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Aspects of two-photon absorption of squeezed light: The continuous-wave limit

C. Drago * and J. E. Sipe
Department of Physics, University of Toronto, 60 St. George Street, Toronto, Ontario, Canada M5S 1A7

(Received 6 June 2022; accepted 29 July 2022; published 22 August 2022)

We present a theoretical analysis of two-photon absorption of classical and squeezed light valid when one-
photon absorption to an intermediate state is either resonant or far-detuned from resonance, and in both the low-
and high-intensity regimes. In this paper we concentrate on continuous-wave excitation, although the approach
we develop is more general. We calculate the energy removed from an incident field for typical experimental
parameters and consider the limiting cases when the photon pairs are narrowband or broadband compared to
the molecular linewidths. We find an enhancement of the two-photon absorption due to resonant contributions
from the large squeezed light bandwidth and due to photon bunching in the low-intensity regime. However, in
both cases, for the parameters we choose, the one-photon absorption is the dominant process in the region of
parameter space where a large enhancement of the two-photon absorption is possible.
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I. INTRODUCTION

With sources of nonclassical light becoming widely avail-
able, the study of advantages such light might offer in
spectroscopic and sensing methods is an active area of re-
search [1–5]. One current research topic is whether or not the
use of broadband photon pairs can lead to enhanced rates for
two-photon absorption, thereby increasing the effectiveness of
applications that rely on classical two-photon absorption, such
as two-photon microscopy, photodynamic cancer therapy, and
3D photopolymerization [6–8].

Photon pairs can be generated such that their correlation
time is much less than molecular decay times, while also being
anticorrelated in frequency such that pairs of photons have
the correct total energy to lead to two-photon absorption. It
was first argued in the 1980s that correlated pairs of photons
would lead to a scaling of two-photon absorption linear with
the incident intensity [9–11]. This was shortly confirmed with
experiments on trapped atomic cesium [12], and followed by
many theoretical studies of two-photon absorption [1–3,13–
16] and its potential advantage in applications.

Other experiments also followed on two-photon absorption
[17–20] and sum frequency generation [21,22], and some re-
searchers have advocated for the development of two-photon
microscopy [23]. In each of these studies it is claimed that
two-photon absorption can be achieved with the use of photon
pairs at photon fluxes many orders of magnitude lower than
would be required were classical light used. However, these
results have been called into question by recent work, where
no enhancement due to photon pairs is observed [24–26],
and an alternate explanation for the experimental data can be
provided [27,28].

A new theoretical initiative has been led by Raymer et al.
[29–32], where the low-flux (“isolated pair”) regime was con-
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sidered. This was later generalized to the high-flux regime
[33]. In both studies they considered the “far-detuned limit,”
i.e., for the incident light used it is assumed that there are no
one-photon resonances involving the ground state and inter-
mediate states of the molecule. Their conclusion is that in the
low-flux regime the predicted rate of two-photon absorption
should be undetectable with current technologies, while in
the high-flux regime, where the squeezed light bandwidth
is much broader than molecular linewidths, squeezed light
does not provide any enhancement. These new theoretical
results are in agreement with the results of recent experiments
[24–27].

In the far-detuned limit, the low-flux regime can be treated
by usual perturbation approaches. For the high-flux regime,
there are, broadly speaking, two strategies that can be em-
ployed. The first is to “begin at the beginning,” with a
nonlinear interaction Hamiltonian governing the generation of
broadband squeezed light generated via a narrowband pump
[13]. This was the approach of Dayan, who found that in
the high-flux regime there are two quadratic dependencies
on intensity, labeled as “coherent” and “incoherent.” Alterna-
tively, if the incident field is squeezed light generated by an
ultrashort pump pulse, one can employ a Schmidt decomposi-
tion of the squeezed state, allowing for the calculation of the
time-frequency correlation functions governing the absorption
process [15]. Here one must sum over the Schmidt modes,
but the structure of the calculation is close in form to the
structure of the calculation following from the approach of
Dayan. Indeed, in their recent generalization to the high-flux
regime Raymer et al. [33] used a method closely related to
Dayan’s with similar results.

What has generally not been addressed is the “resonance
limit,” by which we mean that the incident light is on or close
to a one-photon resonance between the ground state and one
of the excited states of the molecule. In this article we present
a different description of two-photon absorption of squeezed
light (and classical light) valid in both the far-detuned and
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resonance limits, in both the low- and high-intensity regimes
and for both CW and pulsed excitation.

Our formalism differs from past treatments in that we work
with Heisenberg operators instead of employing a density
operator approach [32,34,35]. Within our formalism we in-
clude the effects of both nonradiative decay and dephasing
in our calculations, the first of which is treated dynamically
in the Markov limit, but could be generalized to beyond that
limit. Further, we calculate the total energy removed from the
incident field instead of the final state populations. This has
the advantage that it is directly related to what is measured by
experiment, although a simple distinction between one- and
two-photon absorption is not always apparent.

A central quantity in squeezed light two-photon absorp-
tion is the photon correlation functions. Our calculation of
the squeezed light correlation functions differs from those of
Dayan [13] and Raymer et al. [33] in that we begin with a joint
spectral amplitude for the incident squeezed light and derive a
field operator transformation that is used to evaluate the time-
frequency correlation functions leading to the absorption. We
use a simple model of the joint spectral amplitude of the
squeezed light to derive explicit functions and scalings with
intensity, and consider them in situations where the photons
are narrowband compared to the molecular linewidths, and
in situations where they are broadband compared to molec-
ular linewidths. However, more complicated models for the
squeezed light could also be implemented using our approach.

In this first communication we focus on CW excitation,
and compare the energy absorption of classical light with that
of squeezed light. In agreement with the results of earlier
studies, we find the two scalings with intensity previously
labeled as “coherent” and “incoherent.” We find that when
the incident squeezed light is narrow band with respect to
molecular broadening, the squeezed light cross sections are
equivalent to those of classical light and the ratio of absorption
is given by the normalized second-order correlation function
g(2)(0, 0), in agreement with recent work [33,36–39].

We then turn to a consideration of how the classical and
broadband squeezed light cross sections vary with the de-
tuning from one-photon resonances for typical experimental
parameters, extending past treatments [1–3,13–16]. We show
that the near-resonant behavior is nontrivial, and there is a
significant enhancement of the two-photon absorption cross
section of broadband squeezed light when the magnitude of
detuning is less than half the squeezed light bandwidth. How-
ever, for the typical parameters we adopt and in the region of
parameter space where this enhancement is visible, the one-
photon absorption cross section is also significantly enhanced
and overpowers the two-photon absorption.

In the far-detuned limit, which for squeezed light is when
the magnitude of detuning is greater than half the squeezed
light bandwidth, and when the squeezed light bandwidth is
greater than molecular linewidths, the ratio of absorption is
approximately given by g(2)(0, 0). Our results agree with the
calculation made by Raymer et al. [33] when the squeezed
light bandwidth is much greater than molecular linewidths.
Further, for broadband squeezed light in the low-flux regime,
where g(2)(0, 0) � 1 we do find that the squeezed light could
provide an advantage. However, here again we find that the
one-photon absorption dominates.

{|e〉}

{|f〉}

|g〉

{|e〉}

{|f〉}

|g〉
FIG. 1. Level diagram for the molecular system we are consider-

ing. We make no assumptions to where the intermediate set of levels
{|e〉} and final levels {| f 〉} are; they can be near or far from resonance
(within the RWA). We include the resonant and nonresonant diagram.
We assume the only allowed transitions from the external field are
between |g〉 ↔ {|e〉} and {|e〉} ↔ {| f 〉}.

The outline of the paper is as follows: Working in the
rotating-wave-approximation (RWA), in Sec. II we present a
model of a multilevel molecule (see Fig. 1) that allows one
to explore a wide range of the parameter space. The incident
field can be either far-detuned from, or near a one-photon
resonance with, the excited states.

To properly model a molecule in typical experimental set-
tings we include two sources of broadening, the nonradiative
decay of excited states and dephasing. For large molecules
with many degrees of freedom there are many ways in which
absorbed energy can decay. To model these processes we
couple the molecule to a quantum reservoir for each nonra-
diative decay pathway. For typical experiments, molecules are
in solution and thus subjected to broadening due to molecular
collisions. To include this broadening affect we include in our
Hamiltonian a stochastic fluctuation of the energy levels of the
molecule.

In many previous treatments, the calculations are referred
to as addressing the “probability of two-photon absorption.”
However, long after an exciting pulse has passed the molecule
it returns to its ground electronic state, and some fraction
of the energy extracted from the exciting pulse has been
reemitted as fluorescence. In perhaps the most proper mean-
ing of the word “absorption,” that fraction of the incident
energy has not been “absorbed,” since it has been returned
to the electromagnetic field. In Sec. III we derive a quan-
tum mechanical equation for the amount of energy removed
from the electromagnetic field, perhaps most properly the
absorption. However, in this first communication we treat the
fluorescence phenomenologically, by extending the use of the
reservoir to include the effects of radiation from fluorescent
molecules with high quantum efficiencies that are used for
current squeezed light two-photon absorption experiments.
Thus the “absorption” we then calculate has its more col-
loquial meaning as the energy removed from the incident
field.

In Secs. IV–VIII we develop the interaction picture in
which we will be working, derive the equations of motion, and
calculate the absorption for any incident field (pulsed or CW)
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near or far from resonance. Then in Sec. IX we specialize to
a three-level model for which we can construct closed form
results and set up the calculations to follow.

Finally, with the formalism developed and general expres-
sions for the absorption presented, we specify to different
incident fields. In Secs. X and XI we provide an analysis
of CW coherent and CW squeezed light in various regimes.
Technical details are presented in appendices.

II. MODEL HAMILTONIAN

We begin with a simple model of a molecule which has a
ground state |g〉, a set of states {|e〉} that can serve as inter-
mediate states in two-photon absorption, and a set of states
{| f 〉} that can serve as final states. For a review of quantum
light-matter interactions, see, e.g., Gerry and Knight [34],
and Mukamel [35]. The level diagram for such a molecule is
shown in Fig. 1. The free molecule Hamiltonian, HM, is then

HM = h̄ωgσgg +
∑

e

h̄ωeσee +
∑

f

h̄ω f σ f f , (2.1)

where σi j = |i〉〈 j|. We assume these states can be approxi-
mated as a complete basis,

1̂ = σgg +
∑

e

σee +
∑

f

σ f f . (2.2)

From here on we do not explicitly indicate sums over inter-
mediate (e) or final ( f ) states, and use the convention that
whenever such state indices appear on the right-hand side of
an equation, but not on the left-hand side, they are summed
over.

The free EM field Hamiltonian, HEM, is given by

HEM =
∑

I

∫
dkh̄ωka†

I (k)aI (k), (2.3)

with k = |k|, where

[aI (k), a†
J (k′)] = δ(k − k′)δIJ , (2.4)

and where the subscript labels the polarization of the field.
We treat the coupling between the molecule and the field
within the electric dipole approximation, neglecting certain
terms that lead to renormalization effects [40], by using an
interaction Hamiltonian

HM-EM = −μ · E, (2.5)

where μ is the dipole moment operator and E is the electric
field operator at the position of the molecule. These two oper-
ators commute, so we are free to order them in any way.

We expand each operator in terms of its positive and nega-
tive frequency components E = E+ + E− and μ = μ+ + μ−,
with (E+)† = E−, (μ+)† = μ−. We assume the relevant in-
cident field components are close enough to resonances that
the rotating-wave approximation (RWA) is valid; within this
approximation the interaction is given by

HM-EM = −μ− · E+ − E− · μ+, (2.6)

where we have chosen the normally ordered form, which is
the simpler to work with. In Appendix A we confirm that the
results are independent of the order chosen.

We assume that the only dipole allowed transitions of in-
terest are |g〉 ↔ {|e〉} and {|e〉} ↔ {| f 〉}. The transitions are
sketched in Fig. 1, where we indicate one scenario where there
is resonance with an intermediate state and one where there
is not. For atomic systems, where parity is a good quantum
number, if the transitions |g〉 ↔ {|e〉} and {|e〉} ↔ {| f 〉} are
allowed then the transition |g〉 ↔ {| f 〉} would be forbidden;
for large florescent molecules the situation is more compli-
cated. In any case, in this paper we treat any direct transition
{| f 〉} ↔ |g〉, or indeed any transition from | f 〉 to other states
that might exist with energies close to that of |g〉 but not shown
in Fig. 1, in a phenomenological way, if they are relevant, as
we discuss in Sec. III. The expansion of the dipole moment
μ+ using the molecular basis states is then

μ+ = μgeσge + μe f σe f , (2.7)

where μi j = 〈i|μ| j〉.
In many two-photon absorption experiments [18,19,23–

27], large molecules are put in solution and then irradiated.
Such molecules have many degrees of freedom that can
be involved in the nonradiative decay of optically excited
electronic states, leading to a loss of energy from the elec-
tromagnetic field. As well, the molecule suffers fluctuations in
the local environment that can lead to fluctuations in its energy
levels, and thus to dephasing of induced dipole moments. We
include both effects in the following sections.

A. Nonradiative decay

To model the first of these we couple the molecule to
a quantum reservoir. Such a reservoir is often taken to be
a set of harmonic oscillators, with the coupling to the sys-
tem of interest treated in the Markov limit; this leads to a
Lindblad equation for the reduced density operator of the
system [41]. However, since here we want to keep the details
of correlations between the molecule and the electromagnetic
field in our equations, only the reservoir would be “traced
over,” and the reduced density operator of the system of
interest—molecule and electromagnetic field—would act on
the combined Hilbert space of the molecule and the electro-
magnetic field. To avoid such a complicated entity we work
instead in the Heisenberg picture, and use the result of Fischer
[42] that dynamics at the Markov level can be modeled by
coupling each transition of interest to the excitations in a
formal 1D waveguide, which is taken as a reservoir at zero
temperature. In such a model, quantum fluctuations in the
waveguide propagate towards the molecule before interacting
with it, and then away from it after the interaction, assuring
that the molecule is effectively always interacting with the
vacuum state of the quantum reservoir. This idealizes
the physical assumption that the coherence generated between
the electronic transitions of the molecule and the other degrees
of freedom, which is responsible for the loss of energy from
the electromagnetic field, quickly decays.

In our implementation of this approach, we assume there
are independent nonradiative decay pathways of three types,
involving transitions between |g〉 ↔ {|e〉}, {|e〉} ↔ {| f 〉}, and
|g〉 ↔ {| f 〉}, respectively. We use the form for a 1D waveguide
Hamiltonian introduced earlier [43], where the propagation
of light in integrated photonic structures was discussed. For
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each decay process we introduce the waveguide “reservoir
operators” ψi j (z) and ψ

†
i j (z), which will lead to transitions

between |i〉 and | j〉, with ωi > ω j . For a single waveguide,
the free reservoir Hamiltonian is given by

Hi j
R = h̄ωi j

∫
dzψ†

i j (z)ψi j (z)

+ ih̄vi j

2

∫
dz

(
dψ

†
i j (z)

dz
ψi j (z) − H.c.

)
, (2.8)

where ωi j = ωi − ω j is taken as a center frequency and vi j is
the group velocity of excitation propagation in the waveguide.
We take the waveguide operators to satisfy the usual commu-
tation relation

[ψi j (z), ψ†
mn(z′)] = δimδ jnδ(z − z′), (2.9)

which ensures the dynamics of all the reservoir operators are
independent. The full reservoir Hamiltonian is then written as
the sum of three contributions,

HR = Heg
R + H f e

R + H f g
R , (2.10)

where Heg
R , H f e

R , and H f g
R contain reservoir operators that

facilitate transitions between |g〉 ↔ {|e〉}, {|e〉} ↔ {| f 〉}, and
|g〉 ↔ {| f 〉}, respectively. Again, and below, there is an im-
plicit sum over the intermediate and final states.

For the interaction between a transition σi j and its asso-
ciated reservoir, we assume a point coupling between the
molecule and the waveguide modeling the reservoir. After
applying the RWA, the coupling responsible for transitions
between |i〉 ↔ | j〉 due to the reservoir is given by [43]

Hi j
M-R = h̄η∗

i jσi jψi j (0) + h̄ηi jψ
†
i j (0)σ ji, (2.11)

taking the “position” of the molecule to be the origin of the
fictitious waveguide, with the full coupling Hamiltonian then
given by

HM-R = Heg
M-R + H f e

M-R + H f g
M-R. (2.12)

In Eq. (2.8) we introduced a nominal reference frequency
and group velocity, and in Eq. (2.11) we introduced a nominal
coupling constant ηi j . In fact, the group velocity vi j and cou-
pling ηi j will lead to a new constant that will identify the non-
radiative decay widths associated with each transition |i〉 ↔
| j〉; it will be the physical parameter that can be identified by
experiment, and there will be one of these physical parameters
for each coupling of a transition to a waveguide reservoir.

B. Dephasing

We now turn to the effects of fluctuations in the energy
levels of the molecule that arise due to fluctuations in its
environment. The dephasing that results could be captured by
a density operator formalism with a quantum reservoir model
such as that described above, but one that would involve
terms Hi j

M-R with i = j [44]. In the low-temperature regime
such a treatment is necessary, but one can consider a simpler
model of dephasing that reproduces the fully quantum treat-
ment at higher temperatures [35,44–46]. In that simpler model
the molecule is subject to classical stochastic fluctuations in
its energy eigenvalues, described with a contribution to the

Hamiltonian given by

Hfluc(t ) = h̄ω̃g(t )σgg + h̄ω̃e(t )σee + h̄ω̃ f (t )σ f f , (2.13)

where the ω̃i(t ) are classical stochastic functions of time. We
make four assumptions concerning these random variables
[44,45]: (1) they have zero mean; (2) the correlation between
state |i〉 and | j〉 is characterized by ci j ; (3) the correlation
between two variables at different times follows a fast expo-
nential decay with a timescale τc; and (4) the random variables
follow a Gaussian distribution. We denote the classical expec-
tation value as [[·]], and then the first three assumptions are
summarized by

[[ω̃i(t )]] = 0, (2.14a)

[[ω̃i(t )ω̃ j (t
′)]] = ci je

−|t−t ′ |/τc . (2.14b)

In the full problem we calculate all quantities of interest, and
then finally take the stochastic averages as given above to
describe the effects of dephasing.

Then the full Hamiltonian for our model is

H (t ) = H0 + V (t ), (2.15)

where H0 is the free Hamiltonian given by

H0 = HM + HEM + HR, (2.16)

and V (t ) the time-dependent interaction term given by

V (t ) = HM-EM + HM-R + Hfluc(t ). (2.17)

We note that although V (t ) = V †(t ) is time dependent it is
still a Schrödinger operator.

