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Microscopy of an ultranarrow Feshbach resonance using a laser-based atom collider:
A quantum defect theory analysis
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We employ a quantum defect theory framework to provide a detailed analysis of the interplay between a
magnetic Feshbach resonance and a shape resonance in cold collisions of ultracold 87Rb atoms as captured
in recent experiments using a laser-based collider [M. Chilcott et al., Phys. Rev. Research 3, 033209 (2021)].
By exerting control over a parameter space spanned by both collision energy and magnetic field, the width
of a Feshbach resonance can be tuned over several orders of magnitude. We apply a quantum defect theory
specialized for ultracold atomic collisions to fully describe of the experimental observations. While the width
of a Feshbach resonance generally increases with collision energy, its coincidence with a shape resonance leads
to a significant additional boost. By conducting experiments at a collision energy matching the shape resonance
and using the shape resonance as a magnifying lens, we demonstrate a feature broadening to a magnetic width
of 8 G compared to a predicted Feshbach resonance width much less than 0.1 mG.
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I. INTRODUCTION

Collisional resonances are ubiquitous in atomic and par-
ticle physics, where they arise due to coupling between the
scattering continuum and a quasibound state. Their telltale
signature is an abrupt suppression or enhancement in scat-
tering as the collision energy is scanned, but they may also
emerge when scanning an external field which tunes the
energy levels of the system. In ultracold atomic physics,
such field-tunable resonances provide an indispensable tool
for manipulating the interactions between atoms, which has
been exploited in a number of hallmark quantum experi-
ments in atomic systems, including solitons [1], the BEC-BCS
crossover [2,3], and quantum droplets [4].

With the recent push towards experiments with ultracold
molecules [5,6], the interaction between collisional reso-
nances has become a subject of increased interest, due to the
high density of states in molecules compared to atoms. Ex-
traordinarily long lifetimes, approaching milliseconds [7–9],
have been observed in collisions between nonreactive ultra-
cold molecules in their absolute ground state. These long
lifetime have been attributed to the high density of states of
molecules [10–12] and suggest the presence of overlapping
resonances [13]. Interacting Feshbach resonances are also of
importance in collisions of ultracold magnetic lanthanides,
such as erbium and dysprosium, and have been used to reveal
the chaotic nature of the collision process [14,15].

Multichannel quantum defect theory (MQDT) was origi-
nally developed to describe an electron moving in a long-
range Coulomb potential (see [16] and references therein).
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This was later generalized to treat scattering problems in-
volving broader classes of potentials including the long-range
van der Waals interaction for atomic collisions [17–22]. For
the low energies characteristic of scattering in the cold and
ultracold domain, MQDT has proven particularly fruitful,
capturing the physics at threshold [23–32]. By separating
the scattering problem into energy sensitive and insensitive
components, quantum defect theory (QDT) allows for an el-
egant description of resonance interactions, with the energy
dependence encapsulated in a few analytic parameters. Recent
demonstrations of the power of QDT include the prediction
and interpretation of triplet structures for d-wave Feshbach
resonances [33] and shape resonances [34].

In this paper we study the interaction between a shape
resonance and a Feshbach resonance in collisions of 87Rb
atoms, with both resonances arising from quasibound d-wave
states of the system. Figure 1 shows an example potential
well for the collisional entrance channel (blue line) which de-
scribes the interaction as a function of radial separation. When
including angular momentum, the effective potential contains
a barrier in front of the potential well (orange line), behind
which a quasibound state can be formed (orange dashed line).
For atoms tunneling through the barrier, such a quasibound
state gives rise to a scattering resonance. Similarly, Feshbach
resonances arise from the coupling to a bound state, but in
this case the bound state belongs to a closed channel. A
closed-channel potential, which is energetically inaccessible
for separated particles, is presented in red in Fig. 1. Due to the
deep potential well, the closed channel shown becomes acces-
sible at short range during a collision. If a bound state (red
dashed line) is present at the collision energy, incoming atoms
can temporarily bind in this state, enhancing their interaction.
In the case of a magnetic Feshbach resonance, the different
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FIG. 1. Representative interaction potentials. The s-wave chan-
nel is shown by the blue solid curve. The addition of d-wave angular
momentum gives rise to a potential (orange solid curve), with a bar-
rier hosting a quasibound state (dashed orange line). The centrifugal
barrier is highly exaggerated to be visible; in reality its height is
orders of magnitude smaller than the depth of the well. We also show
the potential of a closed-channel potential in red, also with d-wave
character and hosting a bound state (dashed red line). The relative
position of the closed channel can be tuned with a magnetic field,
and the bound state associated with the Feshbach resonance can be
pulled through the shape resonance.

magnetic moments of the closed and entrance channels allow
us to manipulate the position of the Feshbach resonance in
energy.

While shape resonances and Feshbach resonances are typ-
ically treated in isolation, the tunability of the latter opens
up the possibility of moving a Feshbach resonance through
a shape resonance using an external field. We recently studied
the interaction of a pair of such resonances and observed the
avoided crossing in the associated S matrix poles [35]. In the
present work we revisit the data acquired in these experiments
and extend our analysis of this resonance pair to give an
interpretation in terms of multichannel quantum defect theory.
We show that a simple two-channel QDT model captures all
the essential physics of the interacting collisional resonances.

II. EXPERIMENTAL METHODS

A. System

We collide pairs of 87Rb atoms, both of which are in
the absolute ground hyperfine state |F, mF 〉 = |1, 1〉. This
|1, 1〉|1, 1〉 entrance channel has a plethora of Feshbach res-
onances, previously mapped out by loss spectroscopy [36].
In the present study, we utilize a d-wave Feshbach reso-
nance corresponding to the closed-channel molecular state
with the quantum numbers F1 = 2, F2 = 2, v′ = −5, and M =
2, where M = mF1 + mF2 and v′ is the vibrational quantum
number counting from the F1 = 2, F2 = 2 threshold. For a
magnetic field of 930 G, this state is located at the |1, 1〉|1, 1〉-
channel threshold where it is predominantly comprised of
components from the |2, 0〉|2, 2〉 and |2, 1〉|2, 1〉 channels.
The |1, 1〉|1, 1〉 channel also hosts a d-wave shape resonance
at a collision energy near 300 μK [37,38], as measured in
units of the Boltzmann constant kB.

The Feshbach resonance we employ was predicted by
Marte et al. [36] to be located at 930.9 G with a theoretical
width much less than 0.1 mG; their experiments observed
it at B0 = 930.02 G using loss spectroscopy. A subsequent
observation has placed this resonance at 930.89 G in pho-
toassociation experiments [39]. Our own loss spectroscopy
measurements (described in Appendix A) observe the zero-
energy resonance at 929.921(3) G.

