
PHYSICAL REVIEW A 106, 023305 (2022)

Mobile impurity in a one-dimensional gas at finite temperatures
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We consider the McGuire model of a one-dimensional gas of free fermions interacting with a single impurity.
We compute the static one-body function and momentum distribution of the impurity at finite temperatures. The
results involve averages over Fredholm determinants that we further analyze using the effective form factors
approach. With this approach, we derive the large-distance behavior of the one-body function, which takes the
form of an averaged exponential decay. This method allows us to study an experimentally important regime
of small momenta of the impurity’s momentum distribution. We also consider the one-body function at short
distances and compute finite-temperature Tan’s contact.
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I. INTRODUCTION

Mobile impurities are ubiquitous in physical systems and
are usually referred as polarons [1–3]. Recent years witness
increase of the interest in mobile impurities due to the ad-
vances in fabrications and manipulations of systems of cold
atoms [4,5]. The mobile impurities appear there either in
imbalanced mixtures of two different gases [6], or they can
be created after the application of the rf pulse on the sys-
tem, transferring part of atoms to a different hyperfine state
[7,8]. Such systems were created and explored in number
of studies [9–13]. Especially intriguing are experiments with
one-dimensional systems [14–17], as the increased role of
interactions leads to prominent effects including in particular,
quantum Newton Cradle [18] and Bloch oscillations without
lattice [19].

To theoretically explore the properties of a quantum par-
ticle propagating in a one-dimensional medium different
schemes and approximations were developed. For instance,
various mean-field approaches [20–24] can be used to de-
scribe properties of the ground state. Instead, perturbation
theories for the weak impurity-gas coupling allows one to de-
scribe dynamics of the impurity [25–29]. Numerical methods
such as the time-dependent density-matrix renormalization
group has been successfully applied to extract breathing mode
[30], and time-evolving block decimation methods can be
used to describe various nonequilibrium aspects of the im-
purity [31], including the quantum flutter phenomenon [32].
Approaches based on variational methods, in which the wave
function is parameterized by a finite number of particle-hole
excitations [33–35], and with more sophisticated parametriza-
tions [36,37], made it possible to address static and dynamic
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properties of the impurity [35,38–40]. Finally, the properties
of the polaron can be addressed with Monte Carlo methods
[41–44]. For a pedagogical review of numerical approaches
to impurity physics see Ref. [45].

In addition to numerical methods truly nonperturba-
tive treatment of one-dimensional quantum system can be
achieved for models that are solvable by Bethe ansatz meth-
ods. An example of such model is the McGuire model [46,47]
that describes a spin-down particle interacting with the gas
of spin-up particles via the contact interaction. This model
represents a specific sector of the fermionic Yang-Gaudin
model [48,49]. Contrary to generic models the wave functions
of the McGuire model can be written as a single determi-
nant resembling the Slater determinant for the free Fermi gas
[50,51]. This allows one to find exact analytic expressions for
the various physical quantities in the thermodynamic limit. In
addition to the simplest correlation functions and the effective
mass computed by McGuire in Refs. [46,47], one can compute
the large-time asymptotics of the average momentum of the
impurity injected in the gas with some initial velocity [52],
two-point correlation functions [53,54], and the impurity’s
momentum distribution in the ground state (or a boosted
ground state) of the whole system [55,56].

In this paper we consider impurity’s momentum distribu-
tion at finite temperature in the McGuire model. It is computed
as a Fourier transform of the one-body function. We find that
similar to [56] the answer in the thermodynamic limit can
be expressed via the Fredholm determinants that additionally
have to be integrated over an additional degree of freedom
related to the impurity’s momentum (the spin rapidity). We
also explore large-distance asymptotic of these Fredholm de-
terminants by employing the effective form factors methods
[57–59]. This allows us to find analytically the prefactor and
the correlation length (before integration of the spin rapidity).
We also analytically compute Tan’s contact as a function of
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coupling constant and the the temperature. In our derivations
we never use the specific form of the thermal distribution, and
the same approach presented here can be used to compute
the impurity’s correlation function for a system in a gener-
alized Gibbs ensemble that could appear, for instance, after
the quench protocol [60].

The structure of the paper is as follows. In Sec. II we
introduce the model for an impurity, recall main results from
the Bethe ansatz, and compute exact answers for the one-body
function at finite temperature. In Sec. III we analyze large-
distance behavior of the one-body function with the help of
effective form factors. Section IV is devoted to the impurity’s
momentum distribution. Finally, Sec. V contains conclusions
and an outlook. In Appendixes we gather more technical re-
sults: in Appendix A on the thermodynamics of the impurity,
in Appendix B on thermodynamic limit of the form factors,
and in Appendix C on an analytic structure of the one-body
function in the asymptotic regime.

II. THE MODEL AND THE CORRELATION FUNCTIONS

The Hamiltonian of the McGuire model [46,47] is given by
the following expression:

H = P2
imp

2m
+

N∑
j=1

P2
j

2m
+ g

N∑
j=1

δ(x j − ximp). (1)

The model describes a gas of spin-up particles with momenta
Pj and coordinates x j interacting with a single mobile impu-
rity (the spin-down particle), with the momentum Pimp and the
coordinate Ximp. The gas particles are assumed to be either
fermions or, equivalently, the hardcore bosons. The impurity-
gas coupling strength g in the dimensionless form is

γ = mg

ρ0
, (2)

where ρ0 = N/L is the gas density. We also set m = 1. In-
troducing the creation ψ+

k,↓ and annihilation operators for the
impurity ψk,↓ one can formally write an impurity’s momen-
tum distribution in an eigenstate |{k j},�〉 as

n(k; {k j},�) = 〈{k j},�|ψ+
k,↓ψk,↓|{k j},�〉. (3)

The eigenstate |{k j},�〉 of the Hamiltonian (1) is specified by
a set of rapidities {k j} and �. For a system of length L with
periodic boundary conditions the rapidities obey the Bethe
equations

k j = 2π

L

(
n j − δ(k j )

π

)
, j = 1, . . . , N + 1, (4)

where quantum numbers nj are integers and obey the Pauli
principle. The phase shift is

δ(k) = π

2
− arctan(� − αk), α = 2π

γ
. (5)

The rapidity �, called the spin rapidity, can be fixed by
specifying values of other integrals of motions in this model.
Traditionally, we require that the total momentum given by

P({k j},�) =
N+1∑
k=1

k j (6)

is fixed, i.e., P({k j},�) = Q. The � dependence in (6) is
implicit through k j as solutions to the Bethe equations. There-
fore, for given Q and the set of integers one can resolve
condition (6) and thus solve the Bethe equations. Notice,
however, that sometimes there are no solutions, therefore not
all sets of integers are allowed for a fixed total momentum. For
a detailed description of the spectrum of the McGuire model
we refer to [46]. Finally, the energy of a given state is

E ({k j},�) = 1

2

N+1∑
k=1

k2
j . (7)

The impurity’s momentum distribution is a Fourier trans-
form of the static one-body function

ρ(x; {k j},�) ≡ 〈{k j},�|ψ†
↓(x)ψ↓(0)|{k j},�〉. (8)

This function was computed and thoroughly analyzed in
Refs. [55,56].

