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Analytical model for attosecond time delays and Fano’s propensity rules in the continuum
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Extracting single photoionization time delays associated with atomic (or molecular) species from attosecond
timescale two-photon experiments usually relies on the theoretical description of continuum-continuum transi-
tions. The available models for those processes predict a universal phase contribution, independent of the angular
quantum numbers of final states. However, a recent experimental-theoretical study [Fuchs et al., Optica 7, 154
(2020)] determined a sizable time-delay dependence on the angular momentum of near-threshold photoelectrons.
In this paper, we present an analytical model for the two-photon two-color transition matrix amplitudes that
reproduces the phase dependence on the angular quantum number of final states. Finally, we show that our
analytical model can also describe the generalized Fano’s propensity rules [Busto et al., Phys. Rev. Lett. 123,
133201 (2019)] for laser-assisted photoionization.

DOI: 10.1103/PhysRevA.106.023116

I. INTRODUCTION

The pioneering work by Eisenbud, Wigner, and Smith
(EWS) on interpreting the energy derivative of the phase
of the wave function resulted in the concept of time delays
associated with quantum processes [1–3]. For many years,
that concept remained a theoretical curiosity because its ex-
perimental determination was not feasible: no measurement
protocol allowed extraction of time shifts on the subfem-
tosecond scale. However, that barrier was removed in 2001
when attosecond science became a reality [4,5]. Since then,
techniques such as streaking [4] or the reconstruction of at-
tosecond beating by two-photon transitions (RABBITT) [5,6]
are the methods of choice for triggering and monitoring elec-
tron dynamics in its intrinsic attosecond timescale [7]. Indeed,
in 2010 Schultze et al. [8] applied the streaking protocol to
determine the single photoionization (relative) time delay of
electrons emerging from the 2s and 2p shells in neon atoms.
Later, Klünder et al. [9] obtained the relative time delays for
electrons ionized from the 3s and 3p shells in argon atoms,
employing the RABBITT scheme.

The experimental realization of a longstanding theoretical
prediction prompted a new and still active research area within
the ultrafast community that ultimately led to a deeper under-
standing of the role played by time in quantum mechanics.
In fact, as the streaking and RABBITT schemes belong to
the set of pump-and-probe measurement protocols, it was
soon understood that information about the EWS time delay
is only accessible if the influence of the IR probe field is
considered [10]. Further theoretical developments show that
observed time delays in RABBITT experiments comprise two
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contributions: an EWS-like delay associated with the pump
stage and the additional delay originated from the probing
process [11].

These theoretical developments were crucial for the
successful obtention of (relative) EWS time delay from
RABBITT traces, corresponding to different atomic [9] and
molecular [12] species. However, the asymptotic approxima-
tions on which they rely are equivalent to neglecting the
effects of the centrifugal potential on intermediate and final
states. Consequently, the continuum-continuum (cc) phase
for different final states becomes a single contribution, in-
dependent of the angular quantum numbers of those states.
This universal character of the measurement-induced phases
should hold as long as the pump stage generates rapidly
escaping electrons. In such a scenario, the most relevant
contributions to one-photon cc transitions come from space
regions where short-range potentials, such as the centrifugal
one, are masked by the long tail of the Coulomb interaction
between the photoelectron and the parent ion.

The above qualitative argument will no longer be valid
for near-threshold photoelectron kinetic energies. Indeed, re-
cent measurements for slow photoelectrons [13] confirmed
the breakdown of the universal character of the delay in-
duced during the probing stage. The theoretical analysis
of these near-threshold processes [11,13–15] can be exclu-
sively carried out through numerical simulations that, despite
being extremely useful for an accurate evaluation of the
observables, usually provide only partial explanations for
the physical origin behind the observed effects. Therefore,
the development of a complementary analytical method can
be a valuable tool for providing further insights into these
phenomena [16].