To write the interaction Hamiltonian in a compact form we
define the operators

F i j
+ = μi j

h̄
· E+ − η∗

i jψi j (0), (2.18)

and their adjoints,

(F i j
+ )† = μ ji

h̄
· E− − ηi jψ

†
i j (0) ≡ F ji

− . (2.19)

The interaction V (t ) can then be written as

V (t ) = −h̄σegF eg
+ − h̄σ f eF f e

+ − h̄σ f gF f g
+ + H.c. + Hfluc(t ).

(2.20)

We note that there are three F i j
+ operators that contribute to the

interaction: F eg
+ , F f e

+ , and F f g
+ . However, the last term F f g

+ is
sui generis. It contains only reservoir operators, as we have
assumed there are no one-photon transition between |g〉 ↔
{| f 〉}, i.e., μ f g = 0. The form of the first line in Eq. (2.20)
allows a simple interpretation: the energy of the molecule is
increased (decreased) by annihilating (creating) energy in the
external field or reservoir.

III. ABSORPTION(S)

The term absorption is used in a number of different ways
in optics. In one usage it refers to the removal of energy from
the electromagnetic field, and in our discussion here we begin
with that meaning. In Appendix A we show that, within the
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RWA, the absorption of light between tI and tF > tI by a
molecule is given by

A =
∫ tF

tI

dt〈�(t0)|E−H (t ) · dμ+H (t )

dt
|�(t0)〉 + c.c., (3.1)

where |�(t0)〉 is the initial ket (t0 < tI ) of the full molecule-
field-reservoir system, and the superscript H indicates that
the operators evolve according to the full Hamiltonian. (For
a discussion of the special case where the state of the elec-
tromagnetic field is a single photon, see Valente et al. [47].)
Although the result (3.1) is exact, we have yet to solve for the
Heisenberg operators μH

± (t ) and EH
± (t ).

Besides renormalization contributions, which we neglect,
the solution for these quantities also involve radiation reaction
effects [48]. These we also neglect in this paper. For typical
one-photon absorption processes in molecules this is well
justified, for the natural linewidth is much less than that due
to nonradiative decay and dephasing. But for typical fluores-
cent molecules used for two-photon absorption experiments
[17–19], there can be large fluorescence quantum efficiencies
that would make this neglect suspect. To compensate for this
we expand the use the reservoir introduced in Sec. II to also
provide a phenomenological model of the decay of the states
{| f 〉} to the ground state |g〉 due to fluorescent processes; we
leave a more complete description with radiation reaction to
later work

Then the expression for the absorption is given by

A →
∫ tF

tI

dt〈�(t0)|E−H0 (t ) · dμ+H ′
(t )

dt
|�(t0)〉 + c.c.,

(3.2)

where by μH ′
± (t ) we mean the evolution of those quantities

according to the Heisenberg equations, but with EH
± (t ) in

those equations replaced by EH0± (t ). Since this expression for
the “absorption” only models the fluorescent contributions to
the extinction as loss from the full electromagnetic field, it
includes effects that physically are not absorptive in the strict
sense introduced at the start of this section. Nonetheless, in the
more colloquial sense of “absorption” implicit in the phrase
“two-photon absorption,” this can be understood as describing
the removal of energy from the components of the electromag-
netic field near the fundamental frequency. For the rest of this
paper we use Eq. (3.2) to calculate this “absorption,” but to
avoid clutter in the notation we henceforth drop the primes on
the H ′ in μH ′

± (t ), and also drop the inverted commas around
“absorption.”

We then proceed by using the expression for μH
± (t ). The

calculated absorption then has two contributions, the first due
to the coherence operator σ H

ge (t ) and the second is due to
σ H

e f (t ). Since within our approximations Eq. (3.2) identifies
the full absorption, we will see that a simple division of the
result into “one-photon” and “two-photon” terms is not always
possible, especially when the fundamental frequency is on
resonance with a transition to an intermediate level.

We proceed by expanding each coherence operator σ H
i j (t )

in a perturbative series, using the interaction picture we
present below.

IV. INTERACTION PICTURE

In our full Hamiltonian (2.15), V (t ) can be written as a
function of a set of Schrödinger operators {Oα} and time,
V ({Oα}; t ). The time evolution of a ket from ta to tb in the
absence of V ({Oα}; t ) is formally described by the unitary
evolution operator U0(tb, ta), which satisfies the Schrödinger
equation

ih̄
d

dtb
U0(tb, ta) = H0U0(tb, ta) (4.1)

and has a solution

U0(tb, ta) = e−iH0(tb−ta )/h̄. (4.2)

Including V ({Oα}; t ), the full evolution operator U (tb, ta) sat-
isfies the equation

ih̄
d

dtb
U (tb, ta) = H (tb)U (tb, ta), (4.3)

with the initial condition U (ta, ta) = 1̂ for all ta.
Now consider times tmin and tmax such that for t � tmin or

t � tmax the interaction between the electromagnetic field and
the molecule vanishes. In general, of course, such times do
not exist; even when there is no pulse of light, if initially
a molecule were in its ground state or any other eigen-
state of HM [Eq. (2.1)], it would interact with the quantized
electromagnetic field. However, for the RWA form of the
Hamiltonian we adopt, such “vacuum state” interactions van-
ish; see Appendix A. So for times ta, tb � tmin or ta, tb � tmax

we have

U (ta, tb) = U0(ta, tb). (4.4)

It is then useful to introduce the operator

U (tb, ta) = U0(0, tb)U (tb, ta)U0(ta, 0), (4.5)

which satisfies all the properties of a unitary time evolution
operator, including the condition that U (ta, ta) = 1̂ for all ta.
We can then write

|�(t )〉 = U0(t, 0)U (t, t0)|�in〉, (4.6)

where the “asymptotic-in” ket

|�in〉 ≡ U0(0, t0)|�(t0)〉 (4.7)

is what the ket would be at t = 0 were there no interaction
V (t ) and t0 < tI , tmin is the initial start time. Note that since t0
is long before any interaction occurs, |�in〉 is independent of
t0. From the definition (4.5) we can show, using (4.4), that for
ta, t ′

a � tmin we have U (t, ta) = U (t, t ′
a), and thus both must

be equal to U (t,−∞); if we put

U (t ) ≡ U (t,−∞) (4.8)

we can write (4.6) as

|�(t )〉 = U0(t, 0)U (t )|�in〉. (4.9)

We now move to the Heisenberg picture and develop an inter-
action representation related to this.

To begin we introduce an interaction representation of each
Schrödinger operator Oα ,

Ôα (t ) ≡ U0(0, t )OαU0(t, 0). (4.10)
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For our operators of interest we will have, schematically,

Ôα (t ) =
∑

β

gαβ (t )Oβ, (4.11)

where the gαβ (t ) are (classical) functions of time. For exam-
ple, if Oα is σi j or a(k), then there will be only one such gαβ (t )
and we have

σ̂i j (t ) = σi je
−iω jit , âI (k, t ) = aI (k)e−iωkt , (4.12)

but if Oα is ψi j (z), we have

ψ̂i j (z, t ) = ψi j (z − vi jt )e−iωi j t

=
∫

gzz′ (t )ψi j (z
′)dz′, (4.13)

where gzz′ (t ) = δ(z′ − z + vi jt ) exp(−iωi jt ).
With the expressions (4.10) and (4.11), and the definitions

of U0(ta, tb), U (ta, tb), and U (t ), it is easy to confirm that the
expectation value of any operator Oα is

〈�(t )|Oα|�(t )〉 = 〈�in|Ōα (t )|�in〉, (4.14)

where

Ōα (t ) = U †(t )U0(0, t )OαU0(t, 0)U (t )

=
∑

β

gαβ (t )Ǒβ (t ) (4.15)

and

Ǒβ (t ) ≡ U †(t )OβU (t ). (4.16)

Since absorption occurs only for times t between the “in-
teraction region” tmin � t � tmax, as long as t0 < tI < tmin and
tF > tmax we can extend the limits of integration to infinity be-
cause the absorption is zero for those times and write Eq. (3.2)
as

A =
∫ ∞

−∞
dt〈�in|Ê−(t ) · dμ̄+(t )

dt
|�in〉 + c.c., (4.17)

where Ê−(t ) ≡ E−[{â†
I (k, t )}] = E−[{a†

I (k)eiωkt }], and since
in calculating μH

+ (t ) we are to replace EH
+ (t ) by EH0+ (t ), in

calculating μ̄+(t ) we are to replace Ē+(t ) ≡ E+[{āI (k, t )}] =
E+[{ǎI (k, t )e−iωkt }] by Ê+(t ) ≡ E+[{âI (k, t )}] = E+[{aI (k)
e−iωkt }]. This we will do in the equations of motion we derive
below.

V. EQUATIONS OF MOTION

The operator μ̄+(t ) involves the operators σ̄ge(t ) and
σ̄e f (t ), and we will see below that the dynamics for those op-
erators involves other operators σ̄i j(t), and so the σ̄i j (t ) will be
our operators Ōγ (t ) of interest. Now the complicated part of
the dynamics of an operator Ōγ (t ) is due to its dependence on
the Ǒγ (t ), and the evolution of an operator Ǒγ (t ) follows from
the evolution of U (t ). From its definition (4.8) the dynamical
equation for U (t ) can be found,

ih̄
d

dt
U (t ) = V ({Ôα (t )}; t )U (t ), (5.1)

from which follows the dynamical equation for Ǒγ (t ),

ih̄
d

dt
Ǒγ (t ) = [Ǒγ (t ),V ({Ōα (t )}; t )]. (5.2)

In these equations the Ōα (t ) are functions of the Ǒβ (t ),
as given by (4.15). Noting this relation is the same as that
between the Ôα (t ) operators and the Schrödinger operators
Oβ (4.11), we have

σ̄i j (t ) = σ̌i j (t )e−iω jit , āI (k, t ) = ǎI (k, t )e−iωkt ,

ψ̄i j (z, t ) = ψ̌i j (z − vi jt, t )e−iωi j t . (5.3)

Since the relation between σ̄i j (t ) and σ̌i j (t ) is so simple, and it
is the operators Ōα (t ) appearing in V ({Ōα (t )}; t ) in (5.2), we
begin by constructing dynamical equations for the σ̄i j (t ) using
(5.2,5.3),

ih̄

(
d

dt
+ iω ji

)
σ̄i j (t ) = [σ̄i j (t ),V ({Ōα (t )}; t )]. (5.4)

They involve the quantities

F̄ i j
+ (t ) ≡ μi j

h̄
· E+[{āI (k, t )}] − η∗

i jψ̄i j (0, t ), (5.5)

for ωi > ω j , and their adjoints [see Eq. (2.18)]. Note that the
dynamical equations (5.4) for the σ̄i j (t ) take the same struc-
ture as the Heisenberg equations σ H

i j (t ). However, while the
ket relevant for expectation values of the σ H

i j (t ) is |�(t0)〉, that
relevant for expectation values of the σ̄i j (t ) is |�in〉. And while
the σ H

i j (t ) equal the corresponding Schrödinger operators σi j

at t0, it is the operators σ̌i j (t ) that equal the corresponding
Schrödinger operators σi j at a special time given by t = −∞.
We return to this point below.

Since the relation between ψ̄i j (z, t ) and ψ̌i j (z, t ) is not as
simple as that between σ̄i j (t ) and σ̌i j (t ) [see (5.3)], we simply
construct the dynamical equation for ψ̌i j (z, t ) directly from
(5.2); again, since an Ǒα (t ) is related to the corresponding
Schrödinger operator Oα by a unitary transformation (4.16),
the commutation relations are preserved, and we find

∂

∂t
ψ̌i j (z, t ) = −iηi j σ̌ ji(t )δ(z + vi jt ). (5.6)

Equations (5.4) and (5.6) are the set of dynamical equa-
tions we wish to solve; note that (5.4) could easily be rewritten
as equations for the σ̌i j (t ), and we would be solving for the set
{Ǒα (t )} of operators.

VI. FORMAL SOLUTIONS

Equation (5.6), which describes how the σ̌ ji(t ) affect the
ψ̌i j (z, t ) can be solved immediately. Integrating from t = −∞
to t , we recall that ψ̌i j (z,−∞) = ψi j (z), the Schrödinger
operator, and we find

ψ̌i j (−vi jt, t ) = ψi j (−vi jt ) − iηi j

2vi j
σ̌ ji(t ). (6.1)

Multiplying by exp(−iωi jt ), using (5.3) we can also write this
as

ψ̄i j (0, t ) = ψ̂i j (0, t ) − iηi j

2vi j
σ̄ ji(t ), (6.2)
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where we have also used (4.13). Note that ψ̂i j (0, t ) can be
written in terms of Schrödinger operators, and as such can be
thought of as the “input” of the reservoir field at the site of
the molecule; ψ̄i j (0, t ) can then be thought of as the “output,”
which contains a contribution from the molecule.

With this in hand we can simplify the expression (5.5) for
the F̄ i j

+ (t ). For ωi > ω j we have

F̄ i j
+ (t ) = μi j

h̄
· E+[{ǎI (k, t )e−iωkt }] − η∗

i jψ̂i j (0, t )

+ i
|ηi j |2
2vi j

σ̄ ji(t ). (6.3)

Neglecting the radiation reaction (and renormalization) effects
on the electric field operator, as discussed in Sec. III, we put
ǎI (k, t ) → aI (k) [see discussion after Eq. (3.1)], and so

E+[{ǎI (k, t )e−iωkt }] → E+[{aI (k)e−iωkt }] = Ê+(t ), (6.4)

and we can write

F̄ i j
+ (t ) = F̂ i j

+ (t ) + ii j σ̄ ji(t ), (6.5)

where

F̂ i j
+ (t ) ≡ μi j

h̄
· Ê+(t ) − η∗

i jψ̂i j (0, t ) (6.6)

and

i j = |ηi j |2
2vi j

. (6.7)

The reservoir parameters that contribute to calculation are
now combined into the constant i j , and we have written
F̄ i j

+ (t ) as the sum of two contributions. The first is from the

operator F̂ i j
+ (t ), which is a Schrödinger operator, and there-

fore a “known” quantity which drives transitions. The second
contribution depends on the molecule operator σ̄ ji(t ) which is
yet to be determined. Finally, the constant i j which has units
of inverse time, will turn out to be the decay rate associated
with transitions between states |i〉 ↔ | j〉.

Unlike the subscripts on σi j and μi j , the subscript of i j

follows from the label we gave to each reservoir operator
ψi j (z), which was defined only when ωi > ω j ; thus i j is also
only defined then. However, in the following it will be con-
venient to define  ji when ωi > ω j to be  ji ≡ i j , i.e., the
decay constant i j is defined to be symmetric. Although i j

is defined to be symmetric, it always represents the decay rate
of energy of the molecule transitioning from a state of high
energy to one of lower energy. The definition is convenient in
introducing the Green function below.

Using the solution (6.5) for each F̄ i j
+ (t ) in Eq. (5.4) for

the corresponding σ̄i j (t ), damping terms i j are introduced
which we group on the left-hand side of each equation and
define the total relaxation constants due to the reservoir for
each molecule operator by

̄eg ≡ eg, (6.8a)

̄gg ≡ 2eg, (6.8b)

̄e′e ≡ e′g + eg, (6.8c)

̄ f e ≡ eg +
∑

e′
 f e′ +  f g, (6.8d)

̄ f g ≡
∑

e′
 f e′ +  f g, (6.8e)

where each barred decay constant ̄i j (= ̄ ji) is associated
with σ̄ ji(t ). We find

(
d

dt
+̄eg+iωeg+iω̃eg(t )

)
σ̄ge(t ) = i[σ̄gg(t )F̂ eg

+ (t )−σ̄e′e(t )F̂ e′g
+ (t )+F̂ e f

− (t )σ̄gf (t )], (6.9a)

(
d

dt
+̄ f e+iω f e+iω̃ f e(t )

)
σ̄e f (t ) = i[σ̄ee′ (t )F̂ f e′

+ (t )−F̂ ge
− (t )σ̄gf (t )−σ̄ f ′ f (t )F̂ f ′e

+ (t )], (6.9b)

(
d

dt
+̄ f g+iω f g+iω̃ f g(t )

)
σ̄gf (t ) = i[σ̄ge(t )F̂ f e

+ (t )−σ̄e f (t )F̂ eg
+ (t )], (6.9c)

(
d

dt
+̄e′e+iωe′e+iω̃e′e(t )

)
σ̄ee′ (t ) = i[σ̄eg(t )F̂ e′g

+ (t )−F̂ ge
− (t )σ̄ge′ (t )−σ̄ f e′ (t )F̂ f e

+ (t )+F̂ e′ f
− (t )σ̄e f (t )−2i f eσ̄ f f (t )δee′], (6.9d)

where ω̃i j (t ) = ω̃i(t ) − ω̃ j (t ). Further, we have dropped terms
involving F̂ f g

+ (t ), which can be done with impunity: Since the
equations here are normally ordered, when we solve for each
molecule operator perturbatively they will remain normally
ordered; F̂ f g

+ (t ) is a known quantity that involves only reser-
voir operators, so it will always annihilate the ket |�in〉, since
we take the reservoir to be initially the vacuum state. Thus the
dropped terms will lead to no contribution to the absorption.
For the same reason, at this point we could replace each
F̂ i j

+ (t ) → μi j/h̄ · E+(t ) for i j �= f g, but for now we choose

to stay in the F̂ i j
+ (t ) notation to keep the equations more

condensed. We note that Eq. (6.9), with the replacement of
F̂ i j

+ (t ) → μi j/h̄ · E+(t ), is the usual Heisenberg time evolu-
tion for the coherence operators; see, for example, Gerry and
Knight [34].

The equations in (6.9) and their adjoints, together with
the corresponding equations for σ̄gg(t ) and σ̄ f ′ f (t )—not writ-
ten down because they are not necessary to calculate the
absorption in a perturbative calculation—form a closed set
of coupled differential equations for the molecule operators
σ̄i j (t ), since each F̂ i j

± (t ) is a Schrödinger operator which is
known.

023115-7



C. DRAGO AND J. E. SIPE PHYSICAL REVIEW A 106, 023115 (2022)

FIG. 2. Exact diagrams for σ̄ge(t ) and σ̄e f (t ). Time flows upwards such that t � t1. Each diagram starts with the exact form of an operator
in a bubble at t1 and interacts with the field. The time evolution from t1 → t evolves according to the Green function Gi j (t, t1). Diagrams I and
IV contribute to one- and two-photon absorption, respectively. Diagrams II and V are saturation terms of the one- and two-photon absorption,
respectively. The physics of diagrams III and VI depend on the detuning, but far from resonance the diagrams contribute to two-photon
absorption.

