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Three and four identical fermions near the unitary limit
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This work analyzes the three and four equal-mass fermionic systems near and at the s- and p-wave unitary
limits using hyperspherical methods. The unitary regime addressed here is where the two-body dimer energy
is at zero energy. For fermionic systems near the s-wave unitary limit, the hyperradial potentials in the N-body
continuum exhibit a universal long-range R−3 behavior governed by the s-wave scattering length alone. The
implications of this behavior on the low-energy phase shift are discussed. At the p-wave unitary limit, the
four-body system is studied through a qualitative look at the structure of the hyperradial potentials at unitarity
for the Lπ = 0+ symmetry. A quantitative analysis shows that there are tetramer states in the lowest hyperradial
potentials for these systems. Correlations are made between these tetramers and the corresponding trimers
in the two-body fragmentation channels. Universal properties related to the four-body recombination process
A + A + A + A ↔ A3 + A are discussed.
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I. INTRODUCTION

Few-body physics has been extensively studied in a regime
where the two-body s-wave interaction is at the unitary limit,
i.e., when as → ∞. One subset of systems of interest are
interacting bosons, which have been studied as a way to
probe universality and to understand the manifestations of the
three-body Efimov effect [1–3]. Fermionic systems have also
been studied extensively in recent years. Some of these stud-
ies include interactions of two-component Fermi gases near
unitarity, in connection with the Bose-Einstein condensate
to Bardeen-Cooper-Schrieffer (BEC-BCS) crossover problem
[4–9]. Other works include recent experiments on fermionic
atoms, such as 40K and 6Li, near p-wave Feshbach resonances
whose interactions are tuned via magnetic fields [10–12].

In a recent study published in Ref. [13], systems con-
sisting of three equal-mass fermions interacting through a
Lennard-Jones potential were studied to investigate the role
p-wave unitary interactions have on the three-body system,
and also to see whether there are signatures of an Efimov
effect. As a result of this study, it has become clear that there
is no Efimov effect for equal-mass fermionic systems in three
dimensions, shown using the Born-Oppenheimer framework.
In the hyperspherical Born-Oppenheimer approximation, the
equal-mass fermionic system has a lowest potential with a
long-range attractive 1/R2 tail that resembles an Efimov-like
potential. However, when the second-derivative diagonal adi-
abatic correction is included, the long-range attraction that
appears to cause an Efimov effect is canceled, which confirms
the nonexistence of the Efimov effect in these systems [14].
Instead there is only one universal trimer state at the p-wave
unitary limit for symmetries Lπ = 1− and 1+.

One interest in pursuing this work for s-wave interactions
near the unitary limit stems from two recent papers [15,16]

that investigated low-energy scattering of a few interacting
neutrons in the context of few-body nuclear physics. The
neutron-neutron scattering length is negative and large com-
pared to the range of the interaction a/r0 ∼ −19, thus making
few-neutron systems good candidate systems for the study
of near-unitary physics. In Ref. [16], as a result of studying
low-energy scattering in the N-body continuum for different
nuclear interactions, it was found that the long-range form of
the Born-Oppenheimer potentials contained a 1/R3 term that
is universal and only dependent on the scattering length and
symmetry. As a result of the long-range form of the potential,
this leads to a low-energy enhancement in the density of
states that was used to suggest a possible explanation of the
2016 experimental result of Kisamori et al. [17]. These results
provide motivation to further look at this type of long-range
behavior near the unitary limit for other systems, such as
ultracold atomic systems with tunable interactions.

Previous work was able to relate four-body processes and
properties to the universal Efimov trimers in the four-boson
spectrum [18–23]. In Ref. [18], the four-equal-mass boson
system interacting at the s-wave unitary limit was studied
in the hyperspherical framework to predict the rate of the
four-body recombination process B + B + B + B ↔ B3 + B,
later connected to the Innsbruck experimental data on Cs
four-atom recombination in an ultracold quantum gas [20,24].
In particular, the universal ratio of the scattering length a(4)

c
where a tetramer becomes bound to the corresponding scatter-
ing length a(3)

c for the formation of an Efimov trimer, allowed
theory to predict a resonant enhancement in the recombina-
tion rate at that scattering length. Other studies addressed
interacting bosonic systems at the unitary limit for N > 4
[20,22,25–28] to explore universal relations between higher
N-body bound states and to provide insights into mechanisms
for higher N-body recombination loss rates.
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This article is organized as follows. Section II gives an
overview of the theoretical methods used in this work, mainly
highlighting features of the Born-Oppenheimer method, as
well as giving details on the two-body interactions used. In
Secs. III and IV, the main results of this work are presented for
both s-wave and p-wave interactions near and at the unitary
limit. In Sec. III, the three- and four-body potential energy
curves as functions of the hyperradius are analyzed near and
at the s-wave unitary limit, where the long-range behavior
of the lowest hyperradial potentials are characterized. The
implications of the long-range behavior are discussed through
an analysis of the elastic phase shift in the three-body and
four-body continua. Section IV treats the interactions of four
fermions near the s-wave and p-wave unitary limits through
analysis of the hyperradial potentials for the 0+ symmetry,
providing insights into the relation between the universal
tetramer states and their correlations with the universal trimer
states. Finally, a universal ratio related to trimer and tetramer
formation is characterized and shown to provide a useful
parameter for future four-body recombination measurements.

II. THEORETICAL METHODS

A. Born-Oppenheimer approach

Here we give an overview of the hyperspherical frame-
work used in this work, which was previously described
in Ref. [16]. Within the Born-Oppenheimer approach the
three- and four-body systems are solved using an explic-
itly correlated Gaussian (ECG) basis in conjunction with the
hyperspherical framework (CGHS) [8,29–31]. The Hamilto-
nian for the systems considered here allows for separation of
the center-of-mass coordinates from the relative coordinates,
i.e., Ĥ = Ĥc.m. + Ĥrel. The center-of-mass Hamiltonian, Ĥc.m.,
consists only of the kinetic energy operator of the center of
mass and will be ignored in the following. The hyperradial
and hyperangular kinetic energy operators, along with the
particle-particle interactions, are treated in the Hamiltonian of
the relative coordinates, Ĥrel.

The hyperangular kinetic energy and interaction energy
operators together construct the adiabatic Hamiltonian. In
hyperspherical coordinates, the generalized N-body adiabatic
eigenvalue problem needed to be solved is

Had(R,�)�ν (R,�) = Uν (R)�ν (R,�), (1)

where R is the hyperradius, � is a set of hyperangles, ν is
an index that labels the eigenstates �ν (R,�) of Had(R,�),
Uν (R) are eigenvalues of Had at fixed R that represent Born-
Oppenheimer potentials, and

Had(R,�) = h̄2

2μR2

[
�2 + (3N − 4)(3N − 6)

4

]

+ Vint (R,�), (2)

where the operator �2 represents the squared hyperangu-
lar grand-angular momentum of the system and Vint (R,�)
represents the sum of two-body potential operators be-
tween the particles. The parameter μ is the hyperradial

reduced mass, defined as μ = (m1m2 · · · mN/(m1 + m2 +
· · · + mN ))1/(N−1) [8]. The hyperradius is typically treated
as an adiabatic parameter and is defined in general as a
coordinate proportional to the square root of the trace of
the moment-of-inertia tensor. There is an arbitrariness in the
overall scaling of the mass-weighted Jacobi vectors used
to construct it, however. Typically in atomic systems, the
reduced mass used in the hyperspherical framework is the hy-
perspherical reduced mass given in Ref. [8]. However, when
applying the hyperspherical framework to few-body systems
in other fields such as nuclear physics, the reduced mass of
choice often used is the nucleon-nucleon two-body reduced
mass.

