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Superfluidity of a Raman spin-orbit-coupled Bose gas at finite temperature

Xiao-Long Chen ,1,2,3,* Xia-Ji Liu,3 and Hui Hu3

1Department of Physics, Zhejiang Sci-Tech University, Hangzhou 310018, China
2Institute for Advanced Study, Tsinghua University, Beijing 100084, China

3Centre for Quantum Technology Theory, Swinburne University of Technology, Melbourne 3122, Australia

(Received 6 March 2022; accepted 20 July 2022; published 3 August 2022)

We investigate the superfluidity of a three-dimensional weakly interacting Bose gas with a one-dimensional
Raman-type spin-orbit coupling at both zero and finite temperatures. Using the imaginary-time Green’s function
within the Bogoliubov approximation, we explicitly derive analytic expressions of the current-current response
functions in the plane-wave and zero-momentum phases, from which we extract the superfluid density in the
limits of long wavelength and zero frequency. At zero temperature, we check that the resultant superfluid density
agrees exactly with our previous analytic prediction obtained from a phase-twist approach. Both results also
satisfy a generalized Josephson relation in the presence of spin-orbit coupling. At finite temperature, we find a
significant nonmonotonic temperature dependence of superfluid density near the transition from the plane-wave
phase to the zero-momentum phase. We show that this nontrivial behavior might be understood from the sound
velocity, which has a similar temperature dependence. The nonmonotonic temperature dependence is also shared
by Landau critical velocity, above which the spin-orbit-coupled Bose gas loses its superfluidity. Our results would
be useful for further theoretical and experimental studies of superfluidity in exotic spin-orbit-coupled quantum
gases.
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I. INTRODUCTION

Spin-orbit coupling (SOC), linking a particle’s spin to its
motion, can lead to ubiquitous quantum effects in various
areas of physics [1,2]. It plays a central role in the emer-
gent exotic bosonic and fermionic states of matter [3–9],
such as topological insulators featuring quantum spin Hall
effect [10–12], and topological Fermi superfluids and Majo-
rana fermions [13–17]. Owing to its versatility [18], ultracold
atomic gases have became a powerful platform to create syn-
thetic gauge fields and to simulate SOC [19–22]. In the last
decade, by utilizing Raman laser beams to carefully modulate
atom-light interactions, experimentalists have successfully re-
alized one-dimensional Raman-laser-induced SOC [23–25]
and two-dimensional SOC [26–29] in both ultracold Bose and
Fermi gases. These crucial achievements have driven tremen-
dous investigations on the nontrivial role of SOC in quantum
many-body physics [30–38].

Superfluidity is a prominent phenomenon in quantum
liquids, supporting frictionless flow in a capillary without
dissipating energy [39,40]. This property is closely related to
Bose-Einstein condensation (BEC) and has been qualitatively
understood by using the celebrated Landau criterion. For an
isotropic system that is invariant under Galilean transforma-
tion, a critical velocity vc ≡ min[ω(p)/|p|] can be formally
defined with the elementary excitation spectrum ω(p) of the
superfluid. Below the critical velocity, an impurity’s motion
cannot create excitations to induce dissipation in energy and
hence to destroy the superfluidity of the system. In conven-
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tional weakly interacting Bose gases, this critical velocity
is dominated by the linear phonon mode ω(p) = csp of the
lowest-lying excitation spectrum in the long-wavelength limit,
so it coincides with the sound velocity cs.

SOC is known to violate the Galilean invariance [40,41].
Therefore, it becomes an intriguing question to characterize
the superfluidity of a weakly interacting Bose gas in the pres-
ence of, e.g., the Raman-induced SOC. Previous works have
shown that, this Raman-type SOC not only can lead to various
ground-state phases by tuning the Raman coupling (i.e., the
Rabi frequency) [30–32], i.e., the stripe (ST), plane-wave
(PW), and zero-momentum (ZM) phases, but also signifi-
cantly changes the excitation spectrum with the appearance
of a roton-maxon structure in the PW phase and a quadratic
dispersion at the PW-ZM transition [31–33]. As a result, the
critical velocity is determined by the roton minimum instead
of the phonon mode, leading to anisotropic superfluidity. The
critical velocity can even vanish at the critical PW-ZM tran-
sition point [32,42]. These novel properties in the elementary
excitation spectrum as well as the sound velocity have already
been demonstrated in cold-atom laboratories [35–37].

However, there are only a few works on the calculation
of superfluid density, a key quantity that directly character-
izes the superfluidity of the system. The superfluid density
of a SOC Bose gas was first predicted for the PW and ZM
phases in Ref. [43] at zero temperature by Zhang et al., using
a sum-rule analysis of current-current correlation functions.
The study shows that the gapped branch in the elementary
excitation spectrum plays a crucial role in inducing a nonzero
normal density. Most recently, by employing a first-order
stripe ansatz and a plane-wave ansatz within a phase-twist
method, the present authors and collaborators derived ana-
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lytic expressions of zero-temperature superfluid density as a
function of Rabi frequency in different phases [34], consistent
with the findings in Ref. [43]. In addition, the dependence
of superfluid density on the high-order harmonics has also
been investigated numerically in the exotic stripe phase. The
high-order harmonics shift the critical Rabi frequency of the
ST-PW phase transition point and suppress the superfluid den-
sity, compared to the results obtained by using a first-order
stripe ansatz. Recently, by means of a perturbative approach
at small Rabi frequency, Martone and Stringari also addressed
the superfluid density in the stripe phase at zero temperature
within the sum rule approach [44].

In this paper, we aim to investigate the effect of ther-
mal fluctuations on the superfluidity of a three-dimensional
weakly interacting Bose gas with Raman-type SOC, by con-
ducting a microscopic calculation of superfluid density using
current-current correlation functions at both zero temperature
and finite temperature. This direct calculation is crucial, since
the previous sum-rule approach [43] is no longer applica-
ble at finite temperature. In more detail, by means of the
Gross-Pitaevskii theory within the Bogoliubov approxima-
tion, we first calculate the condensate wave function from
a plane-wave ansatz and the Bogoliubov quasiparticle wave
functions with respect to the tunable Rabi frequency. The
current-current response function is then derived analytically
using the imaginary-time Green’s-function formalism. The to-
tal and normal density can be extracted from the longitudinal
and transverse response functions in the long-wavelength and
low-frequency limits, respectively.

To check our direct calculation of the superfluid density,
at zero temperature we compare the obtained superfluid den-
sity fraction with the previous analytic expression derived
from a phase-twist method [34]. We also consider an alter-
native examination by using the so-called Josephson relation,
which relates the superfluid density to condensate density.
The Josephson relation has been studied in detail in conven-
tional spinless weakly interacting Bose gases [45–48], and
has also been considered recently in the multicomponent case
[49]. Here, we generalize the Josephson relation to the case
of a SOC Bose gas, from which we determine the zero-
temperature superfluid density directly via the single-particle
Green’s function and the condensate density.

At finite temperature, we find a nonmonotonic temperature
dependence of the extracted superfluid density near the transi-
tion from the plane-wave phase to the zero-momentum phase.
We discuss the causes of this nontrivial behavior in superfluid
density, by considering the sound velocity and Landau critical
velocity at finite temperature.

The rest of the paper is organized as follows. The model
Hamiltonian and the theoretical framework are introduced
in Sec. II. In Sec. III, we derive the analytic expression
of the current-current response functions, and show how to
calculate the superfluid density via the longitudinal and trans-
verse components of the response functions (see Fig. 1). We
then apply the generalized Josephson relation to spin-orbit-
coupled Bose gases to obtain the superfluid density. In the
plane-wave and zero-momentum phases, the predictions of
superfluid density at zero temperature from two approaches
are compared with our previous analytic result obtained from
a phase-twist method (see Fig. 2). We further calculate the

current-current response functions at finite temperature and
study the temperature dependence of superfluid density. To
understand the nontrivial temperature dependence, we also
show the sound velocity and Landau critical velocity as a
function of temperature (see Figs. 3 and 4). A summary
and outlook are given in Sec. IV. The Appendix is de-
voted to the technical details of the current-current response
functions.