The aim of our work is to compute and study the impurity
one-body function at finite temperatures and in the thermody-
namic limit,

ρT (x) = 1

Z Tr(e−βHψ
†
↓(x)ψ↓(0)), (9)

where Z = Tr exp(−βH ) is the partition function.
To do so we need to characterize the eigenstates of the

thermodynamically large system. In a finite system the Hilbert
space is spanned by choices of quantum numbers {nj} and Q
and equivalently, by rapidities {k j} and �. In the thermody-
namic limit, N, L → ∞ such that N/L = ρ0, we introduce a
density function ρp(k) such that Lρp(k)dk gives the number
of rapidities in the range [k, k + dk]. In fact, much more con-
venient is to deal with the distribution σ = ρp/ρtot normalized
by the total density in the rapidities space. In our case an impu-
rity disturbs the underlying gas only in the subleading in the
system size order such that ρtot = 1/2π + O(1/L). Instead,
the quantum number Q remains as a single parameter spec-
ifying, by fixing the momentum of the system, the impurity.
The extensive part of the Gibbs free energy F depends only
on distribution σ (k) and is independent of �,

F[σ,�] = LFth[σ ] + F0[σ,�] + const + O(1/L), (10)

where const stands for intensive contributions to the free
energy independent of �. The derivation of this relation is
presented in Appendix A. The expression for the free energy
implies that the impurity affects the thermodynamics at the
subleading, in the system size, level. On the other hand, the
leading thermodynamics is this of a free fermions. Therefore,
at the thermal equilibrium the density σ (k) is just the usual
Fermi-Dirac distribution.

Let us denote

ρ(x; σ,�) = Z (σ,�) lim
th

ρ(x; {k j},�), (11)

where {k j} is such that in the thermodynamic limit it corre-
sponds to the distribution σ (k) and Z (σ,�) = ∂Q/∂� the
Jacobian of transformation between the quantum number Q
and rapidity �. It is introduced here for future convenience.
Then, in view of the above discussion on the free energy, the
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thermal expectation value is

ρT (x) =
∑

Q e−βF0[σ,�]Z (σ,�)−1ρ(x; σ,�)∑
Q e−βF0[σ,�]

. (12)

For the partition function we have then

∑
Q

e−βF0[σ,�] = L

2π

ˆ
d�e−βF0[σ,�]Z (σ,�). (13)

The detailed account of how to perform summation over the
eigenstates can be found in [53,54]. All the integrals, un-
less explicitly specified otherwise, extend over the real line.
Performing the same transformation in the numerator of the
correlation function (12) we find

ρT (x) =
´

d�e−βF0[σ,�]ρ(x; σ,�)´
d�e−βF0[σ,�]Z (σ,�)

. (14)

Later in this section we show that the denominator is respon-
sible for the correct normalization of the one-body function
giving ρT (0) = 1.

Equation (14) is the main result of this section. It expresses
normalized one-body function of the impurity as an averaged
one-body function over the spin rapidity. The various contri-
butions are weighted by the correlation energy F0. We discuss
now the ingredients of this formula.

The intensive contribution to the free energy, the cor-
relation energy, according to the derivation presented in
Appendix A is

F0[σ,�] = −4
ˆ

dk

2π
kσ (k)δ(k)

= −4
ˆ

dk

2π
k

[
π

2
− arctan (� − αk)

]
σ (k), (15)

where σ (k) is a Fermi-Dirac distribution, which we choose to
parametrize as follows:

σ (k) = 1

1 + eβ(k2−μ)
. (16)

An analogous expression for the correlation energy F0, for a
lattice model, was also derived in Ref. [61].

The expression for ρ(x; σ,�) can be deduced from the
finite N results found in Ref. [56]. There it was expressed in
the forms of determinants and valid for any set of the momenta
that specify the eigenstate. Furthermore, the ensemble average
can be replaced by the average in the typical state [62,63] (see
also Appendix A in [54]). In the thermodynamic limit this
results in the Fredholm determinants with kernels multiplied
by the Fermi distribution, namely, we can present

ρ(x; σ,�) = det(1 + σ K̂ + σŴ ) − det(1 + σ K̂ ), (17)

where operators act on L2(R) via the convolution, for exam-
ple,

σ K̂u(q) = σ (q)
ˆ

dq′K (q, q′)u(q′). (18)

The explicit form of the kernels can be found in [56]:

K̂ (q, q′) = e+(q)e−(q′) − e−(q)e+(q′)
q − q′ ,

Ŵ (q, q′) = 1

π
e−(q)e−(q′), (19)

e+(q) = 1

π
eiqx/2+iδ(q), e−(q) = e−iqx/2 sin δ(q).

One can make kernels in (17) symmetric, that is, σ K̂ →√
σ K̂

√
σ and similarly for Ŵ , by the conjugation with diag-

onal matrices. The Fredholm determinants can be evaluated
numerically by using methods from Ref. [64]. Finally, we can
evaluate the Jacobian by computing ρ(0; σ,�) using an obser-
vation that at x = 0 the kernels become rank-one operators. In
this way, we obtain

Z (σ,�) = Tr[σŴ ] =
ˆ

dk

π

σ (k)

1 + (αk − �)2
. (20)

Another justification of this formula comes directly from
the formal form of the Jacobian Z = ∂Q/∂�. Indeed, we
can present it as Z (σ,�) = −∂�

´
dkσ (k)δ(k)/π , which is

a derivative of � dependent part of the total momentum (6).
We also note that ρ(x; σ,−�) is a complex function such that
ρ(x; σ,−�) = ρ∗(x; σ,�). Therefore the resulting one-body
function ρT (x) is a real function.

In the zero temperature limit, the contributions to the inte-
grals in (14) localize at the minimum of the correlation energy,
that is, at � = 0. In the same time the Fermi-Dirac distribution
becomes the ground-state distribution and ρT =0(x) is given
by the expectation value in the ground state of the McGuire
model.

Finally, formula (14) expresses the finite-temperature cor-
relation function through averaging over correlation functions
in different impurity states labeled by �. Different contribu-
tions are weighted with the correlation energy F0[σ,�]. The
derivation of this formula presented here does not rely on
the specific correlation functions and therefore this structure
is universal for finite-temperature impurity correlation func-
tions. A relevant example, and a generalization of the static
case considered here, is the finite-temperature dynamic one-
body function ρT (x, t ), which then involves averaging over
ρ(x, t ; σ,�) given by straightforward adaptations of (8) and
(11).

III. EFFECTIVE FORM FACTORS AND
LONG-DISTANCE ASYMPTOTIC

In this section, we study the asymptotic expansion of the
one-body function at large distances. The kernel K̂ in (17)
is nothing but a generalized sine kernel, and the asymptotic
of det(1 + σ K̂ ) can be found by solving the corresponding
Riemann-Hilbert problem (RHP) [65,66]. In principle, ac-
counting for the Ŵ can be also done via RHP, however, this
approach is technically involved, and we prefer to employ
instead recently developed heuristic methods of the effective
form factors [57–59]. In this approach an exact form factor
(spectral) series that describes the correlation function at finite
temperature and that in the thermodynamic limit leads to
(17) is replaced with the effective one. The effective series
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formally corresponds to the zero temperature, but the form
factors depend on an effective phase shift in which informa-
tion about the distribution σ is contained. To find this phase
shift we perform summation of the effective form factor series
and again express the result as Fredholm determinants of a
similar kind as the exact one. Asymptotically identifying the
kernels we compute the desired effective phase shift. The
advantage of the effective form factor series lies in the fact
that the corresponding Fredholm determinants turn out to be
an elementary functions, or integrals of elementary functions,
thus allowing us to find the desired asymptotic expression for
the exact correlation function.

More explicitly, the effective form factors |〈k|q〉| are

|〈k|q〉|2 =
N+1∏
i=1

2eg(ki ) sin2 πν(ki )

L + 2πν ′(ki )

N∏
i=1

2e−g(qi )

L
(det D)2, (21)

with

det D ≡

∣∣∣∣∣∣∣∣∣

1
k1−q1

· · · 1
kN+1−q1

...
. . .