The adiabatic Hamiltonian given by Eq. (2) is diagonalized
using the CGHS basis. In the noninteracting case, the eigen-
states �ν (R,�) describe the hyperspherical harmonics (HH)
with the label ν corresponding to the HH quantum number K
(see Ref. [8] and references therein). Furthermore, there is a
one-to-one correspondence between the noninteracting eigen-
states �ν (R,�) and the states of a d-dimensional isotropic
harmonic oscillator, which helps in understanding why the
noninteracting eigenstates exhibit high degeneracies (for an
example, see Ref. [32]).

The N-body wavefunction is expanded in the relative coor-
dinates in the eigenstates of Eq. (1), given by the ansatz

�E (R,�) = R− 3N−4
2

∑
ν ′

FE ,ν ′ (R)�ν ′ (R,�). (3)

The factor (3N − 4)(3N − 6)/4 in Eq. (2) comes from the
multiplying factor of R in Eq. (3), which eliminates the first
derivative acting on FE ,ν ′ (R) in the hyperradial kinetic energy.
Computing the quantity 〈�ν |Ĥrel|�E 〉, where the operation 〈·〉
indicates integrating over the hyperangular coordinates and
tracing over spin degrees of freedom, leads to the following
coupled hyperradial Schrödinger equations:

(
− h̄2

2μ

∂2

∂R2
+ Wν (R) − E

)
FE,ν (R)

− h̄2

2μ

∑
ν ′ 	=ν

(
2Pνν ′ (R)

∂

∂R
+ Qνν ′ (R)

)
FE ,ν ′ (R) = 0, (4)

where Pνν ′ (R) = 〈�ν | ∂�ν′
∂R 〉 and Qνν ′ (R) = 〈�ν | ∂2�ν′

∂R2 〉 are
first- and second-derivative nonadiabatic couplings, and
Wν (R) = Uν (R) − h̄2

2μ
Qνν (R) is the νth effective adiabatic po-

tential [33–35].

B. Two-body interactions

The Hamiltonian considered in this work consists entirely
of two-body interactions. Throughout, the values of h̄ and
m are chosen to be in units where h̄ = 1 and m = 1. Two
different types of interactions are used here: either short-range
interactions or else a long-range van der Waals interaction
with a short-range cutoff. In utilizing the explicitly correlated
Gaussian basis, the most convenient form of the interaction
is that of a Gaussian interaction or a Gaussian multiplied by
some arbitrary power. More explicitly, there are four different
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TABLE I. Two-body interaction parameters used for calculations at the s-wave and p-wave unitary limits, where as 
 −1.0 × 1012 r̄0 and
Vp 
 −1.0 × 1012 r̄3

0 . The superscript u indicates the quantities are given at the unitary limits.

Interaction r0 (units of r̄0) αu
0 r1 (units of r̄0) αu

1 reff (units of r̄0)

(a) s-wave (↑↓)
V(5a), n = 0 1.000000 −2.684005 N/A N/A 1.435246
V(5a), n = 1 1.750000 −2.853468 N/A N/A 3.013334
V(5a), n = 2 2.000000 −2.444496 N/A N/A 3.932112
V(5a), n = 0 0.100000 −2.684005 N/A N/A 0.143525

Interaction r0 (units of r̄0) αu
0 r1 (units of r̄0) αu

1 reff (units of r̄−1
0 )

(b) p-wave (↑↑)
V(5a), n = 0 1.000000 −12.09931 N/A N/A −2.058647
V(5a), n = 1 1.300000 −12.14525 N/A N/A −1.343086
V(5a), n = 2 2.000000 −10.02293 N/A N/A −0.772240
V(6), q = 6, p = 3 0.995898 16a N/A N/A −2.080183
V(6), p = 6, q = 4 0.856721 16a N/A N/A −1.957820
V 1

(5b) 1.000000 26.66253 2.000000 −21.33003 −0.838186
V 2

(5b) 0.577350 25.88748 0.707107 −34.94809 −2.309161

aFor V(6), the strength parameter is the C6 coefficient in Eq. (6) which is set to 16 in units of EvdWr6
vdW. In this case, r̄0 = rvdW and E0 = EvdW.

types of short-range two-body interactions considered in this
work, presented in Eqs. (5):

Vn(r) = α0

(
h̄2

2μ2Br2
0

)
(r/r0)ne−(r/r0 )2

, (5a)

V (r) = α0

(
h̄2

2μ2Br2
0

)
e−(r/r0 )2 + α1

(
h̄2

2μ2Br2
1

)
e−(r/r1 )2

,

(5b)

where α0 and α1 are dimensionless quantities that define the
strength of the interaction, r0 and r1 give the range of the inter-
action, μ2B is the two-body reduced mass, and n defines some
arbitrary power. For a given r0, the s-wave scattering length
and p-wave scattering volume are determined by varying the
strength. In this work, the s-wave and p-wave interactions
are tuned from noninteracting to the unitary limit, specifically
the first poles in the scattering length and scattering volume,
just before an s-wave or p-wave two-body bound state forms.
Using these two-body interactions, three and four interacting
fermionic systems are studied near and at s-wave and p-wave
unitary.

A van der Waals interaction with a short-range cutoff is
also considered in this work. The general form for this poten-
tial used with the ECG basis is given by the expression

V (r) = −(Cq/rq)(1 − e−(r/r0 )2
)p, (6)

where Cq is the coefficient of the potential tail at large r,
q is the power of the potential at large r, and r0 and p
are parameters that control the short-range cutoff. The con-
straint on the value of p is 2p � q to prevent the interaction
from diverging at the origin. To easily evaluate matrix el-
ements, the short-range factor (1 − e−(r/r0 )2

)p is expanded
using the binomial expansion. From Eq. (6), the behavior
of this interaction goes like −Cq(1/r0)2pr (2p−q) at small r
and the behavior goes as −Cq/rq at large r. The character-
istic length scale for this potential is the standard definition
Rq = (1/2)[(2μ/h̄2)Cq]1/(q−2) in the limit as r0 → 0. For the
calculations involving Eq. (6), the parameters used are C6 =

16, q = 6, p = 3, and p = 4, with r0 changing depending on
the scattering parameters of interest, namely, the scattering
volume for p waves.

From the form of the two-body interactions given in
Eqs. (5) and (6), a natural set of length and energy units are
r̄0 and E0, where E0 = h̄2/2μ2Br̄2

0 . With these definitions, the
values of r0 and r1 are in units of r̄0 and the interaction V (r)
is given in units of E0 by setting h̄ = 1 and m = 1, which is
the convention used throughout this work for an equal-mass
system. With the unit system defined in this way, the problem
is recast in a more general way. For a given system, an appro-
priate choice of r̄0 and E0 should be chosen. For example,
in atomic systems with van der Waals molecules, a good
choice for r̄0 and E0 would be the van der Waals length (rvdW)
and van der Waals energy (EvdW). The van der Waals length
is defined as rvdW = (1/2)[(2μ2B/h̄2)C6]1/4 and the van der
Waals energy is defined as EvdW = h̄2/2μ2Br2

vdW. Likewise in
nuclear systems, r̄0 and E0 would have units of fm and MeV.
The two-body interactions and their parameters used in this
work are given in Table I. The parameters listed are at the
unitary limit for the s-wave (first pole in as) and p-wave (first
pole in Vp) studies described in Secs. III and IV, respectively.