We now consider the general form of each equation in
(6.9), which is given by(

d

dt
+ ̄i j + iωi j + iω̃i j (t )

)
σ̄ ji(t ) = Ki j (t ) (6.10)

or (
d

dt
+ ̄i j + iω̃i j (t )

)
σ̌ ji(t ) = eiωi j t Ki j (t ). (6.11)

The second form has a formal solution that includes a homo-
geneous solution satisfying the initial condition at t = −∞,
where each σ̌ ji(t ) is equal to the corresponding Schrödinger
operator σ ji. Because of the damping term ̄i j , that homoge-
neous solution will vanish for finite times. Correspondingly,
in a formal solution of (6.10) the homogeneous solution will
vanish as well, and introducing a Green function

Gi j (t, t1) ≡ ie−(̄i j+iωi j )(t−t1 )e−i
∫ t

t1
dt ′ω̃i j (t ′ )

, (6.12)

the exact solution to Eq. (6.10) and each operator in Eq. (6.9)
is

σ̄ ji(t ) =
∫ t

−∞
dt1Gi j (t, t1)Ki j (t1), (6.13)

for the appropriate Ki j (t ) on the right-hand side. We note that
the Green function for each equation satisfies the property that

G∗
i j (t, t1) = −Gji(t, t1), (6.14)

where we used the property that ̄i j is symmetric.
To process the terms further we need to evaluate the time

integral in the definition of Gi j (t, t1). The time integral can be
evaluated by taking the classical average of each coherence
operator

[[σ̄ ji(t )]] =
∫ t

−∞
dt1[[Gi j (t, t1)Ki j (t1)]], (6.15)

where the classical average must include Ki j (t1) since it is a
function of molecule operators, which also vary stochastically.

For this reason the expectation value in Eq. (6.15) cannot
be solved. Further, the right-hand side involves Ki j (t ), which
includes unknown molecule operators. Therefore, to solve for
the molecule operators where the right-hand side involves
“known” quantities we need to resort to perturbation theory.
It is at this point where each term will depend only on ω̃i j (t )
explicitly, allowing us to evaluate the expectation value.

Before resorting to perturbation theory we consider the
exact formal expressions for σ̄ge(t ) and σ̄e f (t ) that will be used
to calculate the absorption. Using the definition of Gi j (t, t1),
exact expressions for σ̄ge(t ) and σ̄e f (t ) are

σ̄ge(t ) =
∫ t

−∞
dt1[Geg(t, t1)σ̄gg(t1)F̂ eg

+ (t1)

+ G∗
ge(t, t1)σ̄e′e(t1)F̂ e′g

+ (t1)

+ Geg(t, t1)F̂ e f
− (t1)σ̄gf (t1)], (6.16a)

σ̄e f (t ) =
∫ t

−∞
dt1[G f e(t, t1)σ̄ee′ (t1)F̂ f e′

+ (t1)

+ G∗
e f (t, t1)F̂ ge

− (t1)σ̄gf (t1)

+ G∗
e f (t, t1)σ̄ f ′ f (t1)F̂ f ′e

+ (t1)], (6.16b)

where we used Eq. (6.14) and which both have three contribu-
tions on the right-hand side, each corresponding to a distinct
physical process that we will discuss.

It will be useful to introduce diagrammatic representa-
tions of the exact expressions in Eqs. (6.16a) and (6.16b);
see Fig. 2. These diagrams are similar to the double-sided
Feynman diagrams considered in many studies [2,3,49] and
they follow similar rules. However, in our approach we work
in the Heisenberg picture as apposed to a density operator
formalism, and we include decay processes from the begin-
ning; this sets each of the molecule operators in Eq. (6.9)
to zero until the interaction with the electromagnetic field is
introduced [see discussion below Eq. (6.11)]. When we begin
perturbation theory, it follows that the zeroth-order solution
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in our perturbation expansion is not given by σ̄ (0)
gg �= |g〉〈g|,

as we discuss in detail below. Thus, the starting point of
the perturbative expansion of each diagram does not have a
“|g〉〈g|” term. Our diagrams involve the exact form of each
coherence operator at time t given by σ̄i j (t ), and later when
we begin perturbation theory we will include a superscript
to denote the order of perturbation theory, with σ̄

(k)
i j (t ), for

example, denoting the kth order in perturbation theory.
To represent the fact that the coherence operators on the

left- and right-hand side of Eqs. (6.16a) and (6.16b) are for-
mal solutions we put them in a “bubble.” When we begin to
solve for them perturbatively we will provide a perturbative
expansion of each “bubble” diagram.

The rules of each diagram are as follows. Time increases
upward. Inward (outward) arrows on the right- and left-hand
side represent absorption (emission). Inward arrows on the
bra (ket) side raise the bra (ket) side of σ̄i j (t1) and outward
arrows on the bra (ket) side lower the bra (ket) side of σ̄mn(t1).
Each inward or outward arrow is connected to a vertical arrow
and a Green function Gpq(t, t1). If the vertical arrow is on the
right-hand (left-hand) side we include a factor of Gqp(t, t1)
[G∗

pq(t, t1)] and the subscript is opposite (same) of the σ̄qp(t1)
that it connects to. We note that because the equations are
normally ordered and the initial ket of the reservoir is the
vacuum state we always take F̂ i j

± (t1) → μi j · Ê±(t1) in each
diagram and read the dipole matrix elements on the bra (ket)
side from right to left (left to right).

With the aid of each diagram in Fig. 2 we can describe
each contribution on the right-hand side of σ̄ge(t ) and σ̄e f (t )
in Eq. (6.16); in later sections we will expand these simple
descriptions with more details.

First we consider the coherence operator σ̄ge(t )
[Eq. (6.16a)] which has three contributions on the right-hand
side. The first contribution to the dynamics (I in Fig. 2) is
given by the term σ̄gg(t )F̂ eg

+ (t ); it depends on the population
in the ground state and an annihilation operator F̂ eg

+ (t ), which
facilitates transitions between g and e. Taking the expectation
value, we understand the annihilation operator F̂ eg

+ (t ) as
acting on the right to annihilate a photon from the field, which
raises the bra side of σ̄gg(t ) → σ̄ge(t ). At lowest order in
perturbation theory this term leads to one-photon absorption
and its higher order contribution will be saturation.

The second contribution to the dynamics of σ̄ge(t ) (II in

Fig. 2) is given by σ̄e′e(t )F̂ e′g
+ (t ); it depends on coherences

between intermediate states and the annihilation operator
F̂ e′g

+ (t ), which facilitates transitions between g and e′. The

annihilation operator F̂ e′g
+ (t ) acts on the left creating an ex-

citation in the field-reservoir system, which lowers the ket
side of σ̄e′e(t ) → σ̄ge(t ). At lowest order this term describes
a saturation of the one-photon absorption.

The third and final contribution to the dynamics of σ̄ge(t )
(III in Fig. 2) is given by F̂ e f

− (t )σ̄gf (t ); it depends on the
field-reservoir creation operator F̂ e f

− (t ), which facilitates tran-
sitions between e and f , and on the coherence between g and
f . Coherence between g and e is generated from coherence
between g and f and the creation operator F̂ e f

− (t ) acting on
the right, which creates an excitation in the field-reservoir
system and lowers the bra side of σ̄gf (t ) → σ̄ge(t ). In later

sections we will find that this term’s contribution will de-
pend largely on the detunings from resonances, and a simple
characterization of “one-photon absorption” or “two-photon
absorption” seems not possible. However, when the incident
field is far-detuned from resonance with an intermediate state,
this term can be identified as a contribution to two-photon
absorption.

Next we consider the coherence operator σ̄e f (t )
[Eq. (6.16b)] which has three contributions on the right-hand
side. The first contribution to the dynamics (IV in Fig. 2)
is given by the term σ̄ee′ (t )F̂ f e′

+ (t ); it depends on coherence

between excited states and the annihilation operator F̂ f e′
+ (t ),

which facilitates transitions between e′ and f . Taking the
expectation value, we understand the annihilation operator
F̂ f e′

+ (t ) as acting on the right to annihilate a photon from
the field, which raises the bra side of σ̄ee′ (t ) → σ̄e f (t ). At
lowest order in perturbation theory this term contributes to
two-photon absorption.

The second contribution to the dynamics of σ̄e f (t ) (V in
Fig. 2) is given by F̂ ge

− (t )σ̄gf (t ); it depends on the field-
reservoir creation operator F̂ ge

− (t ), which facilitates transitions
between g and e, and on the coherence between g and f . Co-
herence is generated between e and f from coherence between
g and f and the creation operator F̂ ge

− (t ) acting on the left,
which annihilates a photon from the field and raises the ket
side of σ̄gf (t ) → σ̄e f (t ). Similar to the term shown in III in
Fig. 2, its contribution depends strongly on the detunings from
resonances, and does not allow a simple characterization. But
like III, when the incident field is far-detuned from a reso-
nance with an intermediate state this term can be identified as
a contribution two-photon absorption.

The third and final contribution to the dynamics of σ̄e f (t )

(VI in Fig. 2) is given by σ̄ f ′ f (t )F̂ f ′e
+ (t ); it depends on co-

herences between final states and the annihilation operator
F̂ f ′e

+ (t ), which facilitates transitions between e and f ′. We
understand this term as modifying the coherence σ̄e f (t ) by the

annihilation operator F̂ f ′e
+ (t ) acting on the left to create an

excitation in the field-reservoir system, which lowers the ket
side of σ̄ f ′ f (t ) → σ̄e f (t ). At lowest order this term describes a
saturation of the two-photon absorption; however, at the order
of perturbation we will be considering, it will not contribute.

VII. PERTURBATIVE SOLUTION

To solve the system of equations (6.9) we expand each
σ̄i j (t ) in a perturbative expansion given by

σ̄i j (t ) = σ̄
(0)
i j (t ) + λσ̄

(1)
i j (t ) + λ2σ̄

(2)
i j (t ) + · · · (7.1)

and take Ê±(t ) → λÊ±(t ) where λ characterizes the order
of the perturbation. We use the perturbative expansion (7.1)
with the exact formal solution (6.13), identify the zeroth-order
solution, and iterate order-by-order.

For the zeroth-order solution, since the initial ket of the
reservoir is the vacuum state and the equations are normal or-
dered, no coherence is generated and no population is moved
out of the ground state. Then using the identity relation (2.2),
which is also satisfied in the interaction picture we work in,
we solve for the last unknown molecule operator, and for finite
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times we have

σ̄ (0)
gg (t ) = 1̂. (7.2)

This occurs because the interaction between the molecule and
reservoir is still operative, and since we take the initial ket of
the reservoir to be vacuum, the molecule can only lose energy
to the reservoir. So for |�in〉 describing the molecule in any
state, for finite times t > −∞ the molecule will move to the
ground state, and Eq. (7.2) necessarily results.

To generate each higher order term we use the zeroth-order
term in the right-hand side of each exact result and then
continue order by order. In Appendix B we begin with the
exact solutions for each molecule operator and apply the steps
outlined above to third order in σ̄ge(t ) and σ̄e f (t ). The nonzero
terms that contribute to the absorption are σ̄ (1)

ge (t ), σ̄ (3)
ge (t ) and

σ̄
(3)
e f (t ) and are given in Eq. (2.8), (2.2), and (2.3), respectively.

Each coherence operator σ̄ (1)
ge (t ), σ̄ (3)

ge (t ), and σ̄
(3)
e f (t ) still

involves the stochastic functions ω̃i j (t ), which are included in
the definition of Gi j (t, t1). To push forward we need to take the
average over the classical distributions. In Appendix C we be-
gin with the simplest case and work out the expectation value
of Gi j (t, t1) using the assumptions after Eq. (2.13). Taking the
“impact limit” in which correlations decay on fast timescales
compared to the coupling strength [35,46], τ 2

c ci j � 1, we find
[[Gi j (t, t1)]] = Gi j (t − t1) where

Gi j (t − t1) ≡ ie−(γi j+iωi j )(t−t1 ), (7.3)

where we defined the total decay width

γi j ≡ ̄i j + �i j, (7.4)

where �i j is the dephasing decay rate between state i and j
defined in Appendix C and satisfies �i j = � ji and �ii = 0.
Since each contribution to γi j is symmetric so is γi j . Then the
new Green function defined in Eq. (7.3) also satisfies

G∗
i j (t − t1) = −Gji(t − t1). (7.5)

The result for [[Gi j (t, t1)]] can be directly applied to the
stochastic average for σ̄ (1)

ge (t ) because there is only one
Geg(t, t1) present. However, for the higher order molecule
operators there are three Green functions present and we must
take the expectation value over the product of them which can
become quite complicated. If we assume that the correlation
between random variables which decays on timescales given
by τc is much shorter than the dephasing rates �i j , for all i
and j, i.e., �i jτc � 1, then we can apply the “factorization
approximation” [35,46] where the expectation value of a prod-
uct of green functions is equal to the product of expectation
values:

[[Gi j (t, tn) · · · Gpq(t2, t1)]] = Gi j (t − tn) · · · Gpq(t2 − t1).
(7.6)

Thus to take the average value of any coherence operator we
replace each Green function with Eq. (7.3), which includes the
total rate γi j .

After applying the above prescription and taking the
stochastic average we have solved for the perturbative expan-
sion of σ̄ge(t ) and σ̄e f (t ) up to third order, and in doing so we
also solved for σ̄ (2)

gg (t ), σ̄
(2)
e′e (t ), and σ̄

(2)
gf (t ).

In Fig. 2 we included bubbles to denote the formal solution
of each coherence operator. Using the perturbative solution
of σ̄gg(t ), σ̄e′e(t ), and σ̄gf (t ) we can fill in each bubble with a
perturbative diagram shown in Fig. 3, which we now describe.

The first diagram is shown in Fig. 3(a) and is the pertur-
bative expansion of the operator σ̄gg(t ). The zeroth-order term
is Eq. (7.2), while the second-order solution involves the sum
of two contributions, absorption and emission on the bra and
ket side. Since the result of the second-order term involves an
emission of a photon, the second-order term σ̄ (2)

gg (t ) is a cor-
rection to the zeroth-order term, lowering the amplitude that
the molecule is in the ground state. Thus when considering
their contribution to the dynamics of σ̄ge(t ), the zeroth-order
term leads to one-photon absorption, and the second-order
term contributes to its saturation.

The second diagram shown in in Fig. 3(b) is the pertur-
bative expansion for σ̄e′e(t ), which is only nonzero at second
order and has two contributions. In the terminology of non-
linear spectroscopy the first term leads to the “rephasing”
contribution and the second to the “nonrephasing” contribu-
tion [35,50]. Both of these terms combine to give coherence
between intermediate states and when e = e′ amplitude in the
intermediate state. Thus when considering the contribution to
the dynamics of σ̄ge(t ) we expect it to lead to saturation, and
to that of σ̄e f (t ) we expect it to lead to two-photon absorption.

The third and final diagram is for the perturbative expan-
sion of σ̄gf (t ) given by Fig. 3(c) and has one contribution
which is given by the absorption of two photons on the bra
side. This terms leads to a virtual two-photon transition to the
excited state f , which has been referred to as the “double
quantum coherence” [32], and the effect that this term has
on σ̄ge(t ) and σ̄e f (t ) is complicated in general, but far from
resonance will lead to two-photon absorption.

VIII. ABSORPTION EXPRESSIONS

We are now at the point where we are able to calculate the
absorption. The general expressions that result are given in
Appendix D. Here we define the terms involved and the steps
necessary; in the next section we deal with simplified limits of
the general expressions in an example calculation.

We begin by taking the classical expectation value which
is done by replacing Gi j (t, t1) → Gi j (t − t1) and drop the
average value symbol [[·]] to avoid extra notation. Then we
input the coherence operators σ̄ (1)

ge (t ), σ̄ (3)
ge (t ), and σ̄

(3)
e f (t )

given in Eq. (2.8), (2.2), and (2.3), respectively, into Eq. (3.2)
for the absorption. The result involves iterated time integrals
[Eq. (2.9)].

To consider different incident states of light it is useful to
move to frequency space to evaluate this expression. For any
Hermitian operator O(t ), such as the electric field operator at
the site of the molecule, we write

O(t ) =
∫ ∞

−∞
d̄ ωO(ω)e−iωt , (8.1)

where we define d̄ ω = dω/
√

2π . Introducing positive and
negative frequency components in the usual way we then write
all frequency integrals to range from 0 → ∞, and leave these
limits implicit in the expressions below.
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(a)

(b)

(c)

FIG. 3. Perturbative expansion of each bubble diagram on the left.

Evaluating each time integral introduces resonant fre-
quency denominator contributions

Qi j (ω) ≡ ωi j − ω − iγi j, (8.2)

which follow from the exponent of each Green function
Gi j (t − t1). And the “nonrephasing” and “rephasing” contri-
butions to σ̄e′e(t ) mentioned above can be combined into a
single term, involving a new function

Ree′ (ω) ≡ ωee′ − ω − iγeg − iγe′g

ωee′ − ω − iγee′
. (8.3)

The term Ree′ (ω) deviates from unity only because we con-
sider two broadening mechanisms, population decay and
dephasing. In the limit when dephasing is negligible (γeg →
̄eg), Ree′ (ω) → 1. Physically, Ree′ (ω) corresponds to contri-
butions to the absorption that involve either a population term
or a coherence between excited states.

With the use of Eqs (8.2) and (8.3), our expression involv-
ing iterated time integrals [Eq. (D1)] reduces to one involving
frequency integrals [Eq. (D2)], which we write in terms of
F̂ i j

± (ω) to keep the notation simpler. But since the initial ket
of the reservoir is the vacuum state,

F̂ i j
+ (ω)|�in〉 = μi j

h̄
· Ê+(ω)|�in〉, (8.4)

since each absorption term is normally ordered. Transitions
are thus made only by the external field, as expected.