B. Optical collider

Our collider is composed of a system of steerable op-
tical dipole traps, formed by pairs of crossed red-detuned
laser beams [40]. The procedure to prepare two ultracold
(∼800 nK) |1, 1〉-state 87Rb clouds in separate crossed dipole
traps is detailed in [35]. We tune the position of the Fesh-
bach resonance by applying a magnetic field with a pair
of Helmholtz coils carrying a current controlled at the ppm
level [41], before accelerating the two clouds, each containing
∼3 × 105 atoms, to collide at a specific energy in the range
156–850 μK. The acceleration is achieved by steering the
laser trapping beams and as the clouds reach the collision
energy, all laser beams are turned off so that the atoms collide
in the absence of trapping.

C. Detection

After the clouds separate postcollision, we acquire an ab-
sorption image of the clouds and the halo of scattered atoms.
Figure 2(a) shows examples of such images with the atom
distribution projected onto a plane and exhibiting clear d-
wave character [37,42]. We integrate the image [Fig. 2(b)]
in the direction orthogonal to the collision (vertically) and
the resulting integral [Fig. 2(c)] carries a spatial imprint of
shapes associated with the interfering s and d partial waves,
and the unscattered thermal clouds. By fitting these shapes to
the integrated image, we extract the scattered fraction S .

The cross section is related to the scattered fraction by [43]

S = ασ

1 + ασ
, (1)

where σ = σs + σd is the sum of the s and d partial-wave
cross sections and the parameter α is geometry dependent and
left as a free parameter when fitting the cross section. For a
particular partial wave �, the cross section is

σ� = 4π h̄2(2� + 1)

μE
sin2(δ�), (2)

where δ� is the corresponding partial wave scattering phase
shift, E is the collision energy, and μ is the reduced mass. As
we are colliding indistinguishable bosons, only even-� partial
waves are allowed and Eq. (2) includes an additional factor
of 2 compared to the distinguishable particle case. Because
the magnetic Feshbach resonance has a d-wave character,
we take the s-wave phase shift δs and consequently σs to be
constant in magnetic field and only a function of energy. Close
to the magnetic resonance, the d-wave phase shift δd can be
described by the Beutler-Fano model

δd (E , B) = δbg(E ) + arctan

(
�B(E )/2

B − Bres(E )

)
, (3)
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(a)

(b)

(c)

FIG. 2. Fractions of scattered atoms from postcollision absorp-
tion images. (a) Absorption images at a range of magnetic fields
over the resonance for a collision energy of E/kB = 270 μK. The
collision axis is horizontal. (b) Close-up of a collision near 940 G.
The scattering here is strongly anisotropic and has the signature of
d-wave scattering [42]. (c) Integrated column density [blue (top)
curve], to which our model is fitted in order to extract the parameters
of the collision. From the fit the components of unscattered (orange
curve) and the s-wave (red curve) and d-wave (green curve) scattered
atoms are extracted.

for a magnetic field B and a collision energy E . With this
resonance model, we extract the d-wave background phase
shift δbg(E ) along with the width �B(E ) and position Bres(E )
of the Fano line shape by sweeping the magnetic field at
constant energy.

The Beutler-Fano model above is equivalent to the com-
mon form of the Fano profile [44]

σ ∝ (q + ε)2

1 + ε2
, (4)

where q is the so-called shape parameter and ε is the
scaled dimensionless parameter in which the resonance oc-
curs. In our case, the required mapping to this form is
given by q = cot(δbg) and ε = 2(B − Bres)/�B, the inverse
of the arctan argument in Eq. (3). Representative Fano
profiles measured at four different energies are shown in
Fig. 3, illustrating different regimes of the q parameter.

FIG. 3. Examples of Fano profiles of differing shape parameters
q as encountered in our experiments. Points show the measured
scattered fraction as a function of magnetic field for four different
collision energies E . The solid lines are curve fits based on the
Beutler-Fano model outlined in Sec. II C. The fitted parameters Bres

and �B [cf. Eq. (3)] are indicated as a dashed line and a shaded
area, respectively. The experimental data illustrating the character-
istic Fano profiles were previously published in [35].

The line shape parametrized by q can be thought of as
due to the interference between the two pathways; the
asymmetric line shape then arises due to the constructive
interference on one side and destructive interference on the
other [45,46].

We note that the limiting cases provide a symmetric dip at
q = 0 and a Lorentzian profile at |q| → ∞, while intermedi-
ate values of q are tied to asymmetric profiles with a “polarity”
determined by the sign of q.
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(a) (b)

(c) (d)

FIG. 4. Different length and energy scales of the scattering problem in the � = 2 entrance channel. (a) Triplet potential of the entrance
channel V from Ref. [50]. At the long range, V is well approximated by the van der Waals potential Veff. (b) At threshold and over a wider
range of separation, we show two scattering wave functions derived from coupled-channel calculations, offset vertically by their collision
energies. An arrow labels the length scale of the van der Waals potential β. (c) At short range, the shape of the wave function is independent
of energy apart from variations of the amplitude. The increase in amplitude demonstrated at 300 μK is associated with the nearby shape
resonance. (d) Scattering wave function u at long range along with the free-particle wave function ufree. The difference between the two is
captured by a phase shift η.

III. QUANTUM DEFECT THEORY

The compelling variation in the Fano profiles observed
in Fig. 3 results from the interplay between the Feshbach
resonance and a shape resonance. We employ quantum defect
theory to characterize and interpret the intriguing resonant
scattering behavior. As mentioned in the Introduction, QDT
is a well-developed theory. There are however different nota-
tions (most notably those of Greene et al. [19] and Mies [20])
and approximations employed by various QDT treatments.
As such, here we provide a self-contained treatment which
combines the numerically stable approach of Ruzic et al. [47]
with a reference function optimization [48]. The importance
of optimized reference functions in the analysis of Feshbach
resonances in ultracold atomic collisions was discussed previ-
ously by Osséni et al. [49].

A. Overarching QDT framework

The QDT approach to cold collisions takes advantage
of the separation of energy and length scales common in
scattering problems [16,19,20,25,28]. The blue solid lines
in Figs. 4(a) and 4(b) show the triplet interaction potential
between two 87Rb atoms as a function of separation. Asymp-
totically, this potential goes to zero. Atoms at short range
[Fig. 4(a)] encounter a potential with a depth on the order
of 1000 K, compared to a collision energy of the order of
1 mK. This separation of energy and length scales allows
the important physics of collisions to be captured by a few

analytic parameters [29–32,51]. Importantly, computing these
QDT parameters for a system only requires the long-range
form of the interaction potential and the masses of the atoms.

