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Quantum systems with multiharmonic dressing have been extensively investigated and exhibited various novel
phenomena and technologies by virtue of their robust electromagnetic response. Here we mainly investigate the
self-generated longitudinal Floquet modulation phenomenon of an alignment-based magnetic-resonance system
with pump-probe structure dressed by two different transverse radio-frequency (rf) fields in a warm atomic
cesium ensemble, both theoretically and experimentally. The self-generated Floquet modulation includes first
and second harmonics, which are contributed to by linear and nonlinear processes from the weak-dressed field,
respectively. The self-generated Floquet modulation dresses the alignment absorption spectra into two continua.
The asymmetry of each dressed continuum is due to the generalized parity symmetry of the system being broken
by the second harmonic modulation. Moreover, the nonlinear modification effect of the weak rf field on the probe
verifies the existence of the four-wave mixing process in the rf band. The analytical expression, establishment
process, and asymmetry analysis of the continua are given concisely. Our results can be applied to the fields of
precision magnetic-field measurement, quantum control, quantum simulation, and so on. In addition, because
the physical mechanism is universal, it can be applied not only to an atomic ensemble, but also to solid-state
devices.
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I. INTRODUCTION

The electromagnetic dressing of quantum systems is a
tool for investigating quantum observables, quantum vari-
ables, and system energy [1–4]. Since the dressed field has
a long-term robust effect on the system energy and the coher-
ence establishment, quantum systems with radio frequency or
microwave dressing exhibit a variety of multiphoton phenom-
ena in various atomic vapor experiments and solid-state spin
systems, including multiphoton interference process [5,6],
Bloch-Siegert shifts [7,8], modifications of the Landé g factor
[9–11], strong spin-exchange collisions [12], and so on. With
the development of theory and experiments, these physical
functionalities can be used in frontier fields such as magnetic
resonance imaging [13], quantum computation [14], spin ma-
nipulation [15], and precision measurement [16]. Especially
in the area of precision measurement, the typical application
is that the intervention of the radio-frequency or microwave
dressing ingeniously transforms the amplitude measurement
of the physical quantity into the frequency measurement to
improve the accuracy and sensitivity [17,18], which can like-
wise be used for absolute calibration of quantum sensors [19].
Furthermore, the spin lock formed by the coupling of the
dressed field and the spin system can suppress the measure-
ment error caused by the nonlinear Zeeman effect [20]. In
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addition, Sinuco-Leon et al. [21,22] observed the rf multi-
photon effect in the cold atom experiment, where a strong
dc magnetic field and a strong rf field comodified atoms, and
the existence of the rf multiphoton process reduced the sen-
sitivity of the ground-state atomic ensemble to low-frequency
noise fluctuations. Therefore, the rf multiphoton effect plays
a key role in improving the signal-to-noise ratio of magnetic
sensors, which is of great significance for the development of
high-precision atomic magnetometers.

Periodically driven (Floquet) systems have received in-
creasing attention in recent years. Within this area of Floquet
engineering, periodic electromagnetic dressing modifies the
response of the quantum system and presents numerous
physical phenomena such as topological Floquet insulators
[23–26], time crystal [27], prethermalization [28], Floquet
Raman transition [29], and multichromatic resonance peaks
[30]. Furthermore, with the continuous development of Flo-
quet engineering, some important applications also surfaced.
For example, the Floquet maser with periodically driven 129Xe
cell can achieve Floquet spin amplification and improve the
sensitivity of the magnetic sensor to the subpicotesla level
[31,32], which can be used to search for axion-like dark matter
with multiple sensitive windows of particle mass [33]. More-
over, the concatenated continuous driving can flexibly control
the symmetry of the quantum system [34]. In addition, quan-
tum mixers realized by nonlinear effects in the periodically
(Floquet) driven nitrogen-vacancy (NV) ensemble can be used
for vector magnetic field measurements at arbitrary frequen-
cies, with no loss of their ability to measure nanometer-scale
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FIG. 1. (a) Two adjacent hyperfine sublevels of the ground state
Fg = 4 of cesium atom are driven by external magnetic fields. The
hyperfine structure is uniformly split with ω0 by the offset field
B0. The two transverse rf fields B1(t ) and B2(t ) with frequency
detuning δ modify the nondegenerate hyperfine energy levels. The
modified alignment magnetic-resonance system is scanned by the
probe field Bp(t ). (b) Experimental setup. DL pro: tunable diode
laser with digital control; M: mirror; HWP: half-wave plate; PBS:
polarizing beam splitter; SAS: saturated absorption spectroscopy;
DigiLock: digital laser locking module; GTP: Glan-Taylor linear
polarizer; Cell: Cs atomic vapor cell with antirelaxation paraffin
coating; Coils: three pairs of Holmheitz coils; Shield: four-layer
mumetal shield; Solenoid: low-noise nonmoment solenoid; DDS1
and DDS2: direct digital synthesized signal generators (Keysight
33500B series); PD: photodetector; PCS: precision current source
(Keysight B2902A); OSC: digital storage oscilloscope (Keysight
InfiniiVision DSOX6004A).

