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Ionization and recombination times of the long trajectory in high-order harmonic generation
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Measuring the ionization and recombination times in high-order harmonic generation driven by strong laser
fields is of fundamental importance in attosecond science and vital for assessing the temporal accuracy of
trajectory-resolved high-harmonic spectroscopy. We investigate the effect of the electron-core interaction on the
ionization and recombination times of the long trajectory in high-order harmonic generation. Using a classical
model and the analytical R-matrix theory for helium, it is found that the attractive interaction leads to a 30-as
shift of the ionization times for the long trajectory. By numerically solving the time-dependent Schrödinger
equation for a helium atom model, we demonstrate that this small time shift can be probed by using orthogonally
polarized two-color fields with high probe frequencies.
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I. INTRODUCTION

The interaction between strong laser pulses and matter
offers a unique combination of semiclassical physics and
quantum mechanics in a nonstationary setting. After an elec-
tron tunnels out of the potential barrier induced by a strong
field acting on an atom or molecule, the electron motion is
nearly classical and therefore it can be described in terms
of trajectories [1,2]. For a linearly polarized field, the re-
leased electron oscillates due to the alternating force, and
it may return to the parent ion. This recollision may cause
recombination leading back into the ground state, accompa-
nied by emission of high-frequency radiation. This process is
known as high-order harmonic generation (HHG). The above-
described mechanism is reflected in the classical three-step
model [1,3] and in the quantum-mechanical strong-field ap-
proximation (SFA) [4]. Every HHG trajectory is associated
with certain values of the ionization time, the recombination
time, and the return energy of the electron, which deter-
mines also the radiated photon energy. In each optical cycle
of the driving femtosecond laser pulse, the ionization and
recombination times vary over only a fraction of the cycle.
Therefore, the photon energy can be mapped to the ionization
and recombination times on an attosecond timescale and HHG
offers possibilities to study physical phenomena with attosec-
ond temporal resolution [5–10]. Importantly, several distinct
trajectories may give rise to the same photon energy. For a
given photon energy, there are two relevant trajectories per
optical half cycle, known as the short and the long trajectory.
Roughly, long trajectories start just after a peak of the electric
field and the excursion time is between three-quarters of a
cycle and a full period. Short trajectories start later than the
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long trajectories and return earlier. In experiments, it is com-
mon that the long trajectory is suppressed by the macroscopic
phase mismatching conditions [11]. In this case, a one-to-one
map between photon energy and time (up to multiples of a
half cycle) is realized.

High-harmonic spectroscopy (HHS) is the field of research
that aims at studying properties of matter by observing the
high-harmonic radiation. For example, HHS has been used
to study molecular structure [12–14], vibrational dynamics
of molecules [15–18], and multielectron dynamics [19–21].
For applications of time-resolved HHS, it is essential to know
the ionization and recombination times accurately. One way
of measuring these times is based on orthogonally polarized
two-color (OTC) fields. Such tailored fields have been widely
used to control and monitor electron wave packets [22–29].
Time measurements with OTC fields are applicable to both
HHG [30,31] and photoelectron emission [32–35]. In the
OTC scheme for HHG, a weak cross-polarized probe field (or
streaking field) with higher frequency is added to the strong
fundamental field to perturb the electron trajectory in the
lateral direction. The intensities of the high-order harmonics
and the recombination angles of the trajectories change with
the relative phase of the two fields, i.e., the two-color delay.
The variations of these two observables have been termed dis-
placement gate and velocity gate, respectively [30]. For each
harmonic order, i.e., for each given frequency of the emitted
radiation, measuring these two independent observables en-
ables us to extract both ionization and recombination times.
The time-retrieval method was generalized from real-time to
complex-time trajectories in Ref. [31]. Using ω-2ω two-color
fields together with the complex-time method, the retrieved
ionization and return times match well with the quantum-orbit
(QO) model [2], which neglects the Coulomb interaction be-
tween the electron and the parent ion. This might create the
impression that these times are unaffected by the Coulomb
interaction. However, the analytical R-matrix (ARM) theory
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predicts that the ionization time exhibits a significant time
shift of dozens of attoseconds caused by the electron-ion inter-
action [36]. This shows that the previous ω-2ω approach is not
reliable for retrieving the ionization time with few-attosecond
precision. Recently, it was shown that using a high-frequency
(e.g., 4ω) probe field instead of the 2ω probe field solves this
problem [37]. These calculations were carried out for the short
HHG trajectory and they revealed a Coulomb-induced 35-as
shift towards earlier times [37]. The retrieved times matched
well with the ARM prediction and also with results from a
classical model including the Coulomb interaction.

Although research on the long trajectory is not as common,
we note that the short and long trajectories have been success-
fully separated in a number of experiments [6,18,38,39]. The
long trajectory provides a different time-detection window
for trajectory-resolved HHS. This makes the long trajectory
attractive for attosecond-scale time-resolved studies. The ef-
fects of the Coulomb interaction on the ionization time of
the long trajectory have only been investigated within clas-
sical trajectory models so far [40,41]. The classical trajectory
Monte Carlo simulations of [40] did not find any Coulomb
time shifts, possibly due to the specific initial conditions and
recombination conditions, in particular the choice of zero
longitudinal initial velocity. With initial conditions taken from
the SFA, including the nonzero velocity at the tunnel exit,
ionization was found to take place earlier than in the QO
model [41].