II. THEORETICAL FRAMEWORKS

A. The model Hamiltonian

We consider a three-dimensional weakly interacting spin-
1/2 Bose gas with a one-dimensional Raman-induced spin-
orbit coupling, the same as in our previous works [33,34].
The system can be described by the model Hamiltonian, Ĥ =
Ĥ0 + Ĥint, where the single-particle Hamiltonian Ĥ0 and the
interaction Hamiltonian Ĥint read, respectively (h̄ = 1 and the
superscript * represents the Hermitian conjugate) [5,23,32],

Ĥ0 =
∫

d3r
[
�̂∗

↑(r), �̂∗
↓(r)

]
Hs(p̂)

[
�̂↑(r)
�̂↓(r)

]
, (1a)

Ĥint =
∫

d3r
∑

σ,σ ′=↑,↓

gσσ ′

2
�̂∗

σ �̂∗
σ ′�̂σ ′�̂σ (r). (1b)

Here, the single-particle part Hs(p̂) is given by

Hs(p̂) = (p̂ − kr êxσz )2

2m
+ �

2
σx + δ

2
σz, (2)

with the canonical momentum operator p̂ = −i∇ and Pauli
matrices σx,z. kr êx is the recoil momentum of the Raman lasers
along the x axis, with a recoil energy Er = k2

r /(2m). It is
straightforward to see that the momentum operator p̂x is cou-
pled to the spin via the one-dimensional physical momentum
term ( p̂x − krσz )2. For simplicity, the detuning of the Raman
lasers is assumed to be zero δ = 0. The Rabi frequency �

can be flexibly tuned, in accord with the recent experiments
[37,38]. gσσ ′ = 4πaσσ ′/m are interaction strengths for intra-
(σ = σ ′) and interspecies (σ �= σ ′), and aσσ ′ are the corre-
sponding s-wave scattering lengths.

B. A self-consistent approach at finite temperature

In this paper, we employ the quasiparticle formalism at
the Bogoliubov level to describe a weakly interacting dilute
Bose gas with SOC at zero and finite temperature [40,50–
53]. Following the standard procedure as in our previous
works [33,34,54], the Bose field operator �̂σ (r, t ) for spin
component σ = (↑,↓) can be rewritten as a combination of
the condensate wave function ψσ and the noncondensate fluc-
tuation operator η̂σ as

�̂σ (r, t ) = ψσ (r) + η̂σ (r, t ). (3)

Using a Bogoliubov transformation, the fluctuation operator
η̂σ (r, t ) and its conjugate can be expanded as

η̂σ =
∑

j

[u jσ (r)e−iω j t â j + v∗
jσ (r)eiω j t â†

j ], (4a)

η̂∗
σ =

∑
j

[u∗
jσ (r)eiω j t â†

j + v jσ (r)e−iω j t â j], (4b)
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in terms of the quasiparticle wave functions u(u∗) and v(v∗)
and the quasiparticle frequency ω j . In free space, the Bogoli-
ubov wave functions u and v can be expanded as ujσ (r) =
u(λ)

qσ eiqr/
√

V and v jσ (r) = v(λ)
qσ eiqr/

√
V , where V is the system

volume. Here, j ≡ (q, λ) is the index of the quasiparticle
energy level, with the momentum q and the branch index λ.
â† (â) are respectively the creation (annihilation) operators
for quasiparticles, satisfying the bosonic commutation rela-
tions [âi, â†

j ] = δi j , [â†
i , â†

j ] = [âi, â j] = 0. After substituting
Eqs. (3) and (4) into the equations of motion

i∂t �̂σ (r, t ) = [�̂σ , Ĥ ], (5)

and applying the mean-field decoupling of the cubic terms
in �̂ and �̂† [50], we obtain two coupled equations as in
Refs. [33,34].

The first equation is the modified Gross-Pitaevskii (GP)
equation for the condensate:

[Hs(p̂) + g↑↓nSFσx + diag(L↑,L↓)]ψ = μψ (6)

with the spinor ψ ≡ (ψ↑, ψ↓)T , chemical potential μ, spin-
flip density term nSF, and diagonal element Lσ ≡ g(ncσ +
2ntσ ) + g↑↓nσ̄ (here σ̄ �= σ ). The second equation is the cou-
pled Bogoliubov equation for quasiparticles:

[Hs(p̂) − μ + A↑]Uj + BVj = ω jUj, (7a)

−BU ∗
j − [Hs(p̂) − μ + A∗

↓]V ∗
j = ω jV

∗
j , (7b)

where Uj ≡ (u j↑, u j↓)T , Vj ≡ (v j↑, v j↓)T , and

Aσ ≡
(

2gn↑ + g↑↓n↓ g↑↓ (ψσψ∗
σ̄ + nSF)

g↑↓ (ψσ̄ψ∗
σ + nSF) 2gn↓ + g↑↓n↑

)
, (8a)

B ≡
(

gφ2
↑ g↑↓ψ↑ψ↓

g↑↓ψ↑ψ↓ gψ2
↓

)
. (8b)

In these equations, ncσ is the condensate density
of spin components σ =↑,↓ and we have applied
the Popov approximation to ensure a gapless theory
[50,54], i.e., omitting the anomalous densities 〈η̂†η̂†〉
and 〈η̂η̂〉. To take quantum and thermal fluctuations into
account, we have introduced a noncondensate density
ntσ ≡ 〈η̂†

σ η̂σ 〉 = (1/V )
∑

qλ[(|u(λ)
qσ |2 + |v(λ)

qσ |2)/(eβωqλ −
1) + |v(λ)

qσ |2] and a spin-flip density term nSF ≡ 〈η̂†
↑η̂↓〉 =

(1/V )
∑

qλ[(u(λ)
q↑ u(λ)

q↓ + v
(λ)
q↑ v

(λ)
q↓ )/(eβωqλ − 1) + v

(λ)
q↑ v

(λ)
q↓ ] at a

temperature β ≡ 1/(kBT ). Thus, the total density of spin σ is
given as nσ = ncσ + ntσ .

At zero temperature, the thermal part of ntσ and the
spin-flip term nSF vanish and we can safely neglect them. Nev-
ertheless, the condensate is still depleted by a small fraction
of the total density, even at zero temperature, due to quantum
fluctuations. This is the so-called quantum depletion, nQD =∑

qλσ |v(λ)
qσ |2/V , involving typically about 1% of the total den-

sity in the weakly interacting regime, i.e., nc↑ + nc↓ � n. In
our previous work, we have shown that the SOC effect does
not affect remarkably the quantum depletion fraction in the
condensate density (see Fig. 4 of Ref. [34]).

C. The ansatz and ground-state phases

We aim to solve the modified GP equation and the coupled
Bogoliubov equations at finite temperature and then derive

the current-current response functions. Before that, for self-
containedness let us briefly review the phase diagram at zero
temperature, where the model Hamiltonian of a Raman-type
SOC Bose gas in Sec. II A can be solved straightforwardly
using a variational formalism.

To obtain the ground-state phases, a variational first-order
stripe ansatz is usually taken as [5,34,55,56]

ψ (r) = √
n

[
C1

(
sin θ

− cos θ

)
e−iPxx + C2

(
cos θ

− sin θ

)
eiPxx

]
, (9)

with the uniform average density n = N/V , and the variational
angle θ in the range [0, π/4] weighing the spin components
of the condensate. By substituting this trial wave function,
Eq. (9), into the model Hamiltonian, the total energy of the
system can be written in terms of ψ (r) as

E =
∫

d3r
{[

ψ∗
↑(r), ψ∗

↓(r)
]
Hs(p̂)

[
ψ↑(r)
ψ↓(r)

]

+1

2
g
(|ψ↑(r)|4 + |ψ↓(r)|4) + g↑↓|ψ↑(r)|2|ψ↓(r)|2

}
.