To set the scene, we show in Fig. 4(b) the energy-
normalized scattering wave functions in the |1, 1〉|1, 1〉
channel, generated by full coupled-channel calculations1 at
two different energies (E/kB = 300 and 500 μK). These
wave functions highlight two salient features shared by all
scattering solutions. First, inside the well solutions are oscil-
latory with a varying local wave number which, crucially, has
virtually no dependence on the collision energy E ; the com-
mon waveforms differ only in amplitude [see Fig. 4(c)]. This
difference in amplitude arises due to the asymptotic energy
normalization. Second, the long-range asymptotic solutions
are sinusoidal with a constant wave number. This wave num-
ber will depend strongly, but trivially, on the collision energy
E as k =

√
2μE/h̄2 and for a given energy the sinusoid will

display a phase shift η(E ) with respect to the regular free-
space solution at that energy [Fig. 4(d)]. Because the specific
wave functions in Fig. 4 satisfy the physical boundary condi-
tions of the scattering problem, the partial (elastic) scattering
cross section is determined by this phase shift using Eq. (2),
with δ� = η. By observing that all scattering solutions share

1The coupled-channel calculations, as used in Ref. [35], are gen-
erated by propagating the log-derivative of the wave function using
the technique of Ref. [52] and extracting the wave function using the
technique of Ref. [53].
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some common ground via the two features highlighted above,
the QDT framework will enable us to predict the energy
dependence of the phase shift analytically.

1. Coupled-channel equations, K matrix, and S matrix

The objective of any scattering problem is to obtain the
system’s S matrix, as it completely describes the outcome of
a scattering experiment. Formally, the S matrix can be con-
structed from computed wave functions, which are solutions
to the coupled radial Schrödinger equations

N∑
j=1

{[
− h̄2

2μ

d2

dr2
+ �(� + 1)h̄2

2μr2

]
δi j + Vi j (r)

}
u j (r) = Eiui(r),

(5)
where the energy Ei for a channel i is measured with respect
to its threshold and Vi j are the elements of a potential ma-
trix. In our experiments, we consider two atoms entering as
|1, 1〉|1, 1〉. If we ignore the weak spin-spin dipole interac-
tions, collisions between atoms 1 and 2 conserve mF1 + mF2 =
2 as well as mechanical angular momentum � [54]. For the
d-wave channel, their coupling is restricted to the channels
|1, 1〉|2, 1〉, |1, 0〉|2, 2〉, |2, 0〉|2, 2〉, and |2, 1〉|2, 1〉 with � =
2, which results in an N = 5 channel set of equations [27].
Designating the entrance channel |1, 1〉|1, 1〉 with i = 1, we
have E1 > 0 as the asymptotically free incoming |1, 1〉 atoms
have a nonzero relative kinetic energy. In our experiment the
collision energy is so low that Ei < 0 for the remaining four
channels; these are all energetically closed and atoms can only
leave the collision via the i = 1 channel.

Generally, when solving coupled-channel problems like
Eq. (5), one typically propagates out an N × N regular solu-
tion matrix2 F, where N = No + Nc is the sum of the number
of open and closed channels. The N columns of F represent
N linearly independent solution vectors to Eq. (5) with row i
of a solution vector corresponding to the channel i. Asymptot-
ically, the solution matrix can be decomposed as [55]

F(r)
r→∞∼ J (r) + N (r)K, (6)

where K is a constant real symmetric matrix and J and N
are diagonal matrices with entries

Jii(r) =
{

rk1/2
i j�(kir) for i open

(kir)−1/2I�+1/2(kir) for i closed,
(7a)

Nii(r) =
{

rk1/2
i n�(kir) for i open

(kir)−1/2K�+1/2(kir) for i closed.
(7b)

Here j� and n� are spherical Bessel functions of the first
and the second kind, respectively, and I�+1/2 and K�+1/2 are
modified Bessel functions of the first and the third kind, re-
spectively.

The energy-dependent K matrix defined by Eq. (6) con-
tains all the scattering behavior of the system. In particular,
the No × No submatrix of K that pertains to only the open
channels defines the S matrix [55–57]

S = (1 + iKoo)(1 − iKoo)−1. (8)

2In practice, for reasons of numerical stability, it is more common
to propagate the log-derivative of this matrix.

We note that Koo is known as the reactance matrix in the litera-
ture. In the treatment of identical particles, the wave functions
must be properly symmetrized [58]. Because we only consider
elastic collisions, we simply need to include a factor of 2 in the
even-� partial-wave cross sections [cf. Eq. (2)].

2. QDT treatment: Uncoupled channels at long range

Rather than numerically solving Eq. (5) directly to in turn
obtain K and S, QDT proceeds by assuming that beyond a
certain separation Rint all channels are uncoupled. Beyond this
distance, the radial wave function for the entrance channel is
therefore a solution to the radial Schrödinger equation[

− h̄2

2μ

d2

dr2
+ �(� + 1)h̄2

2μr2
+ V1(r)

]
u1(r) = E1u1(r). (9)

For our system, the long-range behavior of V1 is well de-
scribed by a van der Waals potential V1(r) = −C6/r6 and
Eq. (9) takes the specific form

d2

dR2
u1(R) =

⎛
⎜⎜⎝− 1

R6
+ �(� + 1)

R2︸ ︷︷ ︸
Veff (R)

−Ē1

⎞
⎟⎟⎠u1(R), (10)

where the radial distance R is measured in units of the van der
Waals radius β ≡ (2μC6/h̄2)1/4 and energy on a scale Eβ ≡
h̄2/2μβ2. We also define the local wave number

k̄1(R) =
√

Ē1 − Veff (R). (11)

For reference, we note that our particular system has C6 =
3.253 × 107 K Å6 for 87Rb [59], which gives β = 87.37 Å
and Eβ = 73.11 μK.

B. QDT reference functions

Knowing that our long-range behavior is well described by
the van der Waals potential, we compute the QDT reference
functions in this potential.

1. Asymptotic considerations (R → ∞)

As R → ∞, Veff vanishes and the Ē1 term on the right-hand
side of Eq. (10) dominates. In this region an energy-
normalized solution u1(R) is sinusoidal, oscillating with the

asymptotic wave number k̄1
R→∞=

√
Ē1:

u1(R)
R→∞∼ 1√

k̄1

sin(k̄1R − �π/2 + η1), (12)

where the �π/2 term references the phase shift η1 against the
regular free-particle solution for the given partial wave,

ufree(R) = k̄1R j�(k̄1R)
R→∞∼ sin(k̄1R − �π/2). (13)

Equivalently, Eq. (12) can be written as

u1(R)
R→∞∼ c1

1√
k̄1

sin(k̄1R − �π/2 + ξ1)

+ c2
1√
k̄1

cos(k̄1R − �π/2 + ξ1), (14)

023303-5



MATTHEW CHILCOTT et al. PHYSICAL REVIEW A 106, 023303 (2022)

FIG. 5. Solution pairs inside the van der Waals radius: the zero-
energy analytic solutions u±, the WKB solutions ws and wc for
φ1 = 0 (computed using R0 = 0.1) at E/kB = 300 μK, and the cor-
responding reference functions f̂1 and ĝ1.

where the coefficients for the two quadrature components are
given by[

c1

c2

]
=
[

sin ξ1 cos ξ1

(−1)� cos ξ1 (−1)�+1 sin ξ1

][
sin η1

cos η1

]
(15)

for a particular choice of the arbitrary phase ξ1. Guided by
Eq. (14), the solution of Eq. (10) can be expressed as

u1(R) = c1 f1(R) + c2g1(R), (16)

where f1 and g1 are exact solutions to Eq. (10) defined by the
boundary conditions

f1(R)
R→∞∼ 1√

k̄1

sin(k̄1R − �π/2 + ξ1) (17a)

and

g1(R)
R→∞∼ 1√

k̄1

cos(k̄1R − �π/2 + ξ1). (17b)

In Eq. (16) the coefficients c1 and c2 depend on the choice of
the free parameter ξ1. In particular, for ξ1 = η1, c1 = 1 and
c2 = 0.