In this paper, we present an analytical model that quan-
titatively describes the dependence of two-photon two-color
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FIG. 1. Schematic representation of pathways contributing to
consecutive dressed harmonic lines and the sideband in between.
For low IR intensities, dressed harmonic lines are mainly populated
by transitions from ground state to continuum states, triggered by
the absorption of a single photon with energy �± = (2q ± 1)ω0

from the attosecond pulse train. The interaction of these primary
photoelectron distributions with the IR gives rise to the sidebands.
Time-reversed contributions, where the IR photon is absorbed or
emitted first, are not shown here.

transition amplitudes on the angular quantum numbers of final
states.

II. METHODOLOGY

To establish a connection with some previous experimen-
tal and theoretical results on time delays, we focus on the
RABBITT scheme: atomic targets in the gas phase irradiated
with a combination of odd harmonics of a Ti:sapphire laser
plus a synchronized weak fraction of the fundamental infrared
(IR) laser. In this situation, the photoelectron spectra display
two qualitatively distinct sets of lines: (a) dressed harmonic
(DH) lines mainly populated by the absorption of one photon
from the source of odd harmonics and (b) sideband (SB) lines,
populated by two-photon transitions, on which the time delay
gets imprinted (see Fig. 1 for details).

Following standard time-dependent second-order perturba-
tion theory, it is possible to show that the sideband signal
reads [5]

S2q ∝
∑
L,M

|M+
L,M + M−

L,M |2, (1)

where M±
L,M are the two-photon transition matrix amplitudes

connecting the initial bound state to a final state in the contin-
uum with azimuthal and magnetic quantum numbers L and M,
respectively. In Fig. 1, we schematically show these reaction
pathways for a generic sideband of order 2q and an initial
s (li = 0) state. After solving the angular algebra and the
time integrals for infinitely long fields, the transition matrix

amplitudes above can be factorized as

M±
L,M = AL,Me±iω0τ

[
T li

L,λ(�∓) + T li
L,λ(±ω0)

]
, (2)

where AL,M is the angular (algebra) factor and exp(±iω0τ )
is a phase factor allowing us to control the sideband signal
by changing the delay τ between the harmonics and the IR
laser with angular frequency ω0. The (pseudo)radial matrix
elements in length gauge are given by

T li
L,λ(�) = eiσL (k)

iL

∑∫ 〈
Rεk ,L

∣∣r∣∣Rεκ ,λ

〉〈
Rεκ ,λ

∣∣r∣∣Rεi,li

〉
εi + � − εκ

, (3)

where σL(k) = arg[	(L + 1 − i/k)] is the Coulomb phase-
shift for partial wave L and momentum k, and we include the
phase factor in front of the r.h.s. of the above equation only for
further convenience. The summation (integration) runs over
the entire spectrum of unperturbed states of the target, with en-
ergy εκ , angular momentum λ, and radial wavefunctions Rεκ ,λ.
The initial and final states of the system are also described
by eigenstates of the field-free Hamiltonian, with radial wave
functions Rεi,li and Rεk ,L, respectively.

The transition matrix amplitudes in Eq. (2) can be derived
in closed form only for hydrogenic atoms [17–19]. Therefore,
to obtain a simple analytical model able to describe a broader
range of targets, some approximations must be made. First, for
typical IR laser intensities in RABBITT experiments, we can
focus only on those processes where the extreme ultraviolet
photon from the source of high-order harmonics is absorbed
first. This is equivalent to neglecting the radial matrix element
T li

L,λ(±ω0) in Eq. (2) that accounts for the dressing of the
initial state due to the IR laser field [20]. The remaining radial
matrix element can be evaluated by invoking the Dalgarno-
Lewis method [21] to obtain

T li
L,λ(�∓) = 〈

Rεk ,L

∣∣r|ρε±,λ〉, (4)

with ρε±,λ being the solution of the inhomogeneous differ-
ential equation [Hλ − ε±]ρε±,λ = −rRεi,li , where Hλ is the
laser-free radial Hamiltonian for angular momentum λ, and
the energy parameter satisfy ε± = (2q ∓ 1)ω0 + εi. From the
graphical representation in Fig. 1, it can be seen that ε± =
κ2

±/2 is merely the energy for the lower (upper) dressed har-
monic line.

