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High-order harmonic generation by two linearly polarized fields that enclose an arbitrary crossing angle 6
is investigated using the strong-field approximation. We investigate the combinations with frequency ratios
s/r =2 and 3 with integer r and s. In the former case, the emitted harmonics are elliptically polarized unless
6 = 0° or 90°, while in the latter they are always elliptically polarized except for & = 0°. The possibility to
control the intensity and ellipticity of the emitted harmonics by variation of the relative phase ¢ between the
field components and the crossing angle 6 is explored. There are regions with large harmonic ellipticity and
appreciable intensity in the relative-phase—harmonic-order plane and they are more extended for values of the
crossing angle closer to 90°. The overall shape of the spectra (smooth, oscillatory, or erratic) for different values
of 6 and ¢ is explained using the saddle-point method and quantum-orbit theory. The simple-man model is
utilized to assess the regions with large harmonic intensity and to predict the position of the cutoff. For the
frequency ratio s/r = 2, the harmonic ellipticity is significant even for extremely small deviations of the crossing

angle 6 from 90°.
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I. INTRODUCTION

An atom exposed to a strong laser field radiates harmonics
of the fundamental field through the process called high-order
harmonic generation (HHG) (see, for example, the review
article [1] and references therein). In this process, the electron
is liberated from the parent atom and propagates under the
influence of the laser field and the potential of its parent
ion. If the laser field is strong enough, the effect of the lat-
ter on the propagation can be neglected so that the electron
can be described by a Volkov state. Since the laser field
oscillates in time, the electron may return to the parent ion
and recombine. The energy gained from the laser field plus
the ionization potential is released in the form of a high-
energy photon. Depending on the parameters of the driving
field, this radiation can extend into the vacuum ultraviolet,
extreme ultraviolet, and even soft-x-ray spectral regions and
it lends itself to various applications. Alternative methods
to obtain electromagnetic radiation in these spectral regions
include x-ray lasers, synchrotron radiation, or free-electron
lasers, all of which exceed the facilities of smaller research
laboratories.

The tunability of the light obtained in the HHG process
has allowed investigations of many different systems. For
example, soft x rays provide unique capabilities for prob-
ing materials because they can penetrate an opaque material
without disturbing its structure. Also, there is an inherent
sensitivity to the composition of the material and its chem-
ical or magnetic state [2-5]. Furthermore, because of their
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short wavelength, coherent beams allow a microscopy that
can image at the wavelength limit in three dimensions and,
because of their high frequencies, any relevant dynamics can
be captured [6-9]. Finally, elliptically polarized harmonics are
particularly important for the study of molecular chiral prop-
erties. For example, in Refs. [10,11] circularly polarized light
was employed to induce enantioselective photoionization of
unoriented chiral molecules. High-order harmonics obtained
by an elliptically polarized pulse were used to measure the
photoelectron circular dichroism of chiral molecules [12], and
in Ref. [13] it was shown theoretically that the photoelectron
circular dichroism can be accessed using two linearly po-
larized fields with mutually orthogonal polarizations. Chiral
harmonic generation was implemented relying on the compar-
atively weak magnetic component of an elliptically polarized
driving pulse [14]. A scenario employing only electric dipole
interactions was proposed by Ayuso et al. [15].

The HHG process can be controlled using the laser-field
parameters, so it is advantageous to have as many of them as
possible. If a monochromatic plane-wave laser field is used as
the driving field, the available parameters are its intensity, el-
lipticity, and wavelength. However, if a two-component laser
field is employed many other parameters become available.
Examples are the intensities, ellipticities, and wavelengths
of the field components, as well as their relative phase. The
characteristics of the HHG spectra can be radically different
when a two-component field is employed as the driving field.
Particularly interesting is the bicircular field, which consists
of two coplanar counterrotating circularly polarized fields.
In this case the harmonics are circularly polarized and the
helicity of adjacent harmonics is opposite [16,17]. Another
configuration that has become popular in recent years is the

©2022 American Physical Society


https://orcid.org/0000-0002-8826-3061
https://orcid.org/0000-0001-8939-0372
https://orcid.org/0000-0001-5060-3318
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.106.023119&domain=pdf&date_stamp=2022-08-30
https://doi.org/10.1103/PhysRevA.106.023119

HABIBOVIC, BECKER, AND MILOSEVIC

PHYSICAL REVIEW A 106, 023119 (2022)

orthogonally polarized two-color (OTC) field, which consists
of two mutually orthogonal linearly polarized components
with frequencies that are integer multiples of a fundamental
frequency w. The first experimental results with this field were
obtained many years ago [17-19]. For the w-2w configura-
tion, both odd and even harmonics are emitted and they are
linearly polarized [odd (even) in the direction of the w 2w)
component]. For the w-3w field, only odd harmonics having
elliptical polarization appear in the spectrum. The influence
of the relative phase on the harmonic spectra generated by an
OTC field was analyzed in Refs. [20-22] and the conclusions
obtained were confirmed in Refs. [23-33]. More recently,
time-dependent density-functional theory was employed to
study HHG in an OTC field [34], and a method to retrieve the
temporal intensity profile of an extreme ultraviolet attosecond
pulse was discussed in Ref. [35]. Also, harmonic emission
was analyzed experimentally for molecular targets exposed to
an OTC field [36], and harmonic emission from oriented CO
molecules exposed to the same field was investigated in [37].
In Ref. [38], using the time-dependent Schrodinger equation,
HHG induced by a polarization-skewed laser pulse was inves-
tigated where the polarization of each driving cycle points in a
different direction. Inhomogeneous OTC fields were used for
control of the polarization direction of an isolated attosecond
pulse [39]. Finally, spatial molecular interferometry via multi-
dimensional high-harmonic spectroscopy by an OTC field was
considered in [40].