...
1

k1−qN
· · · 1

kN+1−qN

1 · · · 1

∣∣∣∣∣∣∣∣∣
. (22)

Here g(k) and ν(k) are arbitrary smooth functions that we are
going to specify below. The momenta k = {ki} and q = {qi}
are understood as solutions of

eikL = e−2π iν(k), eiqL = 1, (23)

respectively. They can be parametrized in terms of the quan-
tum numbers as

k j = 2π

L

(
n(k)

j − ν(k j )
)
, j = 1, . . . , N + 1, (24)

qj = 2π

L
n(q)

j , j = 1, . . . , N. (25)

In principle we could formulate the problem for any set of
{ki}. For the impurity problem the relevant scenario is when
{ki} takes the Fermi sea configuration at zero temperature; that
is, the corresponding quantum numbers are

n(k)
j = −N

2
+ j, j = 1, . . . , N + 1. (26)

The tau function of interest is defined as

τN (x) =
∑

q

|〈k|q〉|2e−ix[P(k)−P(q)], (27)

where the summation extends over possible values of {qj} or
possible quantum numbers {n(q)

j } keeping in mind the Pauli
principle. The total momentum P(k) = ∑

k j . The summation
in (27) can be performed exactly, using a slight variation of
the Cauchy-Binet formula [67], and the result is

τN (x) = det
N

(δi j + Ai j + Bi j ) − det
N

(δi j + Ai j ), (28)

with Ai j = A(ki, k j ) and Bi j = B(ki, k j ) where

A(q, q′) = − e(q) − e(q′)
q − q′ B(q, q′),

B(q, q′) = 2

L
exp

(
g(q) + g(q′) − ix(q + q′)

2

)

× sin πν(q) sin πν(q′), (29)

and

e(k) = 2ieikx−g(k)

e−2π iν(k) − 1
+
ˆ

dq

π

eiqx−g(q)

k − q − i0
. (30)

In the thermodynamic limit, N, L → ∞ with N/L fixed
the determinants turn into Fredholm determinants acting on
L2([−qF , qF ]),

τ (x) = lim
th

τN (x) = det(1 + A + B) − det(1 + A), (31)

where qF = πN/L is the Fermi momentum of the auxiliary
problem.

We consider now the asymptotic expansion, x → ∞. The
integral in e(k) is then exponentially suppressed and

e(k) ≈ 2ieikx−g(k)

e−2π iν(k) − 1
, (32)

with corrections exponentially small in x. Within this approx-
imation the kernels can be presented in the following form:

A(q, q′) = E+(q)E−(q′) − E−(q)E+(q′)
q − q′ ,

B(q, q′) = 1

π
E−(q)E−(q′), (33)

where

E+(q) = 1

π
eiqx/2+iπν(q)−g(q)/2,

E−(q) =e−iqx/2+g(q)/2 sin πν(q). (34)

We now compare this asymptotic structure for τ (x) with for-
mula (17) for ρ(x; σ,�). Recall that in τ (x) functions g(k)
and ν(k) are arbitrary smooth functions. The two expressions
match if g(q) and ν(q) obey the following relations:√

σ (q) sin δ(q) = eg(q)/2 sin πν(q),√
σ (q)eiδ(q) = eiπν(q)−g(q)/2, (35)

which gives

ν(q) = 1

2π i
ln ϕ(q),

g(q) = ln ϕ(q) − ln σ (q) − 2iδ(q), (36)

where

ϕ(q) ≡ 1 + (e2iδ(q) − 1)σ (q) = 1 + 2iσ (q)

� − αq − i
. (37)

With such chosen ν(k) and g(k) we have

ρ(x; σ,�) ∼ lim
qF →∞ τ (x), as x → ∞. (38)

On the other hand τN (x) function has a spectral representa-
tion. We shall see that for qF → ∞, only small subset of the
spectral (form factor) sums matters, thus allowing us to find
τ (x) exactly, and in this way to understand the asymptotic
expansion of ρ(x; σ,�).

For the further understanding of the spectral series we
discuss function ν(k). This function enters the expression for
the form factor and, more importantly, the rapidities k j . As
we shall see its analytic properties of ν(q) are determining
for the form factor summation. This function besides explicit
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FIG. 1. In the upper panel we plot ϕ(q) in the complex plane for
α = 1, μ = 1, and β = 1. In the |�| > �c case, ϕ(q) does not encir-
cle the origin, and therefore its winding number is w = 0. Instead, for
|�| < �c, ϕ(q) winds once around the origin. In the bottom panel,
we plot ν(q) as a function of q.

dependence on q depends on all the parameters in the prob-
lem. Through δ(q) ≡ δ(q; �,α) it depends on the coupling
parameter α and on the impurity rapidity �. It also depends
on the thermodynamic properties of the system through the
filling function σ (q). At the thermal equilibrium these are
the temperature T and the chemical potential μ. The analytic
properties of ν(q) are determined by analytic properties of the
complex logarithm, which is defined on a Riemann surface
spiraling around the origin of the complex plane. On this
surface ν(q) is continuous but depends on the number of wind-
ings around the origin. More precisely, the plot of ϕ(q) [the
argument of the logarithm see (36) and (37)] for all available
q forms a loop with origin at z = 1 in the complex plane; see
Fig. 1. Whether the loop winds around the origin depends on
the parameters of the system, which we now inspect. The loop
extends over the origin when, for some value q∗, ϕ(q∗) has
a negative real part and zero imaginary part. This gives two
conditions:

tanh(βε(q∗)/2) < 0, αq∗ = �. (39)

At the thermal equilibrium ε(q) = q2 − μ which leads to two
cases, formulated in terms of �:

|�| � �c: winding w = 1, (40)

|�| > �c: winding w = 0, (41)

FIG. 2. The structure of the ground state and relevant excited
states in the nonwinding case (a) and winding case (b).

where

�c ≡ α
√

μ. (42)

The winding number w is defined as (see Fig. 1)

w =
ˆ

dq∂qν(q) = ν(∞) − ν(−∞). (43)

Note that the imaginary part of ν(q) has always asymptote 0
as q → ±∞.

Function ν(q) enters the expression for the form factor
through exp(iπν(q)) and therefore the nonzero winding has
little effect on it. On the other hand ν(q) enters directly the
expression for rapidities k j and affects the structure of the
relevant excitations in the spectral sum of τ (x). Namely, in-
tuitively it is clear that the largest contributions come from
those q j whose quantum numbers are identical to k j . In the
nonwinding case we cannot achieve this for all q j , simply
because the number of k j in the set |k〉 is larger by one that
possible qj in |q〉. So there will be at least one hole as we
demonstrate in Fig. 2(a). In principle in the spectral sum there
also different excitations, involving necessarily particle-hole
pairs. We will argue later that such excitations do not con-
tribute in the limit qF → ∞. Therefore in the nonwinding
region |�| > �c we obtain the exact expression for τ (x) and
asymptotic for ρ(x; σ,�),

ρ(x; σ,�) ≈ 2J (x)A(�) exp

(
−ix

ˆ
kν ′(k) dk

)
, (44)

where

ln A(�) =
ˆ

g(k)ν ′(k) dk − ln 2

+
ˆ

dq
ˆ

d pν ′(p)ν ′(q) ln |q − p| (45)

and

J (x) =
ˆ

dq

π

σ (q)e−iqx

(αq − �)2 + 1
exp

( 
d p

2ν(p)

q − p

)
. (46)

The appearance of the integral J (x) reflects the fact that we
have to sum over the hole positions. Detailed derivation of
this identity is given in Appendix B 1. One can further analyze
J (x) asymptotically by the saddle point method, which is done
in Appendix C. For practical purposes, however, we leave it in
the integral form.