(10)

After minimizing the ground-state energy with respect to the
variational parameters C1,2, θ , and Px, one can in general find
three exotic phases, i.e., the ST, PW, and ZM phases, in the
appropriate interaction regimes with g > g↑↓. This condition
is necessary for the existence of the exotic stripe phase [5]. In
addition, by defining two interaction parameters G1 = (g +
g↑↓)n/4 and G2 = (g − g↑↓)n/4, the critical Rabi frequency
� of three phases can be determined respectively by [5]

�c1 = 2

[
(2Er + G1)(2Er − 2G2)

2G2

G1 + 2G2

]1/2

(11a)

for the ST-PW phase transition, and

�c2 = 4Er − 4G2 (11b)

for the PW-ZM phase transition. As illustrated in our previous
work [33], these critical positions can be notably altered by the
quantum and thermal fluctuations which favor the existence
of the PW phase. It is worth mentioning that the ansatz of
Eq. (9) is a superposition of two plane waves with momenta
±Px without including any higher-order terms. Higher-order
harmonics could be non-negligible when the interaction en-
ergies G1,2 become relatively large [34]. For example, these
high-order contributions will shift the ST-PW phase transition
point �c1 to a larger Rabi frequency, since the higher-order
stripe ansatz can host lower-energy solutions than that of the
PW phase.

The consideration of the stripe ansatz at finite temperature
is much more involved and is beyond the scope of this pa-
per. Here, we focus on the plane-wave and zero-momentum
phases, which are characterized by a single-plane-wave ansatz
with a condensate density nc at a momentum Px, and are
obtained by taking C1 = 0 or C2 = 0 in Eq. (9) [31–34,43]:

ψ (r) =
(

ψ↑
ψ↓

)
eiPxx = √

nc

(
cos θ

− sin θ

)
eiPxx. (12)

With this trial ansatz, the minimization of the mean-field en-
ergy gives rise to two solutions with respect to Rabi frequency
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[5,31–33]. At � < �c2, the magnetic plane-wave phase ap-
pears with a nonzero momentum Px = ±kr

√
1 − �2/�2

c2
occupied by the condensates, a nonzero magnetization 〈σz〉 �=
0, and a typical roton-maxon structure in the lowest-lying
excitation spectrum. In contrast, the nonmagnetic zero-
momentum phase occurs for � � �c2 where the condensate
momentum and the magnetization are both zero, i.e., Px = 0
and 〈σz〉 = 0, and there exist only the conventional linear
phonon modes in the long-wavelength limit in the lowest-
lying excitation spectrum.

D. The PW and ZM phases at finite temperature

At a certain finite temperature T and a Rabi frequency �,
we can also take this plane-wave ansatz in terms of varia-
tional parameters (θ, Px), and solve self-consistently the GP
and Bogoliubov equations in Eqs. (6) and (7). Thus, the
free energy of the system, i.e., F (θ, Px ) in Ref. [33], can be
calculated straightforwardly. The condensate wave function
ψ (r), the Bogoliubov quasiparticle wave functions uj (v j ),
and the excitation spectrum ω j can be then determined by
minimizing the free energy F with respect to two variational
parameters, namely, (∂F/∂θ )N = 0 and (∂F/∂Px )N = 0. The
finite-temperature scheme we employed here, i.e., Hartree-
Fock-Bogoliubov theory with Popov approximation, is of
first-order character which is not accurate enough to predict
for a weakly interacting Bose gas near the second-order BEC
transition temperature. Thus, we will consider the numerical
calculations up to T ≈ 0.9T0 in this paper (see Figs. 4 and 5)
with T0 being the critical BEC temperature of an ideal spinless
Bose gas with density n, i.e., T0 = 2π h̄2[n/ζ (3/2)]2/3/(mkB).

Recent experiments have successfully utilized ultracold
87Rb atoms to realize this Raman-type SOC [23,37,38]. For
instance, in Ref. [37], the typical interaction energy is gn =
0.38Er with a peak density n = 0.46k3

r in harmonic traps,
and the ratio g↑↓/g = 100.99/101.20 between the inter- and
intraspecies interactions. Accordingly, the two critical Rabi
frequencies characterizing the ST-PW and PW-ZM phase
transitions at zero temperature can be determined respectively
from Eqs. (11a) and (11b), i.e., �c1 = 0.2Er and �c2 = 4.0Er .
Previous works have shown that the regime of the stripe phase
(i.e., �c1) can be actually tuned by the difference between
intra- and interspecies interactions [5,55]. As we are concen-
trating on the plane-wave and zero-momentum phases in this
paper, we will set g↑↑ = g↓↓ = g � g↑↓ in the following cal-
culations. Also, we will consider a relatively small difference
between inter- and intraspecies interaction strengths, i.e., zero
or relatively small G2, in order to enlarge the window for the
plane-wave and zero-momentum phases in the phase diagram.

III. RESULTS AND DISCUSSIONS

We are now ready to perform our derivations of the
current-current response functions and extract the superfluid
density at finite temperature. To address the effect of the one-
dimensional Raman-type SOC, we will focus only on the SOC
direction (i.e., in the x axis) in the following. In the perpendic-
ular plane, the SOC does not affect the elementary excitations
in the long-wavelength limit and the superfluid density frac-
tion remains unity at zero temperature (see Refs. [34,43]).

A. Current-current response functions

In this subsection, we study the current-current response
functions that are closely associated with the superfluidity
of the SOC Bose gas. Technically, the superfluid density
can be calculated by the difference between the longitudinal
and transverse current-current response functions in the long-
wavelength and low-frequency limits [40,57,58].

We start by finding the expression for the current operator
in the presence of the Raman-type SOC. From the equation of
motion in Eq. (5) for the Bose field operators, we obtain the
continuity equation [59,60]

∂t n + ∇ ·
(

J0 − 2kr

m
szêx

)
= 0. (13)

Here J0 = J0
↑↑ + J0

↓↓ is the conventional total-density current
with the current operators Ĵ0

μν ≡ 1
2mi (�̂

∗
μ∇�̂ν − ∇�̂∗

μ�̂ν ) in
the absence of SOC, and ŝz ≡ 1

2

∑
μ,ν �̂∗

μσ̂ μν
z �̂ν is the spin

density. It is clear that due to SOC the total-density current is
coupled to the spin density. Therefore, it is necessary to con-
sider the modified current operators for each spin component
σ = (↑,↓),

ĵ↑↑(r) = 1

2mi
(�̂∗

↑∇x�̂↑ − ∇x�̂
∗
↑�̂↑) − kr

m
�̂∗

↑�̂↑, (14a)

ĵ↓↓(r) = 1

2mi
(�̂∗

↓∇x�̂↓ − ∇x�̂
∗
↓�̂↓) + kr

m
�̂∗

↓�̂↓, (14b)

such that the total-density current ĵd (r) ≡ ĵ↑↑ + ĵ↓↓ reads

ĵd (r) = 1

2mi

∑
μ

(�̂∗
μ∇x�̂μ − ∇x�̂

∗
μ�̂μ) − 2kr

m
ŝz. (15)

We expand the spin-component current operators using the
well-defined Bose field operator in Eq. (3), and the operators
are divided into three parts:

ĵσσ (r, t ) ≡ j0σ (r) + δ ĵσ (r, t ) + j̃σ (r, t ), (16)

where j0σ , δ ĵσ , and j̃σ represent the zeroth-, first-, and
second-order terms of the fluctuation operator η̂, respectively,
being

j0σ (r) = 1

2mi
(ψ∗

σ∇xψσ − ∇xψ
∗
σ ψσ ) ∓ kr

m
ψ∗

σ ψσ , (17a)

δ ĵσ (r, t ) = 1

2mi
(ψ∗

σ∇xη̂σ + ∇xψσ η̂∗
σ − ∇xψ

∗
σ η̂σ − ψσ∇xη̂

∗
σ )

∓ kr

m
(ψ∗

σ η̂σ + η̂∗
σψσ ), (17b)

j̃σ (r, t ) = 1

2mi
(η̂∗

σ∇xη̂σ − ∇xη̂
∗
σ η̂σ ) ∓ kr

m
η̂∗

σ η̂σ . (17c)

Here the sign ∓ is − (+) for spin component σ =↑ (↓).
Within the Bogoliubov approximation, we are inter-

ested only in the current fluctuation (i.e., δ ĵ) or the
linear terms of the fluctuation operator η̂ [57]. Therefore,
within the imaginary-time (i.e., τ = it) Green’s-function
method [61–63], the time-ordered correlation function
〈Tτ δ ĵσ (r, τ )δ ĵσ ′ (r′)〉 for the current fluctuation density oper-
ator can be derived explicitly in terms of the condensate wave
function ψ and the Bogoliubov quasiparticle wave functions
u(v). The details can be seen in the Appendix. We summarize
the main results as follows.
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We take a plane-wave ansatz in Eq. (12) for the classic
condensate wave function and the time-ordered correlation
function of the current fluctuation density can be consequently
rewritten as