Generalization of the OTC field to an arbitrary crossing an-
gle between the two laser-field components has also attracted
attention. In principle, this angle can easily be controlled
in experiments. For example, in Ref. [41] the photoelectron
momentum distribution of argon atoms was analyzed using
a field configuration with a crossing angle of 45°. Also, us-
ing a similar configuration with an arbitrary crossing angle,
in Refs. [42,43] it was shown that the harmonic ellipticity
can be controlled using the crossing angle and the relative
phase as control knobs. Finally, we mention that the laser-field
components can also be elliptically polarized. In this case,
their ellipticity can serve as another control parameter. The
HHG process for this configuration was extensively analyzed
in Refs. [44,45]. Moreover, using the same field configuration,
Ref. [46] demonstrated that HHG is sensitive to the shape of
the atomic potential well and the size of the valence orbitals.
A linearly polarized fundamental with an elliptically polar-
ized second harmonic superimposed can be used for efficient
molecular orientation [47]. The combination of linearly and
circularly polarized fields was employed to study the elec-
tronic subcycle dynamics [48], and field components having
small ellipticity were used to produce an attosecond pulse
train [49].

In the past we analyzed high-order harmonic spectra ob-
tained exposing an atom to various laser-field configurations
using a theory based on the strong-field approximation (SFA).
This is much less time consuming than the solution of the
time-dependent Schrédinger equation. The SFA assumes that
the influence of the ionic potential is negligible during the
propagation of the electron in the continuum. For example,
encouraged by the experimental results [50], we applied this
theory to HHG in a bichromatic elliptically polarized laser
field with special emphasis on the bicircular field [51-53].

The selection rules were obtained for atoms with closed and
nonclosed shells using the projection of the total angular
momentum on the quantization axis, and the difference be-
tween harmonic emission for atoms with s and p ground
states was explored. Moreover, in Refs. [54,55] HHG in-
duced by an OTC field was investigated. In particular, it was
shown that for the w-3w OTC field the emitted harmonics
are elliptically polarized and that their ellipticity can be con-
trolled by changing the intensities of the field components as
well as the relative phase. The possibility of using this field
configuration for the production of an attosecond pulse was
analyzed in Ref. [56]. In contrast, the harmonics produced
by the w-2w OTC field are always linearly polarized. The
general case of a bichromatic elliptically polarized laser field
was analyzed [44], but still the angle between the laser-field
components was 90°. A systematic derivation of the selection
rules for atomic and molecular targets exposed to various
laser fields can be found in Ref. [57], and a similar derivation
based on group theory is given in Ref. [58]. Finally, a theo-
retical method that combines time-dependent effective-range
theory and the quasienergy formalism has been extended
to driving pulses of arbitrary shape in Refs. [59,60]. This
includes bicircular and OTC fields with arbitrary pulse
lengths.

In this paper we analyze the case where HHG is induced by
two linearly polarized fields with an arbitrary angle in between
their polarizations. This angle is a new parameter which, to-
gether with the other laser parameters, can be used to control
the harmonic intensity and the harmonic ellipticity. The article
is organized as follows. In Sec. II we define the laser field and
briefly present the SFA theory that we will utilize. Also, we
discuss the saddle-point method and the simple-man model.
In Sec. III we present and discuss our numerical results. In
Sec. IV we present our conclusions together with a brief
outlook. Atomic units are used throughout the article unless
otherwise stated.

II. THEORY

We explore the HHG process induced by a two-component
laser field, with the electric field vector E(r) = (E,(¢), Ey(1))
given by

E.(t) = E; sin(rwt) + E; cos 0 sin(swt + ¢),

(1)
E,(t) = E; sin 0 sin(swt + ¢),

where [; = Ej2 (j =1, 2) are the intensities of the field com-
ponents, w is the fundamental frequency, r and s are integers,
and ¢ is the relative phase. The field components are lin-
early polarized, one in the x direction and the other in the
direction at the angle 6 with respect to the x direction. For
example, for 8 = 90° the field (1) is an OTC field, while for
6 = 0° it is a bichromatic linearly polarized field. Examples
of this field, for several values of the relative phase and
0 = 30°, are presented in Fig. 1, where polar plots of the
electric field (black solid lines) and the corresponding vector
potential A(¢) = — f "E(¢')dt’ (red dashed lines) are shown
for the w-2w [Figs. 1(a)-1(c)] and w-3w [Figs. 1(d)-1(f)]
configurations. The arrows indicate the direction of the time
evolution.
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FIG. 1. Electric field (black solid lines) and the corresponding
vector potential (red dashed lines) of the two-component field (1)
for & = 30° and (a)—(c) (r, s) = (1, 2) and (d)—(f) (r, s) = (1, 3). The
relative phase is (a) and (d) ¢ = 0°, (b) and (e) ¢ = 60°, and (c) and
(f) ¢ = 120°. The direction of the time evolution is indicated by
arrows. The intensities of the field components are equal.