In this article, we use solutions of the time-dependent
Schrödinger equation (TDSE) for a helium atom model to
demonstrate the OTC-based reconstruction of ionization and
emission times for the long trajectory in HHG. Similar to the
case of the short trajectory [37], we find that the Coulomb
potential causes an ionization-time shift towards earlier times.
For the long trajectory, this shift is accurately measurable
when employing probe frequencies of five times the funda-
mental frequency or more. In contrast, when using low probe
frequencies, the retrieved ionization time is in good agreement
with the Coulomb-free QO model, because low-frequency
streaking fields, together with the established retrieval equa-
tions, are blind to the effects of Coulomb interaction on the
ionization times [35,37].

The article is organized as follows. Section II outlines the
details of the TDSE, the Gabor time-frequency analysis, and
the OTC-based time-retrieval method. Section III applies the
retrieval method to the long trajectory and analyzes the effect
of the Coulomb potential on the ionization times. Section IV
summarizes our work.

II. THEORETICAL MODEL

A. Time-dependent Schrödinger equation

We use a single-active-electron model to describe the in-
teraction of strong fields and a helium atom. In this model,
the motion of the electron with coordinate r is limited to two-
dimensional space. The TDSE for the electron wave function
ψ (r, t ) in the length gauge reads (Hartree atomic units are
used unless otherwise stated)

i
∂

∂t
ψ (r, t ) =

(
−∇2

r

2
+ V (r) + r · E(t )

)
ψ (r, t ). (1)

Here V (r) = −1/
√

r2 + a is a soft-core potential with a =
0.0684 a.u., which reproduces the ionization potential Ip =
24.6 eV of helium. The OTC field E(t ) = −Ȧ(t ) is described
by the vector potential

A(t ) = −E0

ω
f (t )

(
sin(ωt )êx + ε

n
sin(nωt + φ)êy

)
, (2)

where êx and êy are unit vectors, E0 and ω are the peak field
amplitude and frequency of an 800-nm fundamental laser
field with intensity 4.0 × 1014 W/cm2, respectively, and φ

is the relative phase between the fundamental field and the
streaking field, also termed two-color delay. The real positive
number n determines the streaking frequency nω. In the TDSE
simulations, the OTC field has a trapezoidal envelope f (t ) that
ranges from −T to 2T (T = 2π/ω) with one-cycle ramps. To
suppress contributions to HHG from the edges of the laser
pulse, a steep function cos6(ωt/4) is taken as the leading edge
of f (t ) in the interval −T � t � 0 and the falling edge in the
interval T � t � 2T has the form cos6[ω(t − T )/4]. For the
probe field, we choose the relative amplitude ε = 0.02.

Because the calculation allows us to select the HHG from
one half cycle (discussed below), we can easily use noninteger
values of n as well as integer values. In the case of an exper-
iment with commonly used multicycle pulses, one would use
integer n to ensure that the timing of the probe field relative to
the fundamental field is the same in every optical cycle.

The two-dimensional TDSE is numerically solved using
the Crank-Nicolson method [42,43] with the time step �t =
0.05 a.u. The box size is Lx × Ly = 280 × 100 a.u. with
2800 × 1000 grid points. At each time step, the wave function
is multiplied with mask functions to avoid reflections from
the boundary. The mask function along the x axis is F (x) =
cos1/8[π (|x| − x0)/(Lx − 2x0)] for |x| � x0 and F (x) = 1 for
|x| � x0 with x0 = 7Lx/18. In the y direction, a similar treat-
ment is applied, where y0 is set to 7Ly/18. Once the wave
function has been obtained, the dipole acceleration a(t ) with
components ax(t ) and ay(t ) is calculated via the Ehrenfest
theorem [44],

a(t ) = 〈ψ (r, t )|∂r[V (r) + r · E(t )]|ψ (r, t )〉. (3)

B. Gabor transform

One challenge in the numerical simulations is that the
harmonic spectrum cannot be used to determine the ionization
and recombination times directly, since one harmonic order
has contributions from several trajectories. In other words,
the harmonic order does not correspond to a unique pair
of ionization time and return time. In experiments, short or
long trajectories can be selected by appropriate choice of
the phase-matching conditions in the laser-gas interaction
zone. To separate the trajectories in the calculated single-
atom response, we consider the time-frequency profile of the
harmonic emission. In the previous calculations for short tra-
jectories [37], this method was used in combination with a
suitably chosen absorber that suppresses the long trajectories
due to their large spatial extent. In the present work, our aim is
to keep the information on the long trajectory. Therefore, the
absorbing mask starts further away from the center and we
rely completely on the time-frequency analysis to separate the
trajectories. To this end, we use the Gabor transform [8,10,31].
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FIG. 1. Gabor time-frequency profile of the harmonic emission,
calculated according to Eq. (4), resulting from the ω-2ω laser pulse
with an intensity of 4.0 × 1014 W/cm2 and fundamental wavelength
800 nm. The two-color delay is zero. The triangles connected by the
black line show the local maxima of the Gabor distribution for the
long trajectory.