This expression [Eq. (D2)] for the absorption of a molecule
with many intermediate and final states, with possible res-
onant excitation to intermediate state and with two sources

of broadening, is a main result of this paper. It is valid near
resonance and for any incident state of light, in general prop-
agating in three dimensions with any polarization, and either
pulsed or CW. However, for our sample calculation in the fol-
lowing section we adopt a usual approximation and consider a
field essentially uniform over a cross-section area A in the xy
plane, and propagating in vacuum in the z direction. The posi-
tive frequency components of the electric field operator within
the cross-section area A, which in our case is sometimes called
the “entanglement area” [1,24,29,31,51], are given by

Ê+(z, ω) = e

√
h̄ω

2ε0cA
a(ω)eik(ω)z, (8.5)

where we assumed the incident field has a single polarization
given by e, the wave vector is given by k(ω) = ω/c, and the
creation and annihilation operators satisfy the commutation
relations

[a(ω), a†(ω′)] = δ(ω − ω′); (8.6)

see, e.g., Blow et al. [52]. In our sample calculations below,
we consider a single molecule at the origin, and assume that
the incident fields we consider have a center frequency ω̄ and
a bandwidth much smaller than their center frequency. Then
the positive frequency component of the electric field operator
that appears in the dipole interaction can be taken as

Ê+(ω) = eEa(ω), (8.7)
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where

E ≡
√

h̄ω̄

2ε0cA
. (8.8)

IX. THREE-LEVEL MOLECULE

As a sample calculation where the results can be given in
closed form, we consider a three-level molecule with a ground
state g, single intermediate state e, and single final state f . As
in Sec. VIII we consider the incident field is given by a single
polarization e, and with that assumption we define the two
constants

deg ≡ μeg · e

h̄
, (9.1a)

d f e ≡ μ f e · e

h̄
, (9.1b)

which are the dipole transition elements scaled by h̄.
Using these constants and our expression (8.7) for the field

operator, the absorption [Eq. (D2)] can be written as the sum
of five contributions, A = A1 + A2 + A3 + A4 + A5, where

A1 =
∫

dωIm[R1(ω)]
h̄ω̄〈a†(ω)a(ω)〉

A
, (9.2a)

Ai = 2π

∫
d̄ ω1d̄ ω2d̄ ω3d̄ ω4Im

[
Ri(ω1, ω2, ω3, ω4)

× (h̄ω̄)2〈a†(ω4)a†(ω3)a(ω2)a(ω1)〉
A2

]
× δ(ω1 + ω2 − ω3 − ω4), (9.2b)

for i = 2, 3, 4, 5, with the “broadening functions” given by

R1(ω1) = h̄ω̄

ε0c

|deg|2
Qeg(ω1)

, (9.3a)

R2(ω1, ω2, ω3, ω4) = −h̄ω̄|deg|4Ree(ω2 − ω3)

(ε0c)2Qeg(ω4)Q∗
eg(ω3)Qeg(ω2)

,

(9.3b)

R3(ω1, ω2, ω3, ω4) = h̄ω̄|d f edeg|2
2(ε0c)2Qeg(ω4)Q f g(ω1+ω2)Qeg(ω2)

,

(9.3c)

R4(ω1, ω2, ω3, ω4) = h̄ω̄|d f edeg|2Ree(ω2 − ω3)

2(ε0c)2Q f e(ω4)Q∗
eg(ω3)Qeg(ω2)

,

(9.3d)

R5(ω1, ω2, ω3, ω4) = −h̄ω̄|d f edeg|2
2(ε0c)2Q f e(ω4)Q f g(ω1+ω2)Qeg(ω2)

.

(9.3e)

Each absorption term is then given as a product of two
functions. The lowest order term A1 consists of the imag-
inary part of the broadening function R1(ω) multiplied by
the energy density or area of the incident field given by
the one-photon correlation function 〈a†(ω)a(ω)〉, contain-
ing all the one-photon statistics. Each higher order term Ai

(i = 2, 3, 4, 5) is given by the imaginary part of the higher
order broadening function Ri(ω1, ω2, ω3, ω4) multiplied by
the (energy density/area)2 given by the four point correlation

function 〈a†(ω4)a†(ω3)a(ω2)a(ω1)〉, containing all the two-
photon statistics of the incident light.

The absorption terms A1 and A2 are generated from the
perturbative expansion of the diagram in Fig. 2(I) and 2(II)
and contribute to the one-photon absorption, the second term
describing the onset of saturation. The fourth absorption term
A4 is generated from the perturbative expansion of the dia-
grams in Fig. 2(IV) and contributes to two-photon absorption.
The third and fifth absorption terms, A3 and A5, are generated
from the perturbative expansion of the diagrams in Fig. 2(III)
and in Fig. 2(V), respectively, and are more complicated. But
in the far-detuned limit they will also contribute to two-photon
absorption.

We now consider different states of light and calculate each
term. Our interest in this paper is in the CW limit.

X. CW COHERENT LIGHT

We begin with coherent light, described by a state

|α〉 = D(α)|vac〉, (10.1)

where α is a complex coefficient and the displacement opera-
tor

D(α) ≡ eα
∫

dωϕ(ω)a†(ω)−H.c.. (10.2)

The spectral profile of the state is given by ϕ(ω) and is nor-
malized to satisfy∫

dt |ϕ(t )|2 =
∫

dω|ϕ(ω)|2 = 1. (10.3)

To model coherent light in the CW limit, we consider a
field oscillating at the frequency ω̄ for a length of time
Tp. The normalized distribution in time and frequency is
then

ϕ(t ) = e−iω̄t√
Tp

, −Tp

2
� t � Tp

2
, (10.4a)

ϕ(ω) = 1√
�p

sinc

(
(ω − ω̄)π

�p

)
, (10.4b)

where we take �p = 2π/Tp to identify an effective band-
width. The CW limit is then Tp → ∞, �p → 0, yielding
a spectral profile ϕ(ω) strongly peaked at ω = ω̄ with the
squared spectral profile given by [53]

lim
�p→0

|ϕ(ω)|2 = δ(ω − ω̄). (10.5)

Taking the CW limit will lead to infinite absorption, since the
light is always “on,” and in the calculation we divide each
absorption term by Tp to get a finite result as Tp → ∞ that
can be identified as an absorption rate.

Using the transformation property

D†(α)a(ω)D(α) = a(ω) + αϕ(ω), (10.6)

and the unitarity of the displacement operator, we can calcu-
late the two correlation functions we need. The one-photon
correlation function is given by

〈α|a†(ω)a(ω)|α〉 = |α|2ϕ∗(ω)ϕ(ω), (10.7)
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and the two-photon correlation function by

〈α|a†(ω4)a†(ω3)a(ω2)a(ω1)|α〉
= |α|4ϕ∗(ω4)ϕ∗(ω3)ϕ(ω2)ϕ(ω1). (10.8)

In the CW limit both these quantities will peak and be sig-
nificantly different from zero only when their argument(s) are
close to ω̄.

From the one-photon correlation function we can immedi-
ately identify the energy of the light, which is given by

Ecoh = h̄ω̄|α|2, (10.9)

where as usual |α|2 is the average number of photons in
the coherent state. We will let this diverge as Tp → ∞ so
the intensity in the pulse does not change in that limit, in-
troducing a fixed parameter α0 by setting α = α0

√
Tp. Then

Fcoh ≡ |α0|2/A is identified as the photon flux; the intensity of
the beam is then

Icoh = h̄ω̄Fcoh. (10.10)

Using the result of the correlation functions in Eq. (10.7)
and (10.8), and that in the CW limit ϕ(ω) is strongly peaked

at ω = ω̄, the rate of each absorption term for coherent light
is given by

A1
coh

Tp
= Icohσ

1
coh, (10.11a)

Ai
coh

Tp
= I2

cohσ
i
coh, (10.11b)

for i = 2, 3, 4, 5, where each cross section is

σ 1
coh = Im[R1(ω̄)], (10.12a)

σ i
coh = Im[Ri(ω̄, ω̄, ω̄, ω̄)]. (10.12b)

The one-photon term scales with intensity and each higher
order two-photon term scales with the intensity squared, as
expected. We note that each σ i

coh for i = 1, 2, 3, 4, 5 is inde-
pendent of the beam parameters aside from frequency. The
quantity σ 1

coh is the lowest order cross section due to a one-
photon transition and has units of area. Each higher order
cross section σ i

coh for i = 2, 3, 4, 5 has units of area/intensity.
Finally, we calculate the rate of absorption in full by eval-

uating and expanding each cross-section term in Eq. (10.11)
with the appropriate broadening functions in Eq. (9.3), then
each absorption term is given by

A1
coh

Tp
= Icoh

|deg|2h̄ω̄

ε0c

γeg

(ωeg − ω̄)2 + γ 2
eg

, (10.13a)

A2
coh

Tp
= −I2

coh
|deg|4
(ε0c)2

h̄ω̄

̄eg

γ 2
eg[

(ωeg − ω̄)2 + γ 2
eg

]2 , (10.13b)

A3
coh

Tp
= I2

coh
|degd f e|2h̄ω̄

2(ε0c)2

(ωeg − ω̄)2γ f g + 2(ωeg − ω̄)(ω f g − 2ω̄)γeg − γ f gγ
2
eg[

(ωeg − ω̄)2 + γ 2
eg

]2[
(ω f g − 2ω̄)2 + γ 2

f g

] , (10.13c)

A4
coh

Tp
= I2

coh
|degd f e|2
2(ε0c)2

h̄ω̄

̄eg

γeg

(ωeg − ω̄)2 + γ 2
eg

γ f e

(ω f e − ω̄)2 + γ 2
f e

, (10.13d)

A5
coh

Tp
= I2

coh
|degd f e|2h̄ω̄

2(ε0c)2

γegγ f eγ f g − (ωeg − ω̄)(ω f e − ω̄)γ f g − (ω f g − 2ω̄)
[
(ωeg − ω̄)γ f e + (ω f e − ω̄)γeg

]
[
(ωeg − ω̄)2 + γ 2

eg

][
(ω f e − ω̄)2 + γ 2

f e

][
(ω f g − 2ω̄)2 + γ 2

f g

] . (10.13e)

From Eq. (10.13) it is clear that the contribution of the
terms A3

coh and A5
coh depends strongly on the relative magni-

tudes of the detunings from resonance and decay parameters.
In certain regimes A3

coh and A5
coh can be either positive

or negative and thus can contribute to either absorption or
saturation.

A. Far detuned from intermediate state resonances

To get a better understanding of A3
coh and A5

coh, and to
connect with the literature, we consider the limit when the
field is far-detuned from any resonances involving the in-
termediate level. That is, we assume |ωeg − ω̄| � γeg and
|ω f e − ω̄| � γ f e; here one-photon absorption will be small,
and two-photon absorption will dominate for large intensities.
Defining δeg ≡ ωeg − ω̄ and δ f e ≡ ω f e − ω̄ to be detunings
from the resonances [see Fig. 4(a) for molecule diagram],
in the limit when |δeg| � γeg and |δ f e| � γ f e, to good

approximation the absorption terms are

A1
coh

Tp
= Icoh

|deg|2h̄ω̄

ε0c

γeg

δ2
eg

, (10.14a)

A2
coh

Tp
= −I2

coh
|deg|4
(ε0c)2

h̄ω̄

̄eg

γ 2
eg

δ4
eg

, (10.14b)

A3
coh

Tp
= I2

coh
|degd f e|2
2(ε0c)2

h̄ω̄

δ2
eg

γ f g

(ω f g − 2ω̄)2 + γ 2
f g

, (10.14c)

A4
coh

Tp
= I2

coh
|degd f e|2
2(ε0c)2

h̄ω̄

̄eg

γeg

δ2
eg

γ f e

δ2
f e

, (10.14d)

A5
coh

Tp
= I2

coh
|degd f e|2
2(ε0c)2

h̄ω̄

δeg(−δ f e)

γ f g

(ω f g − 2ω̄)2 + γ 2
f g

.

(10.14e)
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δ

γfe

γeg

γfg

(a) (b)

FIG. 4. Three-level molecule diagram for (a) the general case
and (b) when resonant with the two-photon transition.

Here the first two terms describe one-photon absorption and
its saturation, and the three remaining terms describe two-
photon absorption. To maximize the two-photon absorption
we take the incident field to be resonant with the two-photon
transition, 2ω̄ = ω f g. In this limit the two detunings δeg and
δ f e simplify to a single detuning parameter δ which we de-
fine by δ ≡ δeg and δ f e = −δ [see Fig. 4(b) for special case
molecule diagram]. Then each absorption term is further sim-
plified to

A1
coh

Tp
= Icoh

|deg|2h̄ω̄

ε0c

γeg

δ2
, (10.15a)

A2
coh

Tp
= −I2

coh
|deg|4
(ε0c)2

h̄ω̄

̄eg

γ 2
eg

δ4
, (10.15b)

A3
coh

Tp
= I2

coh
|degd f e|2
2(ε0c)2

h̄ω̄

δ2

1

γ f g
, (10.15c)

A4
coh

Tp
= I2

coh
|degd f e|2
2(ε0c)2

h̄ω̄

̄eg

γegγ f e

δ4
, (10.15d)

A5
coh

Tp
= I2

coh
|degd f e|2
2(ε0c)2

h̄ω̄

δ2

1

γ f g
. (10.15e)

Each absorption term now has a simple scaling with the de-
tuning δ. Higher order population terms A2

coh and A4
coh scale

as δ−4, and the virtual two-photon transitions terms A3
coh and

A5
coh scale as δ−2.
In this limit we identify the rate of one-photon absorption

Ocoh

Tp
= A1

coh + A2
coh

Tp
, (10.16)

where A1
coh is the lowest order term and A2

coh is the higher
order correction due to saturation, and the rate of two-photon
absorption by

Tcoh

Tp
= A3

coh + A4
coh + A5

coh

Tp
. (10.17)

The second contribution to the two-photon absorption is A4
coh

which is generated from population in the intermediate state.
The first and third contribution is A3

coh + A5
coh, which in this

limit are identical, and are generated by coherence between g
and f through a virtual two-photon transition.

For our perturbative expansion to be reasonable we must
have |A1

coh| � |A2
coh|, so that the first saturation correction

of the one-photon absorption is small and higher order cor-
rections can be justifiably neglected. So we will restrict the
possible detunings and intensities we consider so that the
magnitude of A2

coh satisfies∣∣A2
coh

∣∣ � 0.1
∣∣A1

coh

∣∣. (10.18)

If this restriction holds, then the rate of one-photon absorption
is to good approximation given by Ocoh/Tp � Icohσ

1
coh, where

σ 1
coh = h̄ω̄

|deg|2
ε0c

γeg

δ2
, (10.19)

identifying the one-photon absorption cross section σ 1PA
coh ≡

σ 1
coh, in agreement with past results [32,49].

Moving to the two-photon absorption in the far-detuned
limit where |δ| � γ f e, γge, we find A3

coh + A5
coh � A4

coh (as-
suming γ f e � γ f g). So to good approximation Tcoh/Tp �
I2
cohσ

2PA
coh , where σ 2PA

coh is the two-photon absorption cross sec-
tion given by

σ 2PA
coh � σ 3

coh + σ 5
coh, (10.20)

which has units of area/intensity. Equivalently, we can define
each cross section by

σ́ i
coh = h̄ω̄

2
σ i

coh, (10.21)

and the two-photon absorption cross section by σ́ 2PA
coh �

σ́ 3
coh + σ́ 5

coh, which has units of area4 s/photon2, and is typ-
ically written using Goeppert Mayer units where 1GM =
10−58 m4 s/photon2. Then the rate of two-photon absorption
is given by

Tcoh

Tp
� I2

cohσ
2PA
coh = 2h̄ω̄F 2

cohσ́
2PA
coh , (10.22)

where 2h̄ω is the energy of the two-photon transition and

σ́ 2PA
coh ≡ 1

2

|d f edeg|2
(ε0c)2

(h̄ω̄)2

δ2

1

γ f g
, (10.23)

in agreement with past calculations [32,49].

B. Choice of parameters

To estimate these cross sections, and more generally the
behavior of the absorption terms (10.13) for different detun-
ings, we must choose parameter values in a large parameter
space. Our goal is to choose values that can be used to
compare the results for the absorption of coherent light with
the absorption of squeezed light, to be considered in the
next section. Since much of the recent interest in two-photon
absorption of squeezed light has been generated by the pos-
sibility of increasing the efficiency of various applications
that use large fluorescent molecules, we focus on parameters
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relevant there. However, the appropriate parameters for atoms
or small molecules may be very different.

Consider first γ f g, where formally in our model the value
is set by the contributions of dephasing and nonradiative pop-
ulation decay. However, as discussed earlier, we also want
to use γ f g to phenomenologically model the decay from the
final state to the ground state due to fluorescence. So we set
γ f g/2π = 1 THz, which is on the order of previously dis-
cussed values for typical fluorescent dyes [29]. For an order
of magnitude estimate we set deg = d f e = |e|a0/h̄, where e
is the electronic charge and a0 is the Bohr radius. Then us-
ing ω̄/2π = 357 THz (λ̄ = 840 nm), the adopted value for
γ f g and setting δ = ω̄/4 in Eq. (10.23), we calculate a two-
photon absorption cross section of σ́ 2PA

coh = 846 GM. This is
larger, but on the order of the experimentally determined value
for Rhodamine B given by σ́

2PA,exp
coh = 210 ± 55 GM, which

was excited with a single-mode CW Ti:sapphire laser with
an excitation power Pcoh = 1 W at λ̄ = 840 nm focused to a
beam area A � 2.24 × 10−13 m2, corresponding to the inten-
sity Icoh � 4.4 × 1012 W/m2 [54].

To set an order of magnitude estimate of γeg we note that
for a clear signal of two-photon absorption we require Tcoh �
Ocoh, in the far-detuned limit. There the absorption terms in
Eq. (10.15) are valid, and this restriction simplifies to

γeg � Icoh
|d f e|2
ε0c

1

γ f g
. (10.24)

For the values given above this requires γeg/2π � 0.17 THz,
which we use to set the order of magnitude estimate to
γeg/2π = 0.01 THz. As a simple example we take γeg � ̄eg,
that is, the leading contribution to γeg is due to ̄eg and not the
dephasing decay rate �eg. Within this limit the decay of state
e is dominated by population decay and Ree(ω) � 1.

Finally, we must set an order of magnitude for γ f e. We be-
gin by taking each dephasing decay rate to be approximately
equal � f e � � f g � �eg � ̄eg, then each γi j � ̄i j given by
Eq. (6.8). Under this assumption γ f g � ̄ f g and γ f e � ̄eg +
̄ f g. Since ̄ f g � ̄eg which were set above, it necessarily
follows from the definitions in Eq. (6.8) that γ f e � ̄ f g and
we set it to be γ f e/2π = 1 THz.

C. Absorption of coherent light

With these parameters set we can explore how the absorp-
tion varies with the intensity and detunings using the full
expressions for each absorption term in Eq. (10.13). As above
we set the incident field to be resonant with the two-photon
transition, and so there is only one detuning parameter δ, but
we allow it to range from below γeg to above the value of γ f e.
As mentioned earlier, the signs of the absorption terms A3

coh
and A5

coh depend on the linewidth parameters and detunings.
For the incident field resonant with the two-photon transition
(2ω̄ = ω f g), as we assume here, A5

coh is strictly positive, but
the sign of A3

coh depends on the detuning δ; when δ < γeg it is
negative, and when δ > γeg it is positive. For small detuning
from intermediate state resonances a simple separation of
the absorption into one- and two-photon contributions breaks
down, and it appears to only make sense physically to talk
about the total absorption.