A. Strong-field approximation

For a laser field with period T = 2r /w, the intensity of the
nth harmonic is [61,62]

4
P — (nw)

T,|%, 2)

2n 3 T

where T, is the T-matrix element, which can be written as the
Fourier component of the time-dependent dipole

! dt inwt
T, = /0 T Xm:dm(t)e ) (3)

The sum over m is the sum over all possible values of the
magnetic quantum number m of the atomic ground state (we
consider atoms with closed electron shells so that the magnetic
quantum number of the initial and final state is the same, as
it was explained in [53]). We assume that the time-dependent
dipole, the Fourier transform of which yields the harmonic-
emission spectrum, is the coherent sum (3). In [53] it was
argued that this is appropriate for multielectron atoms. This
theory was successfully applied to explain the conservation
of the spin angular momentum [52]. The harmonic ellipticity
can be obtained using the numerically calculated components
of the vector T,, and the relations [44]

- J1-¢& Im(27;T;,)
e = sen(g) Y18 g ICInTn)
1+ /i-g [T,

In the SFA, the time-dependent dipole is [53,61]

27 \3? > dr
dm(t)=—i(7> fo m<wm|r|kst+A(t))

x eSED (k4 A(ty)|r - Eto) | ¥m), 5)

where |v,,) is the ground-state atomic wave function,
Ky (tg, 1) = — ft(t) dt’A(t")/T is the stationary momentum,
S(ksto, 1) = — [ di'[kg + A@")1*/2 — I, is the action, I,
is the ionization potential, and #y, ¢, and t =t — f; are the

ionization, recombination, and the so-called travel time, re-
spectively. For atoms with an s ground state, such as He, the
magnetic quantum number is zero, while for atoms with a p
ground state such as Ne the possible values of the magnetic
quantum number are m = 0, 1. The influence of spin is not
taken into consideration. The atomic ground state is mod-
eled by a linear combination of Slater-type orbitals v, ;, o
rlele=%ry,, (), with n, =2 and [ = 1 [63], in the same
way it was done in [53]. The magnetic quantum numbers of
the initial and final states are the same because the electron
liberated from a state with one value of this quantum number
cannot end up in some other state because it is already occu-
pied by other electrons. Following the procedure presented in
Ref. [57], it is easy to check that both odd and even harmonics
are emitted when the w-2w field drives the process, while
for the w-3w field only odd harmonics are expected in the
spectra regardless of the value of the crossing angle 8. The
main advantage of an arbitrary crossing angle is that (unless
6 = 0° or 90°) the emitted harmonics are always elliptically
polarized and we expect that the ellipticity can be controlled
using the crossing angle as a control parameter. Our theory
does not account for Coulomb effects, which can affect the
harmonic intensity and ellipticity quantitatively. The theory
is developed for long laser pulses with a flat envelope. If
the laser-pulse duration used is longer than ten optical cy-
cles, few-cycle-pulse and carrier-envelope-phase effects can
usually be neglected [64]. Note that we suppose that propaga-
tion effects are small, which is the case when low-pressure
gases are used to generate the high harmonics. Otherwise,
the high-energy part of the spectrum is strongly suppressed,
so only the low-energy part is of interest [65]. Finally, we
mention that our theory neglects the self-consistent dynamic
electron-electron interaction, which allows one to explain the
resonantly enhanced HHG associated with the transfer of en-
ergy from the returning electron to the other electrons of the
atom [66,67]. Also, the model cannot describe the polarization
of atoms, which can affect the probability of ionization from
different orbitals [68].

B. Saddle-point method

The harmonic intensity given by Eq. (2) with
Egs. (3) and (5) can be evaluated using the saddle-
point method [69-72]. The stationarity conditions
S (K370, 1)/9t9 = 0 and 9[S(Kg;20,t) + nwt]/ot =0 lead
to the system of equations

(kg + A(t0)]* = —=21,, [ky +A@)]* =2(nw —1,), (6)

which express energy conservation at the times of ionization
and recombination. Due to the negative value of —21I,, on the
right-hand side of the first equation, these times are complex.
The T-matrix element is given by the sum of the contributions
of the relevant solutions #y; and ¢, of the saddle-point equations

t?inwtq . )
T, o ) S SR Mkt t). ()

3/2
s Ts /

where M (Kg; fos, £5) is the product of the ionization and re-
combination matrix elements which appear in Eq. (5). The
electron trajectories (quantum orbits) and velocities are so-

lutions of Newton’s equation of motion ¥(r) = —E(f) with
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initial conditions at the complex time #, and are given by [72]

r([) = Re|:/ A(t/)dt/ + (t - tOs)ksli|’

fos

v(t) = Re[ky + A()], ®)

as functions of the real time ¢ € [Rety,, Rez;].

C. Simple-man model

Finally, we briefly discuss the two-dimensional simple-
man model. The one-dimensional formulation was given in
Refs. [73-76], while a generalization to the two-component
OTC field can be found in [54]. There is a crucial difference
between the simple-man model for a linearly polarized field
and for a field that unfolds in a plane: In one dimension,
if the electron starts with zero velocity, for any start time
(within certain ranges) there is at least one return time. When,
however, the electron is driven in a plane, only exceptional
start times allow for an exact return. Otherwise, if the elec-
tron is to return for an arbitrary start time, it has to depart
with a well-defined nonzero initial momentum. This expo-
nentially reduces the weight of the contribution of this start
time [69]. Hence, those exceptional start times where the
initial momentum is zero are expected to yield the dominant
contributions. The two-dimensional simple-man model finds
these start times and the corresponding recombination times.
Note that if the field nontrivially depends on some parameter
such as the relative phase ¢, then these times will also depend
on this parameter. This mechanism is also embedded in the
closed real trajectories of Refs. [59,60].