The theoretical developments in Ref. [11] follow from
approximating ρε±,λ and Rεk ,L in Eq. (4) by their asymptotic
forms corresponding to large r. Such approximation allows us
to obtain analytical expressions for the radial matrix elements
that factorize as T li

L,λ(�∓) = |T li
L,λ(�∓)| exp(iφ±), with φ± =

φ±
bc + φ±

cc. The first term (φ±
bc) is the phase acquired during

the ionization step, triggered by the absorption of one photon
with energy �∓. The second term (φ±

cc) is the measurement-
induced phase due to one-photon cc transitions stimulated
by the IR probe laser. One main contribution in Ref. [11] is
the derivation of an analytical expression for the φ±

cc phases,
thus allowing access to the EWS time delay. Briefly, by mea-
suring the time offset in the oscillation of sideband signals
induced by the controlled modification of the delay τ , a fi-
nite difference approximation to the EWS time delay can be
obtained by subtracting the measurement-induced time delay
(φ+

cc − φ−
cc)/2ω0 to the total offset [22].
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Our derivation closely follows Ref. [11] to model the radial
matrix elements from Eq. (4), but we use the exact radial wave
function Rεk ,L for the final states instead of its asymptotic
approximation. In that case, we get

T li,±
L,λ � −π (−i)LeiσL (k)〈Rε±,λ|r

∣∣Rεi,li

〉
Nεk ,LNε±

×
∫ ∞

0
dre−ikrrL+2 exp [iκ±r + iκ±,λ(r)]

× 1F1(L + 1 + i/k; 2L + 2; 2ikr) (5)

� −π〈Rε±,λ|r
∣∣Rεi,li

〉
Nεk ,LNε± IL,λ

k,κ± , (6)

where the expression for the final continuum states was
taken from Ref. [23], pFq(a1, . . . , ap; b1, . . . , bq; z) is the
generalized Hypergeometric function, and the normalization

factors for intermediate and final states in the continuum are
given by

Nε± =
√

2

πκ±
, (7)

Nεk ,L = 1

(2L + 1)!

2(2k)L√
1 − exp(−2π/k)

L∏
s=1

√
s2 + 1

k2
, (8)

respectively. The position-dependent phase in Eq. (5) is
given by κ,λ(r) = ln(2κr)/κ + σλ(κ ) − πλ/2, with σl (κ )
the Coulomb phase shift for partial wave l and momentum
κ [11]. Operating over the logarithmic phase and rearranging
the factors, IL,λ

k,κ± can be obtained in closed form by taking a
limit for the integral of a closely related family of functions
[24]:

IL,λ
k,κ

= (2κ )i/κe−iπ (λ+L)/2eiσL (k)eiσλ(κ ) lim
ε→0+

∫ ∞

0
dre−(ε+ik−iκ )rrL+2+i/κ

1F1(L + 1 + i/k; 2L + 2; 2ikr) (9)

= (2κ )i/κ (−i)Le−iπλ/2eiσL (k)eiσλ(κ ) 	(L + 3 + i/κ )

(ik − iκ )(L+3+i/κ ) 2F1

(
L + 1 + i

k
, L + 3 + i

κ
; 2L + 2;

2ik

ik − iκ + 0+

)
. (10)

As the other factors entering Eq. (6) are strictly real [11],
the bound-continuum phase acquired during the ionization
step and the measurement induced phase, for two-photon pro-
cesses as those depicted in Fig. 1, must be encoded in the
expression for IL,λ

k,κ
above. As a matter of fact, from Eq. (10)

we can recognize the φ±
bc phase in the exp [iσλ(κ )] phase factor

and, therefore, our analytical model allows us to disentangle
the EWS phase contribution while the cc phases depend on
the angular momentum of final states.

It should be noted that our model reduces to the model of
Dahlström et al. [11] when the exact radial wave function Rεk ,L

for the final states is replaced by its asymptotic form corre-
sponding to large kr values. Once that operation is performed,
the obtention of the two-photon radial matrix elements follows
along the same lines as in Ref. [11].