FIG. 5. Plot of the rate of one-photon absorption for coherent
light (Ocoh/Tp) against the detuning from resonance (δ) and intensity
Icoh. The “white” area represents the parameter space where the
perturbation theory is not valid.

Nonetheless, for our model parameters and intensities
where the perturbation approach is valid [Eq. (10.18)] we
find |A3

coh| � |A1
coh| and |A3

coh| � |A2
coh| in the region where

A3
coh is negative, and thus there it is negligible compared to

other contributions to the absorption. So in the region where
A3

coh is negative the absorption is dominated by one-photon
absorption whether we group A3

coh as a one- or two-photon
effect. In the far-detuned limit, again given by Eq. (10.15), we
find A3

coh = A5
coh, and so in that region it clearly contributes

to the two-photon absorption. Therefore for the parameters we
are using, it is physically reasonable to define the general rate
of one- and two-photon absorption by

Ocoh

Tp
≡ A1

coh + A2
coh

Tp
, (10.25a)

Tcoh

Tp
≡ A3

coh + A4
coh + A5

coh

Tp
, (10.25b)

which are plotted in Figs. 5 and 6, respectively, where the
white areas denote the parameter region where perturbation
theory is no longer valid due to Eq. (10.18) not being satis-
fied. In the far-detuned and high-intensity limit we find the
absorption is dominated by Tcoh, as expected.

XI. SQUEEZED LIGHT

Next we consider degenerate squeezed light, which we
model with the state

|β〉 = S(β )|vac〉, (11.1)

where the unitary squeezing operator is given by

S(β ) ≡ e
β

2

∫
dω1dω2γ (ω1,ω2 )a†(ω1 )a†(ω2 )−H.c., (11.2)
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FIG. 6. Plot of the rate of two-photon absorption for coherent
light (Tcoh/Tp) against the detuning from resonance (δ) and intensity
Icoh. The “white” area represents the parameter space where the
perturbation theory is not valid.

with β = |β|eiθ the squeezing parameter. The function
γ (ω1, ω2) is the joint spectral amplitude (JSA), which satisfies∫

dω1dω2|γ (ω1, ω2)|2 = 1. (11.3)

For a typical spontaneous parametric downconversion pro-
cess, neglecting dispersion, the form of the JSA in time and
frequency is

γ (t1, t2) = α

(
t1 + t2

2

)
φ(t1 − t2), (11.4a)

γ (ω1, ω2) = α(ω1 + ω2)φ

(
ω1 − ω2

2

)
. (11.4b)

The function α(ω) is related to the spectral distribution of the
pump used to generate the squeezed light, and φ(ω) is the
phase-matching function describing the dispersion properties
of the medium mediating the generation [55].

For the simplest model of squeezed light, where the
squeezing involves only a single (“super-”) mode of the elec-
tromagnetic field and the JSA is unentangled, the one- and
two-photon correlation functions are straightforward to evalu-
ate using textbook results. It is well known that in this limit the
two-photon correlation functions scale linearly and quadrati-
cally with photon number. For calculations where the spectral
and temporal degrees of freedom are taken into account the
same scaling is found [1–3,13–16,29–33]. The resulting linear
dependence in the two-photon absorption is understood as
“photon pair absorption,” since a squeezed state is a superpo-
sition of states involving only pairs of photons. This has been
the center of experimental and theoretical discussions.

For a general squeezed state characterized by a correlated
JSA, one cannot directly calculate the two-photon correla-
tion functions because a transformation property of the form
S†(β )a(ω)S(β ) cannot be manipulated into a useful form.

There are then three approaches that are immediately sug-
gested.

The first is to restrict oneself to the low-flux or “isolated
pair” limit. In this limit we can approximate the state in
Eq. (11.1) as a state that is mostly the vacuum state but in-
cludes a two-photon state with a small amplitude. This method
was considered in great detail by Raymer et al. [29–32] with
the conclusion that, at low photon fluxes and current tech-
nologies, a linear scaling of two-photon absorption should be
undetectable.

A second approach involves performing a Schmidt decom-
position of the JSA, where many Schmidt modes are present;
indeed, if one approximates the JSA as a double Gaussian,
the Schmidt decomposition has an analytic result [15]. This
allows one in principle to evaluate the correlation functions,
but in practice one is left with an infinite sum over Schmidt
modes that are all delocalized in frequency.

A third approach is to directly work with the field oper-
ators derived from the nonlinear light generation; this was
employed by Dayan [13], and more recently by Raymer and
Landes [33] with similar results where they treated the narrow
pump limit and included dispersion due to the nonlinear light
generation, but with no resonant excitation of intermediate
levels.

We employ a different approach here that is most similar
to earlier work by Dayan and Raymer and Landes [13,33],
where we take the squeezed light to be generated by a CW
source. In this limit the spectral correlations are enhanced to
such a strong degree the complexity of the JSA is reduced,
and one can carefully derive a transformation property for
S†(β )a(ω)S(β ), allowing for the evaluation of the correlation
functions. We can then provide a calculation of the one- and
two-photon absorption for a highly correlated squeezed state
in the CW limit, and in both low- and high-intensity regimes.

A. CW squeezed light

To model the JSA in the CW limit we take

α(t ) = e−i2ω̄t√
Tp

, −Tp

2
� t � Tp

2
, (11.5a)

α(ω) = 1√
�p

sinc

(
(ω − 2ω̄)π

�p

)
, (11.5b)

which satisfies∫
dt |α(t )|2 =

∫
dω|α(ω)|2 = 1, (11.6)

where Tp is the length of the pump pulse and �p = 2π/Tp

identifies its bandwidth. The pump frequency is centered at
2ω̄ so that the photon pairs generated will be centered at ω̄.
To take the CW limit we let Tp → ∞, �p → 0, so that

lim
�p→0

|α(ω)|2 = δ(ω − 2ω̄). (11.7)

Although general phase-matching functions could be con-
sidered, to allow us to extract analytic results we neglect
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Te

√
2Tp

t1

t2

|γ(t1, t2)|

ω1 − ω̄

Ωp

√
2Ωe

ω2 − ω̄

|γ(ω1, ω2)|

FIG. 7. Schematic of JSA for the pump and phase-matching
function given in Eqs. (11.5) and (11.8). Our diagram is a schematic
representation because we have neglected to include the sinc oscil-
lations present; however, in the CW limit when the state is strongly
correlated the schematic representation is a good approximation of
the JSA being considered.

dispersion and adopt a simple model where φ(ω) takes on a
fixed value at the frequencies where it is nonzero:

φ(t ) = 1√
Te

sinc

(
πt

Te

)
, (11.8a)

φ(ω) = 1√
�e

, −�e

2
� ω � �e

2
, (11.8b)

which are both real functions and satisfy∫
dω|φ(ω)|2 =

∫
dt |φ(t )|2 = 1. (11.9)

The phase-matching function is characterized by the band-
width �e, which is the range of frequencies over which
the generation is effective: The frequency components
of the generated photons are centered at ω̄, but range
between ω̄ − �e/2 � ω � ω̄ + �e/2. The related time pa-
rameter is Te = 2π/�e and is called the “entanglement
time”[1,2,4,14,19,24,26,29,30,51]. The quantity Te is a mea-
sure of the “coherence time” of pairs of photons, the time
over which a pair of photons can be thought of as being
correlated. Indeed, photons are generated at times t1 and t2
according to the JSA [Eq. (11.4a)] which is proportional to
φ(t1 − t2), which from Eq. (11.8a) is peaked for times t1 −
t2 < Te. The form of the JSA in time and frequency variables
is schematically shown in Fig. 7. For a highly correlated state
the parameters satisfy Tp � Te or equivalently �e � �p; we
consider this limit in this paper.

In Appendix E we work out the operator S†(β )a(ω)S(β )
for squeezed light from a medium pumped by a CW source
with a general phase-matching function φ(ω) [Eq. (2.6)].
Specifying to our simple model (11.8) of the phase-matching
function, that transformation simplifies to

S†(β )a(ω)S(β )

→ a(ω) + [c(ω) − 1]√
�p

∫
dω′α(2ω̄ − ω + ω′)a(ω2)

+ s(ω)eiθ√
�p

∫
dω′α(ω + ω1)a†(ω′), (11.10)

where we have set

s(ω) = s = sinh(|β0|) if |ω − ω̄| � �e

2
, (11.11a)

c(ω) = c = cosh(|β0|) if |ω − ω̄| � �e

2
, (11.11b)

s(ω) = 0 if |ω − ω̄| >
�e

2
, (11.11c)

c(ω) = 1 if |ω − ω̄| >
�e

2
, (11.11d)

which satisfy s(2ω̄ − ω) = s(ω) and c(2ω̄ − ω) = c(ω) and
define the squeezing parameter β0 by setting β0 ≡ β

√
Te/Tp.

As we will see, the introduction of β0 essentially “normalizes”
the squeezing parameter in a way analogous to the introduc-
tion of α0 from α in Sec. X. If we keep the intensity in
the center of the pulse the same, the squeezing parameter β

will be proportional to
√

Tp/Te, because β is related to the
average photon number. From the above definition of β0 one
can see that β0 will remain fixed and independent of Tp and
Te; although β diverges in the CW limit, β0 is fixed.

With the transformation property of Eq. (11.10) we can
calculate the one- and two-photon correlation functions (Ap-
pendix F). The one-photon correlation function evaluated at
two different frequencies [Eq. (2.6)] is given by

〈β|a†(ω2)a(ω1)|β〉 = Tp

2π
s(ω2)s(ω1)sinc

(
(ω1 − ω2)π

�p

)
,

(11.12)

which is proportional to Tp as would be expected. Note that the
factor s(ω2)s(ω1) includes the restriction of frequencies to be
within the bandwidth of the squeezed light. Using Eq. (11.12)
we can immediately calculate the pulse energy, which is

Esq = h̄ω̄
Tp

Te
sinh2(|β0|). (11.13)

We can identify the flux of photons to be

Fsq ≡ 1

ATe
sinh2(|β0|) (11.14)

(and the total number of photons in the pulse to be Nsq =
TpAFsq), for then we obtain the correct expression for the
intensity of light in the first line below:

Isq ≡ Esq

ATp
= h̄ω̄Fsq = h̄ω̄

ATe
sinh2(|β0|), (11.15)

while from the second line we can identify the number of pho-
tons within the entanglement time Te to be NTe ≡ sinh2(|β0|).

The squeezed state can then be understood as follows:
Photons pairs are created throughout the length of the CW
beam (−Tp/2 � t � Tp/2) with pairs being localized within a
time Te; NTe = sinh2(|β0|) is the expected number of photons
within a time Te; and since β0 is fixed, NTe does not depend on
Te or Tp.

To recover the weakly squeezed (isolated pair) limit [31],
we take |β0| � 1 so that we can approximate NTe → |β0|2 �
1. Then we identify |β0|2 as the number of photons within
a time Te; and if β0 is small enough, we expect there to be
at most one pair of photons within a length of time Te. Then
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the flux is Fsq → |β0|2/(ATe) and the number of photons is
given by Nsq → Tp|β0|2/Te = |β|2, acknowledging |β|2 to be
the total number of photons in this limit.

Moving to the two-photon correlation function [Eq. (F10)],
we have

〈β|a†(ω4)a†(ω3)a(ω2)a(ω1)|β〉

= Tp

2π
s(ω3)c(ω3)c(ω1)s(ω1)α(ω1 + ω2)α(ω3 + ω4)

+ Tp

2π
s2(ω2)s2(ω1)α(ω1 − ω4 + 2ω̄)α(ω2 − ω3 + 2ω̄)

+ Tp

2π
s2(ω2)s2(ω1)α(ω1 − ω3 + 2ω̄)α(ω2 − ω4 + 2ω̄),

(11.16)

again proportional to Tp as expected. The two-photon correla-
tion function has three contributions, and in each the factors
s(ω) ensure that the photons are within the bandwidth of
the squeezed light. The first term, previously referred to as
the “coherent” contribution [13,33], is due to photons that
are anticorrelated such that ω1 + ω2 = 2ω̄. Due to the anti-
correlations this contribution is dominant for A3

sq and A5
sq,

which are derived from absorption pathways which include
a two-photon transition with only a virtual excitation of the
intermediate level.

The second and third contributions to Eq. (11.16), previ-
ously referred to as the “incoherent contribution [13,33] are
correlated such that ω1 = ω4 and ω2 = ω3 for the second
term and ω1 = ω3 and ω2 = ω4 for the third term. Although
the third contribution is very similar to the second, the dif-
ferent frequency correlations can lead to large differences in
how they contribute to the absorption because the broaden-
ing function Ri(ω1, ω2, ω3, ω4) [see Eq. (9.3)] is in general
not symmetric under exchange of any of its frequency ar-
guments. Specifically, we expect the second and third terms
to dominate for A2

sq and A4
sq. But because the “rephasing”

and “nonrephasing” pathway is doubly resonant when ω2 =
ω3, which can be seen by examining R2(ω1, ω2, ω3, ω4) and
R4(ω1, ω2, ω3, ω4) given in Eq. (9.3), we expect the second
contribution to be larger than the third.

Using the model we have developed and the correlation
functions we derived in Eq. (11.12) and (11.16) we can im-
mediately calculate the normalized second-order correlation
function in frequency, defined by

g(2)(ω1, ω2) ≡ 〈β|a†(ω1)a†(ω2)a(ω2)a(ω1)|β〉
〈β|a†(ω2)a(ω2)|β〉〈β|a†(ω1)a(ω1)|β〉 .

(11.17)

We find

g(2)(ω1, ω2) = c2(ω1)

s2(ω1)
sinc2

(
(ω1 + ω2 − 2ω̄)π

�p

)

+ 1 + sinc2

(
(ω1 − ω2)π

�p

)
, (11.18)

which is in agreement with experiment when dispersion
is compensated [56]. The anticorrelated term in which
ω1 + ω2 = 2ω̄ is the “cross-correlation” contribution and
the correlation along the diagonal where ω1 = ω2 is the

“autocorrelation” of each frequency mode with itself for in-
distinguishable photons. Here each correlation is sensitive to
the pump bandwidth set by �p.

Alternatively we calculate the normalized second-order
correlation function in time, defined by

g(2)(t1, t2) ≡ 〈β|a†(t1)a†(t2)a(t2)a(t1)|β〉
〈β|a†(t2)a(t2)|β〉〈β|a†(t1)a(t1)|β〉 , (11.19)

which we calculate by taking the Fourier transforms of
Eqs. (11.12) and (11.16) to give

g(2)(t1, t2) = 1 +
(

2 + 1

NTe

)
sinc2

(
(t1 − t2)π

Te

)
, (11.20)

which yields the usual result for t1 = t2 [33,37,57–59] and
satisfies the inequality that g(2)(0, τ ) � g(2)(0, 0), the con-
dition for “bunched light.” However, we note that while in
frequency space the autocorrelation term [third contribution
of Eq. (11.18)] is peaked when ω1 = ω2 and is characterized
by the pump width �p, in time this contribution lead to a
correlation that t1 = t2 on timescales not given by the inverse
bandwidth of the pump but by the entanglement time Te.

Using the correlation functions (11.12), the lowest order
rate of absorption is given by

A1
sq

Tp
= Isqσ

1
sq, (11.21)

which scales linearly with intensity as expected, but with
a modified cross section due to the large bandwidth of the
squeezed light given by

σ 1
sq =

∫ ω̄+ �e
2

ω̄− �e
2

dω

�e
Im[R1(ω)]. (11.22)

For each higher order absorption term we use the corre-
lation function (11.16), together with the property that in the
CW limit α(ω) is strongly peaked at ω = 2ω̄, then the rate of
each higher order absorption term is given by

Ai
sq

Tp
= Isq(Ivac + Isq)σ i

sq, I + 2I2
sqσ

i
sq, II, (11.23)

where we find it useful to define a quantity called the “vacuum
intensity” by

Ivac = h̄ω̄

ATe
, (11.24)

following the work of Klyshko [9] where a similar quantity
was defined, which we understand as the intensity of one-
photon passing through an area A within a time Te. We find
each higher order absorption term is dependent on two cross
sections σ i

sq, I and σ i
sq, II for i = 2, 3, 4, 5. The first cross sec-

tion σ i
sq, I is given by

σ i
sq, I =

∫ ω̄+ �e
2

ω̄− �e
2

dω1dω2

�2
e

Im[Ri(ω1, 2ω̄ − ω1, ω2, 2ω̄ − ω2)],

(11.25)
where we use the subscript “I” for σ i

sq, I to denote that this
cross section corresponds to the anticorrelated term of the
correlation function [first term in Eq. (11.16)]. The second
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cross section σ i
sq, II is given by

σ i
sq, II = 1

2

∫ ω̄+ �e
2

ω̄− �e
2

dω1dω2

�2
e

Im[Ri(ω1, ω2, ω2, ω1)

+Ri(ω1, ω2, ω1, ω2)], (11.26)

where we use the subscript “II” for σ i
sq, II to denote that this

cross section corresponds to the second and third term from
the correlation function given by Eq. (11.16). Here we com-
bined the second and third contributions into a single term and
pulled out a factor of 2, so this can be understood as an average
cross section.

Considering the form of each higher order absorption term
Ai

sq in Eq. (11.23) we find two contributions. The first, which
is proportional to Isq(Ivac + Isq), is multiplied by the cross
section σ i

sq, I corresponding to photons that are anticorrelated
in frequency. For weak squeezing such that β0 � 1, then
NTe � 1 and we can think of only a single pair of photons
within a time Te leading to a linear scaling of absorption with
intensity and Ivac playing the role of an enhancement factor.
Then as β0 increases, NTe � 1 where there are many photons
within a time Te so the absorption scales quadratically with
intensity but is still multiplied by σ i

sq, I.
While one view is that squeezed light modifies the cross

section, and so an “entangled cross section” is sometimes
defined [4,14,18,19,24,26,27,29–31,51], and in our notation is
given by Ivacσ

i
sq, I, here we take a different approach because

in the current form it will be more straight forward to compare
to coherent light. Further, the contribution from σ i

sq, I involves
not only a linear scaling with intensity, but also a quadratic
one.

The second contribution on the right-hand side of
Eq. (11.23), which is due to σ i

sq, II, scales as intensity squared.
The result of averaging the contributions to the cross sec-
tion σ i

sq, II in Eq. (11.26) is a factor of 2, for the two ways
of choosing two indistinguishable photons.

To evaluate the squeezed state cross sections and ab-
sorption terms in general we need to resort to numerical
integration. However, we first consider the limiting case where
the squeezed state has a narrow bandwidth �e.