2. Considerations inside the van der Waals radius (R � 1)

For R � 1, the Ē1 term of Eq. (10) is negligible and the
solution u1(r) becomes reminiscent of the solution u(0)

1 (r) of
the Bessel equation

d2

dR2
u(0)

1 (R) = −
[

1

R6
− �(� + 1)

R2

]
u(0)

1 (R). (18)

Here u(0)
1 (r) can be expressed as a linear combination of

u+(R) ≡
√

π

2

√
RY(2�+1)/4

(
1

2R2

)
(19a)

and

u−(R) ≡
√

π

2

√
RJ(2�+1)/4

(
1

2R2

)
, (19b)

where J and Y are Bessel functions of the first and the second
kind, respectively. In Fig. 5 we plot u±(R) for � = 2 and it
can be seen how u− decays as R increases, while u+ blows

up. This functional behavior is also captured by the limiting
forms [60]

u+(R) ∼
{

R3/2 sin
(

1
2R2 − 2�+3

8 π
)

for R → 0√
π

2 R�+1 for R → ∞,
(20a)

u−(R) ∼
{

R3/2 cos
(

1
2R2 − 2�+3

8 π
)

for R → 0√
π

2 R−� for R → ∞.
(20b)

Both u−(R) and u+(R) are exact solutions to Eq. (18), i.e.,
Eq. (10) with Ē1 = 0, valid for all R. For E > 0, a pair of
linearly independent approximate WKB solutions to Eq. (10)
around some point R0 where the potential Veff is deep are given
by

ws(R) = 1√
k̄1(R)

sin[θWKB(R)], (21a)

wc(R) = 1√
k̄1(R)

cos[θWKB(R)], (21b)

where

θWKB(R) = −
∫ R

R0

dR′k̄1(R′) + 1

2
R−2

0 − 2� + 3

8
π + φ1.

(22)

We note that in the vicinity of R0 (i.e., for values of R where
the potential well is deep), ws(R) and wc(R) are largely insen-
sitive to the channel energy Ē1 and that for φ1 = 0 they match
the analytic zero-energy solutions u±(R) in this region (Fig. 5
shows ws and wc for E/kB = 300 μK). The phase φ1 is the
key that unlocks QDT’s use of only the long-range potential
because it can encapsulate the effects of the complicated mul-
tichannel short-range interaction as a scalar quantity which
varies only weakly with energy and hence can be taken to be
constant.

Analogous to Eq. (16), the solution u1(R) to Eq. (10) can
be expressed as the linear combination

u1(R) = ĉ1 f̂1(R) + ĉ2ĝ1(R), (23)

where f̂1 and ĝ1 are exact solutions to Eq. (10) defined by the
initial values

{ f̂1(Rm) = ws(Rm), f̂ ′
1(Rm) = w′

s(Rm)}, (24a)

{ĝ1(Rm) = wc(Rm), ĝ′
1(Rm) = w′

c(Rm)}, (24b)

where Rm > Rint is some point within the potential well (pos-
sibly, but not necessarily R0), and the coefficients ĉ1 and ĉ2 are
determined by the boundary conditions of the physical prob-
lem. Individually, f̂1 and ĝ1 inherit the energy insensitivity of
ws and wc inside the potential well.

Figure 5 shows that f̂ and ĝ are perfectly tailored to rep-
resent the short-range multichannel wave function. Over the
range of collision energies of interest they are essentially inde-
pendent of energy, and the similarity in the wave functions at
short range extends analytically to energies below threshold.
The functions ws and f̂1, which are plotted in Fig. 5 for an
energy E/kB = 300 μK, are both completely equivalent to the
zero-energy solution u+ at short range; likewise, wc and ĝ are
completely equivalent to the zero-energy solution u−. We also
note that, by construction, for φ1 = 0, ĝ1 links up to the purely
decaying zero-energy solution to Eq. (18), namely, u−. This
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choice provides numerically stable reference functions as it
corresponds to propagating the maximally linearly indepen-
dent pair [47].

3. Relating reference functions

The considerations of Secs. III B 1 and III B 2 provide
the two pairs of reference functions { f1(R), g1(R)} and
{ f̂1(R), ĝ1(R)}, respectively. These are all defined for all R >

Rm, but while f1 and g1 refer to asymptotic boundary condi-
tions at long range, f̂1 and ĝ1 refer to boundary conditions
within the van der Waals radius. Connecting the pairs of ref-
erence functions defines the QDT parameters which underpin
the QDT framework.

Like f1(R), the solution f̂1(R) [subject to Eq. (24a) and tied
to the phase φ1] will be sinusoidal for R → ∞. The phases of
the two waveforms can be made to match through the free
phase3 ξ1 and the amplitudes can be matched by scaling f̂1(R)
by a factor C−1

1 ,

f1(R) = C−1
1 f̂1(R). (25)

With both ξ1 and C1 fixed, g1(R) can be written as a linear
combination of f̂1(R) and ĝ1(R),

g1(R) = C1 tan λ1 f̂1(R) + C1ĝ1(R), (26)

as f̂1 and ĝ1 span the solution space. Expressions for the
QDT parameters can be found be considering Wronskians of
appropriate pairs of reference functions (see Appendix B 1).
We note that connecting { f1(R), g1(R)} and { f̂1(R), ĝ1(R)} as
in the above imposes a fixed relationship between φ1 and ξ1 at
a particular energy and that the QDT parameters C1 and tan λ1

describing the transformation[
f1

g1

]
=
[

C−1
1 0

C1 tan λ1 C1

][
f̂1

ĝ1

]
(27)

will depend on the choice of these interrelated phases.
The above procedure for connecting up reference functions

introduces C1 and tan λ1 as the QDT parameters for the i = 1
open entrance channel. To tie the QDT description to our
physical system, we will (eventually) pick the pair of φ1 and ξ1

such that ξ1 reproduces the nonresonant scattering phase shift
δbg [cf. Eq. (3)]. For this choice, c2 = 0 in Eq. (16), which
renders f as the scattering wave function in the nonresonant
scenario. As such, C−2

1 is the probability for the two atoms
to penetrate to short range in the absence of interchannel
coupling, while λ1 is the phase lag between g1 and ĝ1 due
to the difference in kinetic energy at long range compared
to short range. Together, the parameters C1 and tan λ1 quan-
tify the breakdown of the WKB approximation [cf. Eq. (21)]
near threshold: At energies well above threshold C1 → 1 and
tan λ1 → 0 as the WKB treatment becomes evermore valid at
all separation ranges.