If winding w = 1 then the state |k〉 is effectively com-
pressed [see again Fig. 2(b)], and contrary to the nonwinding
case, there is no extra space for a hole in the state |q〉. The
possible excitations are then only particle-hole excitations
which we again can neglect in view of the qF → ∞ limit. So
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FIG. 3. Comparison between ρT (x) calculated from the exact Fredholm determinants (solid lines) and the effective form factors (dashed
lines) for α = 0 (left panel) and α = 1 (right panel).

in fact the sum (31) reduces to one term, which we evaluate in
Appendix B 2. The asymptotic for |�| < �c is

ρ(x; σ,�) = A(�) exp

(
−ix

ˆ
kν ′(k) dk

)
. (47)

Here A(�) is given by Eq. (45).
We discuss now the irrelevance of other excited states in

the spectral sum of τ (x) for qF → ∞. The other excited states
necessarily involve particle-hole excitations. Given the Fermi
sea structure of |q〉 the rapidity of the particle excitation is
|k| > qF . Therefore in the limit qF → ∞ there is no space
for such excitations and they do not contribute to the spectral
sum. The formal proof of this argument, in the context of the
XY spin chain can be found in [57]. Alternatively, one can
numerically check that the result of our summation [Eqs. (44)
and (47)] is identical to the Fredholm determinants (31) for
any x.

It might look as if the asymptotics (44) and (47) are discon-
tinuous as function of �. This is apparent and connected with
the fact that the function ν(q) behaves very differently for dif-
ferent winding numbers. In Appendix C we prove that while
changing � over �c one expression smoothly transforms into
the other one. This is somewhat similar to the gap depen-
dence of the finite-temperature correlation functions during
the crossover over the critical point. For the one-dimensional
Ising model this can be seen in Ref. [68].

In Fig. 3 we compare the one-body function ρT (x) com-
puted according to (14) with exact Fredholm determinant
expression for ρ(x; σ,�) of Eq. (17), referred to as ρex, with
the results effective form factors given by Eqs. (44) and (47),
referred to as ρeff . We see that the deviation happens only at
small x and is less for smaller β (higher temperatures). The
reason for this is that the effective form factors gives only
the leading contribution with the smallest decay rate. At small
temperatures, both leading and subleading decay rates become
small so the latter cannot be ignored anymore. At exactly zero
temperature all decay rates vanish, and the correlation func-
tion has a power-law behavior with the separation distance
[56].

IV. MOMENTUM DISTRIBUTION AND TAN’S CONTACT

The momentum distribution function of the impurity
nimp(k) can be evaluated from the one-body function through
its Fourier transform, which for the real and symmetric ρT (x)
takes the following form:

nimp(k) =
ˆ ∞

0

dx

π
cos(kx)ρT (x). (48)

In Fig. 4 we show the results for different temperatures and
coupling constants. We compare the exact results with the
results obtained from the effective form factors after normaliz-
ing it such that for k = 0 values of the impurity’s distributions
coincide. We see that at small momenta these two distributions
are almost identical. This reflects the fact that the effective
description introduced in the previous section decently ap-
proximates the exact ρT (x) away from the origin.

The short distance expansion (for μx  1) is, however, not
captured by the effective form factors. For the momentum
distribution this behavior is responsible for the large-k tails
(see insets in Fig. 4). Indeed, integrating by parts we see
that the leading asymptotic expansion is governed by the odd
derivatives of ρT (x) and x = 0. One can explicitly demon-
strate that the first derivative at zero vanishes, so the leading
asymptotics is given by the third derivative, which gives rise
to the well-known k−4 decay:

nimp(k) ≈ ∂3
x ρT

πk4

∣∣∣
x=0

≡ C(g, β )

k4
. (49)

The constant C(g, β ) is called Tan’s contact and is related to
the thermodynamic properties of the system [69,70]. Such a
constant was obtained in Ref. [56] by means of the Taylor
series of the kernels around x = 0, rendering them into finite-
rank expressions. Expanding this argument by linearity we
obtain that, at finite temperatures, Tan’s contact reads

C(g, β ) =
´

d�e−βF0(�)[S0(�)S2(�) − S1(�)2]

π
´

d�e−βF0 (�)S0(�)
, (50)

where

Sn(�) =
ˆ

dk

π

knσ (k)

(αk − �)2 + 1
. (51)
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FIG. 4. Comparison between the exact impurity’s momentum distribution nimp(k) (solid lines) and the normalized distribution obtained
from the effective form factors (dashed lines) for α = 0 (left panel) and α = 1 (right panel). The insets show the asymptotic behavior of the
momentum distribution, its k−4 decay characterized by Tan’s contact.

One can check that the contact (50), following the general
principles [69,70], can be written as a derivative of a thermo-
dynamic quantity over the coupling constant. Indeed, taking
into account

∂�F0 = 2S1, ∂αF0 = −2S2, ∂αS0 + ∂�S1 = 0, (52)

and after an integration by parts, one can arrive at

C(g, β ) = 1

2πβ
∂α ln

ˆ
d�e−βF0(�)S0(�). (53)

We plot Eq. (50) in Fig. 5 for three different interaction
regimes. We observe the increase of the contact with both
the temperature and the interaction strength at least to very
low temperatures. Recently, the finite-temperature polaron’s
behavior in three-dimensional gases were addressed with the
help of variational methods [71–73]. In particular, the temper-
ature dependence of Tan’s contact was studied. The qualitative
behavior found in these papers is different from ours and
is at least partially explainable by different dimensionalities
of the problems. At the very specific point of the infinite
coupling constant, i.e., α = 0, Tan’s contact is proportional

FIG. 5. Tan’s contact from Eq. (50) as a function of inverse
temperature for different interaction strengths.

to the average kinetic energy of in the Fermi gas,

C(g = ∞, β ) =
ˆ

dk

2π2
k2σ (k) = −

Li 3
2
(−eβμ)

4(πβ )3/2
, (54)

which makes its growth with the temperature manifest. Sim-
ilar behavior for Tan’s contact in a one-dimensional gas was
also observed in [74]. Moreover, in the zero-temperature limit
β → ∞, formula (50) can be understood as the localization
of the integrand at � = 0, which leads to

C(g, β = ∞) = 2

π2α3
(α − arctan α). (55)

Tan’s contact written in this form reproduces Eq. (6) from
[74], upon the identification kF a = −α and overall factor 2,
which is present due to spin degrees of freedom [see also
Eq. (113) in [56], as well as for the generalization to finite
� contacts at zero temperature]. From Fig. 5 we see that this
regime is relevant already on the intermediate temperatures.

V. CONCLUSIONS

In this work we tackled the problem of calculating the
one-body correlation function of an interacting mobile im-
purity submerged in a free fermionic gas at arbitrary finite
temperatures. We formulated the problem exactly in terms
of Fredholm determinants and inspected its large-distance
asymptotics through the effective form factor approach. We
found that the effective form factors provide an efficient way
in extracting the asymptotics of the Fredholm determinant cir-
cumventing the need of studying the technically very involved
matrix Riemann-Hilbert problem.

We observed that depending on the value of the spin
rapidity � the asymptotic behavior looks structurally very
different. The reason for this is topological as for |�| < �c,
the effective phase shift has the winding number 1, while for
|�| > �c the winding is absent. Similar a situation happens of
the Ising model [68] or the XY spin chain [57] where the role
of � is played by the magnetic field. Our asymptotics are still
continuous when crossing over �c as there are no quantum
phase transitions in one-dimensional systems at finite temper-
ature [75].
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With the one-body correlation function computed we in-
vestigated the momentum distribution of the impurity. This
is the quantity directly accessible in cold-atom experiments
[76–80]. We observed the characteristic narrowing of the
curve with the decrease of temperature. Finally, by performing
the short distance expansion of the Fredholm determinants, we
evaluated Tan’s contact of the impurity and showed its growth
with both the temperature and the interaction strength.