〈Tτ δ ĵσ (r, τ )δ ĵσ ′ (r′)〉 ≡ A1 + A2 + A3 + A4, (18)

in terms of four correlation functions Am (m = 1, 2, 3, 4) for
the fluctuation operator η̂, which are given explicitly in the
Appendix. Thus, the response functions of the elements in Am

can be calculated by

χμν
m (r, r′; iωn) =

∫ β

0
dτeiωnτ

θ (τ )

V
Aμν

m (r, r′; τ )

with a step function θ (τ ), the system volume V , and the
Matsubara frequencies iωn ≡ 2nπ i/β for bosons. The cur-
rent response function is then calculated collectively by using
Eq. (17b) as

χJJ (r, r′; iωn) ≡ χ↑↑ + χ↑↓ + χ↓↑ + χ↓↓

=
∫ β

0
dτeiωnτ θ (τ )〈Tτ δ ĵ(r, τ )δ ĵ(r′)〉. (19)

By employing the analytic continuation (iωn → ω + iη)
with η = 0+, setting ω = 0, and then taking the Fourier
transform to momentum space, the q-component static
response function is obtained in terms of the elements
χσσ ′

(q; ω = 0), i.e.,

χ↑↑ = ψ2
↑

m2V

∑
j

C1u2
↑ + C2v

2
↑ + C3u↑v↑

ω j
, (20a)

χ↓↓ = ψ2
↓

m2V

∑
j

C4u2
↓ + C5v

2
↓ + C6u↓v↓

ω j
, (20b)

χ↑↓ = χ↓↑

= ψ↑ψ↓
m2V

·
∑

j

C7u↑u↓+ C8v↑v↓+ C9u↑v↓+ C10v↑u↓
ω j

,

(20c)

where the index j runs over all the possible single-particle
states. Without confusion, we have made the index j implicit
in the quasiparticle wave-functions u and v, i.e., uσ ≡ u j,σ and
vσ ≡ v j,σ are calculated at each momentum q for the energy
level ω j (see the notations in Sec. II B). The coefficients Cn

are given by

C1/2 = 1
2 (2Px ± qx − 2kr )

2, (21a)

C3/6 = (2Px − qx ∓ 2kr )(2Px + qx ∓ 2kr ), (21b)

C4/5 = 1
2 (2Px ± qx + 2kr )

2, (21c)

C7/8 = 1
2 (2Px ± qx )2 − 2k2

r , (21d)

C9/10 = 2P2
x − 1

2 (qx ∓ 2kr )
2. (21e)

The explicit derivation can be seen in the Appendix. Par-
ticularly in the zero-momentum phase with the condensates
located at Px = 0, the coefficients reduce to

C(ZM)
1/2 = C(ZM)

5/4 = −C(ZM)
9/10 = 1

2 (qx ∓ 2kr )
2,

C(ZM)
3 = C(ZM)

6 = −2C(ZM)
7 = −2C(ZM)

8 = 4k2
r − q2

x .
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1

FIG. 1. The longitudinal and transverse (i.e., dotted red and
dashed blue lines, respectively) static current-current response func-
tions m

N χL,T
JJ (q; 0) in the q → 0 limit, as a function of Rabi frequency

�. Their difference (i.e., solid black line) reveals the superfluid
density fraction. Here we take the parameters as in the experiment
[37], with a total density n = 0.46k3

r , gn = 0.38Er and g↑↓/g =
100.99/101.20, i.e., G1 = 0.19Er and G2 ≈ 0, giving rise to �c1 = 0
and �c2 = 4Er (i.e., the vertical dotted line).

Finally, the q-component static current-current response func-
tion is then obtained by the summation

χJJ (q; ω = 0) =
∑
σ,σ ′

χσσ ′
(q; ω = 0). (22)

We consider only the SOC direction (i.e., x axis) and
the corresponding total and normal densities can be then
calculated via the longitudinal and transverse components
of the total-current response function χJJ (q; 0) in the long-
wavelength limit [40,47]. Therefore, the superfluid mass
density along the SOC direction is given by

ρs = ρ − ρn = ρ
m

N
( lim
qx→0

lim
q⊥→0

χJJ − lim
q⊥→0

lim
qx→0

χJJ ). (23)

An example of the current-current response function of
a zero-temperature SOC 87Rb Bose gas in the static and
low-wavelength limits is illustrated in Fig. 1, with a to-
tal density n = 0.46k3

r , the interaction energy gn = 0.38Er ,
and the ratio of inter- and intraspecies interaction strength
g↑↓/g = 100.99/101.20 taken from a recent experiment [37].
The longitudinal static current-current response function or
the total density (i.e., dotted red line) remains unity while
the transverse component or the normal density fraction (i.e.,
dashed blue line) changes nonmonotonically. Their difference
(i.e., solid black line) reveals the superfluid density fraction,
which is significantly affected by the SOC effect. The zero-
temperature superfluid fraction in Fig. 1, explicitly calculated
using the current-current response functions, agrees with the
earlier result obtained via a sum-rule approach [43].

B. Generalized Josephson relation

Superfluid density is intimately related to Bose-Einstein
condensate density. Nonetheless, they are not exactly equiv-
alent even at zero temperature, for instance in liquid helium
with strong interactions [64], or in weakly interacting Bose
gases with SOC [34,43]. In 1965, Josephson and other re-
searchers have derived the so-called Josephson relation or
Josephson sum rule for a conventional weakly interacting
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Bose gas, which associates the superfluid mass density ρs with
the condensate density n0 at zero or finite temperatures as
[45–48]

ρs = − lim
q→0

n0m2

q2G11(q, 0)
, (24)

with the atomic mass m and the single-particle Green’s func-
tion at momentum q and zero frequency. It is straightforward
to show that, for the conventional weakly interacting Bose gas
at zero temperature, within the Bogoliubov approximation the
superfluid mass density is connected to the condensate density
via the Josephson relation [57]. Here, we are interested in
examining the Josephson relation within the same Bogoliubov
approximation at exactly zero temperature. The situation at
nonzero temperature is more involved, as accurate calcula-
tions of the superfluid density and condensate fraction may
require different levels of approximation. Therefore, we defer
to a future study for the nonzero-temperature case.

For the examination at zero temperature, let us first discuss
the Josephson relation in the presence of SOC. In 2018, Zhang
generalizes the Josephson relation to multicomponent Bose
gases using the Green’s function within the linear-response
theory [49]. In this paper, we will follow his procedure and
consider a two-component SOC Bose gas. We focus only
on the SOC direction, i.e., the x axis. Thus, in terms of the
order parameter 〈�̂〉 and Green’s-function matrix in the long-
wavelength limit, the expression for the superfluid density in
the SOC direction is given by [49]

ρ (SOC)
s = − lim

q→0

1

q2
(〈�̂〉, 〈�̂∗〉)σZG−1σZ

( 〈�̂〉
〈�̂∗〉

)
. (25)

Here we have introduced a 4 × 4 matrix σZ ≡ (
I 0
0 −I

) and

a 2 × 2 identity matrix I. The Green’s matrix is defined as

G ≡
(

G(q, 0) F T (q, 0)
(F T (q, 0))∗ G∗(q, 0)

)
, (26)

and

G(q, 0) ≡
(

G↑↑(q, 0) G↑↓(q, 0)
G↓↑(q, 0) G↓↓(q, 0)

)
, (27a)

F (q, 0) ≡
(

F↑↑(q, 0) F↑↓(q, 0)
F↓↑(q, 0) F↓↓(q, 0)

)
. (27b)

Here Gσσ ′ and Fσσ ′ are normal and anomalous Green’s-
function matrix elements. It is worth noting that the above
derivations are assumed for homogeneous systems, which
possess translational symmetry.