III. INTERACTING FERMIONS NEAR THE S-WAVE
UNITARY LIMIT

The first type of few-body systems looked at in this study
are the fermionic systems interacting near the s-wave unitary
limit, specifically at the first s-wave pole in as. This is ac-
complished by treating two cases: (1) treating the system with
definite total angular momentum and parity Lπ and the spin of
the individual particles separately, and (2) treating the system
with a definite total angular momentum L and total spin S.
Case 1 is emphasized in this work, which is most relevant
for experiment. We have computed hyperspherical potential
curves for the three- and four-body systems in different spin
configurations and total orbital angular momentum using a
single Gaussian two-body interaction. The strength of the two-
body interaction was tuned to give s-wave scattering lengths
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in the range of −∞ to zero. The s-wave scattering length
dependence of the asymptotic R−3 coefficient near s-wave
unitarity was computed for each symmetry as well as the ef-
fective angular momentum leff controlling the R−2 coefficient
at unitarity, where at large R, Uν (R) → h̄2leff (leff + 1)/2μR2.
The primary results reported in this section are for a single
Gaussian two-body interaction with an interaction range r0

[see Eq. (5)].

A. Three and four two-component fermions
at the s-wave unitary limit

For the first case, the three-body and four-body cases of
equal-mass interacting particles are studied in different spin
configurations, i.e., (↑↑↓), (↑↑↓↓), and (↑↑↑↓). The (↑↑↑
↑) spin configuration is reserved for Sec. IV, which treats
p-wave interactions. The two-body interaction between each
pair of opposite-spin particles is set to be the same and tuned
over a range of large s-wave scattering lengths. Gaussian
interactions are used in this analysis, with an interaction range
r0 and strength α0, represented by Eq. (5). The strength α0 is
tuned to give different s-wave scattering lengths in the range
0 < |as| < ∞. This work focuses on the region where as is
negative up to the first pole in as. The three-body hyperradial
potentials at the s-wave unitary limit are shown in Fig. 1 for
Lπ = 0+, 1−, and 2+ in the (↑↑↓) spin configuration.

Figure 1 shows the lowest few N = 3 hyperradial po-
tential curves for the following symmetries at the s-wave
unitary limit: 0+, 1−, and 2+ symmetry in Figs. 1(a)–1(c),
respectively. These potentials shown have been rescaled by
(2μ/h̄2)R2 and are shown on a logarithmic scale in R/r0. In
this representation, the curves approach a constant value at
large values of R/r0, which represents the effective angular
momentum barrier which equals the value of leff (leff + 1),
where leff is the effective angular momentum quantum num-
ber. In the three-body case, the leff takes on half-integer values
for the noninteracting case (i.e., the lowest leff for the symme-
tries considered here are 7/2, 5/2, and 7/2 for 0+, 1−, and
2+, respectively). When the scattering length and scattering
volume are both finite, these same noninteracting values of
leff still apply at large R. At unitarity, however, the value of
leff gets modified to a lower value in some of the channels,
indicated by the lower deviations at large R/r0 in Fig. 1. The
reduction of the effective angular momentum barrier has been
extensively studied over the years, most notably by Werner
and Castin [7] for the three-boson and fermion case, and by
Blume and co-workers for the four-fermion case [6,36]. This
reduction of the coefficient of R−2 in the potential curve at
R → ∞ appears to be the same mechanism that reduces the
analogous coefficient at unitarity for a system of three bosonic
(or different spin fermionic) particles in the famous Efimov
effect.

For the four-body case, Figs. 2 and 3 show plots similar to
the three-body case discussed previously. These figures dis-
play the 0+, 1−, and 2+ symmetries for the (↑↑↓↓) and
(↑↑↑↓) spin configurations, respectively. Like in Fig. 1,
these plots show a few of the Born-Oppenheimer potentials
plotted versus R/r0 on a logarithmic scale that highlights
the effect of unitarity-limited two-body s-wave interactions
on the effective angular momentum barrier in the hyperra-

(a)

(b)

(c)

FIG. 1. The lowest few Born-Oppenheimer potential curves for
the (↑↑↓) equal-mass three-body system are shown for the sym-
metries (a) Lπ = 0+, (b) Lπ = 1−, and (c) Lπ = 2+. Each curve
represents a different hyperradial potential with channel index ν that
increases from the lowest to highest curve. The two-body interactions
between all particles are at the first s-wave unitary limit before the
formation of an s-wave dimer. The horizontal dashed lines represent
the noninteracting rescaled potentials with their effective angular
momentum quantum numbers leff labeled to the right. The hyper-
radius has been rescaled by the range of the Gaussian interaction r0

and shown on a logarithmic scale. For some of the higher degenerate
channels, the potentials deviate at small hyperradius due to incom-
plete basis set convergence.

dial equation. For the (↑↑↓↓) spin configuration, the lowest
effective angular momentum quantum numbers in the nonin-
teracting limit are leff = 5, 6, and 5 for the 0+, 1−, and 2+
symmetries, respectively. In the (↑↑↑↓) spin configuration,

023304-4



THREE AND FOUR IDENTICAL FERMIONS NEAR … PHYSICAL REVIEW A 106, 023304 (2022)

(a)

(b)

(c)

FIG. 2. The lowest few Born-Oppenheimer potential curves for
the (↑↑↓↓) equal-mass four-body system are shown for the sym-
metries (a) Lπ = 0+, (b) Lπ = 1−, and (c) Lπ = 2+. Each curve
represents a different hyperradial potential with channel index ν

that increases from the lowest to highest curve. The strength of the
two-body interaction between all particles is scaled give an infinite
s-wave scattering length. The horizontal dashed lines represent the
noninteracting rescaled potentials with their effective angular mo-
mentum quantum numbers leff labeled to the right. The hyperradius
has been rescaled by the range of the Gaussian interaction r0. For
some of the higher degenerate channels, the potentials deviate at
small hyperradius due to incomplete basis set convergence.

the lowest effective angular momentum quantum numbers are
respectively leff = 7, 6, and 7 for the 0+, 1−, and 2+ symme-
tries. For both symmetries, it should be noted that the lowest
noninteracting value of leff is for the 1− symmetry among the

(a)

(b)

(c)

FIG. 3. The lowest few Born-Oppenheimer potential curves for
the (↑↑↑↓) equal-mass four-body system are shown for the sym-
metries (a) Lπ = 0+, (b) Lπ = 1−, and (c) Lπ = 2+. Each curve
represents a different hyperradial potential with channel index ν

that increases from the lowest to highest curve. The strength of the
two-body interaction between all particles is scaled give an infinite
s-wave scattering length. The horizontal dashed lines represent the
noninteracting rescaled potentials with their effective angular mo-
mentum quantum numbers leff labeled to the right. The hyperradius
has been rescaled by the range of the Gaussian interaction r0. For
some of the higher degenerate channels, the potentials deviate at
small hyperradius due to incomplete basis set convergence.

ones presented. Since the generalized Wigner threshold law
for a squared four-body recombination scattering matrix ele-
ment is proportional to k2leff +1, one expects the 1− symmetry
to be the dominant recombination symmetry out of these three
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parity-favored cases of (↑↑↑↓). In both the three-body and
four-body systems, we focus on the hyperradial potentials that
go to the modified centrifugal-type barrier at large hyperradius
when the particles interact near the unitary limit, where they
exhibit universal behavior when tuning the scattering length
for |as/r0| > 10. This universal behavior manifests in a long-
range 1/R3 term that depends only on the s-wave scattering
length and the symmetry of the system.