The next step would be to generalize this approach to
the time-dependent case and access the spectral functions. It
would be interesting to analyze not only the Green’s function
of the mobile impurity [53,54] but also the case of a static
impurity in a three-dimensional gas. Indeed, it is known that
various spectral observables can be expressed via the Fred-
holm determinants with kernels very similar to ours [81],
that allows to their analysis with the effective form factor
approach. The time-dependent case is important from the
experimental point of view [82] but also for the capturing uni-
versal contributions of the highly excited states in the generic
correlation functions in quantum one-dimensional systems,
within the nonlinear Luttinger liquid paradigm [83–85]. For
fixed � we expect an additional power-law prefactor for large
times [58,59]. In the infinite coupling constant case we expect
to recover the predicted logarithmic diffusion [86,87].

In our consideration the gas of the host particles was essen-
tially free fermionic, it can be equivalently replaced with the
Tonks-Girardeau gas, similar as for the zero temperature case
[56]. The mobile impurity in more complicated backgrounds

In this work we focused on thermal equilibrium as it is
the most experimentally relevant case. However, the presented
techniques do not rely on the gas distribution to be thermal
and the presented results can be generalized to stationary
nonequilibrium ensembles, such as the ones arising in the
quench action [88] or generalized hydrodynamics [89].
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APPENDIX A: THERMODYNAMICS OF THE IMPURITY

In this Appendix we evaluate the impurity dependent con-
tribution to the free energy of the model. The main result is
that the impurity affects only the intensive part of the free
energy and the contribution comes purely from the energy.
There is no impurity dependent contribution to the entropy.
To derive this result we start by recalling the thermodynamic
Bethe ansatz approach to the thermodynamics of integrable
models.

1. Thermodynamic functions

In the thermodynamic limit, N, L → ∞ with ρ0 = N/L
fixed. Following standard procedure [62] we introduce func-

tion k(x) defined by the following relation:

Lk(x) + 2δ[k(x)] = 2πLx. (A1)

By the definition k(n j/L) = k j , see Bethe equations (4). It
is customary to introduce two density functions. The total
density ρtot (k) and the particle density ρp(k). The former is
defined through

ρtot (k) = dx(k)

dk
(A2)

and, including the subleading corrections in the system size,
reads

ρtot,L(k) = 1

2π
ρtot (k)

(
1 + 2

L
∂kδ(k)

)
. (A3)

The density of particles is defined as

ρp(k j ) = lim
th

1

L(k j+1 − k j )
, (A4)

such that sum of over k j becomes an integral over the density

1

L

N+1∑
j=1

f (k j ) =
ˆ

dkρp(k) f (k). (A5)

We derive now an expression for ρp(k), including 1/L correc-
tion depending on �. To this end we consider again the sum
and include corrections to k j coming from the impurity. We
have

1

L

N+1∑
j=1

f (k j ) = 1

L

N+1∑
j=1

f

(
2π

L
nj − 2

L
δ j

)

= 1

L

N+1∑
j=1

[
f

(
2π

L
nj

)
− 2δ j

L
f ′

(
2π

L
nj

)]
. (A6)

Using that δ j = δ(k j ) ≈ δ(2πn j/L), we have

1

L

N+1∑
j=1

f (k j ) =
ˆ

dk ρp(k)

(
f (k) − 2

L
δ(k) f ′(k)

)
. (A7)

We can now incorporate the 1/L term as a correction to the
particle density by integrating by parts. Neglecting here the
boundary terms and obtain

1

L

N+1∑
j=1

f (k j ) =
ˆ

dk ρp,L(k) f (k), (A8)

with

ρp,L(k) = ρp(k) + 2

L
∂k[δ(k)ρp(k)]. (A9)

We will also need the filling function, which including the 1/L
correction, is

σL(k) = ρp,L(k)

ρtot,L(k)
= σ (k) + 2

L
δ(k)[∂kσ (k)]. (A10)

Concluding, the states of the system in the thermodynamic
limit are characterised by density functions which do not
depend on the impurity. The dependence comes only in the
subleading in the system size terms.
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2. Thermal equilibrium

We consider now thermal equilibrium by minimising the
free energy F = E − T S. Both energy and entropy have ex-
tensive parts, independent of the impurity, and intensive part
which depends on it. There are also intensive parts that do not
depend on the impurity. As we are interested in the physics
of impurity, those can be neglected. As we shall see they do
not influence the saddle point distribution and lead only to a
multiplicative constant for a partition function.

The energy (7), in the large system, becomes

E = LEth[σ ] + E0[σ,�] + O(L0), (A11)

where

Eth[σ ] =
ˆ

dk

2π
σ (k)

(
k2

2
− h

)
, (A12)

E0[σ,�] = −2
ˆ

dk

2π
kσ (k)δ(k). (A13)

We used here Eq. (7) for the energy in a finite system and
Eq. (A8) for ρp,L(k). We have also integrated by parts in
E0[ρp,�]. The entropy has the same structure

S = LSth[σ ] + S0[σ,�] + O(L0), (A14)

where

Sth[ρp, ρtot] = −
ˆ

dk

2π
G[σ (k)], (A15)

S0[σ,�] = 0, (A16)

with

G(σ ) = σ ln σ + (1 − σ ) ln(1 − σ ). (A17)

In the following we show that S0[σ,�], the subleading contri-
bution depending on �, is zero, and in the process we derive
also the leading expression Sth[ρp, ρtot].

Derivation of Eq. (A14): The entropy density dS(k) in the
interval [k, k + dk] is [62]

dS(k) = ln

(
[Lρtot,L(k) dk]!

[Lρp,L(k) dk]![Lρh,L(k) dk]!

)
, (A18)

with the total entropy S = ´
dS(k) and with the holes density

ρh,L(k) defined as

ρh,L(k) = ρtot,L(k) − ρp,L(k). (A19)

Using the Stirling approximation for the factorial, ln n! ≈
n ln n − n + · · · , we find

dS(k) = −Lρtot,L(k)G[σL(k)]d k, (A20)

from which sth[ρp, ρtot] follows as the leading term in L. We
expand now G[σL(k)] in L, and the first two orders are

G[σL(k)] = G[σ (k)] + 2

L
δ(k){∂kG[σ (k)]}. (A21)

Using now the expression for ρtot,L(k), the subleading in sys-
tem size contribution to dS(k) is a total derivative with respect
to k and therefore does not contribute to the total density.
Therefore S0[�] = 0.

We consider now the free energy

F = LFth + F0 + O(L0), (A22)

where F0 captures all system size independent contribution to
the free energy that depends on �. According to the computa-
tion presented above,

Fth = Eth − T Sth, F0 = E0(�). (A23)

Therefore, in the thermodynamic limit, the saddle point con-
figuration comes from minimising (Eth − T Sth ) which leads
to the Fermi-Dirac distribution:

σ (k) = 1

1 + eε(k)
, ε(k) =

k2

2 − h

T
. (A24)

The subleading contribution to the free energy, the correlation
energy, is then

F0 = −2
ˆ

dk

2π
kσ (k)δ(k). (A25)

For further convenience we will redefine the temperature
and the chemical potential such that ε(k) takes the “standard”
form

ε(k) = β(k2 − μ). (A26)

This rescaling of temperature affects the contribution from the
correlation energy (A25), which leads to formula (15).