The total harmonic signal for both possible polarization direc-
tions (x and y), resolved in time and frequency, reads

IG(	, t ) = IGx(	, t ) + IGy(	, t )

=
∑
j=x,y

∣∣∣∣
∫

dt ′a j (t
′)e−(t ′−t )2/(2σ 2 )+i	t ′

∣∣∣∣
2

, (4)

where we use σ = 1/(3ω). The indices x and y denote the x
and y components. For a given harmonic frequency 	, we find
the local maximum of the time-dependent function IG(	, t ) in
the range t ∈ [0.7T, 1.0T ], where the long-trajectory signal is
located. To illustrate the procedure, Fig. 1 shows an example
of a Gabor time-frequency distribution with black triangles in-
dicating the positions of the local maxima at integer harmonic
orders. The temporal positions te of these maxima are used
to obtain the long-trajectory harmonic intensity as IG(	, te)
and the amplitude ratio between the y and x components as
R = √

IGy(	, te)/IGx(	, te). These two observables depend on
the two-color delay φ, which is the basis for the time-retrieval
method. Note that the times te are only used to obtain from
the TDSE solutions the two described observables, which are
analogous to what is measured in the experimental implemen-
tation [30]. The times te are not used as a “measured” return
time. In the following, we focus on harmonic orders from 47
to 60 due to the well-defined time-frequency profile in this
region.

C. Displacement gate and velocity gate

A connection between the observables and times needs to
be established so that one can probe the time information
through measurable quantities. Since the probe field is weak,

the ionization time ti and the recombination time tr are dic-
tated by the fundamental field. To this end, the probe field
should satisfy ε � 0.1 and we use ε = 0.02. The effect of
the probe field on the harmonic intensity and the amplitude
ratio can be understood by a quantitative analysis [30,31] as
explained in the following.

Assuming a Coulomb-free Newtonian trajectory with
transverse coordinate y(t ), it is required that the transverse
displacement of the electron between ionization and recolli-
sion is zero in the HHG process, namely, y(tr ) − y(ti ) = 0, so
that the laser-driven electron recollides with the parent ion. To
satisfy this condition, the initial transverse velocity must be

vy0 = −εE0

nω

(
sin(ϕi ) + cos(ϕr ) − cos(ϕi )

nω(tr − ti )

)
, (5)

with ϕi = nωti + φ and ϕr = nωtr + φ. As confirmed in pre-
vious work [7,45], vanishing vy0 corresponds to the maximum
of the harmonic intensity. Therefore, at the optimal phase φ̄1

maximizing the harmonic intensity, Eq. (5) implies a condi-
tion on the times ti and tr (displacement gate).

For linearly polarized harmonics, the y-to-x amplitude ratio
R is directly related to the polarization angle θ with respect to
the x direction, i.e., R = tanθ . In the experiment [30], R was
measured as the amplitude ratio between adjacent even and
odd harmonics. This is possible because for an ω-2ω OTC
field, the time-dependent harmonic field in the y direction is
T/2 periodic, while the time-dependent harmonic field along
the x axis undergoes a sign change from one half cycle to the
next half cycle of the fundamental field. Thus, under Fourier
transformation to the frequency domain, the even harmonics
are polarized along y and the odd harmonics are polarized
along x [30,46]. When the initial bound state possesses spher-
ical symmetry, the harmonic polarization angle coincides with
the electron return angle [46] and R can be expressed as
|vy(tr )/vx(tr )|. With vy(tr ) calculated from the Coulomb-free
Newtonian motion and using vx(tr ) = √

2(	 − Ip), this leads
to

R = εE0/(nω)√
2(	 − Ip)

∣∣∣∣sin(ϕr ) + cos(ϕr ) − cos(ϕi)

nω(tr − ti )

∣∣∣∣. (6)

Hence, when the two-color delay is adjusted such that the
amplitude ratio R is maximized, Eq. (6) implies a condition
on the times ti and tr (velocity gate).

The experiment or the TDSE solutions provide us with the
optimal phase φ̄1 maximizing the harmonic intensity and the
optimal phase φ̄2 maximizing the amplitude ratio for every
harmonic order. From the optimal phases, we can deduce both
ti and tr for each harmonic order using the displacement gate
and the velocity gate. In our implementation [31], we allow
complex times in Eqs. (5) and (6) in accordance with the
quantum-orbit model, so the two retrieval equations read

Revy0 = 0, (7)

∂R

∂φ
= 0. (8)

We have checked numerically that the optimal phases re-
sulting from Eqs. (7) and (8) when the complex QO times
are inserted are consistent with the optimal phases obtained
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FIG. 2. (a) Normalized harmonic signal and (b) harmonic y-to-x
amplitude ratio as a function of harmonic order and two-color delay.
These quantities are calculated from TDSE solutions for the ω-2ω

scheme.

when the SFA model is used to calculate the two observables
directly.

III. RESULTS AND DISCUSSION

A. Retrieval of ionization and recombination times

We present the two observables for the long trajectory as
functions of harmonic order and two-color delay in Fig. 2.
Here we use an ω-2ω field with a fundamental wavelength
of 800 nm and intensity 4.0 × 1014 W/cm2. The harmonic
intensity [Fig. 2(a)] and the y-to-x amplitude ratio [Fig. 2(b)]
vary with the two-color delay. At every harmonic order, we
can find the optimal phases φ̄1 and φ̄2 maximizing either of the
two observables. Here φ̄1 decreases slightly with the harmonic
order, while φ̄2 increases. These trends are opposite to the
short-trajectory case (cf. Fig. 1 in Ref. [31]).