III. CONTINUUM-CONTINUUM PHASES

The model we present can be applied, in principle, to ap-
proximate the two-photon transition matrix amplitudes from
any initial state of atomic [9] or molecular species [12,25].
This goal can be achieved by replacing the bound-continuum
contributions in Eqs. (6) and (10) with the corresponding
numerical results obtained from single-center expansion cal-
culations [12]. However, to facilitate the comparison with
previous theoretical and experimental data, we will first con-
centrate on initial hydrogen s states. In that case, the dipole
selection rules indicate that only final states with angular
momentum L = 0, 2 can be populated.

The results we get for φ±
cc,L from our analytic continuum-

continuum radial matrix elements (ACC-RME) in Eq. (10)
are shown in Fig. 2 by the dashed (L = 0) and dash-dotted
(L = 2) lines. From extensive testing, we have found that
our model works slightly better if momentum for intermedi-
ate states is approximated as κ± � k ∓ ω0/k. Following this
procedure, related to the soft-photon approximation [11] for

asymptotic intermediate states, does not change any of the
conclusions reached below. To assess the accuracy of our
analytical model, we additionally perform two sets of ab initio
calculations. First, we numerically solve the time-dependent
Schrodinger equation (TDSE) in the velocity gauge for hydro-
gen atoms, employing the QPROP code [26]. Using a single
harmonic and the IR, we obtain the transition amplitudes
M±

L,M for the absorption and emission pathways separately. In
addition, we calculate the same two-photon transition matrix
amplitudes in length gauge from second-order perturbation
theory (SOPT), based on the analytical results in Ref. [19].
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FIG. 2. Dependence of cc phases on photoelectron kinetic en-
ergy, as obtained from different methods for hydrogen atoms. Empty
circles (L = 0) and squares (L = 2): TDSE. Filled circles and
squares: SOPT. Long-range amplitude-corrected results are given by
the full thick lines. ACC-RME results are represented by the dashed
lines (L = 0) and the dashed-dotted lines (L = 2).
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For both approaches, we obtain the cc phase associated to
each transition amplitude by subtracting the contributions φ±

bc
and ±ω0τ to the total phase [27]. As can be clearly seen in
Fig. 2, the results we get for the ab initio calculations [28]. are
virtually identical to each other, ruling out any gauge and/or
convergence systematic errors.

Generally speaking, ACC-RME results in Fig. 2 for the
emission pathways are better than those for the absorption
ones. This behavior is not surprising and reflects a diminished
descriptive power of our model when it comes to representing
absorption pathways. From Fig. 1, it is evident that interme-
diate states for emission pathways will always have a larger
kinetic energy when compared to the sideband final state. In
that case, description of the intermediate states with asymp-
totic wave functions qualitatively captures the kinematical
conditions under which every model is expected to work
better: the lower the kinetic energy, the better the quality of
wave functions describing that state should be. The situation
is reversed for the absorption pathways. Now, intermediate
states with lower kinetic energy are described through approx-
imate asymptotic states, which may be a poor description for
sufficiently low kinetic energies.

Nonetheless, ACC-RME results for the absorption pathway
and L = 2 quantitatively reproduce the accurate data for elec-
tron kinetic energies above εk ∼ 8 eV, being almost identical
to those from the long-range amplitude-corrected (LRAC)
asymptotic approximation in Ref. [11]. On the other hand, the
L = 0 results for the absorption pathway slightly overestimate
ab initio calculations, with the notable exception of results
around Ek ∼ 5 eV, that are almost perfectly described. For the
emission pathway, the quantitative agreement between the ab
initio and ACC-RME results in Fig. 2 is prominent, consid-
ering the simplicity of our approach. For low kinetic energy,
our model faithfully reproduces the phase splitting obtained
through the exact calculations, whereas at high energy the
results for L = 0, 2 converge to the expected limit given by
the LRAC approximation.