B. Universal behavior of the hyperradial potentials
in the N-body continuum

When investigating the s-wave behavior in N-body sys-
tems, an interesting behavior arises in the hyperradial
potentials representing the continuum states. Near the uni-
tary regime, the long-range form of some of the continuum
channels exhibits a 1/R3 behavior. The form of the Born-
Oppenheimer potentials representing the N-body continuum
at large R is given by

U N
ν (R) → h̄2

2μ

[
leff (leff + 1)

R2
+ CN

3,ν

R3

]
, (7)

where leff is the effective angular momentum quantum num-
ber, and the coefficient CN

3,ν is defined as CN
3,ν = CN

ν as, where
as is the two-body s-wave scattering length and CN

ν is a univer-
sal N-body coefficient that depends on the particle statistics
and other quantum numbers of the system. The adiabatic
potentials Wν (R) that include the diagonal nonadiabatic cor-
rection Qνν (R) also follow this same long-range behavior,
since the diagonal nonadiabatic correction falls off faster than
1/R3. This universal long-range behavior presents itself in the
hyperspherical channels whose effective angular momentum
quantum number is modified from the noninteracting value at
infinite scattering length. The linear dependence of the 1/R3

term on the scattering length has been shown for these hyper-
radial potentials in the continuum for the three-boson system
at large scattering length [37,38]. As is shown in what follows,
the hyperspherical potentials that approach the noninteracting
limit at large R for infinite scattering length do so on a shorter
length scale than the potentials that approach the reduced 1/R2

coefficient. The coefficient CN
ν is computed for different total

angular momentum states of a given L for various spin con-
figurations, focusing on the three and four identical particle
systems with Lπ = [0+, 1−, 2+] in this work.

The spin configurations considered are some total spin
states denoted by the total spin quantum number S, and
also different individual spin configurations, specifically the
(↑↑↓) for the three-body system, and likewise the (↑↑↓↓)
and (↑↑↑↓) configurations for the four-particle system. For
the treatment of identical particles, the s-wave interaction be-
tween the (↑↓) two-body system is tuned from noninteracting
to the first s-wave unitary limit, where a low-energy s-wave
dimer forms. In some symmetries, tuning the (↑↑) two-body
p-wave interaction strength will lead to the formation of a
trimer state in the (↑↑↓) configuration.

In this section, the long-range behavior of the lowest few
hyperradial potentials in each spin configuration and system
size is characterized. Starting with the three-body case for
the (↑↑↓) spin configuration, some of the lowest hyperra-
dial potentials have a modified angular momentum barrier at

FIG. 4. The lowest few Born-Oppenheimer potential curves for
the (↑↑↓) equal-mass three-body system are shown for the 1−

symmetry. The solid curves correspond to potentials that exhibit
a reduced value of leff at the unitary limit for large hyperradius,
whereas the dashed potentials go to the noninteracting potentials at
large hyperradius. The strength of the two-body interactions between
all particles is rescaled from the noninteracting limit up to the s-wave
unitary limit (as → −∞). For each set of curves representing a dif-
ferent channel ν, an increase in scattering length on the negative side
corresponds to a curve in the set. From highest to lowest, the highest
curve is the noninteracting potential, the lowest is the hyperradial
potential at the s-wave unitary limit, and a potential in between is for
a finite scattering length. The hyperradius has been rescaled by the
range of the Gaussian interaction r0. The structure of the potential
curves for different systems and symmetries is qualitatively similar
to the potentials shown here, and thus are not shown.

the s-wave unitary limit for all symmetries, which is clearly
represented in Fig. 1. For these hyperradial potentials, the
long-range behavior of the potential for finite scattering length
close to unitarity has the form of Eq. (7). To obtain the
symmetry-dependent coefficient Cν , an analysis on the hyper-
radial potentials is performed at different scattering lengths. In
Fig. 4, a subset of hyperradial potentials is shown to illustrate
the structure of the long-range behavior at different scattering
lengths. The hyperradial potentials for the other systems and
symmetries have the same qualitative structure and are not
shown here.

In Fig. 4, the lowest few Born-Oppenheimer potentials are
shown to highlight key features that arise when tuning the
two-body scattering length from noninteracting to unitarity.
As the s-wave scattering length increases on the negative
side, some of the potentials start to exhibit a long-range
deviation from the noninteracting limit as the angular momen-
tum barrier transitions from the noninteracting value (finite
scattering length) to the modified value (infinite scattering
length) at large hyperradius. When the hyperradial potentials
do not exhibit a modified barrier at infinite scattering length
(dashed curves), the deviation from the noninteracting po-
tential appears to be short range. This is visible in Fig. 4
where some of the potentials reach noninteracting behavior
already for R/r0 ∼ 10–12. The exact form of the behavior of
these potentials (dashed lines) as they start deviating from the
noninteracting limit at smaller hyperradius is not studied here,
where the focus is on the potentials that go to the reduced
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barrier at the unitary limit. For the hyperradial potentials that
go to the modified barrier at infinite scattering length (solid
curves), the long-range deviation can be represented graphi-
cally by plotting C3,ν (R) = R[(2μ/h̄2)R2Uν (R) − lν (lν + 1)],
which is based on Eq. (7). Plots of the function C3,ν (R) for the
lowest hyperradial potential for the three symmetries in the
three- and four-body systems are shown in Fig. 5.

In Fig. 5, there are numerous curves plotted as a function
of R/r0 that go to a constant at R/r0 → ∞. Each curve, going
from top to bottom, represents a different s-wave scattering
length going from |as| = 0 to |as| → ∞. The curve C3,ν (R)
for |as| → ∞ is linear due to the shift in leff at the unitary
limit. A similar behavior in the function C3,ν (R) is observed
in the other hyperradial channels and symmetries not shown
in Fig. 5. The universal constant for each system and sym-
metry is determined through performing fitting procedures to
the curves shown in Figs. 4 and 5. From this curve-fitting
procedure, where each curve is fit to an inverse power law
of varying order, the universal constant Cν for the lowest
Born-Oppenheimer potential, along with the reduced angular
momentum quantum number lu, is extracted. In Figs. 6(a)–
6(c), plots of C3,1/r0 versus as/r0 for a single Gaussian
two-body interaction are shown for the three different N-body
systems with Figs. 6(a)–6(c) representing the ↑↑↓, ↑↑↓↓,
and ↑↑↑↓ spin configurations, respectively. In each panel,
results are given for the three natural parity symmetries 0+
as circles, 1− as squares, and 2+ as diamonds. The behavior
of the dependence of C3,1 on the scattering length is linear for
large values of |as/r0|; thus, through fitting a linear function
to the data shown in Figs. 6(a)–6(c) for the lowest hyperradial
channel and for the higher hyperradial channels (not shown),
the universal parameters Cν are extracted from the slope of the
fit and given in Table II.

Universality in the hyperradial potentials at long range
appears for continuum states as a reduction in the angular
momentum barrier at infinite scattering length. This is further
supported in Fig. 7, which shows a plot of C3(R) for the lowest
hyperradial potential using different two-body interactions.
The two-body interactions used in Fig. 7 are of the form given
by Eq. (5a). At large hyperradius, the hyperradial potentials
collapse onto one curve, demonstrating long-range universal-
ity in these continuum states. Only at small hyperradii, at
distances less than R/r0 ∼ 20, does the short-range nature of
the two-body interaction become important and nonuniversal
behavior emerges. The analysis of the long-range behavior of
the hyperradial potentials thus far has been for the individual
spin components of the interacting fermions.