Our aim is to retrieve the ionization and recombination
times ti and tr by inserting the measurable optimal phases into
Eqs. (7) and (8). However, since we work with complex times,
there are four unknown variables and only two equations. To
overcome this problem, two approximations are adopted [31]:
The imaginary part of tr is neglected and the imaginary part of
ti is approximated as the Keldysh time at t0

i = Reti, i.e., Imti =√
2Ip/|Ex(t0

i )| [47]. Figure 3 shows the retrieved ionization
and return times from the TDSE. For comparison, the results
calculated from the QO model are also presented. In the QO
model, the complex times ti = t0

i + i Imti and tr = t0
r + i Imtr

are the solutions of the saddle-point equations [2]

v2(ti )

2
= −Ip,

v2(tr )

2
= 	 − Ip, (9)

with the velocity v(t ) = p(ti, tr ) + A(t ) and the saddle-point
momentum p(ti, tr ) = −1/(tr − ti )

∫ tr
ti

A(t )dt . Because the
streaking field is weak, we neglect the y component of A in the
saddle-point equations unless otherwise stated. The saddle-
point equations result from finding the complex stationary
points of 	tr − Sv , where

Sv (ti, tr ) =
∫ tr

ti

dt

(
v2(t )

2
+ Ip

)
. (10)

Figure 3 shows clearly that the TDSE results for the long tra-
jectory are in good agreement with the QO model. This means

FIG. 3. Ionization and recombination times for the long trajec-
tory in HHG: times retrieved from the ω-2ω scheme with observables
calculated from the TDSE (blue squares), times from the QO model
(thick gray lines), and times from the simple man’s model, i.e., the
QO model with Ip = 0 (light gray dashed lines). The green dash-
dotted line represents the Coulomb-corrected return time estimated
by the analytical R-matrix theory (see the text for details).

that we do not observe any Coulomb effects on ionization and
recombination times when using the retrieval method with the
ω-2ω field.

A purely classical model with real times, known as the
simple man’s model, can be obtained from the QO model
by setting Ip = 0. For the long trajectory considered here, the
return times from the simple man’s model differ significantly
from the QO return times, while the ionization times are very
close to those from the QO model (see Fig. 3).

B. Effect of Coulomb interaction on ionization time

Before analyzing the results of the time-retrieval method
further, we discuss three theoretical models for the influence
of the Coulomb interaction on the ionization times of the long
trajectory. Only the linearly polarized fundamental field enters
these models, so the electron trajectories are one dimensional.
Nevertheless, we retain the vector notation in some of the
equations so that they can be reused in the two-color calcu-
lations later in this section.

1. Adiabatic correction

In an adiabatic picture, the tunneling through the barrier
launches an electron with zero velocity, but immediately after
tunneling, the electron is affected by the attractive Coulomb
force. We treat the Coulomb force as a small perturbation
on top of the classical electron motion induced by the laser
field and furthermore we assume that the laser field is static
during the short time when the Coulomb force acts. A clas-
sical evaluation gives a simple expression for the resulting
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Coulomb-induced velocity change [48,49]

vc
0 = πE0cos(ωt0

i )

(2Ip)3/2
, (11)

which we will use as an effective initial velocity. Assuming
that an electron starts with an initial velocity ve

0 along the laser
field at the real time t0

i and neglecting any further Coulomb at-

traction, the classical return velocity is ve
r = ve

0 − ∫ t0
r

t0
i

Ex(t )dt .

If we have a return velocity ve
r corresponding to a set of

times t0
i and t0

r in the Coulomb-free case (ve
0 = 0) and if we

keep both ve
r and t0

r fixed when the Coulomb force is taken
into account (ve

0 = vc
0), then to first order in the Coulomb

interaction, the ionization time must change by an amount δt0
i

that satisfies 0 = vc
0 + Ex(t0

i )δt0
i . This leads to the Coulomb-

induced ionization-time shift

δt0
i = −π

(2Ip)3/2
. (12)

Hence, we estimate the ionization time as t0
i + δt0

i , where
the unperturbed time t0

i is taken from the QO model. It is
noteworthy that the estimate for the shift in Eq. (12) does not
depend on the laser parameters or the harmonic order at all.

2. Classical model

In this model, the electron trajectory r(t ) follows Newton’s
equation

r̈(t ) = −E(t ) − ∂rV (r(t )). (13)

Here the force −∂rV (r), derived from the same potential as
used in the TDSE, is taken into account in a nonperturbative
manner after the tunneling of the electron. The initial velocity

ṙ(t0
i ) = Re[p(ti, tr ) + A(t0

i )] (14)

and the initial position

r(t0
i ) = Re

(∫ t0
i

ti

[p(ti, tr ) + A(t )]dt

)
(15)

are chosen in the spirit of the QO model, i.e., the potential
is neglected during tunneling. The recombination time t ′

r is
defined by r(t ′

r ) = 0. The return energy Er of the electron then
determines the energy 	′ of the emitted radiation,

	′(t0
i , t ′

r ) = Ip + Er, (16)

where the total energy

Er = ṙ2(t ′
r )

2
+ V (r(t ′

r )) (17)

is the sum of the kinetic and potential energies. The denota-
tions t ′

r and 	′ are used to distinguish these quantities from
those of the QO model that are used in the computation of
the initial conditions. The desired ionization time for each
harmonic order is then given by the mapping between 	′ and
t0
i . In the potential-free case, we have verified that for a given

harmonic frequency, the real ionization and return times of the
classical model (CM) agree well with the real parts from the
QO model.

