

or �̃c � t . Therefore, within the time-interval τa, the cavity
photons relax to the steady state in a relatively short timescale
which can be described by the adiabatic approximation,

1

τa

∫ τ−τa/2

τ−τa/2

˙̂a(τ ′)dτ ′ ≈ 0, (A24)

1

τa

∫ τ−τa/2

τ−τa/2
â(τ ′)dτ ′ ≈ â(τ ). (A25)

More explicitly, the dynamics of the cavity mode â satisfies

i ˙̂a = −(�̃c + ih̄κ )â +
L∑

j=1

M1, j n̂ j = 0, (A26)

with the decay rate κ from which the cavity mode dynamics
is solved by [45]

â =

L∑
j=1

M1, j n̂ j

�̃c + ih̄κ
. (A27)

Substituting Eq. (A27) into Eq. (A18) and taking into account
that the detuning �c is much larger than

∑L
j=1 M2, jn j/h̄ and
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FIG. 7. The probability density function of the all-to-all
quasiperiodic interaction Vi j/V0. Here we use 5000 samples and set
lattice site number L = 14. The relative phase φ takes a uniform
distribution over [−π, π ].

the cavity decay rate κ (far of-resonance condition as stated
before), we find the effective Hamiltonian (up to a constant
term),

Ĥ = t
L∑

j=1

(ĉ†
j+1ĉ j + H.c.)+Us

2

L∑
j=1

n̂ j (n̂ j − 1) +
L∑

i, j=1

Vi j n̂in̂ j,

(A28)
where Vi j = M1,iM1, j/�c is the strength of the all-to-all in-
teraction. To get the approximately analytical expression for
Vi j , we use the normalized harmonic-oscillation function to
replace the Wannier function,

W (x) ≈
(α

π

)1/4
e−αx2/2, (A29)

where α = 2Vxk2
0/(h̄ωb) is the normalized factor. We find

M1,i = M0√
L

cos(iπβ + φ), (A30)

and

Vi j = V0 cos(iπβ + φ) cos( jπβ + φ), (A31)

where

M0 =
√

h̄ωc

Sca0ε0

〈g|d̂yE0
p |e1〉〈e1|d̂z|g〉
2h̄�e1

e−(k2/4α), (A32)

and

V0 = M2
0

�cL
. (A33)

In this paper, we apply the uniform distribution to the random
phase φ within the range [−π, π ] which gives rise to the
nonuniform distribution for quasiperiodic interaction Vi j/V0

(shown in Fig. 7). To the end, the Hamiltonian in Eq. (A28)
can be either applied to the bosonic system or the fermionic
system. Also, the s-wave interaction can be tuned by the Fesh-
bach resonance [46]. We only focus on the spinless fermionic
system and turn off the s-wave interaction as shown in Eq. (1)
of main text.

3. Spin model mapping

To make a connection with the literature that use
spin models, our model can be converted to a spin
model using the Jordan-Wigner transformation. Applying
the Jordan-Wigner transformations ĉ j = ∏ j−1

i=1 (−σ̂ z
i )σ̂−

j

and ĉ†
j ĉ j = (σ̂ z

j + 1)/2 to the Hamiltonian in Eq. (1)

and using ĉ†
j ĉ j+1 = −σ̂+

j

∏ j−1
i=1 (−σ̂ z

i )
∏ j

k=1(−σ̂ z
k )σ̂−

j+1 =
−σ̂+

j σ̂ z
j σ̂

−
j+1 = σ̂+

j σ̂−
j+1, we arrive at a spin model (up to a

constant term),

ˆ̃H = t̃
L∑

j=1

(σ̂+
j σ̂−

j+1 + H.c.) +
L∑

i �= j

Ṽi j σ̂
z
i σ̂ z

j +
L∑

i=1

h̃iσ̂
z
i ,

(A34)
where σ̂±

j = (σ̂ x
j ± iσ̂ y

j )/2 and σ̂ z
j are the standard Pauli op-

erators, h j = ∑
i Vi j is the effective local magnetic field, t̃ =

−t/2 is the effective hopping strength, and Ṽi j = Vi j/4 is the
interaction strength, respectively.
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