C. Multichannel QDT

In general, any open channel i of a system can be subjected
to the considerations for i = 1 above. The rationale behind

3Formally, tan ξ = sin(k̄R−�π/2) f̂ (R)−cos(k̄R−�π/2) f̂ ′ (R)
cos(k̄R−�π/2) f̂ (R)−sin(k̄R−�π/2) f̂ ′ (R)

|R→∞.

defining f̂i and ĝi following the prescription of Sec. III B 2
with a corresponding transformation[

fi

gi

]
=
[

C−1
i 0

Ci tan λi Ci

][
f̂i

ĝi

]
(28)

becomes clear if we write the full complicated many-channel
radial scattering wave function in terms of them. Suppose
there is some interatomic distance Rint beyond which the
channels are essentially uncoupled and V1 is well described by
the van der Waals potential, i.e., the same condition for which
Eq. (9) emerged, but still at sufficiently short range such that
all channels are locally open. In this intermediate region the
radial wave-function matrix can be written in the form

F(R) ∼ f̂ (R) + ĝ(R)Y . (29)

Here f̂ and ĝ are diagonal matrices containing the N = No +
Nc channel reference function and Y is a constant N × N
matrix that plays a similar role to Koo, but in this interme-
diate region where all channels are locally open. As noted
in Sec. III B 2, f̂i and ĝi only depend weakly on the collision
energy at short range since here |Ēi| 
 |V eff

i (R)|. Therefore,
Y can be considered constant with respect to the collision
energy. The energy dependence characteristic of the thresh-
old behavior is instead captured by the QDT parameters,
through the transformation (28). As such, once Y is known,
computing the physical scattering S matrix at a given en-
ergy becomes simply a question of applying the appropriate
scattering boundary conditions, as detailed in Ref. [20] and
Appendix B 2.

In addition to the open entrance channel |1, 1〉|1, 1〉, the
coupled equations (5) include closed channels (four in our
case). In the intermediate region, these channels are locally
open, so f̂ and ĝ are defined perfectly well following the
prescription in Sec. III B 2. Connecting to the classically for-
bidden region, where the wave function exponentially decays,
introduces a single QDT parameter νi in each closed channel
such that

cos νi f̂i − sin νiĝi
r→∞∼ e−|k̄i|R

2
√

|k̄i|
, (30)

where f̂i and ĝi are defined as in Sec. III B 2. This identifies the
particular linear combination of f̂i and ĝi which is decaying
asymptotically.

Given the QDT parameters in each channel, the asymptotic
S matrix can be obtained from the Y matrix by applying
the appropriate scattering boundary conditions [20]. We start
from the Y matrix, which is split into subblocks representing
closed and open channels,

Y =
[
Y oo Y oc

Y co Y cc

]
. (31)

The procedure for eliminating the closed channels to connect
Y to long range, where the scattering boundary conditions
for the No open channels are defined, is described in Ap-
pendix B 2. Briefly, this relies on incorporating the effect of
the closed channels on the open channels using the reduced Y
matrix Ȳ oo,

Ȳ oo = Y oo − Y oc(tan ν + Y cc)−1Y co, (32)
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where tan ν is a diagonal matrix with tan νi as diagonal
elements. Equation (32) therefore folds in the behavior of
Feshbach resonances, which arise due to the closed channels
and appear as poles when |tan ν + Y cc| → 0. The effective
reaction matrix R̄ is given by [see Eq. (B9)]

R̄ = C−1(Ȳ −1
oo − tan λ

)−1
C−1, (33)

where C−1 and tan λ are diagonal matrices containing ele-
ments C−1

i and tan λi. Equation (33) introduces the effects of
scattering near threshold, such as a shape resonance. Finally,
the S matrix can be expressed as [see Eq. (B11)]

S = eiξ (1 + iR̄)(1 − iR̄)−1
eiξ. (34)

D. Two-channel model

The general multichannel QDT framework outlined above
in Sec. III C can be simplified in the case pertaining to a single
open channel, and multiple closed channels over which a
single isolated resonance resides. In this case an effective two-
channel QDT model captures the essential physics [27,32]. In
our model, the open channel o (i = 1) is the d-wave entrance
channel which contains the shape resonance and the closed
channel c (i = 2) contains the quasibound state giving rise to
the Feshbach resonance. We choose the short-range reference
functions such that the Y matrix is purely off-diagonal

Y =
[

0 y
y 0

]
, (35)

which we are always free to do in the two-channel case [48].
Applying the above MQDT formulas (32) and (33) gives

R̄ = y2C−2

− tan ν − y2 tan λ
, (36)

where in our notation we suppress the i = 1, 2 indices of the
QDT parameters. Writing the S matrix (in our case just a
single complex number) in terms of the scattering phase shift
S = e2iδd and using Eq. (34) gives4

δd = ξ + arctan R̄, (37)

which yields the scattering phase shift in terms of the QDT
parameters

δd = ξ + arctan

(
y2C−2

− tan ν − y2 tan λ

)
. (38)

Using a linear expansion of tan ν which goes to zero in the
vicinity of a resonance tan ν ≈ ∂ν

∂E |E=E0 (E − E0) and defining
1
2 �̄ = ( ∂ν

∂E |E=E0 )−1y2 gives

δd = ξ + arctan

( 1
2 �̄C−2

E0 − E − 1
2 �̄ tan λ

)
. (39)

Comparing the above to Eq. (3), we note that ξ corresponds
to our measured background phase shift δbg.

We now consider the resonance position as a function of
the external magnetic field. In the closed channel, the bare
bound-state position in energy is E0 = δμ(B − B0), where δμ

4We note the trigonometric identity arctan z = − i
2 ln( 1+iz

1−iz ).

is the difference in magnetic moment between the open and
closed channels and B0 is the field at which the (noninteract-
ing) resonance is at threshold [31]. By defining �̄B = �̄/δμ,

δd = δbg + arctan

( 1
2 �̄BC−2

B − (B0 + E/δμ + 1
2 �̄B tan λ

)). (40)

Within this model, the width and position of the resonance in
magnetic field are therefore given by

�B(E ) = C−2(E )�̄B, (41)

and

Bres(E ) = B0 + E

δμ
+ �̄B

2
tan λ(E ), (42)

respectively. These formulas elegantly demonstrate the ad-
vantage of the MQDT approach. The width of the resonance
is factorized into one energy-dependent part associated with
the long-range threshold effects, C−2(E ), and another energy-
independent part �̄B associated with the short-range physics.
They also demonstrate that threshold effects modify not only
the width of a resonance but also its position [25,28,61].
Within Fano’s configuration-interaction approach the shift in
the resonance position is due to the off-energy shell interac-
tions [62], which have the effect of mixing in the irregular
solution to the bare scattering solution in the open channel.
Having chosen the reference function f1 to have a phase that
matches the physical background scattering phase shift δbg

in the d-wave channel (i.e., to be the regular solution), the
admixture of the irregular solution g is completely captured
by tan λ within the QDT formalism, which determines the
shift [63].