3. Analytical R-matrix method

Here we follow the theory by Torlina and Smirnova
[36,50], which corrects the QO model to first order in the
electron-core interaction. The relevant equations are repeated
here for completeness. Note that a similar approach was
discussed in [51]. In the ARM theory, the electron-core inter-
action is approximated as a pure Coulomb potential U (r) =
−1/

√
r2 and a Coulomb term

Sc =
∫ tend

tk

dt U (ra(t )) (18)

is added to the SFA action Sv of Eq. (10). Here the potential-
free trajectory

ra(t ) =
∫ t

ti

[p(ti, tr ) + A(t ′)]dt ′ (19)

is used in the integrand. The lower limit of the integral in
Eq. (18) is determined by a boundary-matching procedure.
This is necessary because the ARM theory partitions the con-
figuration space into an inner and an outer region, separated by
the surface of a sphere. The boundary matching prevents that
positions close to zero are inserted into the Coulomb potential.
This leads to tk = ti − i/(2Ip) [50]. The upper limit tend is
found by the condition r0 = √

r2
a(tend ), meaning that at time

tend the electron returns to the position [36,52]

r0 =exp

[
2

(
0.5772 −

∞∑
p=1

[1 − vr p arctan(1/(vr p))]/p

)]
/(2vr ),

(20)
where the return velocity vr = √

2(	 − Ip) is determined by
the harmonic emission frequency 	. One finds the first-order
shifts of the real parts of the saddle-point times (for the deriva-
tion, see Appendix A in Ref. [36])

�t0
i = −∂ ReSc

∂Ip
− ∂ ReSc

∂	
, �t0

r = −∂ ReSc

∂	
. (21)

In practice, the derivatives are obtained by evaluating Sc for
close-lying values of Ip and 	.

Figure 4 shows the ionization times calculated from the
above theoretical models. All three models (adiabatic correc-
tion, CM, and ARM) result in a shift of about 30 as to earlier
times when compared to the QO model. This result is similar
to the previous finding for the short trajectory [37]. It raises
the question whether the OTC ionization-time retrieval is able
to measure this Coulomb-induced time delay.

In the following, the reconstruction of ionization times
via the OTC scheme uses only the harmonic intensity as an
observable, i.e., only the displacement gate. We do not use the
velocity gate. Instead, we fix the real part of the return time
to the value given by the QO model and the imaginary part is
set to zero. This is justified by our finding that the retrieved
return time in Fig. 3 matches well the QO return time. In
the figure, we have additionally included the return time from
the ARM method described above as green dash-dotted line,
which also agrees well with the QO model. Furthermore, we
have confirmed the validity of our approach by comparing
ionization times extracted by use of only the displacement
gate, i.e., Eq. (7), to those resulting from both gates, i.e.,
Eqs. (7) and (8).
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FIG. 4. Ionization times from models taking into account the
Coulomb interaction: adiabatic correction (black solid line), CM (red
dashed line), and ARM (green dash-dotted line). Two representa-
tive results from the TDSE-based OTC scheme are shown: n = 2.6
representing streaking with low frequency and n = 5 representing
streaking with high frequency. The thick gray line shows the real
parts of ionization times from the QO model, i.e., a model without
Coulomb interaction.

Two representative results from the OTC scheme based on
TDSE results using low-frequency (2.6ω) and high-frequency
(5ω) streaking are presented in Fig. 4. It is found that
the Coulomb-free ionization times of the QO model agree
with the TDSE using the ω-2.6ω field, while the Coulomb-
corrected ionization times are consistent with the TDSE using
the ω-5ω field. This means that the Coulomb effect on the
ionization times is hidden in the low-frequency OTC scheme,
but the high-frequency OTC scheme provides a chance to re-
trieve the Coulomb-induced time shift. Additionally, the good
agreement between classical models (adiabatic correction and
CM) and the quantum-mechanical model (the ARM model)
indicates that the under-barrier Coulomb influence plays a
minor role. Thus, the Coulomb shift can be understood within
an intuitive classical picture as follows. After tunneling, the
attractive Coulomb force acts against the laser-induced ac-
celeration of the electron. To compensate for this effect, the
electron needs to start earlier so that it receives more acceler-
ation from the driving field.

Our findings about the frequency dependence of the time
retrieval are again similar to the short-trajectory case [37]. In
the following, we aim to show that the origin of the frequency
dependence lies in the structure of the retrieval equation and
that it is not due to an inaccuracy in the TDSE solutions.
To this end, we demonstrate that similar behavior is obtained
when the optimal phases for the time retrieval are obtained
not from the TDSE but from alternative methods. For this
purpose, the CM and ARM model are generalized to OTC
fields.