The motion of the electron in the laser field is described by
Newton’s equation of motion ¥(¢) = —E(¢) with the solution

t
r(t)=r(to)+[v(to)—A(to)](t—to)+/ A@Hdr', (9)
fp
where r(f)) and v(ty) are the initial position and the initial
velocity, respectively, while the kinetic energy just before the
recombination at time ¢ is

Ei(to, 1) = kg(to, 1) + AT, (10)

with K (9, 1) = — ftf] dt’A(t")/(t — ty). Since, as mentioned,
the ionization probability exponentially decreases with in-
creasing initial kinetic energy of the photoelectron [69,77], the
highest harmonic-emission rate can be expected for v(zy) = 0.
The corresponding harmonic is [54]

Nop = I, + L[A(t) — Ato)]? (11)

and the pertinent ionization and recombination times are de-
termined by the vector equation

K (f0, 1) + A(tg) = 0. 12)

On the other hand, the maximal harmonic order can be de-
termined by requiring that the electron trajectory be extremal
with respect to the kinetic energy, i.e., dEy(fy, t)/dty = 0 and
0Ey(ty, t)/0t = 0. These requirements lead to the system of
equations

(kg +A@)] - [ky + A(1)] = 0,
(kg +A@)] - [k +A@) +E@)r] = 0. 13)
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FIG. 2. Logarithm of the harmonic intensity of the Ne atom
exposed to the (a) w-2w and (b) w-3w fields for several values of the
crossing angle as indicated in (b). The intensities of the field com-
ponents are equal, I; = I, = 4 x 10" W/cm?, and the fundamental
wavelength and the relative phase are A = 1300 nm and ¢ = 0°,
respectively.

Using the solutions (ty,,, t,,) of this system, the maximal har-
monic energy is I, + Ej,,, where

Epn = 3K (tom, tm) + Alt)]. (14)

III. NUMERICAL RESULTS

In this section we present our numerical results for the
Ne atom. The corresponding ionization potential is I, =
21.56 eV. The Ne atom has a p ground state and harmonics
with larger ellipticity than in the case of atoms with an s
ground state can be expected [53].

A. Control of the harmonic-emission process

We start by investigating the dependence of the harmonic
spectra on the crossing angle. In Fig. 2 we present the har-
monic intensities for the w-2w [Fig. 2(a)] and w-3w [Fig. 2(b)]
fields for several values of the crossing angle. The intensities
of the field components are equal, I; = I, = 4 x 10 W /cm?,
the fundamental wavelength is A = 1300 nm, and the rel-
ative phase ¢ = 0°. The spectra obtained using the w-2w
field strongly depend on the value of the crossing angle.
For a bichromatic linearly polarized field (i.e., for 6 = 0°)
the harmonic spectrum has two plateaus: The first one cor-
responds to the low- and medium-energy photons, while
the second one with a significantly lower harmonic inten-
sity accounts for the high-energy photons. The presence of
two well-defined plateaus was noticed in Ref. [78] and ex-
plained in Ref. [79] using the semiclassical trajectories of
the returning electron. Increasing the value of the crossing
angle reduces the yield and the cutoff of the second plateau,
while the first one also becomes shorter but with its intensity
approximately unchanged. For values of the crossing angle
larger than 6 ~ 60° the second plateau is practically absent,
while the first maintains its intensity but assumes an unusual
shape. For example, for 6 = 70° the harmonic spectrum is
very smooth, indicating that only one quantum orbit makes
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FIG. 3. Logarithm of the (a) and (b) harmonic intensity and
(c) and (d) harmonic ellipticity as a function of the crossing angle
and the harmonic order for the Ne atom and the w-2w field with the
relative phase (a) and (c) ¢ = 0° and (b) and (d) ¢ = 120°. The other
field parameters are the same as in Fig. 2.

a significant contribution, while for § = 80° it looks similar
to the spectrum of an OTC field [54,55]. The main difference
with respect to the OTC field is that the harmonics are el-
liptically polarized for all crossing angles except 6 = 0° and
90°. For the w-3w field the situation is very different. Only
one plateau is present regardless of the value of the crossing
angle. As the former increases the plateau becomes shorter,
while the harmonic intensity first decreases and then again
increases. For example, the intensity of the plateau is similar
for & = 30° and 6 = 80°. Also, for any value of the crossing
angle, only odd harmonics are emitted and they are elliptically
polarized.

For a more detailed view of the dependence of the har-
monic intensity and ellipticity on the crossing angle 6, in
Fig. 3 we present the logarithm of the harmonic intensity
[Figs. 3(a) and 3(b)] and harmonic ellipticity [Figs. 3(c)
and 3(d)] for the Ne atom exposed to the w-2w field with
the relative phases ¢ = 0° [Figs. 3(a) and 3(c)] and ¢ = 120°
[Figs. 3(b) and 3(d)]. The harmonic intensities are unchanged
upon 6 — —6, while the ellipticity changes its sign. For the
limiting case of the OTC field (6 = £90°), for the relative
phase ¢ = 120° the harmonics are strongly suppressed (see
the left panels of Fig. 1 in [55]). For ¢ = 0° and —30 < 6 <
30°, Fig. 3(a) exhibits the second plateau, which we noticed
in Fig. 2(a). The 6 dependence of the harmonic intensity is
different for the relative phases ¢ = 0° and ¢ = 120°. The
position of the cutoff is strongly dependent on the relative
phase and generally highest for 6 ~ 0°. For 6 = £90° and
¢ = 120°, harmonic emission is very weak except for the very
lowest orders.

When the two polarizations become parallel, the harmonic
polarization gradually becomes linear, as it should. We know
from the selection rules that for the OTC field the harmonics
are linearly polarized too, but this is hardly visible in Figs. 3(c)

-15
I-16

Harmonic order
Harmonic order
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FIG. 4. Logarithm of the (a) and (b) harmonic intensity and
(c) and (d) harmonic ellipticity as a function of the relative phase
and the harmonic order for the Ne atom exposed to the w-2w field
with the crossing angles (a) and (c) & = 30° and (b) and (d) 6 = 70°.
The other field parameters are the same as in Fig. 2.

and 3(d) because the transition to zero ellipticity occurs ex-
tremely rapidly (discussed in more detail below).

For some regions of the harmonic order and the cross-
ing angle, especially for ¢ = 120°, the harmonic intensities
fluctuate rapidly as a function of the harmonic order. This
behavior has been observed for both atomic and molecular
targets [44,55,80,81], but the effect is more pronounced for
atomic targets. In addition, the oscillations are particularly
noticeable for the w-2w field because generally odd and even
harmonics have different harmonic ellipticity. Large elliptic-
ities are mostly restricted to parameter regions where the
harmonic intensity is low.