Let us now derive the expression for Green’s functions.
In the presence of Raman-type SOC, one can start with a
plane-wave ansatz for the condensate wave function in the
plane-wave and zero-momentum phases [31–34], i.e., ψ (r) =
(ψ↑
ψ↓)eiPxx as in Eq. (12), satisfying the Gross-Pitaevskii equa-

tion with the condensation momentum Px � 0 and the average
density n = N/V . To the next order, i.e., within the Bo-
goliubov approximation, the Hamiltonian for the fluctuation
operators is written as [32]

Ĥbogo = 1

2

∑
q

�̂†
qHB(q)�̂q + εshift, (28)

with εshift = − 1
2 [ξPx−q,↑ + ξPx−q,↑ − 2μ + 2gn + g↑↓n] being an

energy shift arising from the bosonic commutation re-
lations and ξk ≡ k2/(2m). Here HB is the Bogoliubov
Hamiltonian for the four-component Nambu spinor �̂q ≡
[φ̂Px+q,↑, φ̂Px+q,↓, φ̂

†
Px−q,↑, φ̂

†
Px−q,↓]T as

HB(q) ≡
[

K0(Px + q) + �N �A

�A K0(Px − q) + �N

]
, (29)

where we have defined three matrices

K0(q) =
[

(qx−kr )2+q2
⊥

2m − μ �
2

�
2

(qx+kr )2+q2
⊥

2m − μ

]
, (30a)

�N =
[

2gn↑ + g↑↓n↓ g↑↓ψ↑ψ↓
g↑↓ψ↑ψ↓ 2gn↓ + g↑↓n↑

]
, (30b)

�A =
[

gn↑ g↑↓ψ↑ψ↓
g↑↓ψ↑ψ↓ gn↓

]
, (30c)

with the spin density nσ ≡ |ψσ |2 and q2
⊥ ≡ q2

y + q2
z .

The gapless condition det[K0(Px ) + �N − �A] = 0 at q =
0 is ensured by the GP equation, with which the chemical po-
tential can be solved as μ = (P2

x + k2
r )/2m + (g + g↑↓ )n/2 −√

(−Pxkr/m + (g − g↑↓ )(n↑ − n↓)/2)2 + �2/4. Hence, the

diagonal elements of K0(Px + q) can be rewritten in terms
of the explicit chemical potential and we can write straight-
forwardly the inverse single-particle Green’s-function matrix
with SOC as

G−1
B (q, iωn) =

[
iωnI − K0(Px + q) − �N −�A

−�A −iωnI − K0(Px − q) − �N

]
4×4

. (31)

In particular, in the zero-momentum phase with
Px = 0 and ψ↑ = −ψ↓ = √

n/2, the chemical poten-
tial reduces to μZM = k2

r /2m + (g + g↑↓ )n/2 − �/2,
and the relevant matrices become KZM

0 (±q) =
[
±2krqx+q2

2m − 2G1 + �
2

�
2

�
2

∓2krqx+q2

2m − 2G1 + �
2

] and

�ZM
N = 1

2

[
2gn + g↑↓n −g↑↓n

−g↑↓n 2gn + g↑↓n

]
, (32a)

�ZM
A = 1

2

[
gn −g↑↓n

−g↑↓n gn

]
. (32b)

The full elements of the inverse Green’s function at zero
frequency (after analytic continuation) then becomes

G−1
ZM(q, 0) = −

[
KZM

0 (q) + �ZM
N �ZM

A

�ZM
A KZM

0 (−q) + �ZM
N

]
.

(33)
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FIG. 2. Superfluid density fraction ρ (SOC)
s /ρ in the SOC direction

as a function of Rabi frequency at (a) equal and (b) unequal intra-
and interspin interactions. Here the predictions given by the current-
current response function and by the generalized Josephson relation
are denoted by red circles and blue crosses, respectively. The black
lines indicate the analytic prediction using a phase-twist approach in
Ref. [34]. The vertical dashed and dotted curves indicate the critical
�c1 and �c2, respectively, i.e., Eqs. (11a) and (11b). Here, we take the
interaction energies (a) [G1, G2]/Er = [0.8, 0] and (b) [G1, G2]/Er =
[0.7, 0.1].

Therefore, we can straightforwardly find out the single-
particle Green’s-function matrix GB(q, 0) as well as the
elements G and F defined in Eq. (27). Thus, the new matrix G
in the plane-wave and zero-momentum phases can be then ob-
tained and substituted into Eq. (25) to calculate the superfluid
density. We will verify the generalized Josephson relation
at zero temperature by comparing the resulting superfluid
density fraction with these obtained from other approaches in
the following subsection (see Fig. 2).

C. Zero-temperature superfluid density
from different approaches

Here, we discuss the superfluid density in the SOC di-
rection at zero temperature obtained from the current-current
response function and from the generalized Josephson rela-
tion. In Fig. 2, the superfluid density fraction ρ (SOC)

s /ρ in
the uniform plane-wave and zero-momentum phase regimes is
presented as a function of Rabi frequency at equal and unequal
intra- and interspin interaction strengths.

It is clearly seen that the superfluid density ρ (SOC)
s /ρ along

the SOC direction calculated via Eq. (23) from the current-
current response function is identical to the one obtained
via Eq. (25) from the generalized Josephson relation (see
the red circles and blue crosses, respectively). Meanwhile,
they agree with our previous analytic prediction in Eqs. (30)
and (31) of Ref. [34] found using a phase-twist approach,
i.e., ρ (x,PW)

s /ρ = 1 − Er

(Er−G2 )�2
c2/�

2+G2
and ρ (x,ZM)

s /ρ = 1 −
4Er

�+4G2
, as shown in solid black lines.

The superfluid density exhibits a nonmonotonic behavior
with respect to Rabi frequency, decreasing smoothly in the
PW phase towards zero at �c2 (vertical dotted line), and then
rising back in the ZM phase. This nontrivial behavior at the
PW-ZM phase transition point �c2 could be understood from
its diverging effective mass, which suppresses the superflow

0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

3 4 5
0

0.2

0.4

FIG. 3. Superfluid density fraction ρ (SOC)
s /ρ in the SOC direction

as a function of Rabi frequency at various values of temperature
T/T0 = 10−4, 0.1, 0.3, and 0.5 (i.e., lines) for a SOC 87Rb gas. Here
T0 is the critical BEC temperature of an ideal spinless Bose gas with
density n, i.e., T0 = 2π h̄2[n/ζ (3/2)]2/3/(mkB ), and the circles denote
the zero-temperature analytic result from Ref. [34]. The zoomed-in
inset focuses on the regime near the critical Rabi frequency. Other
parameters are the same as in Fig. 1.

in the system [32], and from the vanishing sound velocity or
critical velocity favoring the creation of excitations to destroy
its superfluidity [31,33,34]. It is worth noting that in Fig. 2(b)
the superfluid density in the stripe phase at � < �c1 is merely
calculated from the phase-twist approach in Ref. [34] and
there is a discontinuity at �c1 due to the first-order nature of
the ST-PW transition. In contrast, the critical Rabi frequency
�c1 in Fig. 2(a) shrinks to zero owing to the vanishing G2.

Finally, we note that the calculation of the current-current
response function and the generalization of the Josephson
relation in the stripe phase would be much more involved. We
will consider these two interesting issues in future works.

D. Superfluid density, sound velocity, and Landau critical
velocity at finite temperature

We now turn to discuss the superfluid density at finite
temperature using merely the current-current response func-
tion described in Sec. III A, and address its relation to sound
velocity and Landau critical velocity.

In Fig. 3, we present the behavior of superfluid density
ρ (SOC)

s in the SOC direction as a function of Rabi frequency
in a SOC 87Rb Bose gas, at four typical temperatures T/T0 =
10−4, 0.1, 0.3, and 0.5 (i.e., lines) with T0 being the critical
BEC temperature of an ideal spinless Bose gas. We find that
the superfluid density at a tiny temperature T = 10−4T0 in
solid black line is slightly different from the zero-temperature
one denoted by the circles near the PW-ZM transition point,
i.e., �c2 = 4Er . This is due to the quantum fluctuations taken
into account in the current calculation, which can slightly
shift the critical point and the minimum of sound velocity as
discussed in Ref. [33].