In other systems, such as the few-nucleon systems in
nuclear physics, the good quantum numbers are either the
total orbital angular momentum and spin Lπ and S, or the
total angular momentum Jπ in an LS coupling scheme. For
the three-body system, the symmetries treated are (Lπ , S) =
(0+, 1/2) and (1−, 1/2). Likewise, for the four-body sys-
tem, the symmetries treated are (Lπ , S) = (0+, 0) and (1−, 0).
From the nuclear studies, near-unitary physics was explored
for both three-body and four-body systems in the symmetries
(Lπ , S) = (1−, 1/2) and (0+, 0), respectively. The long-range
universal behavior addressed above manifests itself in few-
neutron systems as a result of the large neutron-neutron singlet

(a)

(b)

(c)

FIG. 5. The lowest few Born-Oppenheimer potential curves for
(a) the (↑↑↓) equal-mass three-body system for the 0+ symmetry,
(b) the (↑↑↓↓) equal-mass four-body system for the 1− symmetry,
and (c) the (↑↑↑↓) equal-mass four-body system for the 2+ symme-
try. The strength of the two-body interactions between all particles
is rescaled from the noninteracting limit up to the s-wave unitary
limit (as → −∞). From highest to lowest, the highest curve is the
noninteracting case, the lowest curve is the s-wave unitary case,
and a curve in between is for a finite s-wave scattering length. The
solid curves are for the adiabatic potential and the dashed curves in-
clude the second-derivative nonadiabatic correction. The hyperradius
has been rescaled by the range of the Gaussian interaction r0. The
curves for the other symmetries are qualitatively similar and not
shown here.
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(a)

(b)

(c)

FIG. 6. The long-range coefficient C3,1/r0 versus as/r0 in the
lowest Born-Oppenheimer potential for the (a) (↑↑↓), (b) (↑↑↓↓),
and (c) (↑↑↑↓) equal-mass systems for the symmetries Lπ=0+

(circles), 1− (squares), and 2+ (diamonds). For values of the s-wave
scattering length near the unitary limit (|as/r0| > 10), C3,ν grows in
proportion to as, in accordance with Eq. (7). These results are for a
single Gaussian two-body interaction of width r0. The data for the
other hyperspherical channels yield qualitatively similar results to
the lowest channel in each symmetry, and thus are not shown here.

two-body s-wave scattering length. This behavior has been
studied for the three- and four-interacting-neutron systems
[15,16]. Through spin recoupling, the long-range 1/R3 coeffi-
cients for a given total spin S in the lowest hyperradial channel

can be determined from the values given in Table II. Some
results for the total spin states are given in Table III for three-
and four-body systems. The long-range coefficient for given
total spin S is typically not relevant for cold-atom systems in
the presence of a magnetic field since S is not a good quantum
number in this case.

In nuclear physics, there is a classification of spin-1/2
particles interacting in the unitarity regime denoted as “un-
particles” that can be described from conformal field theory
[42,43]. An example of such systems are clusters of neutrons.
The energy dependence of the differential cross section for an
N-body system is given as dσ/dE ∝ E�−5/2, where � is the
conformal dimension for the N-body system. Rewriting the
energy dependence in terms of the wave number k, one can see
that from the Wigner threshold law where dσ/dE ∝ k2leff +1,
� and leff are related through the expression � = leff + 3.
Using the values of lu given in Table III, the conformal di-
mensions given in Ref. [43] are reproduced for the N = 3, 4
cases.

C. Low-energy behavior of elastic phase shifts

The long-range behavior of the Born-Oppenheimer po-
tentials discussed in the previous section leads to important
implications at low collision energies. As described, for the
long-range behavior of the adiabatic potentials for s-wave
two-body interactions near the unitary limit, specifically near
the first s-wave pole in as, the adiabatic potentials exhibit a
1/R3 long-range tail proportional to the scattering length as,
represented by Eq. (7). Using the Born approximation, the
low-energy elastic N-body scattering phase shift for a given
angular momentum leff is

δleff (k) = −[C/(2leff (leff + 1))]k, (8)

where C is the coefficient of the 1/R3 term in Eq. (7). More-
over, as was mentioned above, the squared S-matrix element
for recombination is proportional to k2leff +1 in the generalized
Wigner threshold law for that process [44,45], when starting
from an initial channel with centrifugal potential barrier coef-
ficient leff (leff + 1).

Figure 8 shows a sampling of elastic phase shifts for a
Gaussian two-body interaction for different scattering lengths.
The four-body elastic phase shift is given as a function of
the wave number k for different negative s-wave scattering
lengths to highlight the changes in the low-energy behavior
as the scattering length increases from zero to the unitary
limit. Also shown in Fig. 8 is the low-energy limit derived
from the first Born approximation, represented by the black
dashed lines. The implications of this linear behavior of the
phase shift with wave number comes into the density of final
continuum states, defined through the energy derivative of the
phase shift for a single-channel calculation or through the
time-delay matrix in a multichannel calculation. From Eq. (8),
the low energy density of states, related through d/dE , results
in an energy enhancement near threshold of 1/E .
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TABLE II. Long-range coefficients for the three- and four-body equal-mass systems in the lowest few hyperradial channels for different
symmetries. The columns specify the symmetry Lπ , the hyperspherical channel index ν corresponding to a channel that gives a reduced value
of leff at unitarity, the noninteracting (leff ) and unitary (lu) angular momentum quantum numbers, and the universal 1/R3 coefficient Cν . The
label l ref

u indicates the value of lu extracted from various references. The error bars are estimated based on convergence of the basis used and
on curve fitting at large R.

Lπ ν leff lu l ref
u Cν

(a) (↑↑↓) system
0+ 1 7/2 1.668(2) 1.6662a, 1.682b 29.47(5)

2 11/2 4.628(2) 4.6274a 43.37(5)
3 15/2 6.616(2) 6.6145a 62.3(5)
5 19/2 8.338(5) 8.3323a 147(5)

1− 1 5/2 1.273(2) 1.2727a, 1.275b 14.19(5)
2 9/2 3.859(2) 3.85825a 14.63(5)
4 13/2 5.217(2) 5.21643a 74.91(5)
7 17/2 7.556(5) 7.553a 98.4(5)

2+ 1 7/2 2.605(2) 2.60498a 11.56(5)
2 11/2 4.296(2) 4.29541a 54.68(5)
5 15/2 6.734(2) 6.73883a 40.52(5)
9 19/2 8.340(5) 8.3371a 136.5(5)

(b) (↑↑↓↓) system
0+ 1 5 2.02(2) 2.028c 72.0(3)

2 7 4.45(5) 4.441d 138(2)
3 7 5.03(2) 5.029d 77.0(5)
4 7 5.36(2) 5.348d 59.6(5)

1− 1 6 4.11(2) 4.0978d 73.7(3)
2 6 4.18(2) 4.1758d 46.1(3)
3 6 4.75(2) 4.7305d 45(2)
4 8 5.73(5) 5.669d 141(2)

2+ 1 5 2.95(2) 2.9185d 59.0(3)
2 7 4.54(2) 4.539d 114(2)
3 7 5.04(2) 5.039d 96.3(5)
4 7 5.64(2) 5.6288d 64.1(5)

(c) (↑↑↑↓) system
0+ 1 7 5.35(2) 5.3466(1)e 75.8(3)

2 9 6.88(2) 6.8637d 134(2)
3 9 7.85(2) 7.8409d 98(1)
4 9 8.35(2) 8.3484d 36(2)

1− 1 6 4.17(2) 4.1770d 69.3(3)
2 6 4.73(1) 4.7300d 45.2(5)
3 8 5.81(2) 5.8068d 125(3)
4 8 6.75(3) 6.7219d 92.2(5)

2+ 1 7 5.03(2) 5.0385d 92.2(5)
2 7 5.74(2) 5.7208d 60.8(5)
3 7 5.94(2) 5.9242d 40.2(5)
5 9 7.31(2) 7.2742d 131(3)

aReference [7].
bReference [6].
cReference [39].
dReference [40].
eReference [41].