Next we will explore the harmonic intensity as a function
of the relative phase for fixed crossing angle. Figure 4 displays
the logarithm of the harmonic intensity [Figs. 4(a) and 4(b)]
and the harmonic ellipticity [Figs. 4(c) and 4(d)] as a func-
tion of the relative phase and the harmonic order for the Ne
atom and the w-2w field with the crossing angles 6 = 30°
[Figs. 4(a) and 4(c)] and 6 = 70° [Figs. 4(b) and 4(d)]. As
they should, the harmonic spectra are invariant with respect to
the transformation ¢ — ¢ + 180°.

For 6 = 30° [Fig. 4(a)] the harmonic spectra have one or
two plateaus depending on the value of the relative phase. In
general, the second plateau (at higher orders) is weaker, i.e.,
the harmonic intensity is lower than for the first plateau. For
6 = 70°, the plot looks quite different and more varied. For
most values of the harmonic order and the relative phase (but
not for all), the harmonic intensity is lower than for 6 = 30°.
Moreover, the entire harmonic intensity is strongly quenched
for phases 130° < ¢ < 150°. For phases 50° < ¢ < 120° the
harmonic intensity fluctuates rather erratically as a function
of the harmonic order, while it changes only smoothly for
0° < ¢ < 50°. Also, around ¢ = 60° the second plateau ap-
pears with very low intensity. The emitted harmonics are
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FIG. 5. Ellipticity of the (a)—(c) odd and (d)—(f) even harmonics obtained by exposing a Ne atom to the w-2w field with a fundamental
wavelength of 2200 nm as a function of the relative phase and harmonic order for the crossing angles (a) and (d) 0 = 89.9°, (b) and (e)
0 = 89.7°, and (c) and (f) & = 89.5°. The other field parameters are the same as in Fig. 2.

elliptically polarized regardless of the value of the crossing
angle. However, the regions with significant ellipticity in the
relative phase-harmonic order plane are broader for 6 = 70°
than for 6 = 30° [see Figs. 4(c) and 4(d)]. For 6 = 70°, the
region around n = 200 and ¢ = 0° looks particularly promis-
ing in the sense that the ellipticity of the emitted harmonics
is large, while the harmonic intensity is still significant. For
the w-2w field, a particularly interesting situation occurs for
crossing angles close to 8 = 90°, i.e., close to the OTC field.
Namely, for & = 90° the harmonics are strictly linearly polar-
ized, while for any other value the polarization is elliptical.
The transition occurs extremely rapidly, in complete contrast
to what happens when the crossing angle starts deviating from
6 = 0°. In Fig. 5 we present the ellipticity of the harmonics
obtained by exposing a Ne atom to the w-2w field with the fun-
damental wavelength of 2200 nm as a function of the relative
phase and harmonic order for the crossing angles 6 = §9.9°
[Figs. 5(a) and 5(d)], & = 89.7° [Figs. 5(b) and 5(e)], and
0 = 89.5° [Figs. 5(c) and 5(f)]. Figures 5(a)-5(c) and 5(d)—
5(f) correspond to the odd and even harmonics, respectively.
The ellipticity observes the symmetry ¢ — ¢ + 180°, as it
should. At 8 =90°, even and odd harmonics are linearly
polarized, with their polarization directions orthogonal. We
can see how this symmetry is immediately broken as the
crossing angle starts deviating from 90°. Let us concentrate
on relative phases around ¢ = 180° for which the harmonic
intensity is a smooth function of the harmonic order. For
the crossing angle § = 89.9° two regions with large elliptic-
ity appear [see Figs. 5(a) and 5(d)]. Generally, for odd and
even harmonics the helicities are opposite, i.e., the harmonics
closer to the cutoff have positive (negative) helicity for odd
(even) harmonics. In addition, the even harmonics have larger
ellipticities, which can become significant even for the small-
est deviation from 8 = 90°. As the crossing angle decreases,
additional regions with large ellipticity appear. In particular,

for the crossing angle 8§ = 89.7° two additional regions with
significant ellipticity appear [see Figs. 5(b) and 5(e)]. Again,
the helicity has the opposite sign for odd and even harmonics.
With the crossing angle further decreasing, more regions with
large ellipticity appear. Formally, a large value of the har-
monic ellipticity can be explained in a similar way as for the
bielliptical orthogonally polarized field where, for 6 = 90°,
the harmonics immediately acquire elliptical polarization as
soon as the driving fields become ever so slightly elliptically
polarized [44].

For a closer look, in Fig. 6 we present the ellipticity of the
odd [Fig. 6(a)] and even [Fig. 6(b)] harmonics generated using
the same field as in Fig. 5 for the same three crossing angles

e

\

L Y ! ! AV
0 300 600 900 0 300 600 900
Harmonic order

FIG. 6. Harmonic (a) and (b) ellipticity and (c) and (d) intensity
of the (a) and (c) odd and (b) and (d) even harmonics obtained by
exposing the Ne atom to the same field and for the same crossing
angles as in Fig. 5. The relative phase is ¢ = 180°.
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FIG. 7. Harmonic ellipticity of the (a) odd and (b) even harmon-
ics as a function of the crossing angle and harmonic order for the
Ne atom exposed to the same field as in Fig. 5. The relative phase is
¢ = 180°.

and for the relative phase ¢ = 180°. For 8 = 89.9°, the odd
harmonics are elliptically polarized with negative helicity all
the way up to the cutoff (around n = 700) where the ellipticity
starts increasing and ultimately changes its sign. However, the
corresponding harmonic intensity is already quite low before
the cutoff. The even harmonics exhibit similar behavior with
the ellipticity having the opposite sign. With decreasing cross-
ing angle, the ellipticity changes its sign twice (for 6 = 89.7°)
and three times (for & = 89.5°) before the cutoff. Notice that
the harmonic intensities are practically independent of the
harmonic order [Figs. 6(c) and 6(d)], while the polarization
goes back and forth between linear and almost circular with
opposite helicities.