features [35]. Nevertheless, our interest is to investigate the
self-generated Floquet modulation behavior of the system and
the influences of this self-generated modulation on the system
by dressing the alignment-based magnetic resonance system
with two transverse rf fields as shown in Fig. 1(a). The re-
search of this self-generated Floquet modulation can further
reveal the physical mechanism of the interaction between the
multi-modulation fields and the quantum spin system. The
atomic-alignment magnetic resonance is excited by optical-
radio-frequency double-resonance devices, where a linearly
polarized laser is used for optical pumping and detection [36].
Moreover, the atomic alignment magnetic-resonance spec-
trum is a valuable topic in fundamental physics research and
potential applications, which can be applied to warm atomic
spin squeezing and entanglement [37–39], magnetooptical
effects [40], orientation-to-alignment conversion [41], vector
atomic magnetometer [42], atomic compass [43], and so on.

In this article, we concentrate on the atomic-alignment
magnetic resonance dressed by two rf dressed fields [strong
rf field B1(t ), weak rf field B2(t )], both theoretically and
experimentally. This study is organized as follows. Section II
gives the experimental setup of the alignment magnetic reso-
nance dressed by two transverse rf fields and the expression
of spectral detection. In Sec. III, the theoretical model of the
system is presented and the physical picture of self-generated
Floquet modulation is analyzed. In Sec. IV, the influences
of self-generated Floquet modulation on alignment magnetic-
resonance spectra are investigated experimentally. Finally, a
summary for this study is given in Sec. V.

II. EXPERIMENTAL DESIGN AND ALIGNMENT-BASED
MAGNETIC RESONANCE SPECTRA DETECTION

This experiment is based on the alignment magnetic res-
onance for ground state Fg = 4 in a cesium atomic ensemble
with light pump-probe structure [36]. The spatial distribution
and coupling schemes of magnetic fields in the experiment
are shown in Fig. 1. A room-temperature glass cell for
providing a paramagnetic atom sample is a homemade an-
tirelaxation paraffin-coated cesium atom cell with a diameter
of 25 mm and a length of 30 mm, which is placed in a
four-layer mumetal shield isolated from the complex magnetic
field environment [cf. Fig. 1(b)]. There are three processes
in the experiment: prepare, interact, and probe. In the pro-
cess of alignment state preparation, the tunable diode laser
(∼894 nm) with digital control used to prepare the alignment
polarization distribution of the ground-state atoms is locked
to 6 2S1/2, Fg = 4 ↔ 6 2P1/2, Fe = 3 hyperfine structure by
means of saturated absorption spectroscopy. To ensure that
the residual circular polarization contamination in the beam is
less than 1%, a Glan-Taylor linear polarizer is used to purify
the polarization before entering the magnetic shield. With the
condition that the relaxation of the spontaneous emission of
atoms in the excited states is far greater than the laser pumping
rate, the combined effect of the depopulation relaxation of the
weak-field laser and the repopulation relaxation of the spon-
taneous emission will eventually lead to a new distribution of
the ground-state atoms to establish a new dynamic balance,
i.e., the atoms are aligned [44]. In the process of atom-field
interaction, the hyperfine components for Fg = 4 are evenly
split by the offset field B0 along the light propagation direc-
tion, where the offset field B0 is generated by a nonmoment
solenoid coil driven by a low-noise precision current source.
The strong-dressed field B1(t ) = B1 cos ω1t and the weak-
dressed field B1(t ) = B2 cos ω2t perpendicular to the offset
field B0 are generated by two pairs of Helmholtz coils driven
by two signal generators, where Bj and ω j ( j = 1, 2) are
the amplitude and oscillating frequency, respectively. These
three fields are coupled to the atoms to change the energy
of the atoms and establish coherence among the sublevels,
which satisfy the relationship B0 � B1 > B2. In addition,
the rf dressing field B2(t ) is the key field for self-generated
longitudinal Floquet modulation in the system. In the probe
process, there are two processes: the rf probe field scanning
and optical power monitoring. When the frequency ωp of the
probe field Bp(t ) = Bp cos ωpt scans to the resonance neigh-
borhood of the system, the rf field is coupled with the system
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to establish coherence and change the population distribution,
thereby partially destroying the alignment distribution estab-
lished by the optical pumping process, so that atoms are forced
to reabsorb light to establish a new dynamic balance. The
transmitted light passing through the cell is received by the
photodetector with a transimpedance amplifier and low-pass
filter and recorded by the digital oscilloscope. If the dressed
fields B1(t ) and B2(t ) are turned off, the device returns to
the traditional alignment magnetic-resonance device [45]. The
power variation of the pump-probe laser indirectly reflects the
information of the ground-state magnetic resonance, where
the relationship between the absorption of the pump-probe
laser and the sublevels of the ground-state hyperfine struc-
ture can be described by Eq. (A6) in Appendix A. To gain
further insight, we convert the absorption of the pump-probe
laser into the form of polarization moments C0mlab