At zero temperature SOC plays a significant role on the
superfluid density, leading to a nonmonotonic behavior with
respect to Rabi frequency [34,43] as we already discussed in
the last subsection. At nonzero temperature, thermal fluctu-
ations start to play a non-negligible role, by suppressing the
superfluidity and exhausting the condensate in the system.
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FIG. 4. (a) Superfluid density fraction ρ (SOC)
s /ρ in the SOC direction, (b) sound velocities c±

s , and (c) critical velocities v±
c in the ±x

directions, as a function of temperature at three sets of Rabi frequency �/Er = 3, 4, and 5 for a SOC 87Rb gas, locating in the PW phase, at
the PW-ZM transition point and in the ZM phase, respectively. Other parameters are the same as in Fig. 1.

As a result, generally the superfluid density fraction reduces
correspondingly with increasing temperature, as shown by the
dashed, dotted, and dash-dotted colored lines in Fig. 3. In par-
ticular, as shown by the dotted and dashed lines in Fig. 4(a),
the superfluid density for a wide range of Rabi frequencies
exhibits a monotonic decreasing dependence on temperature.

However, near the PW-ZM transition point at �c2 = 4Er ,
this consensus is no longer true. There is a striking non-
monotonic behavior of the superfluid density with respect to
temperature, as shown by the solid blue line in Fig. 4(a). As
the temperature increases, the superfluid fraction increases
first from a tiny value to the maximum about 0.1, and then
decreases.

We attribute this interesting nonmonotonic temperature de-
pendence to the nontrivial interplay between the spin-orbit
coupling and thermal fluctuations. At zero temperature, at the
critical Rabi frequency the SOC effect strongly suppresses the
superfluidity of the system with a vanishing sound velocity
[34,35,43], while at finite temperature thermal fluctuations
shift the critical point to larger Rabi frequency favoring the
PW phase. As a result, we anticipate that the sound velocity
may become nonzero, which instead restores the superfluidity
of the system near the critical point [33,37]. The anticipated
temperature dependence of the sound velocity is examined
in Fig. 4(b). Indeed, near the transition point we find the
very similar nonmonotonic dependence as in the superfluid
fraction. In contrast, away from the transition point in the deep
PW and ZM phases (see, e.g., the dashed red and dotted blue
lines for �/Er = 3 and 5, respectively), the monotonic de-
creasing dependence on temperature is recovered in the sound
velocity. This is consistent with the monotonic temperature
dependence of the superfluid fraction at the corresponding
Rabi frequency.

It is worth mentioning that the unexpected, counterintuitive
effect of thermal fluctuations near the PW-ZM transition point
can persist up to a relatively large temperature and is responsi-
ble for the maximum superfluid fraction at T ≈ 0.6T0. As the
temperature increases further, thermal fluctuations eventually
deplete the superfluidity of the system. The superfluid fraction
then decreases until reaching the BEC transition temperature.

We note also that in the PW phase we have two sound
velocities along and opposite to the SOC direction, owing to
the emergence of the roton-maxon structure in the elementary
excitation spectrum [31]. The nontrivial roton excitation spec-
trum also gives rise to two distinct Landau critical velocities
v±

c in a PW phase [42], as shown in Fig. 4(c), which provides
additional information on the superfluidity. It is readily seen
that, in the deep PW regime (�/Er = 3), one of the critical
velocities in the dashed red line shows a significant difference
with respect to the corresponding sound velocity due to the
pronounced roton structure and a softened energy gap [33].
Near the transition point (�/Er = 4), the critical velocity in
the solid blue line starts to deviate from the sound velocity
at certain value of temperature T/T0 ≈ 0.2. This deviation
becomes even larger as the temperature rises, revealing that
thermal fluctuations favor the emergence of the roton structure
near the transition point. The overall temperature dependence
of Landau critical velocities is consistent with that of the
superfluid fraction.

To estimate the range of this nonmonotonic behavior in the
superfluidity of a SOC 87Rb Bose gas over Rabi frequency, the
superfluid density ρ (SOC)

s is shown as a function of tempera-
ture at various values of Rabi frequency �/Er = 3.4, 3.6, 3.8,
4, 4.2, 4.4, and 4.6 in Fig. 5.

We can see first that there is a large window of Rabi fre-
quency of the nonmonotonic behavior in the superfluid density
fraction, i.e., rising first and then decreasing towards zero
with respect to temperature. In general, this window locates
at the places where the superfluidity at zero temperature is
strongly suppressed by the spin-orbit coupling effect, i.e., near
the PW-ZM phase transition. However, we can find a new
exotic behavior for �/Er = 4.2 (4.4) where the superfluidity
decreases first until a certain temperature, and then rises back,
and finally becomes exhausted. This is because the thermal
fluctuations significantly shift the critical position � = 4Er

at zero temperature towards a larger Rabi frequency (see
Refs. [33,38]). Therefore, as temperature rises, the system at
�/Er = 4.2 (4.4) first stays in the ZM phase and then enters
the PW phase at T (ZM-PW)/T0 � 0.225 (0.55) (i.e., two vertical
lines), giving rise to this new nonmonotonic behavior in the
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FIG. 5. Superfluid density fraction ρ (SOC)
s /ρ in the SOC direction

as a function of temperature at various values of Rabi frequency
�/Er = 3.4, 3.6, 3.8, 4, 4.2, 4.4, and 4.6 (from top to bottom)
for a SOC 87Rb gas. Two vertical dotted lines denote the ZM-PW
transition points at T (ZM-PW)/T0 � 0.225 and 0.55 for �/Er = 4.2
and 4.4, respectively. Other parameters are the same as in Fig. 1.

superfluidity. This hallmark feature might be useful in directly
probing the existence of the ZM-PW phase transition over
temperature in future experiments.

IV. CONCLUSIONS AND OUTLOOKS

In conclusion, we have studied the current-current response
functions and the Josephson relation in a three-dimensional
weakly interacting Bose gas with one-dimensional Raman-
type spin-orbit coupling. The analytic expressions of the
current-current response functions and single-particle Green’s
functions are derived explicitly within the Bogoliubov approx-
imation. The superfluid density fraction along the spin-orbit
coupling direction is calculated using both approaches at zero
temperature. The resulting superfluid density fraction agrees
with previous analytic prediction obtained from a phase-twist
approach. The zero-temperature superfluid density exhibits
an intriguing behavior as Rabi frequency rises, decreasing
smoothly in the plane-wave phase, becoming zero at the crit-

ical point, and then rising back again in the zero-momentum
phase.

At finite temperature, we have calculated the superfluid
density by using the current-current response functions, and
have discussed its relation to sound velocity and Landau
critical velocity. A significant nonmonotonic temperature de-
pendence is seen in these quantities near the transition point
from the plane-wave to zero-momentum phases.

At finite temperature, a more accurate and systematic way
of obtaining the current-current response functions and the
superfluid density is the use of the dielectric formalism, where
the single-particle Green’s function, density-density response
function, and current-current response function are deter-
mined by a many-body diagrammatic analysis [57]. These
functions mirror each other, as a result of the condensate-
induced intermixing of single-particle and density excitations.
The dielectric formalism ensures the continuity of these
excitations through the BEC transition temperature. The
Josephson relation for a spin-orbit-coupled BEC will also be
established as a sum rule at zero energy.

Most recently, the first sound and second sound have been
measured in a three-dimensional homogeneous weakly inter-
acting BEC confined in a box potential [65]. The superfluid
density directly links to the second sound velocity [66]. We
anticipate that a similar measurement of first sound and sec-
ond sound in a homogeneous spin-orbit-coupled BEC will be
carried out soon. It would be interesting to predict the first
and second sound velocities based on the finite-temperature
superfluid density calculated in this paper.
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APPENDIX: THE CURRENT-CURRENT RESPONSE FUNCTIONS AT FINITE TEMPERATURE

In this Appendix, we give an explicit derivation of the current-current response functions and other results in Sec. III A, in
terms of the condensate wave function and the Bogoliubov wave functions at finite temperature.