If the crossing angle continues to decrease, the number of
oscillations in the harmonic ellipticity continues to increase.
This is illustrated in Fig. 7 for 80° < 6 < 90° and ¢ = 180°.
This behavior is similar to the observations in Ref. [44] for
the bielliptical OTC field (cf. Fig. 10 in Ref. [44]). Now
the deviation of the crossing angle from the value 6 = 90°
is the source of the breaking of the dynamical symmetry,
while in Ref. [44] it was broken by the field components
acquiring ellipticity. In order to explain this in more detail
we write the vector T, given by Eq. (3) as T, = T,e, =
T,ye. + T,_e_, where e, is the complex unit polarization
vector of the nth harmonic, while 7,,; and 7,,_ are the compo-
nents with helicities 4+1 and —1, respectively, and eL = (e, +
iey)/ V2. The time-dependent dipole d,,(r), which appears
in the vector T,, contains the matrix element (Y, [r|q) =
—i0Y,(q)/0q and the wave function of the final bound
state for the Ne atom satisfies the relation 9y,,(q)/dq =
0V, (Q)/3qeq + g0V, (@)/00,€q,, Where q = ky + A(r)
and, in spherical coordinates, eq = (COs ¢gq, sin g, 0) and
€, = (—sin@gq, cos ¢gq, 0). Using e4 - e =0 and e - e; =
1, the components of the T-matrix element can be written in
the form

The =T, ez x /dt/dr[f(t,t)eﬁd"l(”)

+g(t, T)eF D], (15)

The functions f (¢, 7) and g(¢, 7) are the same for both compo-
nents of the 7-matrix element. The exponential terms contain
¢q(t, T) and we integrate over ¢ and 7. The function ¢q4(z, 7)
depends to a great extent on the chosen field configuration, so
small deviations of the crossing angle from 90° can lead to a
large difference between 7, and 7,,_ and thus harmonics with
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FIG. 8. Logarithm of (a) the harmonic intensity and (b) the har-
monic ellipticity as a function of the relative phase and the harmonic
order for the Ne atom exposed to the w-3w field with the crossing
angle 6 = 80°. The other field parameters are the same as in Fig. 2.

large ellipticity (recall that the parameter &, [Eq. (4)] can be
written as & = (T > — |T,-[)/(|Ts |2 + |T,—[?)). Finally,
we note that again the helicities of the odd and even harmonics
are opposite.

The situation is completely different for the w-3w OTC
field where the harmonics are elliptically polarized regardless
of the value of the crossing angle (provided, of course, that
it is nonzero, 6 # 0°). In this case, the ellipticity changes
smoothly as a function of the angle # and the harmonic
spectra are not invariant with respect to the transformation
¢ — ¢ + 180°. As an example, in Fig. 8 we present the log-
arithm of the harmonic intensity [Fig. 8(a)] and the harmonic
ellipticity [Fig. 8(b)] as a function of the relative phase and the
harmonic order for the Ne atom exposed to the w-3w field with
the crossing angle & = 80°. There are extended regions with
large ellipticity. For example, for the relative phase around
¢ = 30°, the entire region between n = 80 and n = 150 cor-
responds to harmonics with large ellipticity and substantial
intensity. The regions with large ellipticity become narrower
with decreasing crossing angle and when 6 < 50° the ellip-
ticity remains large only for isolated harmonics (not shown).
Regions with significant ellipticity can also be found in the
low-energy part of the spectra. This is important because the
medium- and high-energy harmonics may be suppressed by
macroscopic effects [65]. Examples of these regions can be
found for really low harmonics, with n around 31 and 0 <
¢ < 100 and 220 < ¢ < 350. For an illustration, in Fig. 9 we
present the logarithm of the harmonic intensity (left ordinate)
and the harmonic ellipticity (right ordinate) as a function of
the harmonic order for the relative phases ¢ = 45° (black
solid line) and ¢ = 320° (red dashed line) and the other field
parameters the same as in Fig. 8. The harmonic ellipticity can
be large even for harmonics with n < 101 and their intensities
are significant. These regions could be particularly interesting
for experiments.

In conclusion, both the w-2w and the w-3w field configura-
tions generate elliptically polarized harmonics. Regions with
significant ellipticity may exist in all parts of the harmonic
spectrum depending on the values of the relative phase and
the crossing angle, even for crossing angles very close to § =
90°. Recall that for the w-2w field the harmonics have to be
linearly polarized if the field components are exactly perpen-
dicular. This transition to linear polarization occurs extremely
fast.
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FIG. 9. Logarithm of the harmonic intensity (left ordinate) and
the harmonic ellipticity (right ordinate) as functions of the harmonic
order for the Ne atom exposed to the same field as in Fig. 8 for the
relative phases ¢ = 45° (black solid line) and ¢ = 320° (red dashed
line).