0,0 + C2mlab
2,0,

where the atomic multipole moments mlab
0,0 and mlab

2,0 are the
monopole moment and alignment [36], respectively. The coef-
ficients C0 and C2 are related to the analyzing power, amplifier
gain factor, optical power, and so on. Since mlab

0,0 = 1/3 is a
number related to the population of atoms and has nothing to
do with the information carried by the spectra, the alignment
magnetic-resonance spectra can be simplified to

Slab(ωp) = C2mlab
2,0. (1)

Details on the laser-detected alignment magnetic-resonance
spectra are given in Appendix A.

III. THEORETICAL MODEL ESTABLISHMENT
AND ANALYSIS

To investigate the double-dressed alignment magnetic-
resonance spectra, the quantization axis z is selected in the
direction of the offset field B0. In this original represen-
tation of the calculation, the atom sees the total magnetic
field B̂tot = B0êz + [B1(t ) + B2(t ) + Bp(t )]êx. The Hamilto-
nian Htot of the magnetic fields interacting with atom is
given by HB = −μ̂ · B̂tot = gF μB

∑i=1
i=−1 FiBi [46,47], where

the physical constants gF and μB, the angular momentum
Fi, and the magnetic-field component Bi are the hyperfine-
structure Landé g factor, the Bohr magneton, the hyperfine
angular momentum in covariant spherical harmonic represen-
tation, and the magnetic-field component in the contravariant
spherical harmonic representation, respectively. The covariant
spherical harmonic representation components e j (with j =
0,±1) in the Cartesian coordinate representation are given by
e±1 = ∓ 1√

2
(ex ± iey), e0 = ez. Additionally, the contravariant

spherical harmonic representation components e j (where j =
0,±1) in the Cartesian coordinate representation are defined
by the relations e±1 = ∓ 1√

2
(ex ∓ iey), e0 = ez [48]. In the

spherical harmonic representation, when the rotating-wave
approximation condition is satisfied, by going into the rotating
frame with frequency ω1 and neglecting the counterrotating
terms, the Hamiltonian for the system in the spherical har-
monic representation is given by

Htot = H0 + H1 + H2 + Hp, (2)

with

H0 = �F0, (3a)

H1 = �1(F−1 − F1), (3b)

H2 = �2
(
F−1eiδt − F1e−iδt

)
, (3c)

Hp = �p
(
F−1eiδpt − F1e−iδpt

)
, (3d)

where detuning � = ω0 − ω1 is the detuning of the Lar-
mor precession frequency ω0 = μBgF B0 generated by the
offset field B0 and the frequency ω1 of the strong rf
field B1(t ). The detunings δ and δp are given by δ =
ω2 − ω1 and δp = ωp − ω1. The Rabi frequencies of the
strong rf field, the weak rf field, and the probe field are
defined by � j = μBgF Bj/2