1. Squeezed state absorption: Narrow bandwidth limit

From Eqs. (11.22) and (11.23) we see that to evaluate
the cross sections for absorption we must integrate over the
bandwidth of squeezed light. The integrals can be simplified if
we take the limit when the bandwidth �e of the squeezed light
is small compared to the decay widths γi j . In this limit, the
coherence time of the photon pairs is long compared to the de-
cay times of the molecule but each photon has a well defined
frequency. Since each photon has a well-defined frequency,
the spectral correlations within σ i

sq, I and σ i
sq, II [(11.25) and

(11.26)] are no longer relevant. To good approximation we
can evaluate each cross section in Eqs. (11.22), (11.25), and
(11.26) at the center frequency ω̄, and we find that

σ 1
sq

∣∣
�e
γi j

�1
= σ 1

coh, (11.27a)

σ i
sq, I, σ

i
sq, II

∣∣
�e
γi j

�1
= σ i

coh. (11.27b)

Here each squeezed light cross section reduces to the coherent
light cross sections we defined in Eq. (10.12).

The one- and two-photon absorption rates then simplify to

A1
sq

Tp

∣∣∣∣
�e
γi j

�1

= Isqσ
1
coh, (11.28a)

Ai
sq

Tp

∣∣∣∣
�e
γi j

�1

= (
3I2

sq + IsqIvac
)
σ i

coh, (11.28b)

where we expect the second contribution in Eq. (11.28b) given
by IsqIvacσ

i
coh to be small. In the limit we are considering, Te

is much longer than decay times of the molecule so we expect
the contribution from photon pair absorption to be negligible.

In this limit we have

A1
sq

A1
coh

∣∣∣∣
�e
γi j

�1

= 1, (11.29a)

Ai
sq

Ai
coh

∣∣∣∣
�e
γi j

�1

= 3 + Ivac

Isq
= g(2)(0, 0), (11.29b)

where to make the comparison we took Icoh = Isq; these results
are in agreement with Raymer and Landes [33]. We find the
lowest order contribution is identical in this limit, which is
expected since each photon from either coherent or squeezed
light is at ω̄ and pair correlations are irrelevant. For each
higher order term we find that for squeezed light there is a
strong enhancement when Ivac � Isq. Taking the model pa-
rameters from Sec. X B and setting �e/2π = 10−4 THz �
γi j (Te = 107fs), we calculate Ivac = 105 W/m2. Thus very
low intensities would be required to achieve a significant en-
hancement by using squeezed light rather than coherent light.

Therefore, in this limit for reasonable intensity regimes
where two-photon absorption experiments are done,
Ivac/Isq � 1 so squeezed states provide at most a factor
of 3 enhancement for each absorption term due to photon
bunching.

For a complete characterization of the absorption beyond
the narrow bandwidth limit, which is valid in both the low-
and high-intensity regimes, we resort to a numerical analysis.

2. Squeezed state absorption: Numerical analysis

We now calculate the σ i
sq cross sections in Eqs. (11.22),

(11.25), and (11.26) numerically using the decay parameters
γi j discussed in Sec. X B and set �e/2π = 10 THz, which
corresponds to the limit

γeg � γ f e = γ f g < �e. (11.30)

We set 2ω̄ = ω f g, and look at the cross sections as a function
of detuning δ from resonance with the intermediate state (see
Fig. 4).

We begin with the σ 1 cross sections for coherent and
squeezed light, plotted in Fig. 8. The coherent light cross
section is fixed near resonance (δ < γeg) and decreases for
large detuning (δ > γeg). Due to the large squeezed light band-
width, the squeezed light cross section is smaller but remains
fixed for larger values of the detuning until the detuning is
larger than half the squeezed state bandwidth (δ > �e/2), at
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FIG. 8. Plotting the σ 1 cross sections for coherent and squeezed
light vs detuning from resonance δ.

which point there is no resonant overlap. Thus for detun-
ings γeg � δ < �e/2, there is approximately three orders of
magnitude difference between the cross section for squeezed
light and that for coherent light, due simply to the large
bandwidth of squeezed light. In the very far-detuned limit
(δ > �e/2 � γeg), δ is the largest quantity in the broadening
function, so integrating over the squeezed light bandwidth is
negligible compared to δ; therefore the squeezed light cross
section approaches the coherent limit.

In Fig. 9 we plot the negative of the coherent and squeezed
light σ 2 cross sections. The coherent light cross section has
the same behavior as that of σ 1

coh, fixed near resonance and
decreasing far from resonance. For the squeezed light cross

FIG. 9. Plotting the σ 2 cross sections for coherent and squeezed
light vs detuning from resonance δ.

FIG. 10. Plotting the σ 3 cross section for coherent and squeezed
light vs detuning from resonance δ.

section we plot both σsq, I and σsq, II; note that σ 2
sq, II � σ 2

sq, I.
To see why, consider the broadening function involved in this
cross section,

R2(ω1, ω2, ω3, ω4) ∝ Ree(ω2 − ω3)

Qeg(ω4)Q∗
eg(ω3)Qeg(ω2)

. (11.31)

For anticorrelated photons such that ω3 + ω4 = 2ω̄, this term
is small because the two factors of the product Qeg(ω4)Q∗

eg(ω3)
cannot be resonant at the same time for most frequencies
within the bandwidth; the peak at δ � �e/2 is nontrivial and
will be discussed in greater detail below. However, if we
consider photons such that ω2 = ω3 and ω1 = ω4 that product
is doubly resonant, the broadening function simplifies to a
squared Lorentzian, and so has the same behavior as σ 1

sq. In
both cases, when very far-detuned (δ > �e/2), δ is the largest
quantity and each cross section approaches the coherent light
value.

Next we consider the σ 3 cross sections, which has a
unique behavior. When δ < γeg the coherent light cross sec-
tion is negative, identically zero when δ = γeg, and positive
but decreasing when δ > γeg. The behavior is not obvious
from diagram III in Fig. 2 and the perturbative expansion in
Fig. 3(c). But by setting ω f g = 2ω̄ in Eq. (10.13c) for A3

coh
one can analytically see this scaling with δ. For the squeezed
light cross sections we see a similar behavior; however, the
turning point from negative to positive is shifted to δ � �e/2
due to the large bandwidth. In Fig. 10 we show the differ-
ent σ 3 cross sections for the values of δ for which they are
positive and negative. In the large detuned limit (δ > �e/2)
we find σ 3

sq, I > σ 3
sq, II because the bandwidth is larger than

the virtual two-photon absorption pathway linewidth, i.e.,
�e > γ f g. Absorption from anticorrelated photons is therefore
always resonant with ω f g, while for uncorrelated photons with
frequency ω1 and ω2 there is wasted energy along the end-
points of the squeezed light bandwidth. Since σ 3

sq, I is always
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FIG. 11. Plotting the σ 4 cross sections for coherent and squeezed
light vs detuning from resonance δ.

resonant with the virtual two-photon absorption it approaches
the coherent light limit for large detuning (δ > �e/2).

In Fig. 11 we plot the σ 4 cross sections. The coherent light
cross section is fixed near resonance and then decreases far
from resonance with two different scalings. When δ < γeg it
scales as δ−2, but as δ increases so that δ > γ f e the cross
section scales as δ−4. The squeezed light cross sections sat-
isfy σ 4

sq, II � σ 4
sq, I, and again this can be understood from the

behavior of the relevant broadening function

R4(ω1, ω2, ω3, ω4) ∝ Ree(ω2 − ω3)

Q f e(ω4)Q∗
eg(ω3)Qeg(ω2)

. (11.32)

When the photons frequencies are given by ω1 = ω4 and ω3 =
ω2, then both factors in the product Q∗

eg(ω3)Qeg(ω2) become
small at the same time. This is the leading contribution to
the squeezed state cross section when δ < �e/2. However, as
δ approaches �e/2, half the squeezed light bandwidth, σ 4

sq, I
quickly increases to its maximum value. This is a nontrivial
scaling with the detuning, which we discuss in detail below.
In the very far-detuned limit (δ > �e/2), δ is the leading
quantity, and each cross section approaches the coherent light
cross section. Similar to the σ 1 and σ 2 cross sections, σ 4

sq, II
is approximately three orders of magnitude larger than the
coherent light cross section due to the large squeezed light
bandwidth.

Finally we consider the σ 5 cross sections, which are plotted
in Fig. 12. The coherent light cross section also has two
behaviors between δ < γeg and δ > γ f e. However, unlike σ 4

coh,
they both scale as δ−2 because σ 5

coh has a δ2 dependence in
the numerator, which can be seen from Eq. (10.13e). We find
σ 5

sq, I > σ 5
sq, II since the σ 5 cross sections corresponds to a

virtual two-photon transition and �e > γ f g, similar to the σ 3

cross sections. In the large detuned limit the anticorrelated
cross section approaches the coherent limit, and we find a
similar cusp behavior as in σ 2

sq, II, σ
3
sq, I, σ

3
sq, II, and σ 4

sq, I which
we now discuss.

FIG. 12. Plotting the σ 5 cross sections for coherent and squeezed
light vs detuning from resonance δ.

In each squeezed light cross section there is a “cusp”
behavior located at δ � �e/2. This is due to an asymmetric
scaling with frequency and is δ dependent. Although we could
choose any broadening function to illustrate this behavior we
consider the broadening function R5(ω1, ω2, ω3, ω4), which
is the simplest mathematically. Consider R5(ω1, ω2, ω3, ω4)
evaluated at the anticorrelated frequencies, given by

R5(ω1, 2ω̄ − ω1, ω2, 2ω̄ − ω2)

∝ −1

Q f e(2ω̄ − ω2)Q f g(2ω̄)Qeg(2ω̄ − ω1)
, (11.33)

which is resonant with the virtual two-photon transition as
expected. Taking the imaginary part and changing variables
σ 5

sq, I is proportional to

σ 5
sq, I ∝ 1

γ f g

∫ δ+ �e
2

δ− �e
2

dω1dω2

�2
e

ω1ω2 + γ f eγeg[
ω2

1 + γ 2
f e

][
ω2

2 + γ 2
eg

] . (11.34)

Due to the behavior of the first term there is complete can-
cellation when δ = 0 and the contribution increases to its
maximum when δ = �e/2, where the range of integration is
over a strictly positive function. In this case the integral is
simple enough to be worked out analytically and the asymmet-
ric dependence on frequencies in the numerator is responsible
for the quick increase in cross-section values as δ approaches
�e/2. For each resonant denominator we must evaluate it at
the specified frequencies and then take the imaginary part.
Taking the imaginary part leads to frequency dependent terms
in the numerator which are asymmetric and lead to the result-
ing “cusp” behavior.

Following the discussion in Sec. (X C) we define the total
squeezed state two-photon absorption cross sections by

σ 2PA
sq, I = σ 3

sq, I + σ 4
sq, I + σ 5

sq, I, (11.35a)

σ 2PA
sq, II = σ 3

sq, II + σ 4
sq, II + σ 5

sq, II, (11.35b)
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FIG. 13. Plotting the σ 2PA cross sections for coherent and
squeezed light vs detuning from resonance δ.

which are plotted in Fig. 13 and compared to the total coherent
light two-photon absorption cross section, given by

σ 2PA
coh = σ 3

coh + σ 4
coh + σ 5

coh, (11.36)

where the σ 3 cross sections include both positive and negative
contributions (see discussion at the end of Sec. X C).

The cross sections in Fig. 13 are the sums of the contribu-
tions already discussed above. The coherent light two-photon
absorption cross section is fixed for δ � γeg and then in-
creases to its maximum value at δ = γeg; then it begins to
decrease with a scaling of δ−2. The increase in the total co-
herent cross section until its maximum at δ = γeg is a direct
result of the coherent light cross section σ 3

coh being nega-
tive when δ < γeg. When δ < �e/2 σ 2PA

sq, II > σ 2PA
sq, I; which is

a direct result of the large resonant enhancement due to the
large bandwidth of the squeezed light. However, as soon as δ

becomes larger than �e/2 all resonant enhancement is lost and
σ 2PA

sq, I > σ 2PA
sq, II because γ f g < �e, and there is wasted energy at

the endpoints of the bandwidth. In the limit where γ f g � �e

this decrease would be even larger, and we would find σ 2PA
sq, II

to be negligible, in agreement with Raymer and Landes [33].
The largest enhancement to the squeezed state two-photon

absorption cross section is when δ � �e/2; however, the one-
photon absorption squeezed light cross section (Fig. 8) is also
significantly enhanced when δ � �e/2, which, depending on
the intensities, may dominate the absorption. Then we identify
the squeezed light rate of one- and two-photon absorption by

Osq

Tp
= Isqσ

1
sq + Isq(Ivac + Isq)σ 2

sq, I + 2I2
sqσ

2
sq, II, (11.37a)

Tsq

Tp
= Isq(Ivac + Isq)σ 2PA

sq, I + 2I2
sqσ

2PA
sq, II, (11.37b)

and plot the results in Figs. 14 and 15, respectively. For
both the one- and two-photon absorption from Figs. 14 and
15, we find the valid parameter space has increased due to
the lowest order squeezed light contribution being smaller

FIG. 14. Plot of the rate of one-photon absorption for squeezed
light (Osq/Tp) against the detuning from resonance (δ) and intensity
Isq. The “white” area represents the parameter space where the per-
turbation theory is not valid.

near resonance. For the two-photon absorption to dominate we
must consider very far detunings where there is no resonant
overlap with the large squeezed light bandwidth (δ > �e/2)
and large intensities. In this limit from each cross-section plot
we find

σ 1
sq

∣∣
δ>�e/2 = σ 1

coh, (11.38a)

σ i
sq, I

∣∣
δ>�e/2 = σ i

coh, (11.38b)

σ i
sq, II

∣∣
δ>�e/2 � σ i

coh, (11.38c)

FIG. 15. Plot of the rate of two-photon absorption for squeezed
light (Tsq/Tp) against the detuning from resonance (δ) and intensity
Isq. The “white” area represents the parameter space where the per-
turbation theory is not valid.
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FIG. 16. Plot of the ratio of two-photon absorption for squeezed
and coherent light (Tsq/Tcoh) detailed degree of squeezed light en-
hancement. The “white” area represents the parameter space where
both coherent and squeezed light calculations are valid.

leading to no enhancement from the squeezed light cross
sections. In this limit, to good approximation, the one- and
two-photon absorption simplify to

Osq

Tp

∣∣∣∣
δ>�e/2

� Isqσ
1
coh, (11.39a)

Tsq

Tp

∣∣∣∣
δ>�e/2

� (
3I2

sq + IsqIvac
)
σ 2PA

coh . (11.39b)

Comparing to a coherent light we find

Osq

Ocoh

∣∣∣∣
δ>�e/2

= 1, (11.40a)

Tsq

Tcoh

∣∣∣∣
δ>�e/2

� 3 + Ivac

Isq
= g(2)(0, 0). (11.40b)

In the very far-detuned limit (δ > �e/2), the ratio of one- and
two-photon absorption is approximately the same to the ratio
of each absorption term in Eq. (11.29a) and has the same inter-
pretation. The factor of 3 we associate with photon bunching;
and a large enhancement is possible when Ivac � Isq. Had
we taken a smaller γ f g such that γ f g � �e then σ 2PA

sq, I �
σ 2PA

sq, II and the ratio of absorption would be proportional to
1 + Ivac/Isq in agreement with Raymer and Landes [33].

Using the parameters in Sec. X B and Te = 100 fs, we find
Ivac ∼ 107 W/m2. In Fig. 16 we plot the ratio of squeezed to
coherent light two-photon absorption in the region where per-
turbation theory is valid for both calculations. We see a large
enhancement of approximately three orders of magnitude for
δ ∼ 2 × 1013 rad/s due the resonant overlap with intermedi-
ate states. As the intensity decreases to Isq ≈ Ivac near δ ∼
1014rad/s the usual photon pair correlation enhancement be-
gins to take effect and the enhancement near Isq ∼ 103 W/m2

corresponds to Ivac/Isq ∼ 104. Finally, when δ ∼ �e/2 and
Isq ∼ 103 W/m2 we find the largest enhancement due to the

combination of the correlations due to g(2)(0, 0) at low inten-
sities as well as a resonant enhancement.

While we do witness up to seven orders of magnitude
enhancement of the two-photon absorption for the set of
parameters we are using, looking at Figs. 14 and 15 in the
regions of parameter space where squeezed light two-photon
absorption is larger than that of coherent light, we find that
the two-photon absorption is no longer dominant, and it is
the one-photon absorption that is larger. Therefore, for the pa-
rameters and detunings we are considering, any enhancement
of two-photon absorption due to squeezed light is irrelevant
because the one-photon absorption is either also enhanced or
just larger at low intensities.

Were γeg chosen much smaller, so that the two-photon
absorption always dominated even at low intensities in the
far-detuned limit, then the condition for squeezed light en-
hancement would still be Isq � 107 W/m2 or equivalently
AFsq � 1/Te = 1013 photons/s. For example, CW coherent
light with AFcoh = AFsq = 1010 photons/s would lead to an
enhancement of three orders of magnitude. However, it has
been argued by Raymer et al. that even at these intensities the
rate of absorption may be too small for current two-photon
detection experiments [29,30,32].

Thus our results agree with past considerations
[29,30,32,33] that for typical fluorescent experiments, in
either the low- or high-intensity limit, CW (highly correlated)
squeezed light does not provide a significant enhancement
over classical light because for the parameters we chose, the
one-photon absorption is the dominate process.

XII. CONCLUSION

In this article we built a model of a multilevel molecule
with two sources of broadening and calculated the energy
absorbed from an incident field that could be either pulsed or
CW and near or far from resonance. Our results are closed
form expressions for the cross sections and the scaling of
absorption with intensity for coherent (classical) and squeezed
light.

Our analysis in this paper involved the absorption of coher-
ent and squeezed light in the CW limit. We found nontrivial
scalings with the detuning from resonance, where near reso-
nance some terms lead to saturation of one-photon absorption
but far from resonance lead to two-photon absorption.

In the limit when the squeezed light bandwidth is very
narrow compared to molecular broadening, each squeezed
light cross section approached that of coherent light, and the
ratio of absorption scaled with the second-order correlation
function g(2)(0, 0), in agreement with past calculations [33]. In
this limit, because there is minimal correlation very low fluxes
would be needed to enhance the absorption process above a
factor of 3.