B. Saddle-point method

In this section we apply the saddle-point method to explain
some features of the HHG spectra. For this purpose, in Fig. 10
we employ the w-2w field with the component intensities
I =2 x 10" W/cm?, I, = 0.3];, fundamental wavelength
A = 1300 nm, and the relative phase ¢ = 0°. In Fig. 10(a) we
present the logarithm of the harmonic intensity as a function
of the harmonic order for various values of the crossing angle
calculated with the SFA. Both odd and even harmonics are
emitted and their intensities begin to differ significantly when
the crossing angle approaches 90°. For the OTC field this
difference reaches more than an order of magnitude [see the
black line in Fig. 10(a)], while for 6 = 75° it is small. Let us
now analyze the partial saddle-point contributions to the har-
monic yield. The solutions of the saddle-point equations (6)
are classified by the multi-index (o, 8, m) similarly to the
case of a linearly polarized field [82]. For a bichromatic field
this classification should be generalized as was done for the
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£ 201 4
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= | ]
i
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bicircular field in [72], but for the laser-field parameters of the
present paper the (o, 8, m) classification serves its purpose.
In Fig. 10(b) we exhibit four partial saddle-point contributions
(B, m) to the harmonic yield. The contributions with @ = +1
are represented by solid and dashed lines. They have different
colors for different values of the crossing angle, which cor-
respond to Fig. 10(a). The longer quantum orbits (i.e., those
having longer travel times), which contribute to the harmonics
with lower energy, are suppressed and only one quantum orbit
is enough to reproduce the entire harmonic spectrum. This
is the orbit (—1,0). Only for 6 = 75° does the orbit (1,1)
become competitive for the low-energy harmonics. The shape
of the SFA spectrum is reproduced well by the saddle-point
method. It is smooth when the contribution of only one quan-
tum orbit is significant, while it oscillates or fluctuates if more
than one orbit has to be taken into account. The shape of the
spectrum is particularly well reproduced for 6 = 75° because
in this case the harmonic intensities of adjacent harmonics are
similar. We notice that the fact that almost the entire spectrum
is dominated by one orbit is unique for the OTC field and also
for crossing angles that are not too far away from 90°.

The quantum orbits and the corresponding electron veloci-
ties can now be obtained using Eq. (8). In Fig. 11 we present
the electric-field vector of the laser field [Fig. 11(a)] and its
vector potential [Fig. 11(c)] together with the quantum orbit
[Fig. 11(b)] and the electron’s velocity [Fig. 11(d)], which cor-
respond to (B, m) = (—1,0). The crossing angle is 6 = 75°,
while the other field parameters are the same as in Fig. 10. The
figures show that the electron is released a few atomic units
away from the ion at the moment when the field is close to
its maximal value. Thereafter, the electron moves away from
the ion following an almost linear trajectory. Eventually, it
turns around and returns to the ion following almost the same
trajectory. In Fig. 11 the ionization (recombination) times are
marked by I (R). Figure 11(d) shows that the electron starts
its orbit with a nonzero velocity vy in the negative y direction.
It is relatively small, so the corresponding harmonic intensity
is high because the ionization probability decreases exponen-
tially with V(z) [69,77]. In addition, other useful information

J |
— =75
-18[-— B=85°

log, [Harmonic intensity (arb.units)]

|
25 50 75 100 125 150
Harmonic order

FIG. 10. Logarithm of the harmonic intensity as a function of the harmonic order calculated using (a) the SFA and (b) the saddle-point
method for the Ne atom exposed to the w-2w field with the crossing angle as given in the legends. The contributions of the solutions represented
by the dashed lines have to be disregarded after the cutoff. The intensities of the field components are I; = 2 x 10'* W/cm? and I, = 0.31};
the fundamental wavelength and the relative phase are the same as in Fig. 2.
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FIG. 11. (a) Electric-field vector and (c) vector potential for the
crossing angle 6 = 75°. The other laser-field parameters are the same
as in Fig. 10. Also shown are (b) the electron trajectory and (d) the
velocity between the ionization (I) and recombination (R) times for
the harmonic order n = 115 and the orbit (8, m) = (—1, 0).

can be extracted from Fig. 11. For example, the electric field
at the ionization time is strong, so the ionization probability
is significant. Also, the vector potential at the recombination
time is large, which leads to a high-energy harmonic photon.

C. Simple-man model

After analyzing the HHG process using the SFA theory as
well as the saddle-point method, in this section we analyze the
applicability of our simple-man model formulated in Sec. I C
to assess the position of the cutoff and the regions with large
harmonic intensity. For an illustration, we use the example
of the Ne atom and the w-3w field. We explore the harmonic
intensity as a function of the crossing angle and harmonic
order for a fixed value of the relative phase ¢. In Fig. 12 we
present the logarithm of the harmonic intensity as a function
of the crossing angle and the harmonic order for the relative
phase ¢ = 60°. The black line corresponds to the classical
estimate of the position of the cutoff. This classical result
agrees very well with the results of the numerical integration.
On the other hand, the white line corresponds to the maximal
harmonic intensity. Within the region —45° < 6 < 45°, this
line, which was obtained analytically, satisfactorily predicts
the harmonic orders where the intensity is highestasn ~ 61. It
seems that, for this value of the relative phase, the simple-man
model can be used to assess the regions with large harmonic
intensity and the position of the cutoff for different values of
the crossing angle.

IV. CONCLUSION

The process of high-order harmonic generation allows one
to produce elliptically polarized light in the vacuum ultravi-
olet, extreme ultraviolet, and soft-x-ray spectral regions in a
table-top setup. This light has important applications in many
branches of science. A linearly polarized laser field generates
only linearly polarized harmonics so that two-dimensional
fields have to be employed in order to produce elliptical
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FIG. 12. Logarithm of the harmonic intensity as a function of
the crossing angle and harmonic order for the Ne atom exposed to
the w-3w field with the relative phase ¢ = 60°. The black (white)
line corresponds to the classical simple-man estimate of the maximal
harmonic order (harmonic intensity). The other field parameters are
the same as in Fig. 2.

polarization. A bicircular field, which has been analyzed
extensively over the past decade, produces only circularly
polarized harmonics in the limit of long pulse duration. For
short pulses, harmonics with arbitrary ellipticity can be gener-
ated [83]. Additionally, to generate elliptically polarized light
with tunable ellipticity, other types of tailored laser fields
are also suitable [44,54]. Recently, orthogonally polarized
two-color laser fields, which consist of two linearly polarized
fields with frequencies that are integer multiples of a fun-
damental frequency and mutually orthogonal polarizations,
have attracted a great deal of attention. However, even in this
case the emitted harmonics are elliptically polarized only for
certain frequency combinations of the laser-field components.
A particular problem is that the w-2w combination, which
can be most easily realized in an experiment, supports only
linearly polarized harmonics. This statement only holds for
exact orthogonality (see the discussion below).