By decoupling the Bose field operator �̂σ = ψσ + η̂σ in Eq. (3), we first expand the spin-component current operators in
Eq. (14) for spin component σ in the presence of the Raman-type spin-orbit coupling as ĵσσ (r, t ) = j0σ (r) + δ ĵσ (r, t ) + j̃σ (r, t ),
where

j0σ (r) = 1

2mi
(ψ∗

σ∇xψσ − ∇xψ
∗
σψσ ) ∓ kr

m
ψ∗

σψσ , (A1a)

δ ĵσ (r, t ) = 1

2mi
(ψ∗

σ∇xη̂σ + ∇xψσ η̂∗
σ − ∇xψ

∗
σ η̂σ − ψσ∇xη̂

∗
σ ) ∓ kr

m
(ψ∗

σ η̂σ + η̂∗
σψσ ), (A1b)

j̃σ (r, t ) = 1

2mi
(η̂∗

σ∇xη̂σ − ∇xη̂
∗
σ η̂σ ) ∓ kr

m
η̂∗

σ η̂σ , (A1c)

with the sign ∓ is − (+) for spin component σ =↑ (↓).
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Within the Bogoliubov approximation, we are interested in the current fluctuation (i.e., δ ĵ) only and the time-ordered
correlation function for the current fluctuation density operator is given by

〈Ttδ ĵσ (r, t )δ ĵσ ′ (r′)〉 = 1

m2
(ψ∗

σ (r) ψσ (r) ∇xψ
∗
σ (r) ∇xψσ (r))

(
A B
C D

)⎛
⎜⎜⎝

ψ∗
σ ′ (r′)

ψσ ′ (r′)
∇xψ

∗
σ ′ (r′)

∇xψσ ′ (r′)

⎞
⎟⎟⎠, (A2)

where we have introduced sgn(σ ) = −1 (1) for σ =↑ (↓), and the matrices read

A = 1

4

(−〈∇xη̂σ∇xη̂σ ′ 〉 〈∇xη̂σ∇xη̂
∗
σ ′ 〉

〈∇xη̂
∗
σ∇xη̂σ ′ 〉 −〈∇xη̂

∗
σ∇xη̂

∗
σ ′ 〉

)
+ sgn(σ ′)kr

2i

( 〈∇xη̂σ η̂σ ′ 〉 〈∇xη̂σ η̂∗
σ ′ 〉

−〈∇xη̂
∗
σ η̂σ ′ 〉 −〈∇xη̂

∗
σ η̂∗

σ ′ 〉
)

+ sgn(σ )kr

2i

(〈η̂σ∇xη̂σ ′ 〉 −〈η̂σ∇xη̂
∗
σ ′ 〉

〈η̂∗
σ∇xη̂σ ′ 〉 −〈η̂∗

σ∇xη̂
∗
σ ′ 〉

)
+ sgn(σ )sgn(σ ′)k2

r

(〈η̂σ η̂σ ′ 〉 〈η̂σ η̂∗
σ ′ 〉

〈η̂∗
σ η̂σ ′ 〉 〈η̂∗

σ η̂∗
σ ′ 〉

)
, (A3a)

B = 1

4

( 〈∇xη̂σ η̂σ ′ 〉 −〈∇xη̂σ η̂∗
σ ′ 〉

−〈∇xη̂
∗
σ η̂σ ′ 〉 〈∇xη̂

∗
σ η̂∗

σ ′ 〉
)

+ sgn(σ )kr

2i

(−〈η̂σ η̂σ ′ 〉 〈η̂σ η̂∗
σ ′ 〉

−〈η̂∗
σ η̂σ ′ 〉 〈η̂∗

σ η̂∗
σ ′ 〉

)
, (A3b)

C = 1

4

( 〈η̂σ∇xη̂σ ′ 〉 −〈η̂σ∇xη̂
∗
σ ′ 〉

−〈η̂∗
σ∇xη̂σ ′ 〉 〈η̂∗

σ∇xη̂
∗
σ ′ 〉

)
+ sgn(σ ′)kr

2i

(−〈η̂σ η̂σ ′ 〉 −〈η̂σ η̂∗
σ ′ 〉

〈η̂∗
σ η̂σ ′ 〉 〈η̂∗

σ η̂∗
σ ′ 〉

)
, (A3c)

D = 1

4

(−〈η̂σ η̂σ ′ 〉 〈η̂σ η̂∗
σ ′ 〉

〈η̂∗
σ η̂σ ′ 〉 −〈η̂∗

σ η̂∗
σ ′ 〉

)
. (A3d)

Here 〈· · · 〉 is the thermal average in the statistical equilibrium and η̂σ η̂σ ′ ≡ η̂σ (r, t )η̂σ ′ (r′). After taking a plane-wave ansatz
ψσ (r) = ψσ eiPxx for the condensate wave function, we can further rewrite the fluctuation correlation function in the imaginary
time (τ = it) as

〈Tτ δ ĵσ (r, τ )δ ĵσ ′ (r′)〉 = A1 + A2 + A3 + A4 (A4)

with

A1 = 1

4m2
(ψ∗

σ (r) ψσ (r))

(−〈∇xη̂σ∇xη̂σ ′ 〉 〈∇xη̂σ∇xη̂
∗
σ ′ 〉

〈∇xη̂
∗
σ∇xη̂σ ′ 〉 −〈∇xη̂

∗
σ∇xη̂

∗
σ ′ 〉

)(
ψ∗

σ ′ (r′)
ψσ ′ (r′)

)
, (A5a)

A2 = Px + 2bkr

4m2i
(ψ∗

σ (r) ψσ (r))

( 〈∇xη̂σ η̂σ ′ 〉 〈∇xη̂σ η̂∗
σ ′ 〉

−〈∇xη̂
∗
σ η̂σ ′ 〉 −〈∇xη̂

∗
σ η̂∗

σ ′ 〉
)(

ψ∗
σ ′ (r′)

ψσ ′ (r′)

)
, (A5b)

A3 = Px + 2akr

4m2i
(ψ∗

σ (r) ψσ (r))

(〈η̂σ∇xη̂σ ′ 〉 −〈η̂σ ∇xη̂
∗
σ ′ 〉

〈η̂∗
σ∇xη̂σ ′ 〉 −〈η̂∗

σ ∇xη̂
∗
σ ′ 〉

)(
ψ∗

σ ′ (r′)
ψσ ′ (r′)

)
, (A5c)

A4 = 1

m2

[
abk2

r + krPx

2
(a + b) + P2

x

4

]
(ψ∗

σ (r) ψσ (r))

(〈η̂σ η̂σ ′ 〉 〈η̂σ η̂∗
σ ′ 〉

〈η̂∗
σ η̂σ ′ 〉 〈η̂∗

σ η̂∗
σ ′ 〉

)(
ψ∗

σ ′ (r′)
ψσ ′ (r′)

)
(A5d)

and the coefficients a ≡ sgn(σ ) and b ≡ sgn(σ ′).
At finite temperature β ≡ 1/kBT , the current response function is then calculated collectively by using Eq. (17b) as

χJJ (r, r′; iωn) ≡ χ↑↑ + χ↑↓ + χ↓↑ + χ↓↓ =
∫ β

0
dτeiωnτ

θ (τ )

V
〈Tτ δ ĵ(r, τ )δ ĵ(r′)〉. (A6)

We can take an example for illustration of calculating 〈Tτ δ ĵσ (r, τ )δ ĵσ ′ (r′)〉 in Eq. (A4). For instance,

A11
1 (r, r′; τ ) = 1

4m2
ψ∗

σ (r)(−)〈∇xη̂σ (r, τ )∇xη̂σ ′ (r′)〉ψ∗
σ ′ (r′)

= 1

4m2
ψ∗

σ (r)(−)ψ∗
σ ′ (r′)

∑
j≡(q1,λ1 ),k≡(q2,λ2 )

〈∇x
[
eiPxx

(
u(λ1 )

q1σ
eiq1rα̂ je

−ω jτ + (
v(λ1 )

q1σ

)∗
e−iq1rα̂

†
j e

ω jτ
)]

,

× ∇x
[
eiPxx

(
u(λ2 )

q2σ ′eiq2r′
α̂k + (

v
(λ2 )
q2σ ′

)∗
e−iq2r′

α̂
†
k

)]〉
= ψσψσ ′

4m2
eiq(r−r′ )