√
2 (with j = 1, 2, p). The spher-

ical components Fμ of the hyperfine angular momentum
can be expressed in terms of the basis {|4, m〉} as Fμ =
2
√

5
∑m=4

m=−4 C4μ+m
4m1μ |4, m + μ〉〈4, m| with μ = 0,±1, where

the coefficient C♦♦
♦♦♦♦ is the Clebsch-Gordan coefficient and

the operator |4, m + μ〉〈4, m| represents the transition from
|4, m〉 to |4, m + μ〉 [48].

It is convenient to further pursue an analytical method
for physical insights. This can be achieved by imposing the
following conditions. (i) The Zeeman splitting ω0 of the lon-
gitudinal offset field B0 and the Rabi frequencies ω1 and ω2 of
the two transverse rf fields satisfy the relation ω0 � �1 > �2.
On the one hand, this condition ensures that the possible
presence of longitudinal components for the rf fields B1(t )
and B2(t ) in the direction of the offset field B0 due to the fact
that both rf fields B1(t ) and B2(t ) are not strictly orthogonal
to the offset field B0 can be ignored by the rotating-wave
approximation during the experiment. On the other hand, it
is ensured that the Hamiltonian of the offset field B0 and the
strong rf field B1(t ) satisfies the diagonalization condition,
and the Hamiltonian of the weak rf field B2(t ) satisfies the
perturbation condition. (ii) The Rabi frequency �p of the
probe field is much smaller than the Rabi frequency �2 of the
rf field B2(t ), i.e., �2 � �p, so the influence of the probe field
on the system can be ignored. (iii) The detuning δ of the two
rf dressed fields is smaller than the linewidth � of the system,
i.e., δ < �. All parameters are experimentally manageable.
Typical values of the optimized experimental parameters are
ω0 ≈ 152.210 kHz, ω1 ≈ 152.210 kHz, ω2 ≈ 152.220 kHz,
�1 ≈ 810 Hz, �2 ≈ 243 Hz, � ≈ 50 Hz, and �p ≈ 20 Hz,
which satisfy the above constraints. All parameters are tuned
in the neighborhood of these typical values during the experi-
ment.

To gain further insight, the Hamiltonian H0 + H1 is
diagonalized into the dressed-state |4, m′〉 representation,
where the eigenvalue is λ = m′� (m′ = −4, . . . , 4) with
� =

√
�2 + 2�2

1 . The eigenvector is given by |4, m′〉 =∑
m |4, m〉D(4)∗

mm′ (0, β, 0) and the Euler angle β satisfies

cos β

2 =
√

�+�
2�

and sin β

2 =
√

�−�
2�

, in which the rotation

transformation D(k)
mm′ (ψ, θ, φ) is the Wigner D functions de-

fined by analytic continuation with the Euler angles ψ , θ ,
and φ [49]. The hyperfine angular momentum operator F ′

j can

be expanded into F ′
ν = 2

√
5

∑m′=4
m′=−4 C4m′+ν

4m′1ν |4, m′ + ν〉〈4, m′|
with ν = 0 ± 1 in the dressed-state representation, where
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the operator |4, m′ + ν〉〈4, m′| represents the transition
from |4, m′〉 to |4, m′ + ν〉. The angular momentum op-
erators between the two representations satisfy Fq =∑

q′ F ′
q′D

(1)
q′q(0, β, 0) with q, q′ = 0,±1. Next, the Hamilto-

nian H2 of the weak rf field B2(t ) and the Hamiltonian Hp

of the probe field Bp(t ) enter the dressed-state representa-
tion. According to the effective Hamiltonian theory [50], the
Hamiltonian is perturbed to the second order. Therefore, the
effective Hamiltonian H ′(t ) of the system in the dressed-state
representation is

H ′(t ) = Hd
s (t ) + Hd

p (t ), (4)

with

Hd
s (t ) = �2m(t )F ′

0 , (5a)