We then considered the more general scenario where the
squeezed light bandwidth could be very broad compared to
the molecular broadening. This limit opens a new regime
where, due to its large bandwidth, the squeezed light is able
to contribute to the absorption through resonant contributions.
This does lead to an approximately three orders magnitude
increase in absorption for squeezed light; however, for the
parameters we chose this also leads to a increase in the
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one-photon absorption, which overtakes the two-photon ab-
sorption. With different parameters in which the two-photon
absorption is many orders of magnitude larger than the one-
photon contribution, squeezed light resonant enhancements
may be useful. Similar to the coherent light cross sections, the
squeezed light cross sections exhibit nontrivial scaling with
the detuning from resonance and have a “cusp” behavior when
the detuning was equal to half the squeezed light bandwidth.
At low intensities we find an appreciable enhancement over
coherent light predicted in past treatments [13,33], as well
as the combination of photon pair enhancement and resonant
overlap; however, again for the parameters we chose, at such
low intensities the one-photon absorption again dominates. In
conclusion, for the parameters we chose we find a squeezed
light enhancement of the two-photon absorption in the CW
limit, but the one-photon absorption always dominates in the
corresponding region of parameter space. Our results in the
low-intensity limit are in agreement with past calculations and
the recent experiment by Tabakaev et al. [60] Here our main
contribution is that at such low intensities linear processes
such as absorption and scattering can be significant, even
when expected to be small at large detunings, due to the
large bandwidth of the incident squeezed light. Such linear
processes may have contributed to measured signals in early
photon-pair experiments, as was the case in the recent experi-
ment by Hickam et al. [28].

In an extension of this work, we will expand the model
itself to include radiation reaction. Here we phenomenolog-
ically included scattering as decay to the reservoir, but in a
more detailed treatment including radiation reaction we can
more concretely categorize the absorbed as well as scattered
(fluorescent) energy.

The treatment used here models collisional dephasing with
stochastic fluctuations of the molecules energy eigenstates in
the “impact limit” leading to a Lorentzian lineshape. However,
this is an approximation and over estimates the far-detuned
contributions and can be made more accurate by considering
different models [35,61–63]. For example, collisional line
broadening can be treated in general within this model by
relaxing the condition that the correlation time τc is much
shorter then the decay time of coherence, �i jτc � 1, which
we assumed in Appendix C [35,46].
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APPENDIX A: ABSORPTION IN THE RWA

Consider a pulse of light incident on a molecule. To
calculate the energy absorbed by the molecule from the elec-
tromagnetic field between the times tI and tF > tI , we consider
the difference in energy of the electromagnetic between those
times given by

�EEM = 〈�(tF )|HEM |�(tF )〉 − 〈�(tI )|HEM |�(tI )〉

=
∫ tF

tI

d

dt
〈�(t )|HEM |�(t )〉dt . (A1)

The evolution of the ket |�(t )〉 is given by |�(t )〉 =
U (t, t0)|�(t0)〉, where the operator U (t, t0) is unitary and is
a solution of a Schrödinger equation with the full Hamil-
tonian H (t ), and with U (t0, t0) equal to identity; t0 < tI
is an initial time. For any Schrödinger operator O the
time dependence of the corresponding Heisenberg pic-
ture operator is given by OH (t ) = U (t0, t )OU (t, t0). Thus
〈�(t )|HEM |�(t )〉 = 〈�(t0)|HH

EM (t )|�(t0)〉, for example, and
using this in (A1) together with the Heisenberg equation for
the evolution of HH

EM (t ) we can write

�EEM = 1

ih̄

∫ tF

tI

dt〈�(t0)|[HH
EM (t ), HH (t )

]|�(t0)〉. (A2)

We now evaluate the commutator [HH
EM (t ), HH (t )].

To simplify the notation we evaluate the corresponding
Schrödinger picture commutator, [HEM, H (t )], and then move
to the Heisenberg picture. Since all field operators commute
with all molecule and reservoir operators, the only contri-
bution to that commutator is [HEM, H (t )] = [HEM, HM−EM ].
Writing the interaction Hamiltonian in completely symmetric
form,

HM-EM = − 1
2 (μ · E + E · μ), (A3)

and moving to the RWA,

HM-EM = − 1
2 (μ+ · E− + μ− · E+ + E− · μ+ + E+ · μ−),

(A4)
we have

[HEM, H (t )] = 1
2 (μ− · [E+, HEM ] + μ+ · [E−, HEM ]

+ [E−, HEM] · μ+ + [E+, HEM ] · μ−). (A5)

We note that at this point in the calculation each term on the
right-hand side can be reordered since they act over different
Hilbert spaces. Next we look at

[E±, H (t )] = [E±, HEM ] + [E±, HM−EM ]. (A6)

Working out the second term on the right-hand side and re-
arranging the equation to solve for [E±, HEM ], we insert the
results in (A5) to find

[HEM , H (t )] = 1
2 (μ− · [E+, H (t )] + μ+ · [E−, H (t )]

+ [E+, H (t )] · μ− + [E−, H (t )] · μ+),

(A7)

where now the order of the two terms in each dot product
on the right-hand side is fixed; those terms do not commute,
since [E±, H (t )] is a function of both molecule and field
operators and in general no longer commutes with the μ±
operators. Moving back into the Heisenberg picture and using
the Heisenberg equation of motion for E±(t ) we have[

HH
EM (t ), HH (t )

]
= ih̄

2

(
μH

− (t ) · dEH
+ (t )

dt
+ μH

+ (t ) · dEH
− (t )

dt

+ dEH
+ (t )

dt
· μH

− (t ) + dEH
− (t )

dt
· μH

+ (t )

)
. (A8)

Using this in (A2) we find the change in total energy
�EEM in the electromagnetic field. The energy lost from the
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electromagnetic field is by definition the energy absorbed, A, and so putting A = −�EEM we find

A = 1

2

∫ tF

tI

dt〈�(t0)|
(

dμH
− (t )

dt
· EH

+ (t ) + dμH
+ (t )

dt
· EH

− (t ) + EH
+ (t ) · dμH

− (t )

dt
+ EH

− (t ) · dμH
+ (t )

dt

)
|�(t0)〉

+ 1

2
〈�(t0)|

(
dμH

− (t )

dt
· EH

+ (t ) + dμH
+ (t )

dt
· EH

− (t ) + EH
+ (t ) · dμH

− (t )

dt
+ EH

− (t ) · dμH
+ (t )

dt

)
|�(t0)〉

∣∣∣∣
tF

tI

, (A9)

where we have performed an integration by parts.
Up till now the equation we have derived is general and valid for any time tI and tF > tI > t0. Now consider a time t < tmin

where tmin is a very early time when the pulse is still far from the molecule, we take the initial ket of the system to be of the form
|�(t )〉 = |g〉M|ψ (t )〉EM|vac〉R, where |g〉 is the ground state of the molecule, |ψ (t )〉EM is a state of the electromagnetic field, and
|vac〉R is the ground state of the reservoir (the set of effective wave guides). Then for t > tmax where tmax is long enough after the
pulse has interacted with the molecule that the molecule has returned to its ground state via interaction with the electromagnetic
field and the reservoir, the full ket of the system will be of the general form |�(t )〉 = |g〉M|φ(t )〉EM-R where |φ(t )〉EM-R is a ket in
the product Hilbert space of the electromagnetic field and the reservoir. For the RWA form of the interaction Hamiltonian HM-EM

and HM-R and for times t < tmin and t > tmax the expectation value of HM-EM and HM-R vanishes.
Since for times ta, tb < tmin and ta, tb > tmax any expectation value will not include a contribution from the interaction terms

HM-EM and HM-R, in the Heisenberg picture, this is equivalent to saying that the time evolution is given just by the free
Hamiltonian H0, i.e., U (tb, ta) = U0(tb, ta).

Moving back to the absorption in Eq. (A9), we take the times tI < tmin and tF > tmax so that the “boundary terms” are zero
because the time evolution is given by H0 which as per the above discussion annihilates the initial ket |�(t0)〉 for t0 < tI < tmin,
then the absorption is given by

A = 1

2

∫ tF

tI

dt〈�(t0)|
(

dμH
− (t )

dt
· EH

+ (t ) + dμH
+ (t )

dt
· EH

− (t ) + EH
+ (t ) · dμH

− (t )

dt
+ EH

− (t ) · dμH
+ (t )

dt

)
|�(t0)〉. (A10)

Following the symmetric form of (A4), the result (A10) contains terms that are normally ordered and terms that are
antinormally ordered. We can write it as a sum of terms of definite order, A = 1

2 (AN + AAN ), where AN and AAN are respectively
normally and antinormally ordered,

AN =
∫ tF

tI

dt〈�(t0)|
(

dμH
− (t )

dt
· EH

+ (t ) + EH
− (t ) · dμH

+ (t )

dt

)
|�(t0)〉, (A11a)

AAN =
∫ tF

tI

dt〈�(t0)|
(

dμH
+ (t )

dt
· EH

− (t ) + EH
+ (t ) · dμH

− (t )

dt

)
|�(t0)〉. (A11b)

Since the operators in each pair on the right-hand side of (A4) commute, that equation could in fact be written in normal or
antinormal order, and one might expect the same for (A9). Indeed, we show below that A = AN = AAN , and thus any convenient
ordering can be chosen for the absorption expression (A9).

We begin by considering the commutator[
EH

+ (t )·, dμH
− (t )

dt

]
≡ EH

+ (t ) · dμH
− (t )

dt
− dμH

− (t )

dt
· EH

+ (t ) (A12)

Using the Heisenberg equation of motion for the operator μH
+ (t ) we expand the right-hand side of the commutator as[

EH
+ (t )·, dμH

− (t )

dt

]
= 1

ih̄
[EH

+ (t )·, [μH
− (t ), HH (t )]]. (A13)

Applying the Jacobi identity for the commutator on the right-hand side we have

[EH
+ (t )·, [μH

− (t ), HH (t )]] + [μH
− (t )·, [HH (t ), EH

+ (t )]] + [HH (t ), [EH
+ (t )·,μH

− (t )]] = 0, (A14)

where the first term is the term we started with and the last term is zero because field and molecule operators commute. The
commutator [HH (t ), EH

+ (t )] was evaluated in Eq. (A6) in the Schrödinger picture. Moving to the Heisenberg picture, inputting
the commutator, simplifying and putting it all together, the commutator in Eq. (A12) is given by[

EH
+ (t )·, dμH

− (t )

dt

]
= i

h̄
[EH

+ (t )·, EH
− (t )][μH

− (t )·,μH
+ (t )]. (A15)

Now on the right-hand side we set

C(t ) ≡ [EH
+ (t )·, EH

− (t )][μH
− (t )·,μH

+ (t )]. (A16)

For each commutator appearing here we can always consider the Schrödinger picture for its evaluation. First consider [E+·, E−],
which at most is a complex number; but because [E+, E−]† = [E+·, E−], the commutator [E+·, E−] must be a real number.
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The second commutator, [μ−·,μ+], is also Hermitian, and so C(t ) is therefore a Hermitian operator. Since these are Schrödinger
operators this is always true even after any approximations we make to the time evolution of the operators in the Heisenberg
picture. Taking the Hermitian conjugate of the commutator in Eq. (A15) and adding it to itself we expand the commutators and
find

dμH
− (t )

dt
· EH

+ (t ) + EH
− (t ) · dμH

+ (t )

dt
= dμH

+ (t )

dt
· EH

− (t ) + EH
+ (t ) · dμH

− (t )

dt
, (A17)

where the noncommuting parts exactly cancel because C(t ) is Hermitian leading to the equality of the normally and antinormally
ordered contributions, and to A = AN = AAN . It will be computationally easier to work with the normally ordered form of the
absorption which after dropping the superscript is given by

A =
∫ tF

tI

dt〈�(t0)|EH
− (t ) · dμH

+ (t )

dt
|�(t0)〉 + c.c., (A18)

and is manifestly real.

APPENDIX B: PERTURBATION THEORY

In this section we begin with the exact solution for each molecule operator and solve them perturbatively. We begin with the
exact solution given by Eq. (6.13) to each differential equation in Eq. (6.9), inputting the proper right-hand side we have

σ̄ge(t ) =
∫ t

−∞
dt1[Geg(t, t1)σ̄gg(t1)F̂ eg

+ (t1) + G∗
ge(t, t1)σ̄e′e(t1)F̂ e′g

+ (t1) + Geg(t, t1)F̂ e f
− (t1)σ̄gf (t1)], (B1a)

σ̄ee′ (t ) =
∫ t

−∞
dt1[Ge′e(t, t1)σ̄eg(t1)F̂ e′g

+ (t1) + G∗
ee′ (t, t1)F̂ ge

− (t1)σ̄ge′ (t1) + G∗
ee′ (t, t1)σ̄ f e′ (t1)F̂ f e

+ (t1) + Ge′e(t, t1)F̂ e′ f
− (t1)σ̄e f (t1)]

− 2i f e

∫ t

−∞
dt1Ge′e(t, t1)σ̄ f f (t1)δee′ , (B1b)

σ̄e f (t ) =
∫ t

−∞
dt1[G f e(t, t1)σ̄ee′ (t1)F̂ f e′

+ (t1) + G∗
e f (t, t1)F̂ ge

− (t1)σ̄gf (t1) + G∗
e f (t, t1)σ̄ f ′ f (t1)F̂ f ′e

+ (t1)], (B1c)

σ̄gf (t ) =
∫ t

−∞
dt1[G f g(t, t1)σ̄ge(t1)F̂ f e

+ (t1)+G∗
gf (t, t1)σ̄e f (t1)F̂ eg

+ (t1)], (B1d)

where Gi j (t, t1) is the Green function for each equation and is defined in Eq. (6.12). In Sec. VII we argued that the only nonzero
term at zeroth order is σ̄ (0)

gg (t ) = 1̂, which we use to begin the perturbation theory.
The first-order solution is solved by inputting the zeroth-order solution into the right-hand side of each exact solution in

Eq. (B1). The only nonzero term at first order is given by

σ̄ (1)
ge (t ) =

∫ t

−∞
dt1Geg(t, t1)F̂ eg

+ (t1), (B2)

where F̂ eg
+ (t1) is a known operator. Note that all molecule operators on the right-hand side are absent because the zeroth-order

solution is the identity operator. At second order, the nonzero contributions are

σ̄
(2)
ee′ (t ) =

∫ t

−∞
dt2Ge′e(t, t2)

∫ t2

−∞
dt1G∗

eg(t2, t1)F̂ ge
− (t1)F̂ e′g

+ (t2) +
∫ t

−∞
dt2G∗

ee′ (t, t2)F̂ ge
− (t2)

∫ t2

−∞
dt1Ge′g(t2, t1)F̂ e′g

+ (t1), (B3a)

σ̄ (2)
gg (t ) =

∫ t

−∞
dt2G∗

gg(t, t2)
∫ t2

−∞
dt1G∗

e′g(t2, t1)F̂ ge′
− (t1)F̂ e′g

+ (t2) +
∫ t

−∞
dt2Ggg(t, t2)F̂ ge′

− (t2)
∫ t2

−∞
dt1Ge′g(t2, t1)F̂ e′g

+ (t1), (B3b)

σ̄
(2)
gf (t ) =

∫ t

−∞
dt2G f g(t, t2)

∫ t2

−∞
dt1Ge′g(t2, t1)F̂ e′g

+ (t1)F̂ f e′
+ (t2). (B3c)

Finally, we calculate the third order results for σ̄ge(t ) and σ̄e f (t ), since these are the only terms needed for the absorption; they
are given by

σ̄ (3)
ge (t ) =

∫ t

−∞
dt3Geg(t, t3)

∫ t3

−∞
dt2G∗

gg(t3, t2)
∫ t2

−∞
dt1G∗

e′g(t2, t1)F̂ ge′
− (t1)F̂ e′g

+ (t2)F̂ eg
+ (t3)

+
∫ t

−∞
dt3Geg(t, t3)

∫ t3

−∞
dt2Ggg(t3, t2)F̂ ge′

− (t2)
∫ t2

−∞
dt1Ge′g(t2, t1)F̂ e′g

+ (t1)F̂ eg
+ (t3)

+
∫ t

−∞
dt3G∗

ge(t, t3)
∫ t3

−∞
dt2Gee′ (t3, t2)

∫ t2

−∞
dt1G∗

e′g(t2, t1)F̂ ge′
− (t1)F̂ eg

+ (t2)F̂ e′g
+ (t3)
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+
∫ t

−∞
dt3G∗

ge(t, t3)
∫ t3

−∞
dt2G∗

ee′ (t3, t2)F̂ ge′
− (t2)

∫ t2

−∞
dt1Geg(t2, t1)F̂ eg

+ (t1)F̂ e′g
+ (t3)

+
∫ t

−∞
dt3Geg(t, t1)F̂ e f

− (t3)
∫ t3

−∞
dt2G f g(t3, t2)

∫ t2

−∞
dt1Ge′g(t2, t1)F̂ e′g

+ (t1)F̂ f e′
+ (t2) (B4)

and

σ̄
(3)
e f (t ) =

∫ t

−∞
dt3G f e(t, t3)

∫ t3

−∞
dt2Ge′e(t3, t2)

∫ t2

−∞
dt1G∗

eg(t2, t1)F̂ ge
− (t1)F̂ e′g

+ (t2)F̂ f e′
+ (t3)

+
∫ t

−∞
dt3G f e(t, t3)

∫ t3

−∞
dt2G∗

e′e(t3, t2)F̂ ge
− (t2)

∫ t2

−∞
dt1Ge′g(t2, t1)F̂ e′g

+ (t1)F̂ f e′
+ (t3)

+
∫ t

−∞
dt3G∗

e f (t, t3)F̂ ge
− (t3)

∫ t3

−∞
dt2G f g(t3, t2)

∫ t2

−∞
dt1Ge′g(t2, t1)F̂ e′g

+ (t1)F̂ f e′
+ (t2). (B5)

The only terms that contribute to the absorption are σ̄ (1)
ge (t ), σ̄ (3)

ge (t ), and σ̄
(3)
e f (t ).