IV. INTERACTING FERMIONS AT THE P-WAVE
UNITARY LIMIT

The second type of few-body fermionic systems looked at
in this study are the interactions of identical spin-polarized
fermions, which interact through p-wave interactions. The
focus of this study is to understand four-body properties for
these systems and relate them to the corresponding three-
body properties, which have been studied in past theoretical

and experimental works [10,11,13,46–49]. In spin-polarized
fermionic systems at unitarity, it has been shown in a num-
ber of studies that there is no Efimov effect that emerges at
unitarity, unlike for bosonic systems [13,50–52]. Short-range
effects on three- and four-body properties are investigated
for the spin-polarized configuration in the 1− and 0+ sym-
metries, respectively. Through solving the full Schrödinger
equation over all space, the three-body binding energy is
obtained as a function of the p-wave scattering volume for
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FIG. 7. A comparison of the long-range coefficient C3,1 versus as

in the lowest Born-Oppenheimer potential for the (↑↑↓) equal-mass
three-body system shown for three different two-body interactions
given in Eqs. (5). The parameters for the interactions are given in
Table I for s waves. The coefficient C3,1 and the hyperradius R are
rescaled by the range of the single Gaussian interaction r0. The set
of three curves is labeled by the ratio of as/r0 shown on the right-
hand side. Universality kicks in for large hyperradius, as indicated by
the different interactions converging to one curve for each scattering
length.

different two-body interactions. Likewise, the lowest four-
body bound-state energy has been obtained in the Lπ = 0+
symmetry as a function of the p-wave scattering volume.
Correlations between the three-body bound state and the four-
body state at the p-wave unitary limit are made for different

FIG. 8. Single-channel elastic phase shifts for collisions in the
lowest hyperspherical continuum channel. Each curve is computed
using a different two-body s-wave scattering length, where the ratio
as/r0 is given for a Gaussian interaction and displayed on the right.
The low-energy behavior is governed by the characteristics of the
long-range form of the hyperradial potential [see Eq. (7)]. The 1/R3

term in the long-range form gives rise to a linear dependence on wave
number k of the phase shift, in accordance with the Wigner threshold
law. This linear dependence, derived using the Born approximation
in Eq. (8), is shown as the black dashed lines.

two-body interactions. The results are presented in a Tjon plot,
similar to ones shown for bosonic systems in past publications
[27,51–54], and are shown in Fig. 9.

Figure 9 is a Tjon plot that shows the correlation between
the three-body trimer energy in the 1− symmetry and the

TABLE III. Long-range coefficients for the three-body system with total angular momentum and parity Lπ , and total spin S. For each L
and S, the noninteracting angular momentum quantum number leff is given along with the reduced value lu at the s-wave unitary limit. The last
column gives the numerical results for the scattering-length-dependent coefficient Cν from Eq. (7) for the hyperspherical channel ν that gives
a reduced leff at unitarity. The error bars are estimated based on convergence of the basis used and on curve fitting at large R.

N (Lπ , S) ν leff lu l ref
u Cν

3 (1−, 1/2) 1 5/2 1.275(3)a 1.2727b 15.1(3)a

2 9/2 3.861(3)a 3.8582b 15.2(3)a

3 13/2 5.219(3)a 5.2164b 77.7(3)a

4 17/2 17/2 17/2
5 17/2 7.555(3)a 7.553b 108(3)a

3 (0+, 1/2) 1 7/2 1.668(5) 1.6662b 29.8(5)
2 11/2 4.630(5) 4.6274b 44.6(5)
3 15/2 6.63(2) 6.6145b 63.0(5)
4 19/2 8.35(2) 8.3323b 156(5)

4 (0+, 0) 1 5 2.02(2)a 2.0094(1)c 86.7(3)a

2 7 4.45(2)a 4.444(3)d 156(3)a

3 7 5.07(5)a 5.029(3)d 61.1(3)a

4 9 6.97(5)a 6.863(3)d 209(3)a

5 9 7.26(5)a 7.121(3)d 87.8(3)a

4 (1−, 0) 1 6 4.11(2) 4.0978e 73.6(5)
2 8 5.74(5) 5.667e 116(5)
3 8 6.57(5) 6.505e 81.2(5)

aValue extracted from Ref. [16]. The Cν coefficients are multiplied by
√

μ/μ′, where μ′ is the neutron-neutron reduced mass.
bReference [7].
cReference [39].
dReference [41].
eReference [40].
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FIG. 9. A Tjon plot of the correlation between the universal
three-body binding energy in the Lπ = 1− and the lowest four-body
binding energy in the Lπ = 0+ symmetry. Each point type corre-
sponds to a different two-body interaction, given in the legend and
labeled by the equation number. The parameters for the interactions
are given in Table I for p waves. The axes are rescaled by the trimer
energy at the unitary limit to place all of the data sets on the same
scale.

four-body tetramer energy in the 0+ for spin-polarized
fermions in each case (i.e., the total spin is S = 3/2 and
S = 2 for the three- and four-body systems, respectively).
From Fig. 9, the three- and four-body ground-state energies
are given for different two-body interactions, provided in
Eqs. (5) and (6). The respective three-body and four-body
energies are rescaled by the trimer value at the p-wave unitary
limit in order to display the results from each interaction
on the same scale. The correlation between the trimer and
tetramer energies is linear for each interaction type. A linear
fit was performed over the average of the two-body interac-
tion models to determine an effective correlation between the
trimer and tetramer states. The linear fit parameters are given
in the figure and the correlation has been determined (with
an R-squared value of 0.9754) to be E0+

4 = 2.024(11)E1−
3 +

0.718(6)E1−
3,u, where E0+

4 is the tetramer energy for Lπ =
0+, E1−

3 is the trimer energy for Lπ = 1−, and E1−
3,u is the

trimer energy at the p-wave unitary limit. There is a sim-
ilar relationship between the trimer and tetramer states in
four-boson systems at the s-wave unitary limit, in relation
to the Efimov effect. In the bosonic systems, there exist two
tetramer bound states for every hyperspherical potential de-
scribing the two-body fragmentation to an Efimov trimer +
free particle [18,23,55]. The relationship between the two
universal tetramers and the corresponding Efimov trimer at
unitarity was determined to be En,m

4B = cmEn
3B, where c1 =

4.58 and c2 = 1.01, as described in Eq. (2) of Ref. [18]. Using
momentum-space transition operators to study these universal
tetramers for unitary bosons, Deltuva computed the universal
coefficients to be c1 = 4.610(1) and c2 = 1.00227(1) [55].
In the case of fermions, the scaling coefficient of the trimer
energy is smaller than the scaling factor of the ground state
for bosons by almost a factor of 2. This difference can be
interpreted as resulting from the Pauli repulsion effects seen
in fermionic systems that are absent from bosonic systems.