APPENDIX B: THERMODYNAMIC LIMIT OF THE FORM
FACTORS AND SPECTRAL SERIES

1. Nonwinding case w = 0

In this Appendix we study contribution of the single hole
excitations to the sum (27). Namely, let us denote the position
of the hole by h and the corresponding set of q’s by qh; see
Fig. 2(a). By q̄ we denote the set qh with the hole filled in.
Notice that the determinant in (22) can be presented as

det D =
∏N+1

i> j (ki − k j )
∏N

i> j (qi − q j )∏N+1
i=1

∏N
j=1(ki − q j )

, (B1)

so the effective form factor (21) reads

|〈k|qh〉|2
˜|〈k|q̄〉|2

= L

2
eg(qh )

(
2πνh

L

)2 ∏
j �=h

(
k j − qh

q j − qh

)2

, (B2)

where we have introduced

˜|〈k|q̄〉|2 =
N+1∏
i=1

4eg(ki )−g(qi ) sin2 πν(ki )

L2
[
1 + 2π

L ν ′(ki )
] (

det
N+1

1

ki − q j

)2

,

(B3)
which is the bulk contribution independent of the hole po-
sition. First, let us perform the summation over h. To this
end we approximate the discrete product from |〈k|qh〉|2 in the
following way:

∏
j �=h

(
k j − qh

q j − qh

)2

=
M∏

j=−M
j �=h

(
1 + ν j

h − j

)2
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=
M∏

j=−M
j �=h

(
1 + ν j − νh

h − j + νh

)2 M∏
j=−M

j �=h

(
1 + νh

h − j

)2

≈
M∏

j=−M
j �=h

(
1 + ν j − νh

h − j

)2 M∏
j=−M

j �=h

(
1 + νh

h − j

)2

. (B4)

In going to the third line we neglected νh in the denominator.
For h − j large it gives a subleading correction, whereas for
h − j small the whole fraction vanishes. The first product
turns then in the thermodynamic limit into an integral. The
second product instead can be rewritten in terms of the �

functions. The result is∏
j �=h

(
k j − qh

q j − qh

)2

≈
(

sin πνh

πνh

)2

exp

(
−2

ˆ
d p

ν(p) − ν(qh)

p − qh

)

×
(

�(M − h − νh + 1)

�(M − h + 1)

�(M + h + νh + 1)

�(M + h + 1)

)2

. (B5)

The integration is over the range [−qF , qF ], but we have
already taken qF → ∞ limit in this part. Moreover, under-
standing the integral in the principal value sense, we obtain

|〈k|qh〉|2
˜|〈k|q̄〉|2

≈ 2

L
eg(qh ) sin2(πνh) exp

( 
d p

2ν(p)

qh − p

)

×
(

�(M − h − νh + 1)

�(M − h + 1)

�(M + h + νh + 1)

�(M + h + 1)

)2

.

(B6)

It is important that this ratio is O(1/L) for all h, therefore in
the summation we can consider only bulk contributions where
the hole is far from the edges; that is M � h � 1, which
implies that in the leading order the ratio of the � functions
is 1. We then have

|〈k|qh〉|2 ≈ 2

L
˜|〈k|q〉|2σ (qh) sin2(δ(qh))�(qh), (B7)

where we used (35) to rewrite the formula in terms of δ(q) and
σ (q) instead of g(q) and ν(q), and denoted

�(qh) = exp

( 
d p

2ν(p)

qh − p

)
, (B8)

In this way, the τ function on the one-hole states reads

τ (x) = ˜|〈k|q̄〉|2 2

L

∑
q

σ (q) sin2[δ(q)]

× �(q) exp

(
ix
ˆ

ν(p) d p − ixq

)
. (B9)

The sum over q in can be rewritten as an integral

J (x) =
ˆ

dq

π
σ (q) sin2[δ(q)]�(q)e−ixq, (B10)

and the overall factor ˜|〈k|q̄〉|2, in the thermodynamic and
qF → ∞ limits, can be evaluated, for instance, as in Ref. [59].

FIG. 6. One-body correlation function ρ(x,�) for α = 1 and
β = 1. We evaluate it for two different � values, � = 1/2 the
winding region, and � = 2 the nonwinding region. Notice that the
critical value of the spin rapidity for such parameters is �c = 1. ρex

refers to the exact formulation in terms of Fredholm determinants
and is shown with solid lines, while ρeff refers to effective form factor
calculation and is shown with dots.

This leads to the final answer:

τ (x) = J (x) exp

(
ix
ˆ

ν(p) d p −
ˆ

ν(q)g′(q) dq

)

× exp

[
−1

2

ˆ
dk dq

(
ν(k) − ν(q)

k − q

)2]
. (B11)

Integrating by parts we arrive at the expression (44). We
compare the exact the Fredholm determinants and asymptotics
in Fig. 6. We see that for chosen typical parameters it is
almost impossible to distinguish the exact and approximate
expressions.

2. Winding case w = 1

If winding w = 1 then the state |k〉 is effectively com-
pressed [see Fig. 2(b)] and contrary to the nonwinding case,
there is no extra space for a hole in the state |q〉. The possible
excitations are then only particle-hole excitations which we
neglect in view of the qF → ∞ limit, as discussed in the
main text. Therefore in the spectral sum there is only one state
contributing:

ρ(x,�) = |〈k|q〉|2 exp

(
−ix

ˆ
kν ′(k) dk

)
, (B12)

where states |k〉 and |q〉 are both defined with the ground-state
quantum numbers and

qj = 2π

L

(
−N − 1

2
+ j − 1

)
, j = 1, . . . N, (B13)

k j = 2π

L

(
−N − 1

2
+ j − 1 − ν j

)
, j = 1, . . . N + 1,

(B14)

with ν1 ≈ 0 and νN+1 ≈ 1.We present the overlap |〈k|q〉|2 as

|〈k|q〉|2 = D exp

(ˆ
[g(k) − 1]ν ′(k) dk

)
, (B15)
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where we have defined

D =
N+1∏
i=1

2 sin2 πνi

L

N∏
i=1

2

L
(det D)2. (B16)

Further we can present it as D = D0F , where

D0 = 2

L
sin2(πνm)

∏N+1
j �=m (km − k j )2∏N
j=1(km − q j )2

(B17)

and

F =
(

det
1�i, j�N

sin(πηi)

π (i − j − ηi )

)2

. (B18)

In the expression for F we use ηi

ηi =
{
νi, i � m
νi − 1, i > m

, (B19)

which has a jump at i = m. In doing so we trade the contin-
uous nonzero winding function ν(q) into discontinuous but
zero winding function η(q). It turns out the in computing the
thermodynamic limit it is easier to deal with a discontinuous
rather that nonzero winding functions. The point m of the
discontinuity is chosen arbitrarily (but far from the edges) and
the final answer does not depend on it.

First, we evaluate D0 assuming that N � m � 1 and N �
L � 1. We find

D0 ≈ 2

L
(N − m)2 sin2(πνm)

ν2
m

N∏
j �=m

(
1 − νm−ν j

m− j

1 − νm
m− j

)2

. (B20)

The numerator in the product can be evaluated as

N∏
j �=m

(
1 − νm − ν j

m − j

)
= exp

(
−
ˆ qF

−qF

ν(pm) − ν(k)

pm − k
dk

)
,

(B21)
where qF = πN

L , pm = 2π/L(−N/2 + m) and the phase shifts
are defined in the usual way νi = ν(ki ) = ν(2π/L[−N/2 +
i)]. Integrating this expression by parts we obtain

N∏
j �=m

(
1 − νm − ν j

m − j

)

= 1

qF − pm

(
qF − pm

qF + pm

)νm

× exp

(ˆ qF

−qF

ν ′(k) ln |pm − k| dk

)
. (B22)

Note that in the integral we can already send qF → ∞. The
product in the denominator of D0 can be evaluated explicitly,
and the result reads

N∏
j �=m

(
1 − νm

m − j

)

= �(N − m + 1 + νm)

�(1 + νm)�(N − m + 1)

�(m − νm)