Similar to the one-color CM, the initial conditions in the
two-color CM are taken from the QO model, but the electron
trajectory r(t ) is now two dimensional with coordinates x(t )

and y(t ). The initial positions and velocities are vectors calcu-
lated from the QO model using Eqs. (14) and (15) except that
the y component of the velocity receives special treatment, as
explained below. The CM does not provide a straightforward
way to compute the harmonic yield, so the optimal phase
φ̄1 of this model needs to be obtained in a different manner.
Maximizing the harmonic intensity implies that the trajectory
fulfills two conditions for the transverse motion (along the y
axis): (i) The transverse coordinate of the electron returns to
zero at t ′

r , i.e., y(t ′
r ) = 0, and (ii) Revy0 = 0 as in Eq. (7). The

latter condition is required at the complex ionization time of
the QO model and thus it brings about a condition on the
initial transverse velocity ẏ(t0

i ) in the CM at the real time
t0
i . Using vy0 = py(ti, tr ) + Ay(ti ) and ẏ(t0

i ) = Re[py(ti, tr ) +
Ay(t0

i )], we find

ẏ(t0
i ) = Re

[
Ay

(
t0
i

) − Ay(ti )
]
. (22)

In the numerical implementation of the model, we always start
with the initial condition of Eq. (22) and we vary the two-
color delay φ in order to meet the return condition r(t ′

r ) =
0. Because of the two-dimensional trajectory, the return time
does not have to be exactly the same as in the one-color CM,
but they are very close because the streaking field is weak.

In the two-color ARM theory, the harmonic intensity is
calculated from the total ARM action which includes the
Coulomb term Sc [see Eq. (18)]. Thus, the harmonic intensity
is proportional to

Ia = |exp[i	t ′′
r − iSv (t ′′

i , t ′′
r ) − iSc(t ′′

i , t ′′
r )]|2. (23)

The SFA action Sv is given in Eq. (10). The expressions
for the actions used in Eq. (23) are evaluated with the full
two-dimensional OTC vector potential. Also, we use the OTC
saddle-point times t ′′

i and t ′′
r , i.e., the solutions of Eq. (9) with

both x and y components taken into account. The one-color
saddle-point times ti and tr do not provide sufficient accuracy
even though the probe field along y is small. The reason is
that the Coulomb term exp[−iSc(t ′′

i , t ′′
r )] is very sensitive to

the times because the Coulomb phase is not stationary at any
of the SFA saddle points [53]. The optimal phase φ̄1 is then
obtained by finding the maximum of the harmonic intensity
given by Eq. (23).

Figure 5 shows the retrieved ionization time as a function
of the streaking frequency for the harmonic order q = 53.
All three OTC calculations (CM, ARM, and TDSE) show
a double-plateau structure. In the first plateau, the retrieved
ionization times agree with the QO model, i.e., the Coulomb
interaction does not show in these results. In previous work
on photoelectrons, a similar conclusion was drawn when or-
thogonal streaking was used to determine the ionization time
in the case of an attoclock setup [35]. When the streaking
frequency is chosen to be identical to the fundamental fre-
quency, i.e., n = 1, it is easy to understand that all three
OTC models should predict the same optimal phase φ̄1 =
0 modulo π because this choice makes the total field lin-
early polarized, preventing any loss of harmonic yield due
to lateral displacement. Indeed, the results of the numerical
optimization procedure at n = 1 are very close to each other
and the obtained ionization times are extremely close to the
time from the QO model. In contrast, the second plateau
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FIG. 5. Reconstructed ionization times changing with the streak-
ing frequency nω for the harmonic order q = 53: TDSE (stars
connected with blue lines), CM (triangles connected with red lines),
and ARM (circles connected with green lines). Reference times from
one-color models are shown as horizontal lines: QO (thick gray solid
lines), CM (red dashed lines), and ARM (green dash-dotted lines).
The black dotted line shows results from the two-color CM without
the y component of the Coulomb force.

exhibits a Coulomb-induced time shift. Here the retrieved
ionization times agree with the estimates from the one-color
models that include the Coulomb interaction (see the hori-
zontal lines in Fig. 5). The three OTC calculations (TDSE,
CM, and ARM) differ slightly in the extension of the plateaus,
but to a good approximation we can conclude that the
low-frequency plateau reaches at least n = 2 and the high-
frequency plateau begins before n = 5. Interestingly, these
values appear to be slightly higher than those found for the
short trajectory in [37], where n = 4 was found to be more
than sufficient to resolve the Coulomb shift.

To investigate the physical origin of the difference between
low-frequency and high-frequency regions, we also consider
a modification of the two-color CM, where we neglect the
Coulomb force along the y axis (see the black dotted curve in
Fig. 5). In this case, we find an almost frequency-independent
result for the retrieved ionization time at a value that is con-
sistent with the second plateau of the TDSE calculation. This
means that the OTC scheme would work accurately at any
probe frequency if there was no Coulomb force along the

probe direction. Hence, the inability of the OTC method to
resolve the correct time at low frequencies is caused by the
Coulomb field along the probe direction, which is not taken
into account in the retrieval equations.