∑
j

(
P2

x − q2
x

)
[uσvσ ′ (1 + fB(ω j ))e

−ω jτ + vσ uσ ′ fB(ω j )e
ω jτ ], (A7)

with the expanded fluctuation operator η̂σ (r, t ) = eiPxx
∑

j≡(q,λ)(u
(λ)
qσ eiqrα̂ je−iω j t + (v(λ)

qσ )∗e−iqrα̂
†
j e

iω j t ) in a quasiparticle basis

and uσ ≡ u(λ)
qσ and vσ ≡ v(λ)

qσ defined here and hereafter. fB(ω j ) ≡ 〈α̂†
j α̂ j〉 is the occupation number for the jth quasiparticle with

energy ω j satisfying the bosonic statistical distribution function as fB(ω j ) = 1/(exp(βω j ) − 1).
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After integrating
∫ β

0 e(iωn−ω)τ θ (τ )dτ = eβ(iωn−ω)−1
iωn−ω

with the Matsubara frequencies iωn ≡ 2nπ i/β for bosons and eβiωn = 1,
the response function becomes

χ11
1 (r, r′; iωn) =

∫ β

0
dτeiωnτ

θ (τ )

V
A11

1 (r, r′; τ )

= ψσψσ ′

4m2V
eiq(r−r′ )

∑
j

(
P2

x − q2
x

) ∫ β

0
dτθ (τ )[uσvσ ′ (1 + fB(ω j ))e

(iωn−ω j )τ + vσ uσ ′ fB(ω j )e
(iωn+ω j )τ ]

= ψσψσ ′

4m2V
eiq(r−r′ )

∑
j

(
P2

x − q2
x

)[ vσ uσ ′

iωn + ω j
− uσvσ ′

iωn − ω j

]
, (A8)

where we have used the relations (e−βω j − 1)[1 + fB(ω j )] = −1 and (eβω j − 1) fB(ω j ) = 1. The real-time response function can
be then obtained by employing the analytic continuation (iωn → ω + iη) with η = 0+ as

χ11
1 (r, r′; ω + iη) = ψσ ψσ ′

4m2V
eiq(r−r′ )

∑
j

(
P2

x − q2
x

)[ vσ uσ ′

ω + iη + ω j
− uσ vσ ′

ω + iη − ω j

]
. (A9)

Similarly, another three response functions can be obtained as

χ12
1 (r, r′; ω + iη) = ψσψσ ′

4m2V
eiq(r−r′ )

∑
j

[
(Px − qx )2 vσvσ ′

ω + iη + ω j
− (Px + qx )2 uσ uσ ′

ω + iη − ω j

]
, (A10a)

χ21
1 (r, r′; ω + iη) = ψσψσ ′

4m2V
eiq(r−r′ )

∑
j

[
(Px + qx )2 uσ uσ ′

ω + iη + ω j
− (Px − qx )2 vσvσ ′

ω + iη − ω j

]
, (A10b)

χ22
1 (r, r′; ω + iη) = ψσψσ ′

4m2V
eiq(r−r′ )

∑
j

(
P2

x − q2
x

)[ uσ vσ ′

ω + iη + ω j
− vσ uσ ′

ω + iη − ω j

]
. (A10c)

The static response for the q component can be then obtained by setting ω = 0 and taking a Fourier transform to momentum
space, and the equations now read

χ11
1 (q; 0) = χ22

1 (q; 0) = ψσψσ ′

4m2V

∑
j

(P2
x − q2

x )

[
uσ vσ ′ + vσ uσ ′

ω j

]
, (A11a)

χ12
1 (q; 0) = χ21

1 (q; 0) = ψσψσ ′

4m2V

∑
j

[
(Px + qx )2uσ uσ ′ + (Px − qx )2vσvσ ′

ω j

]
. (A11b)

Similarly, the remaining static response functions for A2,3,4 can be obtained as

χ11
2 (q; 0) = χ22

2 (q; 0) = ψσψσ ′

4m2V

∑
j

(Px + 2bkr )

[
(Px + qx )uσvσ ′ + (Px − qx )vσ uσ ′

ω j

]
, (A12a)

χ12
2 (q; 0) = χ21

2 (q; 0) = ψσψσ ′

4m2V

∑
j

(Px + 2bkr )

[
(Px + qx )uσ uσ ′ + (Px − qx )vσvσ ′

ω j

]
, (A12b)

χ11
3 (q; 0) = χ22

3 (q; 0) = ψσψσ ′

4m2V

∑
j

(Px + 2akr )

[
(Px − qx )uσvσ ′ + (Px + qx )vσ uσ ′

ω j

]
, (A12c)

χ12
3 (q; 0) = χ21

3 (q; 0) = ψσψσ ′

4m2V

∑
j

(Px + 2akr )

[
(Px + qx )uσ uσ ′ + (Px − qx )vσvσ ′

ω j

]
, (A12d)

χ11
4 (q; 0) = χ22

4 (q; 0) = ψσψσ ′

m2V

∑
j

[
abk2

r + krPx

2
(a + b) + P2

x

4

][
uσvσ ′ + vσ uσ ′

ω j

]
, (A12e)

χ12
4 (q; 0) = χ21

4 (q; 0) = ψσψσ ′

m2V

∑
j

[
abk2

r + krPx

2
(a + b) + P2

x

4

][
uσ uσ ′ + vσvσ ′

ω j

]
. (A12f)
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Therefore, the static response functions are derived by summarizing χσσ ′
(q; 0) = ∑

m,μν[χμν
m (q; 0)]σσ ′ for spin components

σσ ′ as

χ11
σσ ′ (q; 0) = χ22

σσ ′ (q; 0) = ψσ ψσ ′

4m2V

∑
j

B1uσvσ ′ + B2vσ uσ ′

ω j
, (A13)

χ12
σσ ′ (q; 0) = χ21

σσ ′ (q; 0) = ψσ ψσ ′

4m2V

∑
j

B3uσ uσ ′ + B4vσvσ ′

ω j
, (A14)

with B1 = (2akr + 2Px + qx )(2bkr + 2Px − qx ), B2 = (2akr + 2Px − qx )(2bkr + 2Px + qx ), B3 = (2akr + 2Px + qx )(2bkr +
2Px + qx ), and B4 = (2akr + 2Px − qx )(2bkr + 2Px − qx ). Thus, for spin index σσ ′ = (↑↑,↓↓,↑↓,↓↑), we obtain the explicit
expressions for Eq. (20) in the main text as

χ↑↑(q; 0) =
∑

i j

χ
i j
↑↑ = ψ2

↑
m2V

∑
j

C1u↑u↑ + C2v↑v↑ + C3u↑v↑
ω j

, (A15a)

χ↓↓(q; 0) =
∑

i j

χ
i j
↓↓ = ψ2

↓
m2V

∑
j

C4u↓u↓ + C5v↓v↓ + C6u↓v↓
ω j

, (A15b)

χ↑↓(q; 0) = χ↓↑(q; 0) =
∑

i j

χ
i j
↑↓ = ψ↑ψ↓

m2V

∑
j

C7u↑u↓ + C8v↑v↓ + C9u↑v↓ + C10v↑u↓
ω j

, (A15c)

with

C1 = 1
2 (2Px + qx − 2kr )

2, C2 = 1
2 (2Px − qx − 2kr )

2, (A16a)

C3 = (2Px − qx − 2kr )(2Px + qx − 2kr ), (A16b)

C4 = 1
2 (2Px + qx + 2kr )

2, C5 = 1
2 (2Px − qx + 2kr )

2, (A16c)

C6 = (2Px − qx + 2kr )(2Px + qx + 2kr ), (A16d)

C7 = 1
2 (2Px + qx )2 − 2k2

r , C8 = 1
2 (2Px − qx )2 − 2k2

r , (A16e)

C9 = 2P2
x − 1

2 (qx − 2kr )
2, C10 = 2P2

x − 1
2 (qx + 2kr )

2. (A16f)

In the zero-momentum phase with Px = 0, the coefficient Cn reduces to C1 = C5 = −C9 = 1
2 (qx − 2kr )2, C2 = C4 = −C10 =

1
2 (qx + 2kr )2, and C3 = C6 = −2C7 = −2C8 = 4k2

r − q2
x .

Eventually, the static current-current response function, i.e., Eq. (19) in the main text, is given by

χJJ (q; 0) = χ↑↑(q; 0) + χ↓↓(q; 0) + χ↑↓(q; 0) + χ↓↑(q; 0). (A17)
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