In this paper we have analyzed a configuration that consists
of two linearly polarized fields with an arbitrary crossing
angle in between their polarizations. In this case, the emitted
harmonics are elliptically polarized regardless of the frequen-
cies of the field components provided the two components are
neither parallel nor perpendicular. To calculate the harmonic
intensity and the harmonic ellipticity we have used the strong-
field approximation and the saddle-point method.

First, we explored how the value of the crossing angle
affects the HHG spectrum. We found that the length of the
plateau and the harmonic intensity depend to a great extent
on this parameter. This dependence is more pronounced for
the w-2w than for the w-3w field combination. For a complete
picture, the effect of the crossing angle has to be analyzed
along with the relative phase between the field components.
For the w-2w configuration, the spectrum may consist of one
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or two plateaus or the harmonic intensity may be suppressed
for all but the lowest-order harmonics, depending on the cross-
ing angle and the relative phase. The emitted harmonics are
elliptically polarized. Larger regions with large ellipticity in
the plane defined by the relative phase and the harmonic order
may exist, especially for crossing angles larger than § ~ 65°.
This has been experimentally confirmed in Ref. [42]. These
regions exist in the low-, medium-, and high-energy parts of
the harmonic spectra.

The crossing angle and the relative phase also affect the
general shape of the spectra. For some values of these parame-
ters the spectrum exhibits an oscillatory or an erratic structure,
while for others it is smooth. This is explained with the help
of the saddle-point method and quantum-orbit theory. Namely,
the shape of the spectrum is related to the number of contribut-
ing quantum orbits. If only one quantum orbit plays a role,
the spectrum is smooth. For two closely competing quantum
orbits, a regular oscillation results, while many contributing
orbits generate an erratic behavior of the spectrum. In the
saddle-point method, the harmonic order is a continuous pa-
rameter. If the difference between the intensities of subsequent
odd and even harmonics is large and the contribution of only
one quantum orbit is dominant, then the saddle-point method
and quantum-orbit theory reproduce the average of the exact
SFA results, which are obtained by numerical integration.
Additional information about the harmonic intensity can be
extracted from the electron trajectory and its velocity along
a quantum orbit. For example, because the ionization prob-
ability exponentially decreases with the square of the initial
velocity, the most intense harmonics correspond to quantum
orbits where the electron starts with the lowest velocities.
The simple-man model, which treats the liberated electron
classically, can be used to predict the position of the cutoff for
different values of the relative phase and the crossing angle.
Also, the regions with large harmonic intensity can be located
using this model.

A very interesting and challenging result concerns the be-
havior of the harmonic ellipticity in the w-2w case, when
the crossing angle approaches 90°. If the two field compo-
nents are exactly perpendicular, the harmonics are linearly
polarized. However, even the slightest deviation from exact
perpendicularity (by as little as 0.1%) already produces signif-
icant elliptical polarization. A similarly astonishing effect was
observed when the crossing angle remains perpendicular but
the two linearly polarized driving-field components acquire
an ever so slight ellipticity [44]. If this effect is genuine and
not somehow an artifact of the strong-field approximation, it
raises interesting questions. For example, to what extent can
exact perpendicularity be guaranteed in an experiment? Since,

moreover, the ellipticities calculated in the close vicinity of a
90° crossing angle rapidly fluctuate depending on the precise
value of this angle on the same 0.1% scale, theoretical mod-
eling of any given experiment requires very high precision.
Discrepancies between experimental and theoretical results
may easily be due to insufficient control of the crossing angle
and/or the ellipticity of the driving-field components.

We described the two linearly polarized fields in the dipole
approximation oscillating in time only. While their polar-
izations are noncollinear, they do not propagate. Fields that
propagate in different directions offer distinct advantages for
high-order harmonic generation. For example, two counterro-
tating circularly polarized fields of the same frequency and
intensity whose propagation directions enclose a nonzero an-
gle generate well-separated circularly polarized harmonics in
the far field, each having a certain value of the helicity and the
harmonic order [84,85]. To some extent, we can apply our re-
sults to such a case. Namely, in the focal region where the two
driving fields are superimposed, the fact that they propagate
in different directions hardly plays a role for the generation
of harmonics. It is only after their generation that different
harmonics separate and propagate in different directions. In
the example of Refs. [84,85], the total field in the focus is
linearly polarized in some direction (if the two counterpropa-
gating fields have equal intensity), so the total harmonic field
is linearly polarized as well. If this field is expanded in terms
of circularly polarized waves of either helicity and each is
assigned a different propagation direction, then the spectral
shape observed in the experiment will approximately result.

In conclusion, two linearly polarized laser fields with an
arbitrary angle between their polarizations and arbitrary fre-
quencies can be successfully employed to generate elliptically
polarized light. Particularly effective control of the HHG pro-
cess is possible when both the crossing angle and the relative
phase between the laser-field components are varied. The val-
ues of both angles can readily be controlled in an experiment.
For the experimental realization and theoretical simulation of
the w-2w frequency case, great care must be applied when
the crossing angle approaches 90°. We hope that our results
will stimulate experiments for the field configurations we
suggested. In this case, more detailed simulations could be
performed.
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