IV. CONCLUSION

We have reported that the OTC probe scheme, which
employs a probe field (streaking field) polarized along the
direction perpendicular to the fundamental driving field, is
able to measure the ionization and return times of the long tra-
jectory in HHG. Furthermore, the classical electron-trajectory
model and the quantum-mechanical theory demonstrate that
the long-range electron-core interaction causes an ionization-
time shift of 30 as towards earlier times for the long trajectory.
In an intuitive picture, the attractive Coulomb force along
the fundamental field polarization axis leads to a reduced
acceleration of the outgoing electron. To compensate for this
reduction, an earlier release into the field is needed. When the
OTC probe scheme is applied over a wide range of streaking
frequencies, the reconstructed ionization time as a function
of the streaking frequency exhibits a double-plateau struc-
ture. Only in the second plateau, the Coulomb-induced time
shift is revealed by the OTC scheme, whereas this time shift
is absent in the first plateau. Probe frequencies of 5ω and
beyond are found to be sufficient to resolve the Coulomb
shift accurately. To observe the times for the long trajectory
experimentally, it needs to be selected by appropriate phase-
matching conditions. Notwithstanding, the outcome of the
previous experiment for the short trajectory [30] indicates
that under suitable conditions the times are hardly affected
by macroscopic effects. Possibly, the OTC method can probe
ionization and recombination times for trajectories with even
longer excursion times (multiple returns), but these usually
play an insignificant role in HHG under macroscopic phase-
matching conditions [54,55]. Overall, streaking at various
frequencies is a highly promising tool for experimental time
measurements with attosecond precision.
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[29] D. B. Milošević and W. Becker, X-ray harmonic generation
by orthogonally polarized two-color fields: Spectral shape and
polarization, Phys. Rev. A 100, 031401(R) (2019).

[30] D. Shafir, H. Soifer, B. D. Bruner, M. Dagan, Y. Mairesse, S.
Patchkovskii, M. Y. Ivanov, O. Smirnova, and N. Dudovich,
Resolving the time when an electron exits a tunnelling barrier,
Nature (London) 485, 343 (2012).

[31] J. Zhao and M. Lein, Determination of Ionization and Tunneling
Times in High-Order Harmonic Generation, Phys. Rev. Lett.
111, 043901 (2013).

[32] J. Henkel and M. Lein, Analysis of electron trajectories with
two-color strong-field ionization, Phys. Rev. A 92, 013422
(2015).

[33] N. Eicke and M. Lein, Extracting trajectory information
from two-color strong-field ionization, J. Mod. Opt. 64, 981
(2017).

[34] X. Gong, C. Lin, F. He, Q. Song, K. Lin, Q. Ji, W. Zhang, J. Ma,
P. Lu, Y. Liu, H. Zeng, W. Yang, and J. Wu, Energy-Resolved
Ultrashort Delays of Photoelectron Emission Clocked by Or-
thogonal Two-Color Laser Fields, Phys. Rev. Lett. 118, 143203
(2017).

[35] N. Eicke, S. Brennecke, and M. Lein, Attosecond-Scale Streak-
ing Methods for Strong-Field Ionization by Tailored Fields,
Phys. Rev. Lett. 124, 043202 (2020).

[36] L. Torlina and O. Smirnova, Coulomb time delays in high
harmonic generation, New J. Phys. 19, 023012 (2017).

[37] S. Yue, S. Xue, H. Du, and M. Lein, Revealing Coulomb
time shifts in high-order harmonic generation by frequency-
dependent streaking, Phys. Rev. A 105, L041103 (2022).

[38] D. Shafir, B. Fabre, J. Higuet, H. Soifer, M. Dagan, D.
Descamps, E. Mével, S. Petit, H. J. Wörner, B. Pons, N.

023117-8

https://doi.org/10.1126/science.1090277
https://doi.org/10.1038/nphys434
https://doi.org/10.1103/RevModPhys.81.163
https://doi.org/10.1103/PhysRevA.81.033412
https://doi.org/10.1038/nphys3436
https://doi.org/10.1103/PhysRevA.101.053438
https://doi.org/10.1103/PhysRevA.55.3204
https://doi.org/10.1038/nature03183
https://doi.org/10.1038/nphys2029
https://doi.org/10.1103/PhysRevLett.109.233903
https://doi.org/10.1103/PhysRevLett.94.053004
https://doi.org/10.1126/science.1123904
https://doi.org/10.1103/PhysRevLett.107.083001
https://doi.org/10.1103/PhysRevLett.119.033201
https://doi.org/10.1038/nature08253
https://doi.org/10.1038/nphys1940
https://doi.org/10.1103/PhysRevLett.117.093902
https://doi.org/10.1103/PhysRevLett.95.253001
https://doi.org/10.1103/PhysRevA.76.011801
https://doi.org/10.1103/PhysRevLett.107.093004
https://doi.org/10.1103/PhysRevA.89.023423
https://doi.org/10.1103/PhysRevLett.114.173003
https://doi.org/10.1103/PhysRevLett.114.143001
https://doi.org/10.1364/OE.26.002775
https://doi.org/10.1103/PhysRevA.100.031401
https://doi.org/10.1038/nature11025
https://doi.org/10.1103/PhysRevLett.111.043901
https://doi.org/10.1103/PhysRevA.92.013422
https://doi.org/10.1080/09500340.2016.1257166
https://doi.org/10.1103/PhysRevLett.118.143203
https://doi.org/10.1103/PhysRevLett.124.043202
https://doi.org/10.1088/1367-2630/aa55ea
https://doi.org/10.1103/PhysRevA.105.L041103


IONIZATION AND RECOMBINATION TIMES OF THE … PHYSICAL REVIEW A 106, 023117 (2022)

Dudovich, and Y. Mairesse, Role of the Ionic Potential in High
Harmonic Generation, Phys. Rev. Lett. 108, 203001 (2012).