�(1 − νm)�(m)

≈ sin(πνm)

πνm

(N − m

m

)νm

. (B23)

In this way we obtain

D0 = L

2
exp

(
2
ˆ

ν ′(k) ln |pm − k| dk

)
. (B24)

Further, for simplicity we can put pm = 0, which means that
m ≈ N/2, so

D0 = L

2
exp

(
2
ˆ

ν ′(k) ln |k| dk

)
. (B25)

To estimate F we use the result listed in Appendix B in [59].
It states that if function η(q) is discontinuous at q = 0 and the
discontinuity is δ, that is,

lim
q→0+

η(q) − lim
q→0−

η(q) = δ, (B26)

smooth everywhere else and vanishing fast enough at q →
±∞ [in our case this vanishing is exponential due to σ (q)],
then

F =
(

2π

L

)δ2

G(1 − δ)2

(
2π

e

)δ

exp

(ˆ
dq

ˆ
d p[η′](q)

× [η′](p) ln |q − p| + 2δ

ˆ
[η′](q) ln |q|d q

)
, (B27)

where G(x) is Barnes’ � function and [η]′(q) is the piecewise
derivative of η(q),

[η]′(q) = �(−q)η′(q) + �(q)η′(q). (B28)

In particular, if η(q) can be described with the help of smooth
function ν(q) such that

η(q) = ν(q) + δ �(q), (B29)

then [η′](q) = ν ′(q). In our case δ = −1 and η(q) = ν(q) −
�(q). This leads to

F = e

L
exp

(
−2

ˆ
ν ′(q) ln |q| dq

)

× exp

(ˆ
dq

ˆ
d pν ′(p)ν ′(q) ln |q − p|

)
. (B30)

The final answer for D is then

D = e

2
exp

(ˆ
dq

ˆ
d pν ′(p)ν ′(q) ln |q − p|

)
. (B31)

Combining this with the prefactor (B15) we arrive at the
expression (47).

We compare the exact the Fredholm determinants and
asymptotics in Fig. 6. We see that the asymptotic expression
works decently even for small distances.

APPENDIX C: FURTHER ANALYSIS
OF THE ASYMPTOTICS

In this Appendix we analyze further the asymptotics of
ρT (x) discussed in Sec. III. Specifically, we compute an
asymptotic expansion of J (x) in the nonwinding region. We
then use this result to analyze the behavior of ρ(x,�) for
� ≈ �c and show that ρ(x,�) is a continuous function
of �.
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1. Asymptotic expansion of J(x)

In this section we perform asymptotic expansion of J (x)
defined in Eq. (46), which for convenience we repeat here:

J (x) =
ˆ

dq

π

σ (q)e−iqx

(αq − �)2 + 1
exp

( 
d p

2ν(p)

q − p

)
. (C1)

To extract the asymptotics we rewrite the integral as an in-
tegral over a closed semicircle contour C− in the lower part
of the complex plane. The large-x behavior of J (x) is then
determined by the pole (with negative imaginary part) closest
to the real axis. To this end we first rewrite the principal value
integral as

 
d p

ν(p)

q − p
=
ˆ

d p
ν(p)

q − p − iε
− iπν(q), (C2)

where ε > 0 is a small number taken to zero at the end of
the computations. This integral, as a function of q, has now a
simple pole above the real axis, outside of the contour C−. We
also define function w(q) through the following relation:

1

w(q)
= σ (q)e−2π iν(q)

αq − � + i
. (C3)

The formula for w(q) can be simplified to

w(q) = (αq − � + i)eβ(q2−μ) + αq − � − i. (C4)

For J (x) we then have

J (x) =
ˆ
C−

dz

π

e−izx

w(z)

exp
(´ 2ν(p) d p

z−p−iε

)
αz − � − i

, (C5)

where the potential poles with the negative imaginary part
come solely from w(z) = 0. Let us denote by z∗ the solution
to this equation with the smallest negative imaginary part. In
the vicinity of this solution, w(z) ≈ w′(z∗)(z − z∗) + O[(z −
z∗)2], where

w′(z∗) = 2i
α + iz∗β[1 + (z∗α − �)2]

αz∗ − � + i
. (C6)

Therefore, the leading asymptotic contribution to J (x) is

J (x) = −
exp

(−iz∗x − 2iδ(z∗) + 2
´

ν(p) d p
z∗−p

)
α + iz∗β[1 + (z∗α − �)2]

, (C7)

with the exponential decay rate set by the imaginary part of
z∗, which therefore has to be negative. Note that in writing
the integral we took ε → 0 limit because z∗ has a negative
imaginary part, which makes the integral well defined; see
Fig. 7.

2. Vicinity of the threshold �c

The formula for J (x) derived above is valid for |�| > �c.
In the following we will analyze it for � close to �c. We start
by solving for the pole z∗.

We put � = �c + δ with δ > 0. To find the pole z∗ we put
z = √

μ + δv. In this way, in the first order in δ, we obtain

w(z) = 2δ[v(α + iβ
√

μ) − 1] + O(δ2), (C8)

FIG. 7. Solution to w(z) = 0 as a function of � for α = 1, β = 1
and μ = 1. The critical value is �c = 1. For � = ±�c the solution is
real. For large values of � the solution approaches finite asymptotes
±√

βμ ± iπ/
√

β. For � > �c, the imaginary part of z∗ is negative.

and the pole is indeed located in the lower half plane for � >

�c,

z∗ = √
μ + � − �c

α + iβ
√

μ
+ O[(� − �c)2]. (C9)

We can now substitute z∗ into formula (C7). The integral
appearing there requires a separate treatment because ν(p)
has a logarithmic singularity for p = √

μ when � = �c. We
denote the integral

I (�) = 2
ˆ

ν(p) d p

z∗ − p
, (C10)

and in the following we will show that for � → �+
c ,

I (�+
c ) = ln (α + i

√
μβ ) + J (�+

c ), (C11)

where

J (�) =
ˆ ∞

0
d p [ν ′(

√
μ − p) + ν ′(

√
μ + p)] ln p. (C12)

The logarithmic term in I (�) exactly cancels the prefactor in
J (x), and the limiting expression for J (x) when � → �+

c is

J (x) = e−i
√

μx+J (�). (C13)

We now derive Eq. (C11). For convenience we introduce
v∗ = z∗ − √

μ and define ν̄�(p) = ν�(
√

μ + p). Then

I (�) = 2
ˆ

d p
ν̄(p)

v∗ − p
. (C14)

We rewrite I by first integrating by parts and then write it as
a sum of two integrals:

I (�) = 2π iν̄(0) + I+(�) + I−(�), (C15)

where

I±(�) = 2
ˆ ∞

0
d p ν̄ ′(±p) ln(p ∓ v∗). (C16)

In writing the second contribution we used ln(−z) = ln z −
iπ . We now rewrite I±(�) as

I±(�) =
ˆ ∞

0
d p (p ± v∗)ν̄ ′(∓p)∂p[ln(p ± v∗)]2, (C17)
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which, upon integrating by parts, leads to

I±(�) = ±v∗ν̄ ′(0)[ln(±v∗)]2 + J±(�), (C18)

where

J±(�) = −
ˆ ∞

0
d p ∂p[(p ± v∗)ν̄ ′(∓p)][ln(p ± v∗)]2.

(C19)

Collecting the integrals under J (�) and other terms under
C(�) we find

I (�) = C + J (�), (C20)

where J (�) = J+(�) + J−(�) and

C(�) = 2π iν̄(0) + v∗ν̄ ′(0)(ln v∗)2 − v∗ν̄ ′(0)[ln(−v∗)]2.

(C21)

We consider now � → �+
c for both expressions separately.