The above comparison of individual cc phases φ±
cc,L

obtained through different methods is only possible by the-
oretical analysis. From the experimental point of view, phase
differences are the most detailed pieces of information that
angular distributions of RABBITT traces encode [13,14].
Recently, these phase differences were experimentally ob-
tained for helium targets [13] and the simulations reported
therein allow us to conclude that only single-active electron
dynamics are triggered within this energy range, in agreement
with previous calculations for two-photon two-color processes
[14,29]. Therefore, we can directly compare the phase differ-
ences φ±

cc,0 − φ±
cc,2 obtained from our model with those from

accurate calculations and the available experimental data.
These comparisons are presented in Fig. 3 for the absorp-

tion and emission processes separately. Our model globally
captures the salient features displayed by the phase differ-
ences obtained from ab initio and experimental data: they
decrease to eventually zero for larger photoelectron kinetic
energies and, for the same kinetic energy, the results for
the absorption pathways are slightly larger than those for
the emission ones. The convergence to zero can be easily
demonstrated by recalling that our model reduces to that in
Ref. [11] when final states can be accurately described by its
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FIG. 3. Dependence of cc phase differences on photoelectron
kinetic energy. ACC-RME, SOPT, and TDSE results correspond
to atomic hydrogen targets. The experimental results correspond to
helium atoms [13]. Upper panel: Absorption process. Lower panel:
Emission process.

asymptotic forms corresponding to large kr values. In that
case, cc phases are independent of the angular momentum
of final states and, therefore, their difference is identical to
zero. Alternatively, this limit can be obtained by just re-
placing the Gauss hypergeometric function in Eq. (10) with
the asymptotic approximation 2F1(a, b; c; z) ∼ λ1(−z)−a, for
|z| → ∞ [30]. For this second approach, we also obtain cc
phases identical to those in Eq. (22) from Ref. [11]. On the
contrary, the comparatively larger values obtained for the ab-
sorption pathway cannot be easily demonstrated as this feature
heavily relies on fine details of the Gauss hypergeometric
function.

As before, we observe a better agreement for the emission
pathway where the ACC-RME results quantitatively repro-
duce the experimental data and ab initio simulations, for
electron kinetic energies above ∼5 eV. For smaller kinetic
energies, our model captures the trend set by the simulations
for hydrogen and the experimental data for helium. The results
for the absorption pathway are less accurate, as ACC-RME
calculations overestimate both the experimental data and the
ab initio calculations on the entire range of electron kinetic
energies under analysis. Again, the model can reproduce the
trend, showing an increase in the phase difference for smaller
electron kinetic energies. The results for electron kinetic ener-
gies below ∼5 eV are shown by the dashed line to emphasize
that for an 800 nm IR laser, the intermediate states of the
absorption pathway will have a kinetic energy below ∼3.5 eV,
a value perhaps too low to admit a description with asymptotic
states.

IV. ANALYSIS OF GENERALIZED FANO’S PROPENSITY
RULES IN THE CONTINUUM

The primary aim of developing this model was to
put forward a general analytical expression able to
reproduce phase differences observed for partial waves pop-
ulating the final channel in sidebands. The previous analysis
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simulation results are shown by empty squares (emission only).
RPAE results [15] for different intermediate states are shown by
empty triangles and hexagons.

demonstrates that this goal has been achieved. In addition, as
a by-product, with our model we can also study the branching
ratio for partial waves upon cc transitions. This concept can
be traced back, at least, to a few experimental and theoreti-
cal studies for the half-RABBITT sidebands obtained when
atomic or molecular targets are ionized with a combination
of a free-electron laser pulse and an IR probing field [31,32].
More recently [15], this concept was applied to RABBITT
experiments, generalized for different partial waves, and ra-
tionalized as a superset of Fano’s propensity rules [33]. The
generalized Fano propensity rule states that upon absorption
(emission) of one IR photon for the cc transition, the partial
wave with larger (smaller) angular momentum is favored [15].