APPENDIX C: STOCHASTIC AVERAGE

We begin this section by taking the expectation value of the Green function Gi j (t, t1). To work out [[Gi j (t, t1)]] we use the
assumptions made in Sec. II and Eq. (2.14). We assume the random variables follow a Gaussian distribution, fluctuations of
different energy levels are characterized by ci j with zero mean and the correlations follow a fast exponential decay with a
correlation time τc. Then using the cumulant expansion for a Gaussian distribution [35,64] we evaluate

[[Gi j (t, t1)]] = ie−(̄i j+iωi j )(t−t1 )
[[

e−i
∫ t

t1
dt ′ω̃i j (t ′ )]] = ie−(̄i j+iωi j )(t−t1 )e− 1

2

∫ t
t1

dt ′ ∫ t
t1

dt ′′[[ω̃i j (t ′ )ω̃i j (t ′′ )]]
. (C1)

Using Eq. (2.14b) we evaluate the time integrals in the exponent to be

gi j (t − t1) ≡ 1

2

∫ t

t1

dt ′
∫ t

t1

dt ′′[[ω̃i j (t
′)ω̃i j (t

′′)]] = σ 2
i jτ

2
c

(
e− t−t1

τc − 1 + t − t1
τc

)
, (C2)

where we defined σ 2
i j ≡ cii − 2ci j + c j j � 0, for which it follows that

[[Gi j (t, t1)]] = ie−(̄i j+iωi j )(t−t1 )e−gi j (t−t1 ). (C3)

Taking the “impact limit” in which correlations decay on fast timescales compared to the coupling strength [35,46]

gi j (t − t1) → �i j (t − t1), (C4)

where we defined �i j = σ 2
i jτc to be the dephasing decay rate between i and j. Then all together the classical expectation value

is given by

[[Gi j (t, t1)]] = e−(̄i j+�i j+iωi j )(t−t1 ), (C5)

and we define Gi j (t − t1) ≡ [[Gi j (t, t1)]] and the total decay rate γi j ≡ ̄i j + �i j .

APPENDIX D: ABSORPTION IN TIME AND FREQUENCY

Taking the classical expectation value and inputting the coherence operators into Eq. (3.2) for the absorption we have

A =
∫ ∞

−∞
dt2〈μge · Ê−(t2)

d

dt2

∫ t2

−∞
dt1Geg(t2 − t1)F̂ eg

+ (t1)〉 + c.c.,

+
∫ ∞

−∞
dt4〈μge · Ê−(t4)

d

dt4

∫ t4

−∞
dt3Geg(t4 − t3)

∫ t3

−∞
dt2G∗

gg(t3 − t2)
∫ t2

−∞
dt1G∗

e′g(t2 − t1)F̂ ge′
− (t1)F̂ e′g

+ (t2)F̂ eg
+ (t3)〉 + c.c.

+
∫ ∞

−∞
dt4〈μge · Ê−(t4)

d

dt4

∫ t4

−∞
dt3Geg(t4 − t3)

∫ t3

−∞
dt2Ggg(t3 − t2)

∫ t2

−∞
dt1Ge′g(t2 − t1)F̂ ge′

− (t2)F̂ e′g
+ (t1)F̂ eg

+ (t3)〉 + c.c.

+
∫ ∞

−∞
dt4〈μge · Ê−(t4)

d

dt4

∫ t4

−∞
dt3G∗

ge(t4 − t3)
∫ t3

−∞
dt2Gee′ (t3 − t2)

∫ t2

−∞
dt1G∗

e′g(t2 − t1)F̂ ge′
− (t1)F̂ eg

+ (t2)F̂ e′g
+ (t3)〉 + c.c.

+
∫ ∞

−∞
dt4〈μge · Ê−(t4)

d

dt4

∫ t4

−∞
dt3G∗

ge(t4 − t3)
∫ t3

−∞
dt2G∗

ee′ (t3 − t2)
∫ t2

−∞
dt1Geg(t2 − t1)F̂ ge′

− (t2)F̂ eg
+ (t1)F̂ e′g

+ (t3)〉 + c.c.

+
∫ ∞

−∞
dt4〈μge · Ê−(t4)

d

dt4

∫ t4

−∞
dt3Geg(t4 − t3)

∫ t3

−∞
dt2G f g(t3 − t2)

∫ t2

−∞
dt1Ge′g(t2 − t1)F̂ e f

− (t3)F̂ e′g
+ (t1)F̂ f e′

+ (t2)〉 + c.c.,
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+
∫ ∞

−∞
dt4〈μe f · Ê−(t4)

d

dt4

∫ t4

−∞
dt3G f e(t4 − t3)

∫ t3

−∞
dt2Ge′e(t3 − t2)

∫ t2

−∞
dt1G∗

eg(t2 − t1)F̂ ge
− (t1)F̂ e′g

+ (t2)F̂ f e′
+ (t3)〉 + c.c.

+
∫ ∞

−∞
dt4〈μe f · Ê−(t4)

d

dt4

∫ t4

−∞
dt3G f e(t4 − t3)

∫ t3

−∞
dt2G∗

e′e(t3 − t2)
∫ t2

−∞
dt1Ge′g(t2 − t1)F̂ ge

− (t2)F̂ e′g
+ (t1)F̂ f e′

+ (t3)〉 + c.c.

+
∫ ∞

−∞
dt4〈μe f · Ê−(t4)

d

dt4

∫ t4

−∞
dt3G∗

e f (t4 − t3)
∫ t3

−∞
dt2G f g(t3 − t2)

∫ t2

−∞
dt1Ge′g(t2 − t1)F̂ ge

− (t3)F̂ e′g
+ (t1)F̂ f e′

+ (t2) + c.c.,

(D1)

where we have dropped the symbol for the stochastic average on the left-hand side.
In putting the inverse Fourier transform of each F i j

± (t ), computing the time integrals with the defined functions in Eqs. (8.2)
and (8.3) and combining the complex conjugate, the absorption is given by

A = 2
∫

dω1h̄ω1Im

[ 〈F̂ ge
− (−ω1)F̂ eg

+ (ω1)〉
Qeg(ω1)

]

− 4π

∫
d̄ ω1d̄ ω2d̄ ω3d̄ ω4h̄ω4Im

[
〈F̂ ge

− (−ω4)F̂ ge′
− (−ω3)F̂ e′g

+ (ω2)F̂ eg
+ (ω1)〉

Qeg(ν4)Q∗
e′g(ω3)Qe′g(ω2)

Re′e′ (ω2 − ω3)

]
δ(ω1 + ω2 − ω3 − ω4)

− 4π

∫
d̄ ω1d̄ ω2d̄ ω3d̄ ω4h̄ω4Im

[
〈F̂ ge

− (−ω4)F̂ ge′
− (−ω3)F̂ eg

+ (ω2)F̂ e′g
+ (ω1)〉

Qeg(ω4)Q∗
e′g(ω3)Qeg(ω2)

Ree′ (ω2 − ω3)

]
δ(ω1 + ω2 − ω3 − ω4)

+ 4π

∫
d̄ ω1d̄ ω2d̄ ω3d̄ ω4h̄ω4Im

[
〈F̂ ge

− (−ω4)F̂ e f
− (−ω3)F̂ e′g

+ (ω2)F̂ f e′
+ (ω1)〉

Qeg(ω4)Q f g(ω1 + ω2)Qe′g(ω2)

]
δ(ω1 + ω2 − ω3 − ω4),

+ 4π

∫
d̄ ω1d̄ ω2d̄ ω3d̄ ω4h̄ω4Im

[
〈F̂ e f

− (−ω4)F̂ ge
− (−ω3)F e′g

+ (ω2)F̂ f e′
+ (ω1)〉

Q f e(ω4)Q∗
eg(ω3)Qe′g(ω2)

Re′e(ω2 − ω3)

]
δ(ω1 + ω2 − ω3 − ω4)

− 4π

∫
d̄ ω1d̄ ω2d̄ ω3d̄ ω4h̄ω4Im

[
〈F̂ e f

− (−ω4)F̂ ge
− (−ω3)F̂ e′g

+ (ω2)F̂ f e′
+ (ω1)〉

Q f e(ω4)Q f g(ω1 + ω2)Qe′g(ω2)

]
δ(ω1 + ω2 − ω3 − ω4), (D2)

where we sum over e, e′, and f and Im denotes the imaginary part of a complex number. Note that we leave the final result in
terms of F̂ i j

± (t ) because it is notionally simpler at this point.

APPENDIX E: SQUEEZING OPERATOR TRANSFORMATION

We start with the squeezing operator given in Eq. (11.2) and define the operator

B† = β

2

∫
dω1 dω2γ (ω1, ω2)a†(ω1)a†(ω2) (E1)

such that

S(β ) = eB†−B. (E2)

Using the Baker-Hausdorff lemma [65] [Eq. (2.3.47)], we have

S†(β )a(ω)S(β ) = a(ω) + [B − B†, a(ω)] + 1

2!
[B − B†, [B − B†, a(ω)]] + 1

3!
[B − B†, [B − B†, [B − B†, a(ν)]]] + · · · , (E3)

which we can simplify by putting Cn+1(ω) = [B − B†,Cn(ω)] with C1(ω) = [B − B†, a(ω)], then

S†(β )a(ω)S(β ) = a(ω) +
∑
n=1

Cn(ω)

n!
. (E4)

We work out the commutators for C1(ω), C2(ω), C3(ω) and then the general result follows. The first commutator is easily worked
out to be

C1(ω) = β

∫
dω1α(ω + ω1)φ

(ω − ω1

2

)
a†(ω1). (E5)

In the CW limit, α(ω + ω1) is strongly peaked at ω + ω1 = 2ω̄, which we can use to approximate the integrand. Then, to good
approximation, φ( ω−ω1

2 ) = φ(ω − ω̄), which we pull out of the integrand so that

C1(ω) = βφ(ω − ω̄)
∫

dω1α(ω + ω1)a†(ω1). (E6)
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Evaluating the second commutator we have

C2(ω) = |β|2φ(ω − ω̄)
∫

dω1α(ω + ω1)
∫

dω2γ
∗(ω1, ω2)a(ω2), (E7)

and again in the CW limit α(ω + ω1) is strongly peaked at ω + ω1 = 2ω̄ so that to good approximation γ (ω1, ω2) = γ (2ω̄ −
ω,ω2). Then the second commutator simplifies to

C2(ω) = |β|2φ(ω − ω̄)
∫

dω1α(ω + ω1)
∫

dω2γ
∗(2ω̄ − ω,ω2)a(ω2), (E8)

where all the ω1 dependence is in α(ω + ω1). Then for frequencies ω of interest near ω̄ and within the CW limit we integrate
over ω1 and find ∫

dω1α(ω + ω1) = √
�p. (E9)

Expanding the biphoton wave function, the second commutator is

C2(ω) =|β|2φ(ω − ω̄)
√

�p

∫
dω2α

∗(2ω̄ − ω + ω2)φ∗
(

2ω̄ − ω − ω2

2

)
a(ω2). (E10)

We repeat the process where in the CW limit ω = ω2 and φ∗( 2ω̄−ω−ω2
2 ) = φ∗(ω − ω̄). Then

C2(ω) = 1√
�p

|βφ(ω − ω̄)
√

�p|2
∫

dω2α
∗(2ω̄ − ω + ω2)a(ω2). (E11)

Following the same steps for the third commutator we find

C3(ω) = 1√
�p

|βφ(ω − ω̄)
√

�p|2βφ(ω − ω̄)
√

�p

∫
dω2α(ω + ω3)a†(ω3), (E12)

and in general

Cn(ω) = 1√
�p

|βφ(ω − ω̄)
√

�p|n
∫

dω2α
∗(2ω̄ − ω + ω2)a(ω2), n even, (E13a)

Cn(ω) = 1√
�p

|βφ(ω − ω̄)
√

�p|n βφ(ω − ω̄)

|βφ(ω − ω̄)|
∫

dω1α(ω + ω1)a†(ω1), n odd. (E13b)

In Eq. (E4) we split the sum into odd and even contributions and then input the results for Cn(ω) so that

S†(β )a(ω)S(β ) = a(ω) + 1√
�p

βφ(ω − ω̄)

|βφ(ω − ω̄)|

(
odd∑
n=1

|βφ(ω − ω̄)
√

�p|n
n!

)∫
dω1α(ω + ω1)a†(ω1)

+ 1√
�p

(
even∑
n=2

|βφ(ω − ω̄)
√

�p|n
n!

)∫
dω2α

∗(2ω̄ − ω + ω2)a(ω2). (E14)

Using the Taylor series for sinhx and coshx the sums are replaced with

S†(β )a(ω)S(β ) = a(ω) + [cosh(|βφ(ω − ω̄)|√�p) − 1]√
�p

∫
dω2α

∗(2ω̄ − ω + ω2)a(ω2)

+ βφ(ω − ω̄)

|βφ(ω − ω̄)|
sinh(|βφ(ω − ω̄)|√�p)√

�p

∫
dω1α(ω + ω1)a†(ω1), (E15)

which in our simple model of the phase-matching function [Eq. (11.8)] simplifies to Eq. (11.10).
Since the squeezing operator is unitary we check our approximations in moving from Eq. (2.5) to Eq. (2.6) by calculating

its affect on the commutator [a(ω), a†(ω′)] = δ(ω − ω′). Then applying the squeezing transformation and evaluating the
commutator we find

S†(β )[a(ω), a†(ω′)]S(β )

= [S†(β )a(ω)S(β ), S†(β )a†(ω′)S(β )]

= δ(ω − ω′) + [cosh(|βφ(ω′ − ω̄)|√�p) − 1]√
�p

α(2ω̄ − ω′ + ω) + [cosh(|βφ(ω − ω̄)|√�p) − 1]√
�p

α(2ω̄ − ω′ + ω)
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+ {cosh[|βφ(ω − ω̄)|√�p] − 1}√
�p

{cosh[|βφ(ω′ − ω̄)|√�p] − 1}√
�p

∫
dω1α

∗(2ω̄ − ω + ω1)α(2ω̄ − ω′ + ω1)

− βφ(ω − ω̄)

|βφ(ω − ω̄)|
sinh(|βφ(ω − ω̄)|√�p)√

�p

β∗φ∗(ω′ − ω̄)

|βφ(ω′ − ω̄)|
sinh(|βφ(ω′ − ω̄)|√�p)√

�p

∫
dω1α(ω + ω1)α∗(ω′ + ω1). (E16)

To push forward we use our definition of the pump function in Eq. (11.5) and note that one representation of the delta function
is given by [53]

lim
�p→0

α(ω)√
�p

= lim
�p→0

1

�p
sinc

(
(ω − 2ω̄)π

�p

)
= δ(ω − 2ω̄). (E17)

Then using the above identity the commutator simplifies to

S†(β )[a(ω), a†(ω′)]S(β ) = δ(ω − ω′) + 2{cosh[|βφ(ω − ω̄)|√�p] − 1}δ(ω − ω′) + {cosh[|βφ(ω − ω̄)|√�p] − 1}2δ(ω − ω′)

− sinh2(|βφ(ω − ω̄)|√�p)δ(ω − ω′), (E18)

then after some algebra and using the identity that cosh2(x) − sinh2(x) = 1 we arrive at the final conclusion that

S†(β )[a(ω), a†(ω′)]S(β ) = δ(ω − ω′), (E19)

so the squeezing operator preserves the commutation relation.

APPENDIX F: CW SQUEEZED STATE CORRELATION FUNCTIONS

To calculate the correlation functions we begin with the simplified form of Eq. (E15) given in Eq. (11.10). Acting an
annihilation operator on the squeezed state |β〉 and using Eq. (11.10) and that α(ω) is real we find

a(ω1)|β〉 = S(β )S†(β )a(ω1)S(β )|vac〉 = S(β )
s(ω1)eiθ√

�p

∫
dω′α(ω1 + ω′)a†(ω′)|vac〉, (F1)

which we will use to calculate the first correlation function. To calculate the second correlation function we act a second
annihilation operator on the state and find

a(ω2)a(ω1)|β〉 = S(β )
s(ω1)eiθ√

�p

(
α(ω1 + ω2) + [c(ω2) − 1]√

�p

∫
dω′α(2ω̄ − ω2 + ω′)α(ω1 + ω′)

+ s(ω2)eiθ√
�p

∫
dω′dω′′α(ω1 + ω′)α(ω2 + ω′′)a†(ω′′)a†(ω′)

)
|vac〉. (F2)

We can simplify Eq. (F2) by using the identity

sinc(y − z) = 1

π

∫
dxsinc(x − y)sinc(x − z) (F3)

and find ∫
dω′α(2ω̄ − ω2 + ω′)α(ω1 + ω′) = √

�pα(ω1 + ω2). (F4)

Then Eq. (F2) simplifies to

a(ω2)a(ω1)|β〉 = S(β )
s(ω1)eiθ√

�p

(
c(ω2)α(ω1 + ω2) + s(ω2)eiθ√

�p

∫
dω′dω′′α(ω1 + ω′)α(ω2 + ω′′)a†(ω′′)a†(ω′)

)
|vac〉. (F5)

To calculate the first correlation function we take the adjoint of Eq. (F1) and combine it with itself. Then

〈β|a†(ω2)a(ω1)|β〉 = s(ω2)s(ω1)

�p

∫
dω′′α(ω2 + ω′′)

∫
dω′α(ω1 + ω′)〈vac|a(ω′′)a†(ω′)|vac〉

= Tp

2π
s(ω2)s(ω1)sinc

(
(ω1 − ω2)π

�p

)
, (F6)

where we used �p = 2π/Tp. For the second correlation function again taking the adjoint of Eq. (F5) we have

〈β|a†(ω4)a†(ω3)a(ω2)a(ω1)|β〉
= s(ω4)c(ω3)c(ω2)s(ω1)

�p
α(ω4 + ω3)α(ω2 + ω1) + s(ω4)s(ω3)s(ω2)s(ω1)

�2
p

×
∫

dω′dω′′dω′′′dω′′′′α(ω1 + ω′)α(ω2 + ω′′)α(ω3 + ω′′′)α(ω4 + ω′′′′)〈vac|a(ω′′′′)a(ω′′′)a†(ω′′)a†(ω′)|vac〉, (F7)
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where

〈vac|a(ω′′′′)a(ω′′′)a†(ω′′)a†(ω′)|vac〉 = δ(ω′ − ω′′′)δ(ω′′ − ω′′′′) + δ(ω′′′ − ω′′)δ(ω′ − ω′′′′). (F8)

Then using the identity in Eq. (F3) we simplify the second term to be∫
dω′dω′′dω′′′dω′′′′α(ω1 + ω′)α(ω2 + ω′′)α(ω3 + ω′′′)α(ω4 + ω′′′′)〈vac|a(ω′′′′)a(ω′′′)a†(ω′′)a†(ω′)|vac〉
= �pα(ω1 − ω3 + 2ω̄)α(ω2 − ω4 + 2ω̄) + �pα(ω1 − ω4 + 2ω̄)α(ω2 − ω3 + 2ω̄), (F9)

with the final result for the correlation function

〈β|a†(ω4)a†(ω3)a(ω2)a(ω1)|β〉
= Tp

2π
s(ω4)c(ω3)c(ω2)s(ω1)α(ω2 + ω1)α(ω4 + ω3) + Tp

2π
s(ω4)s(ω3)s(ω2)s(ω1)[α(ω1 − ω3 + 2ω̄)α(ω2 − ω4 + 2ω̄)

+α(ω1 − ω4 + 2ω̄)α(ω2 − ω3 + 2ω̄)]. (F10)
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