TABLE IV. Energy and scattering volume ratios at the p-wave
unitary limit for the spin-polarized (↑↑↑↑) system in the 0+ sym-
metry. Each column represents a different two-body interaction from
Eqs. (5) and (6), where the parameters are given in Table I for p
waves. Each row labels the ratio between four- and three-body prop-
erties, where row 1 gives the ratio of the 0+ tetramer energy to the
1− trimer energy at unitarity, row 2 gives the ratio of overall scaling
factors (β0+

p,4/β
1−
p,3) of the two-body interaction [i.e., V ′(r) = βV (r)]

needed to bind the trimer and tetramer, and row 3 gives the ratio of
effective p-wave scattering lengths ap = V 1/3

p at which tetramer and
trimer states first form at zero energy.

Vi j V n=0
(5a) V n=1

(5a) V n=2
(5a) V (1)

(5b) V (2)
(5b) V p=3

(6) V p=4
(6)

E 0+
4,u/E 1−

3,u 2.864 2.740 2.659 2.603 2.446 2.936 2.755

β0+
p,4/β

1−
p,3 0.935 0.941 0.944 0.944 0.953 0.933 0.938

a0+
p,4/a1−

p,3 0.875 0.874 0.876 0.882 0.874 0.891 0.887

Unlike the four-boson case, the four-fermion tetramer is
not universal; i.e., its energy depends on the short-range in-
teraction. Table IV shows this ratio for different two-body
interactions. The reason for this nonuniversal behavior is sim-
ilar to that in the four-boson case for the two tetramers in
the lowest hyperradial potentials in Ref. [18]. The hyperra-
dial potentials that support the ground-state tetramers in the
fermion case have potential minima on the order of the range
of the interaction. Thus, the mean distance between any two
fermions in the tetramer is of the order of the two-body inter-
action range, so it stands to reason that the trimer and tetramer
energies will vary depending on the short-range behavior of
the interaction, similar to that found in the lowest hyperradial
potential for the boson case.

Other quantities of interest are the points at which the
trimer and tetramer states transition from being a resonance in
the continuum to being a bound state. These transition points
are characterized by the ratio of the effective p-wave scatter-
ing lengths, ap = V 1/3

p , at which this transition occurs for the
three- and four-body systems. This ratio is numerically deter-
mined here through a full diagonalization of the Hamiltonian
for the different two-body interactions used to characterize the
energy ratio and is shown in the second row of Table IV. From
these results, the ratio a0+

p,4/a1−
p,3 ∼ 0.88 is a universal quantity,

as it is found to be insensitive to the short-range behavior of
the interaction, with a standard deviation of 0.01, i.e., 1.0% of
the mean.

The quantity ap,4/ap,3 has importance for four-body
recombination processes. In this case, the relevant recom-
bination process is A + A + A + A ↔ A3 + A for Lπ = 0+,
where A is a fermion. Given the two-body p-wave scatter-
ing volume V AA

p,3 , with ap,3 = [V AA
p,3 ]1/3, where the A3 trimer

transitions from resonant to bound, there will be an enhance-
ment in the four-body recombination for an ultracold gas
into deep dimers or trimers at scattering volumes V AA

p,4 , with
ap,4 = [V AA

p,4 ]1/3, where the tetramer A4 transitions from res-

onant to bound. The ratio a0+
p,4/a1−

p,3 is universal with small
deviations (two standard deviations of the mean, or ∼2%)
due to short-range effects (see Table IV). The location of the
enhancement in the four-body recombination process where
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FIG. 10. Lowest hyperradial potentials for the three- and four-
identical fermionic systems in the spin-polarized state at the p-wave
unitary limit. The lower inset plot shows these potentials on a smaller
energy scale to highlight the asymptotic behavior of the lowest
four-body potential at large hyperradius. The dashed lines show
the expected asymptotic behavior as the potential approaches the
trimer + free particle threshold. The upper inset plot shows the
three-body potential rescaled by R2 with and without the second-
derivative nonadiabatic coupling. This highlights the long-range
behavior, specifically showing the negative, nonzero coefficient of
R−2 without the diagonal coupling added, indicating Efimov physics.
However, this is not a true Efimov feature, as this coefficient vanishes
after including the nonadiabatic coupling.

the four-body state becomes resonant with the continuum is
governed by ap,3 of the system and should be found in the
range 0.87a1−

p,3 < a0+
p,4 < 0.89a1−

p,3 or, in terms of the p-wave

scattering volume, 0.66V 1−
p,3 < V 0+

p,4 < 0.70V 1−
p,3. It should be

noted that the small deviations resulting from short-range ef-
fects are of the same order of magnitude as those found in the
N-boson case when looking at the lowest Efimov states
[25,26,56].

These identical fermionic systems interacting at the p-wave
unitary limit are further studied by calculating the adiabatic
potential curves as functions of the hyperradius. To verify the
relation between the trimer energy and tetramer energy given
in Table IV, the lowest few hyperradial potential curves for
the spin-polarized (S = 3/2 and S = 2) three- and four-body
systems were computed, along with the diagonal nonadia-
batic second-derivative correction to provide an upper and
lower bound to these binding energies. Figure 10 shows the
lowest three- and four-body hyperradial potential with the
diagonal nonadiabatic correction. In Fig. 10, the lowest ef-
fective hyperradial potentials for the three- and four-identical
fermionic spin-polarized systems are shown in the range
0 < R/r0 < 20. The two inset plots highlight some features
of these effective potentials at large hyperradius related to
fragmentation pathways and the Efimov effect. The inset plot
on the lower left shows a zoomed-in view of the main fig-
ure which highlights the asymptotic behavior of the lowest
0+ four-body potential. This inset shows the behavior of the
lowest four-body potential at large hyperradius, which rep-
resents the two-body fragmentation of the four-body system
into the universal trimer in the 1− state plus a free particle
with a relative angular momentum quantum number of l = 1.

FIG. 11. The hyperradial potentials for the four-fermion system
in the (↑↑↑↑) spin configuration. Each curve represents a different
hyperradial potential with channel index ν that increases from the
lowest to highest curve. The two-body interaction between (↑↑)
spins is set to the first p-wave unitary limit. For this set of two-body
interactions, there is one two-body breakup threshold below the four-
body continuum, labeled by the fragmentation of the spins and the
angular momentum of the trimer.

This is further emphasized by the comparison of the effective
potential with a purely centrifugal barrier (represented by the
dashed line) with l = 1. The horizontal dashed line shows the
trimer energy, which aligns with the position of the trimer
energy in the well of the three-body potential in the main
figure.

The second inset shows the lowest three-body hyper-
radial potential multiplied by R2 with and without the
second-derivative nonadiabatic coupling term. As shown, the
Born-Oppenheimer potential falls off as 1/R2 with a negative
power of approximately −0.5 [i.e., U0(R) → − h̄2

4μR2 ]. From
this attractive long-range behavior, the lowest three-body
adiabatic potential behaves like the Efimov potential mani-
fested in the three-boson system at s-wave unitarity, which
has the form U0(R) = − h̄2

2μR2 (s2
0 + 1/4) with s0 = 1.0061.