In Fig. 4, we compare the moduli ratios |T li,±
λ−1,λ/T li,±

λ+1,λ|
obtained from our model with the benchmark data: random-
phase approximation with exchange (RPAE) [15], TDSE, and
SOPT calculations and the scarce experimental data available
in the literature [31,32]. In any case, we observe that results
obtained from our model reproduce the behavior expected
from the generalized Fano propensity rules. For absorption
pathways, the radial matrix elements for partial waves with
L = λ + 1 are larger than those for L = λ − 1 and, therefore,
their ratio is smaller than its asymptotic value of one. For the
emission pathways, the opposite trend is observed and partial
waves with smaller angular momentum dominate. Even more,
our analytical results show that this behavior is dictated ex-
clusively by cc transitions taking place in a effective potential
(Znet − 1)/r, with Znet being the net charge of the target, irre-
spective of the more subtle details that its electronic structure
may have.

For λ = 1, the model almost perfectly describes ab initio
and experimental results for the emission pathway on the
entire energy range. Conversely, the results for the absorption
pathway fail for electron kinetic energies below ∼5 eV. As

before, this behavior may be ascribed to a poor description
of low kinetic energy intermediate states with asymptotic
wave functions. The approximately linear dependence on λ

of the kinetic energy value below which model results deviate
from the accurate calculations emphasizes the previous con-
clusion. Further understanding of this trend would require a
direct comparison of the approximate intermediate states with
those obtained from the numerical resolution of the Dalgarno-
Lewis method, which is beyond the scope of the present
paper.

The final remark on these branching ratios relates to its
universal character. From Eq. (6), it is clear that two-photon
radial matrix elements factorize as the product of a radial
matrix element for the pump stage and a single-photon cc fac-
tor. Therefore, the agreement of our model results with those
from more accurate calculations and the experimental data for
the branching ratios in Fig. 4 is a direct demonstration that
the observed variations are dictated by the single-photon cc
transitions. In turn, it means that correlation effects, included
in the RPAE calculations [15] and experimental data [31,32],
play little to no role in these branching ratios.

The above analysis of branching ratios for the radial matrix
elements can be systematically performed from a theoreti-
cal perspective. On the contrary, the empirical verification
of these results has some nuances depending on the initial
state. On one hand, for atomic s states there will be a single
intermediate state with λ = 1, therefore, the experimental and
theoretical results can be directly compared. The agreement
we observe in Fig. 4 indicates that the branching ratios are
independent of the radial distribution for the initial s state.
On the other hand, measurements for initial states with an-
gular momentum larger than zero will be hindered by the
fact that final states with L = li are coherently populated by
contributions following two different quantum pathways. In
such a scenario, a branching ratio dependence on the radial
distribution of the initial state cannot be ruled out. This is
in agreement with the findings in Ref. [25] (Fig. 5), where
changing the radial distribution for a 1s initial state in hydro-
gen does not modify an observable closely related to radial
matrix elements, whereas the same procedure for initial 2p
orbitals induces a dramatic change.

V. CONCLUSIONS AND OUTLOOK

To summarize, we developed an analytical model for
the two-photon two-color transition matrix amplitudes that
quantitatively reproduces state-of-the-art calculations and ex-
perimental data at low photoelectron kinetic energies, without
resorting to fitting free parameters. We demonstrated that
the effects induced by the centrifugal barrier onto the wave
functions can be almost completely recovered by just using
accurate final states, even if intermediate states are approx-
imated by its asymptotic form corresponding to large r. In
addition, the functional form we obtain for the matrix ele-
ments is fully compatible with the procedure to extract the
EWS time delays from the sideband signal oscillation in RAB-
BITT experiments. Additionally, our results can be readily
adapted to upgrade models describing higher order cc pro-
cesses [34], as they only require changing the description
of the final states. Finally, we demonstrate that the par-
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tial wave-branching ratio above a λ-dependent photoelectron
kinetic energy can also be accurately retrieved by consider-
ing the centrifugal potential effects only on final states. In
particular, our model may be useful to disentangle the co-
herent contributions populating final state partial waves with
L = li in two-color experiments from free-electron laser fa-
cilities, where measurements can be performed away from
threshold.

The data that support the findings of this study are publicly
available on Repositorio Institucional CONICET Digital [28].
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