For C(�) we use that

lim
�→�c

v∗ν̄(0) = − 1

2π i
(C22)

to find C(�c) = ln(α + i
√

μβ ) in agreement with the first
part of (C11). In the integral in J± there is only a square
logarithmic singularity; the first part of the integrand is regular
for p → 0 with � → �c. Such singularity is integrable and
therefore limit � → �c of J±(�) can be safely taken. The
result is

J±(�) = −
ˆ ∞

0
d p ∂p[pν̄ ′(∓p)](ln p)2. (C23)

Considering now J (�) = J+(�) + J−(�), we integrate
back by parts and obtain (C12). This finishes the derivation
of Eq. (C11).

3. Continuity of the asymptotics

In this section we show that ρ(x,�) is continuous across
�c, namely,

lim
�→�+

c

ρ(x,�) = lim
�→�−

c

ρ(x,�). (C24)

We start by recalling the relevant expressions for ρ(x,�) in
the winding and nonwinding regions from Sec. III. In the
former, for |�| < �c,

ρ(x,�) ∼ A(�) exp

(
−ix

ˆ
kν ′

�(k) dk

)
, (C25)

with

ln A(�) =
ˆ

g(k)ν ′
�(k) dk − ln 2

+
ˆ

dq
ˆ

d pν ′
�(p)ν ′

�(q) ln |q − p|. (C26)

Instead, in the nonwinding region with |�| > �c,

ρ(x,�) ∼ 2A(�)J (x) exp

(
−ix

ˆ
kν ′

�(k) dk

)
. (C27)

In these expression we added � to ν�(q) to highlight its
dependence on this parameter and ν�±

c
(q) means the limiting

FIG. 8. Contours of integrations used in showing the continuity
of ρ(x, �).

expression when � approaches �c from either above or be-
low. As shown in the previous section, for � ∼ �+

c , J (x) can
be approximated by formula (C19). In this case we can write

ρ(x,�+
c ) ∼ B(�+

c ) exp

[
−ix

(√
μ +

ˆ
kν ′

�+
c

(k) dk

)]
,

(C28)

where

B(�) = 2A(�)eJ (�). (C29)

To confirm the continuity of ρ(x,�) we start with the x-
dependent part. We should verify the following relation:ˆ

kν ′
�+

c
(k) dk + √

μ =
ˆ

kν ′
�−

c
(k) dk. (C30)

To this end consider ν ′(q). From the definition (36),

ν ′(q) = 1

2π i

ϕ′(q)

ϕ(q)
, (C31)

Function ϕ(q) defined in (37) is a bounded function for real
q. Therefore ϕ′(q) is also bounded and any nonanalycities of
ν ′(q) must come from points where ϕ(q) = 0. We can rewrite
ϕ(q) with the help of w(q), defined in (C3), as follows:

w(q) = ϕ(q)σ (q)

i + αq − �
, (C32)

which shows that for real q the set of zeros of ϕ(q) is the
same as the set of zeros of w(q). Specifically, if we extend to
the complex plane, there is a special zero z∗ that, as shown
in the computation of the asymptotic of J (x) approaches real
line from below as � → �+

c and for � = �c, z∗ = √
μ.

The presence of this singularity can be taken into account
by deforming the integration contours in (C30). For the first
integral, we avoid the pole from above whereas for the second
integral we avoid the pole by deflecting the contour below the
real axis; see Fig. 8. Then the difference of the integrals can
be written as a single integral over a closed contour around the
pole at z = √

μ,ˆ
kν ′

�+
c

(k) dk −
ˆ

kν ′
�−

c
(k) dk = −

˛
dzzν ′

�c
(z). (C33)

The minus sign appears to compensate for the clockwise ori-
entation of the initial contour. The orientation of the contour
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in the final integral is then counterclockwise. Performing now
this integral with the help of the residue theorem we find

˛
dzzν ′

�c
(z) = √

μ, (C34)

and therefore, the x-dependent part is continuous.
We consider now the prefactors. For the ratio of them we

have

B(�+
c )

A(�−
c )

= exp (I1 + I2 + ln 2 + J ), (C35)

where we defined

I1 =
ˆ

g(k)ν ′
�+

c
(k) dk −

ˆ
g(k)ν ′

�−
c

(k) dk (C36)

and

I2 =
ˆ

dq
ˆ

d pν ′
�+

c
(p)ν ′

�+
c

(q) ln |q − p|

−
ˆ

dq
ˆ

d pν ′
�−

c
(p)ν ′

�−
c

(q) ln |q − p|. (C37)

For the single integral we use that

g(k) = 2π i ν(k) − ln a(k), a(k) = e2iδ(k)σ (k), (C38)

to find

I1 = π i(w+ − w−) +
˛

ln a(k)ν ′
�c

(k) dk. (C39)

Here w+ = 0 is the winding number of ν�(k) for |�| > �c

and w− = 1 is the winding number for |�| < �c. The remain-
ing integral can be again evaluated by the residue theorem
with the result

I1 = π i(w+ − w−) + ln a(
√

μ) = − ln 2, (C40)

where we used that σ (
√

μ) = 1/2 and δ(
√

μ) = π/2 for � =
�c.

We consider now a difference of the double integrals. We
rewrite them asˆ

dq
ˆ

d pν ′(p)ν ′(q) ln |q − p|

= 2
ˆ ∞

0
d p ln p

ˆ
dq ν ′(p + q)ν ′(q). (C41)

The outer integral is the same in both regimes. Therefore

I2 = 2
ˆ ∞

0
d p ln p I3(p), (C42)

where

I3(p) =
ˆ

dq ν ′
�+

c
(q + p)ν ′

�+
c

(q)

−
ˆ

dq ν ′
�−

c
(q + p)ν ′

�−
c

(q). (C43)

The difference of the two integrals can be now analysed in a
similar manner as before. The integrands have two poles, at
q = √

μ and q = √
μ − p, and

I3(p) = −ν ′
�c

(
√

μ + p) − ν ′
�c

(
√

μ − p). (C44)

Therefore I2 = −J and the ratio B(�+
c )/A(�−

c ) = 1 show-
ing that the ρ(x,�) is a continuous function of �.

4. Alternative representation

The presented about proof of continuity of ρ(x,�) suggest
a possibility to write ρ(x,�) in a uniform manner for wind-
ing and nonwinding regimes. In this section we demonstrate
this for the x-dependent part. In the winding region the x-
dependent part is given by

ξ−1(�) = −
ˆ

dk kν ′(k) = −
˛
C

dzzν ′(z), (C45)

where the closed contour extends in the lower part of the
complex plane. As we have seen in the previous section func-
tion ν ′(z) has a simple pole which, for � = ±�c, is located
at z = ±√

μ and otherwise continuously depends on �, see
Fig. 7. For |�| < �c the pole is in the upper half of the
complex plane and does not affect the integral in (C45).

In the nonwinding region, the x-dependent part is

ξ−1(�) = −z∗ −
ˆ

dk kν ′(k) = −z∗ −
˛
C

dzzν ′(z). (C46)

The extra contribution −z∗, can be now taken into the account
by deforming the contour C such that it excludes the point z∗.
With the new contour C(�) we have˛

C
dzzν ′(z) =

˛
C(�)

dzzν ′(z) −
˛

z∗
dzzν ′(z), (C47)

where the second integral is around the counterclockwise
contour including point z∗ and no other poles of ν ′(z). The
latter integral evaluates to z∗ such that in both regions, for the
x-dependent part we have

ξ−1(�) = −
˛
C(�)

dzzν ′(z). (C48)

This is the sought after expression for ξ−1(�) which is valid
in the winding and nonwinding regimes. As we change � it
possible to adjust contour C(�) in a continuous manner and
as the result the integral varies in a smooth way.
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