Comparing the 1/R2 coefficient for bosons with the coefficient
of the adiabatic potential for three fermions, the value of
the Efimov parameter is s0 ≈ 0.5. Since the value of s0 is
greater than zero, this would indicate an Efimov-like effect
in this fermionic system. However, it has been determined
that no such Efimov effect actually exists in these systems.
The nonadiabatic second-derivative coupling exactly cancels
this attractive 1/R2 term in the adiabatic potential, indicated
by the upper line in the inset that goes to zero at large R.
This indicates that the lowest effective three-body hyperra-
dial potential does not have an Efimov-like behavior at large
hyperradius which would lead to an infinite set of bound
trimer states.

Further evidence for the nonexistence of the Efimov effect
for three identical spin-polarized fermions is shown in the
hyperradial mapping of the four-body case, shown in Fig. 11.
The spectrum of hyperradial potentials in the four-body
case gives further insights into the interactions of identical
fermions at unitarity. From Fig. 11, there is only one fragmen-
tation pathway of the four-body system to a two-body system
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FIG. 12. The Born-Oppenheimer potentials for the four-fermion
system in the (↑↑↓↓) spin configuration. Each curve represents a
different hyperradial potential with channel index ν that increases
from the lowest to highest curve. The two-body interaction between
(↑↑) spins is set to the first p-wave unitary limit, while the (↑↓) is
set to the first s-wave unitary limit. For this set of two-body interac-
tions, there is one two-body breakup threshold below the four-body
continuum threshold, labeled by the fragmentation of the spins and
the angular momentum of the trimer.

representing the fragmentation into a p-wave universal trimer
and a free particle, shown in the lowest potential. If there
were a three-body Efimov effect in the identical spin-polarized
fermion case, then there should be an infinite number of
hyperradial potentials, each one going to one of the Efimov
trimers as is the case of bosonic systems [18].

There are other interesting features in the spectrum of the
four-body system at the p-wave unitary limit that should be
noted. One of the main features, as described earlier, is the
presence of a bound tetramer state in the lowest hyperspher-
ical potential. In the Lπ = 0+ symmetry, there is a single
tetramer bound state in the lowest potential which asymptoti-
cally, at large hyperradius, goes to the trimer plus free particle
energy threshold. The binding energy of the spin-polarized
tetramer is related to the corresponding trimer energy through
a relation described by a Tjon plot like the one shown in
Fig. 9. There is also a hyperradial potential representing the
second hyperradial eigenvalue of the adiabatic Hamiltonian
in Eq. (2) that exhibits a potential minimum below E = 0
which has the potential to contain either bound or resonant
states.

Next, the hyperradial potentials are mapped out for the
(↑↑↓↓) and (↑↑↑↓) spin configurations for total orbital
angular momentum Lπ = 0+. The lowest few hyperradial po-
tentials for the (↑↑↓↓) configuration are shown in Fig. 12.
In this spin configuration and symmetry, the lowest two
hyperradial potentials converge to a two-body breakup thresh-
old below zero energy that represents the two-body breakup
into a trimer plus a free particle in the spin configurations
↑↑↓ (1−)+ ↓ and ↓↓↑ (1−)+ ↑, where the trimer state is
labeled by its total orbital angular momentum, which is 1−.
Through angular momentum coupling, the relative angular
momentum between the trimer and free particle in the 0+
symmetry is lrel = 1. In this spin configuration, the lowest

FIG. 13. The hyperradial potentials for the four-fermion system
in the (↑↑↑↓) spin configuration. Each curve represents a different
hyperradial potential with channel index ν that increases from the
lowest to highest curve. The two-body interaction between (↑↑)
spins is set to the first p-wave unitary limit, while the (↑↓) is set to
the first s-wave unitary limit. For this set of two-body interactions,
there are two two-body breakup thresholds below the four-body
continuum, labeled by the fragmentation of the spins and the angular
momentum of the trimer. The solid curves are the Born-Oppenheimer
potentials and the dashed curves are the effective hyperradial po-
tentials that include the diagonal nonadiabatic second-derivative
coupling.

hyperradial potential supports one tetramer bound state in the
0+ symmetry.

For the other spin configuration, (↑↑↑↓), the hyperradial
potentials are shown in Fig. 13. In this spin configuration and
symmetry, the lowest two hyperradial potentials converge to
two-body breakup thresholds below zero energy that repre-
sents the two-body breakup into a trimer plus a free particle
in the spin configurations ↑↑↓ (1−)+ ↑ and ↑↑↑ (1−)+ ↓,
where again the trimers are in the 1− symmetry. In this
spin configuration, the hyperradial potentials do not support
a tetramer state in this symmetry. In summary, for total orbital
angular momentum 0+, the spin configurations that support
tetramer bound states are the (↑↑↓↓) and (↑↑↑↑) configu-
rations where the (↑↓) interactions are tuned to the s-wave
unitary limit and the (↑↑) and (↓↓) interactions are tuned to
the p-wave unitary limit.

V. CONCLUSIONS

In this work, the three- and four-body fermionic systems
are studied for various equal-mass cases, interacting near their
s-wave and/or p-wave unitary regimes. Specifically, this work
focuses on the regime where there are no two-body bound
states (i.e., near the first s-wave pole in as and the first p-
wave pole in Vp). The symmetries treated in this work are
Lπ = 0+, 1−, and 2+ in the spin configurations (↑↑↓) for the
three-body system and (↑↑↓↓), (↑↑↑↓), and (↑↑↑↑) for the
four-body system. In the first part of this work, the systems
considered reside near the s-wave unitary limit; our analysis
treats universal properties of the hyperradial potentials and
the resultant effects on the low-energy elastic phase shifts
for continuum scattering. At infinite scattering length, there
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is a modification to the angular momentum barrier in some
of the continuum hyperradial potentials. This modification
is followed by a universal long-range next-order term in the
hyperradial potentials that falls off as 1/R3 and is proportional
to the scattering length and is independent of the short-range
details of the two-body interaction, and is thus universal. This
universal constant is characterized for different symmetries of
several three- and four-body systems in the lowest hyperradial
continuum channel. As a result of this long-range universal
behavior in the potentials, the low-energy phase shift is pro-
portional to the wave number k, i.e., to

√
E in the energy.

This leads to a 1/
√

E in the energy derivative of the phase
shift, which is proportional to the density of states in the
continuum.

The second part of this article investigates the interaction
of equal-mass fermions at the p-wave unitary limit for four
particles in the symmetry Lπ = 0+ and its implications as it
relates to the properties of the three-body system at s-wave
and p-wave unitary limits where the s-wave and p-wave dimer
energy is at E = 0. For the spin-polarized case, where the
spins are in the (↑↑↑↑) configuration and the p-wave inter-
actions are tuned from noninteracting to the unitary regime,
the spectrum for the symmetry Lπ = 0+ shows one four-body
tetramer state supported in the lowest hyperradial potential.
From the hyperradial potentials, the potential minimum that

supports the tetramer state is located at a distance comparable
to the range of the interaction, which is the reason that the
ratio of the tetramer energy to the corresponding trimer energy
E4/E3 is sensitive to the form of the short-range behavior
of the two-body interaction; this is analogous to what was
previously documented for the tetramer states in the lowest
hyperradial potential for the four-boson case.

A key quantity for four-body recombination is the ratio of
effective p-wave scattering lengths associated with occurrence
of a zero-energy trimer and tetramer resonance. Through an
analysis of Tjon plots for different two-body interactions, this
ratio is found to be universal with a value of a0+

p,4/a1−
p,3 ∼ 0.88.

This universal property provides a probe for where the loss
rate in the four-body recombination process A + A + A +
A ↔ A3 + A is enhanced due to the formation of a bound
tetramer for the 0+ symmetry.
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