E. Computations

We now consider the practical computation of the QDT
parameters. These can be computed either analytically [22] or
numerically [47,64,65]. Here we implement the stable numer-
ical approach developed by Ruzic et al.[47]. As discussed by
Ruzic et al., reference solutions lose their linear independence
when propagating through a centrifugal barrier, so it is optimal
to choose reference functions which are purely exponentially
growing and decaying in that region. In our case this simply
(by construction) corresponds to choosing φ1 = 0 in Eq. (22),
as can be seen in Fig. 5. We then combine this approach with
a reference-function rotation to obtain any particular set of
reference functions [48,49,66]. This rotation produces QDT
parameters corresponding to a different φ1 such that ξ = δbg

as discussed earlier.
The QDT parameters are computed in the same way as

detailed in Ref. [20] and here we just highlight details specific
to this work. Numerical propagation of the reference functions
was done using Numerov’s method [67]. The f̂1 reference
function was propagated out from Rmin = 0.1 to Rmax = 25
using Eq. (21a) as the short-range boundary condition with
φ1 = 0. Matching f̂1 with f1 defines ξ1 via Eq. (17a).3 This
also defines the reference function g via Eq. (17b), which
serves as a boundary condition to propagate g1 back to short
range. The QDT parameters can be extracted using Eqs. (B2a)
and (B2b). These QDT parameters are then rotated [48,49,66]
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FIG. 6. QDT parameters (a) ξ , (b) tan λ, and (c) C−2 as a function
of energy. The blue lines show numerically calculated parameters
using QDT reference functions based on the phase φ1 = 0 [cf.
Eq. (22)]. The orange lines show the QDT parameters transformed
to φ1 = 0.590π using the analytic rotation formulas (B12).

such that ξ = δbg following the procedure in Appendix B 3.
We note that because φi is defined at short range (where
both the collision energy and the centrifugal term are small
compared to the depth of the potential) a single energy inde-
pendent φ1 will reproduce the energy-dependent δbg over the
entire range of energies we are interested in here.

Figure 6 shows the QDT parameters obtained both as prop-
agated using φ1 = 0 and following an analytic rotation so that
ξ matches the experimentally observed background scattering
phase shift. The choice of φ1 = 0 produces slowly varying
QDT parameters, while those rotated to match the physical
scattering phase shift show a peak in C−2 which directly gives
the increased probability of tunneling through the d-wave
barrier at the energy of the observed shape resonance.

The QDT parameters are not sensitive to the choice of
propagation limits: It is sufficient that at Rmin the WKB so-
lution is valid and at Rmax the potential has decayed to near
zero. The propagation of the reference functions relies only
on knowing the reduced mass μ, the van der Waals coefficient
C6, and the angular momentum �. This means that the QDT

(a)

(b)

(c)

FIG. 7. Properties of the Feshbach resonance as measured at a
number of collision energies: (a) the background phase shift and
corresponding q parameters, (b) the magnetic field of the resonance,
and (c) the width of the resonance. We include predictions from
the multichannel quantum defect theory model. The dashed line in
(b) indicates the expected position of the Feshbach resonance in the
absence of the open-channel effects (shape resonance).

parameters are solely a property of the general long-range po-
tential and account for the threshold effects on the scattering.

IV. RESULTS

For a range of energies, we measure the scattering frac-
tion as a function of magnetic field to obtain scans such as
those shown in Fig. 3. From these magnetic field scans we
extract the resonance parameters shown in Fig. 7, namely,
the background phase δbg, the resonance position Bres, and
the resonance width �B, as defined by Eq. (3). These
three parameters completely describe the observed resonance
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features and their variation captures the interplay between the
two resonances.

A. Experimental observations

Figure 7(a) shows the increase of the open-channel d-wave
background phase shift across the shape resonance. In par-
ticular, we note its transition through the value π/2 at the
location of the shape resonance. During the course of this,
the Fano profile undergoes a q reversal which flips the shape
of the Fano profiles shown in Fig. 3. The background phase
changes by a total value of less than 3π/4 in this system,
while an isolated resonance normally accrues a total phase
change of π asymptotically, a general feature of resonances
in both quantum and classical systems. The discrepancy can
be explained by considering that the shape resonance is not a
pure isolated Breit-Wigner resonance: Not only are there other
resonances in the channel, but in the absence of the shape
resonance the background phase shift of the channel would
increase [26,28].

Figure 7(b) displays the magnetic field at which the reso-
nance feature is positioned, where we observe a kink in the
trajectory, shifting by a substantial fraction of the width of
the resonance. Above threshold, a Feshbach resonance usually
moves linearly in energy as shown by the dashed line, with the
slope given by the difference in magnetic moment between the
two channels. The deviation from linear is the manifestation
of the interaction between states. Indeed, examples of such
behavior were previously found for a Feshbach resonance
interacting with an antibound state [43,68] and a p-wave shape
resonance [69].

As shown in Fig. 7(c), the Fano profile broadens across
the nominal shape resonance energy position by orders of
magnitude from the zero-energy width. The Feshbach res-
onance we inspect is considered narrow [36], and at zero
energy the width is limited by the weak s- to d-wave coupling;
its observation hence requires a very stable and low noise
magnetic field. For experiments conducted above threshold,
the Feshbach resonance is, however, readily detected through
the shape resonance.

B. QDT analysis

We find the short-range QDT phase φ = 0.590π in the
open channel by fitting ξ to the observed background phase
in Fig. 7(a). The QDT parameters corresponding to this φ

are shown in Fig. 6. By fitting Eq. (42) to Bres [Fig. 7(b)],
we obtain the Feshbach resonance parameters �̄ = 96 μK,
δμ = 184 μK G−1, and B0 = 928.7 G.

The width of the resonance predicted by Eq. (41) is shown
as an orange line in Fig. 7(c). This is in excellent agreement
with the experimental observations and describes the energy
dependence of the width entirely through C−2. Since C−2

quantifies the tunneling through the centrifugal barrier to short
range, we can attribute the broadening of the resonance to the
increased amplitude of the wave function at short range due to
the shape resonance.
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FIG. 8. MQDT calculations in both collision energy and mag-
netic field: (a) sin2 δd , which is proportional to the scattering cross
section, and (b) the scattering phase shift. In both panels, the position
of the Fano resonance in the magnetic field is shown in red, while
in (b) the resonance positions in energy are shown as orange solid
lines and the noninteracting resonance positions are shown as orange
dashed lines.