[39] L. Brugnera, D. J. Hoffmann, T. Siegel, F. Frank, A. Zaïr,
J. W. G. Tisch, and J. P. Marangos, Trajectory Selection in
High Harmonic Generation by Controlling the Phase between
Orthogonal Two-Color Fields, Phys. Rev. Lett. 107, 153902
(2011).

[40] C. Hofmann, A. S. Landsman, and U. Keller, Disentangling
long trajectory contributions in two-colour high harmonic gen-
eration, Appl. Sci. 8, 341 (2018).

[41] X. J. Xie, C. Chen, G. G. Xin, J. Liu, and Y. J. Chen, Coulomb-
induced ionization time lag after electrons tunnel out of a
barrier, Opt. Express 28, 33228 (2020).

[42] J. Crank and P. Nicolson, A practical method for numerical
evaluation of solutions of partial differential equations of the
heat-conduction type, Math. Proc. Cambridge 43, 50 (1947).

[43] M. Nurhuda and F. H. M. Faisal, Numerical solution of time-
dependent Schrödinger equation for multiphoton processes: A
matrix iterative method, Phys. Rev. A 60, 3125 (1999).

[44] P. Ehrenfest, Bemerkung über die angenäherte Gültigkeit der
klassischen Mechanik innerhalb der Quantenmechanik, Z.
Phys. 45, 455 (1927).

[45] M. Y. Ivanov, M. Spanner, and O. Smirnova, Anatomy of strong
field ionization, J. Mod. Opt. 52, 165 (2005).

[46] D. Shafir, Y. Mairesse, D. M. Villeneuve, P. B. Corkum, and N.
Dudovich, Atomic wavefunctions probed through strong-field
light-matter interaction, Nat. Phys. 5, 412 (2009).

[47] L. V. Keldysh, Ionization in the field of a strong electromagnetic
wave, Sov. Phys. JETP 20, 1307 (1965).

[48] S. P. Goreslavski, G. G. Paulus, S. V. Popruzhenko, and N. I.
Shvetsov-Shilovski, Coulomb Asymmetry in Above-Threshold
Ionization, Phys. Rev. Lett. 93, 233002 (2004).

[49] N. I. Shvetsov-Shilovski, S. P. Goreslavski, S. V. Popruzhenko,
and W. Becker, Capture into Rydberg states and momentum
distributions of ionized electrons, Laser Phys. 19, 1550 (2009).

[50] L. Torlina and O. Smirnova, Time-dependent analytical R-
matrix approach for strong-field dynamics. I. One-electron
systems, Phys. Rev. A 86, 043408 (2012).

[51] S. V. Popruzhenko, Coulomb phase in high harmonic genera-
tion, J. Phys. B 51, 144006 (2018).

[52] M. Ivanov and O. Smirnova, How Accurate Is the Attosecond
Streak Camera? Phys. Rev. Lett. 107, 213605 (2011).

[53] O. Kneller, D. Azoury, Y. Federman, M. Krüger, A. J. Uzan,
G. Orenstein, B. D. Bruner, O. Smirnova, S. Patchkovskii, M.
Ivanov, and N. Dudovich, A look under the tunnelling bar-
rier via attosecond-gated interferometry, Nat. Photon. 16, 304
(2022).

[54] C. Jin, G. L. Wang, H. Wei, A.-T. Le, and C. D. Lin, Waveforms
for optimal sub-keV high-order harmonics with synthesized
two- or three-colour laser fields, Nat. Commun. 5, 4003
(2014).

[55] C. Jin and C. D. Lin, Spatially coherent high-order harmonics
generated at optimal high gas pressure with high-intensity one-
or two-color laser pulses, Phys. Rev. A 94, 043804 (2016).

023117-9

https://doi.org/10.1103/PhysRevLett.108.203001
https://doi.org/10.1103/PhysRevLett.107.153902
https://doi.org/10.3390/app8030341
https://doi.org/10.1364/OE.408424
https://doi.org/10.1017/S0305004100023197
https://doi.org/10.1103/PhysRevA.60.3125
https://doi.org/10.1007/BF01329203
https://doi.org/10.1080/0950034042000275360
https://doi.org/10.1038/nphys1251
https://doi.org/10.1103/PhysRevLett.93.233002
https://doi.org/10.1134/S1054660X09150377
https://doi.org/10.1103/PhysRevA.86.043408
https://doi.org/10.1088/1361-6455/aac787
https://doi.org/10.1103/PhysRevLett.107.213605
https://doi.org/10.1038/s41566-022-00955-7
https://doi.org/10.1038/ncomms5003
https://doi.org/10.1103/PhysRevA.94.043804