The shift in Bres due to the interaction with the open chan-
nel is given by the last term of Eq. (42),

δB = − �̄B

2
tan λ(E ). (43)

The calculated tan λ for this system, shown in Fig. 6(b), ex-
plains the nonlinear and nonmonotonic resonance trajectory.
We observe that tan λ is nonzero at threshold, so the zero-
energy position of the Feshbach resonance is already shifted
by ∼1 G due to the coupling to the open channel, that is, due
to the presence of the shape resonance. This is particularly
apparent in Fig. 7(b), which shows the uncoupled resonance
position B0 + E/δμ as a dashed line.

Figure 8(a) shows the sine squared of the scattering phase
shift predicted by the MQDT model, which is proportional to
the scattering cross section. The red line shows the predicted
position of the Feshbach resonance in the magnetic field [the
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orange line in Fig. 7(b)], which can be seen to move between
two regions of strong scattering as the energy increases. Res-
onances are associated with a rapid change in the scattering
phase by π . In Fig. 8(b) we present the scattering phase with
the positions of the resonances in both the energy and field.
We locate resonances in energy by the position at which the
change in phase with energy is maximal, i.e.,

∂2δ

∂E2

∣∣∣∣
B

= 0. (44)

These maxima correspond to positions where the phase winds
by ∼π , which is characteristic of a resonance. Similarly, Bres

corresponds to a winding of π in the field. As is clear from the
figure, the positions of the resonances in energy and field do
not always line up. In the middle of the kink (∼300 μK), one
encounters a magnetic resonance where there is no resonance
in energy. As previously discussed, (energy) resonances arise
due to the coupling with a quasibound state near the collision
energy. Here, however, one can see that the Fano profile (a
dip) arises not from a nearby quasibound state, but from the
temporary absence of one. This is discussed in our previous
work [35], where we have shown that this occurs as the qua-
sibound states associated with the two resonances undergo an
avoided crossing. The lack of correspondence in energy and
field positions is also clear from Eqs. (3) and (40): Only B
in the denominator changes as a function of magnetic field,
giving rise to an isolated Fano profile; in energy, �B, Bres,
and δbg all vary rapidly across the shape resonance, leading
to a nontrivial winding of the scattering phase. Raoult and
Mies [28] state this another way: One cannot always assign a
meaningful energy width to a Feshbach resonance due to the
energy shift. Here we see the energy shift effectively splits the
resonance in two. However, we observe that the Fano profile
in the magnetic field is always singular and well defined: The
width of the resonance is clear.

V. CONCLUSION

In this work we have studied the nontrivial interplay
between a shape resonance and a Feshbach resonance in ul-
tracold atomic 87Rb collisions. By manipulating the collision
energy and magnetic field we can tune the shape parameter q
of the Fano profile over a range sufficient to observe a full
q reversal. In addition to the q reversal we observe strong
broadening and an oscillatory kink in the resonance trajectory
as the Feshbach resonance moves over the shape resonance.

To explain this behavior, we have presented a multichan-
nel quantum defect theory analysis of the experimental data.
The MQDT model is able to accurately capture the essential
physics of the interactions over the entire range of energy and
magnetic field of interest in terms of just four constants (φ =
0.590π , �̄ = 96 μK, δμ = 184 μK G−1, and B0 = 928.7 G)
and the three energy-dependent QDT parameters (C−2, tan λ,
and ξ ), which are simply properties of the long-range van der
Waals potential.

We observed an excellent match between experiment and
theoretical predictions, and the MQDT framework demon-
strated that the observed resonance behavior is primarily
due to the open channel, related to the short-range enhance-
ment (determined by C−2) and long-range phase rotation

(determined by tan λ) of the scattering wave function. In ad-
dition to providing additional insight, MQDT also proves a
vastly simpler tool than complete coupled-channel calcula-
tions, which require a complex multichannel potential.

Our experimental scheme using an optical collider imple-
ments a Feshbach resonance “microscope” which magnifies
a narrow zero-energy feature through a shape resonance.
Threshold behavior dictates that an isolated Feshbach reso-
nance will generally broaden as its position is tuned towards
higher energies with a magnetic field [70]. The shape res-
onance expedites this broadening while maximizing the
number of scattered particles and the signal-to-noise ratio
for the measurement. While for our particular realization the
Feshbach resonance in question can be observed close to
threshold, in the future the approach may be used to verify
predicted ultranarrow Feshbach resonances that evade experi-
mental observation in conventional loss spectroscopy.
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APPENDIX A: LOSS SPECTROSCOPY

We measure the (near) zero-energy position of the Fesh-
bach resonance by observing the effect of a magnetic field
on a stationary atomic cloud. At the Feshbach resonance, the
scattering length between the 87Rb atoms diverges, resulting
in an increased three-body loss rate.

The procedure for performing loss spectroscopy measure-
ment is initially identical to that laid out in Sec. II, up to the
point where we would split and collide the clouds of atoms.
Instead, a single cloud which has been further evaporatively
cooled below 400 nK is held in a stationary optical dipole trap
and exposed to a magnetic field for 200 ms. An absorption
image of the single cloud is then used to estimate the number
of atoms remaining in the trap. In such an experiment, the
profile of the atom loss can often be well approximated by

FIG. 9. Representative measurement of the atom loss fitted by
the described model. The extracted resonance position is shown in
red.
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a Gaussian line shape [36], especially when the width of
the Feshbach resonance is greater than the range of collision
energies present in a thermal cloud. In our data, we observe an
asymmetry that is distinctly non-Gaussian (shown in Fig. 9),
requiring us to take into account the thermal distribution of
the finite-temperature cloud; the Maxwell-Boltzmann distri-
bution is skewed towards high energies with negative energies
forbidden and the same skew is imposed upon the shape of
the atom loss in the magnetic field as the resonance tunes
above threshold. Explicitly, we model the coupling rate to the
Feshbach state as a Breit-Wigner profile in energy,

R(E , B) ∝ γ

γ 2 + [E − ε(B)]2
, (A1)

for atoms at a given energy E , when the Feshbach resonance is
at energy ε(B) = δμ(B − B0). The distribution of kinetic en-
ergies (which are strictly positive) are taken to be Maxwellian
at a temperature T :

P(T, E ) = kTe−E/kT . (A2)

The three-body loss rate K3 is then proportional to the integral
of these over energy,

K3(B) ∝
∫ ∞

0
R(E , B)P(T, E )dE . (A3)

If we assume that the loss process does not produce evap-
orative heating or cooling and that the loss rate from other
processes is negligible, then the loss can be modeled by

Ṅ (B) = −K3(B)N2, (A4)

where N is the number of atoms remaining. Here we are
describing the three-body loss process as second order in atom
number (akin to a two-body loss process) to encapsulate the
inverse density and hence N−1 atom number dependence of
K3 [71]. A fit of this model to experimental data is shown
in Fig. 9, and a number of such measurements give us an
estimate of the zero-energy Feshbach resonance position B0 =
929.918(6) G.

APPENDIX B: QDT SUPPLEMENTARY

1. Calculating QDT parameters

Abel’s identity implies that the Wronskian W of any pair of solutions to Eq. (10) is a constant independent of R. By considering
Wronskians of appropriate combinations of the QDT reference functions { fi, gi, f̂i, ĝi}, expressions for the QDT parameters can
be obtained [20,47]. For example, from Eq. (28) and W (ĝi, f̂i ) = 1 and W (ĝi, ĝi ) = 0,

W (ĝi, fi ) = C−1
i , (B1a)

W (ĝi, gi ) = Ci tan λi, (B1b)

and evaluations around R � Rm and in the limit R → ∞ give

C−2
i = [W (ĝi, fi )]

2 =
{

k̄i(R) f 2
i (R) + f ′2

i (R)/k̄i(R) for R � Rm[
k̄i f̂ 2

i (R) + f̂ ′2
i (R)/k̄i

]−1
for R → ∞,

(B2a)

tan λi = C−1
i W (ĝi, gi ) =

{
k̄i(R) fi(R)gi(R) + f ′(R)1g′(R)i/k̄i(R) for R � Rm

−C−2
i [k̄i f̂i(R)ĝi(R) + f̂ ′

i (R)ĝ′
i(R)/k̄i] for R → ∞.

(B2b)

2. Open-channel elimination in MQDT and expression of the S matrix

In this section we relate the constant N × N , Y matrix introduced in Eq. (29) to the No × No, S matrix [20,72].
As discussed in Sec. III C, a solution matrix to the coupled-channel problem over some (intermediate) short range can be

expressed through the QDT reference functions f̂i and ĝi as

F = f̂ + ĝY , (B3)

where Y is a constant matrix. This is possible because at this intermediate range (cf. Sec. III C), where the boundary conditions
define the N × N diagonal matrices f̂ and ĝ, all N channels are locally open, even the Nc channels that are asymptotically closed.

To obtain the No physically meaningful solutions, the closed channels need to be eliminated from Eq. (B3). This elimination
can be done by considering a transformation T that builds a reduced N × No solution matrix F̄ out of F, where each of the No

columns of F̄ is a linear combination of the N columns of F,

F̄︷ ︸︸ ︷[
F̄oo

F̄co

]
=

F︷ ︸︸ ︷([
f̂ oo 0
0 f̂ cc

]
+
[

ĝoo 0
0 ĝcc

][
Y oo Y oc

Y co Y cc

]) T︷ ︸︸ ︷[
T oo

T co

]

=
[

f̂ ooT oo + ĝoo(Y ooT oo + Y ocT co)
f̂ ccT co + ĝcc(Y coT oo + Y ccT co)

]

=

⎡
⎢⎣ f̂ oo + ĝooȲ oo

−( f̂ cc − tan νccĝcc︸ ︷︷ ︸
∼

R→∞
0, cf. Eq. (30)

)(tan νcc + Y cc)−1Y co

⎤
⎥⎦, (B4)
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where in order to obtain the last step the blocks of T are chosen as T oo = 1 and T co = −(tan νcc + Y cc)−1Y co and we introduced
the reduced Y matrix Ȳ oo = Y ooT oo + Y ocT co, which can be cast as Eq. (32). The blocks of the resulting reduced solution matrix
fulfill

F̄oo = f̂ oo + ĝooȲ oo, (B5a)

F̄co ∼
R→∞

0 (B5b)

and the closed channels have been eliminated. Equation (B5a) expresses the open-open block of the reduced solution matrix F̄oo

in terms of the short-range reference functions f̂i and ĝi. However, to make the connection to the physical S matrix we want a
solution of the form

Foo ∼ f + gR̄, (B6)

based on the energy-normalized asymptotic reference functions fi and gi. Here R̄ constitutes an effective reaction matrix with
the “true” reaction matrix (often called K or R in the literature) being defined by a form identical to Eq. (B6), but with the QDT
reference solutions fi and gi replaced with the appropriate spherical Bessel function solutions [cf. Eq. (6)].

The relations between the short- and long-range reference functions are [Eq. (28)]

f̂ oo = C f oo, (B7a)

ĝoo = C−1goo − tan λC f oo, (B7b)

and inserting Eqs. (B7) into Eq. (B5a) gives

F̄oo = C f oo + (C−1goo − tan λC f oo)Ȳ oo = f ooC(1 − tan λȲ oo) + gooC
−1Ȳ oo. (B8)

Multiplying from the right by C(1 − tan λȲ oo)−1, a transformed solution matrix of the desired form (B6) is obtained:

¯̄Foo = f oo + goo C−1
(
Ȳ −1

oo − tan λ
)−1

C−1︸ ︷︷ ︸
R̄

. (B9)

Using the asymptotic properties of fi and gi [cf. Eqs. (17)], this solution can be expanded as

¯̄Foo
R→∞∼ ei(kR−�π/2+ξ) − e−i(kR−�π/2+ξ)

2i
+ ei(kR−�π/2+ξ) + e−i(kR−�π/2+ξ)

2
R̄ ∼ e−i(kR−�π/2)e−iξ (1 − iR̄) + ei(kR−�π/2)eiξ (1 + iR̄),

(B10)

and by multiplying from the right by (1 − iR̄)−1eiξ , a solution form with incoming and outgoing spherical wave components is
obtained:

¯̄̄Foo
R→∞∼ e−i(kR−�π/2)︸ ︷︷ ︸

incoming

+ ei(kR−�π/2)︸ ︷︷ ︸
outgoing

S︷ ︸︸ ︷
eiξ (1 + iR̄)(1 − iR̄)−1eiξ . (B11)

In particular, it provides us with the desired expression of S, Eq. (34).

3. Rotation of QDT parameters

Once the QDT parameters have been calculated for φ = 0, it is straightforward to analytically obtain them for any particular
choice of φ by using the transformations [66]

ξ̄ = arctan

[
C2 sin ξ (cos φ + tan λ sin φ) − cos ξ sin φ

C2 cos ξ (cos φ + tan λ sin φ) + sin ξ sin φ

]
, (B12a)

tan λ̄ = − 2C4 tan λ cos 2φ + [1 + C4(tan2 λ − 1)] sin 2φ

2C4 cos2 φ + 2 sin φ[sin φ + C4 tan λ(2 cos φ + tan λ sin φ]
, (B12b)

C̄ =
[

sin ξ sin φ

C
+ C cos ξ (cos φ + tan λ sin φ)

]√
1 + [cos ξ sin φ − C2 sin ξ (cos φ + tan λ sin φ)]2

[sin ξ sin φ + C2 cos ξ (cos φ + tan λ sin φ)]2
, (B12c)

ν̄ = ν − φ. (B12d)
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