Hd
p (t ) = �p[ f±(t )F ′

−1e−iδ±t − f ∗
±(t )F ′

1eiδ±t ], (5b)

m(t ) = 2
√

2 cos
β

2
sin

β

2
cos δt

− 2
�2

�
cos2 β

2
sin2 β

2
cos 2δt, (5c)

f±(t ) = 1 ± cos β

2
+

√
2

�2

� + δ
cos

β

2
sin3 β

2
e−iδt

−
√

2
�2

� − δ
cos3 β

2
sin

β

2
eiδt , (5d)

where Hd
s (t ) and Hd

p (t ) are the system Hamiltonian and
the probe Hamiltonian in the dressed-state representation,
respectively. The dimensionless parameters m(t ) and f±(t )
are the self-generated Floquet modulation coefficient and the
modified probe coefficient, respectively (see Appendix B for
details). The detuning δ± and frequency shift ωBS are given

by δ± = � + ωBS ∓ δp and ωBS = �2
2(

sin4 β

2
�+δ

+ cos4 β

2
�−δ

), respec-
tively. The subscript “+” (“−”) corresponds to the right (left)
sideband of the spectra.

In the double-dressed system, the Hamiltonian (5a) and
Fig. 2(a) show that the strong-dressed field B1(t ) splits
each atomic energy level equidistantly with energy � in
the dressed-state representation. The weak rf field B2(t ) has
nonresonant one-photon and two-photon modifications to the
system. For nonresonant one-photon modification, the dressed
atoms absorb the π photons from the dressed field B2(t )
in different transition channels to synthesize Floquet first-
harmonic modulation 2

√
2�2 cos β

2 sin β

2 cos δt [cf. transition
1 in Fig. 2(a)]. For nonresonant two-photon modification, the
weak rf field B2(t ) makes the system produce time-dependent
second harmonic modulation and time-independent energy-
level shifting effects. On the one hand, the dressed atoms
undergo nonresonant cascaded two-photon transitions in two
adjacent two-photon transition channels, wherein the dressed
atoms simultaneously absorb two nonresonant σ rf photons
from the dressed field B2(t ) in each channel, so that these two
cascaded two-photon processes jointly synthesize the Floquet

second-harmonic modulation −2 �2
2

�
cos2 β

2 sin2 β

2 cos 2δt ; see
transition 2 in Fig. 2(a). On the other hand, the dressed atoms
undergo nonresonant Raman transitions in two adjacent two-
photon transition channels, wherein the dressed atoms absorb
and emit two nonresonant σ rf photons from the dressed field

Dressed-state representationOriginal representation

(a)

64 97 85 6644 9977 8855
Dressed-state representation

(b) Left continuum Right continuum

FIG. 2. Hyperfine energy-level structure of doubly dressed mag-
netic resonance. (a) System dressed by two transverse rf fields. In
the original representation with the basis {|4, m〉}, the nine hyperfine
sublevels are uniformly split by the offset field B0 and their frequency
interval is ω0 (for brevity only three adjacent sublevels are given).
The frequency ω1 of the strong dressed field B1(t ) is resonant with
the frequency ω0 and detuned from the weak rf field B2(t ). Each
hyperfine sublevel in the original representation is uniformly dressed
by strong rf field B1(t ) into nine new sublevels in the dressed-state
representation (for brevity only two adjacent sublevels are given in
the dressed-state representation). In the dressed-state representation
with the basis {|4, m′〉}, the dressed field B2(t ) modifies the energy
levels of the system. Transition 1: The nonresonant process of two
single rf photons generates first harmonic modulation. Transition 2:
Two cascade two-photon processes generate second harmonic modu-
lation. Transitions 1 and 2 constitute the Floquet modulation �2m(t ).
Transition 3: Two Raman two-rf-photon processes produce ωBS.
(b) The dressed field B2(t ) modifies the rf probe process. Transition
4 (7): Single-photon process in the left (right) continuum. Transition
5 (8): The cascade four-wave mixing modification in the left (right)
continuum. Transition 6 (9): Raman four-wave mixing modification
in the left (right) continuum.

B2(t ) in each channel, so that the two Raman two-photon
processes jointly produce a Bloch-Siegert-like shift ωBS [8];
see transition 3 in Fig. 2(a). Therefore, due to the presence of
the dressed field B2(t ), the system will automatically generate
the Floquet modulation �2m(t ).

In the probe process, because the probe is modified by the
weak rf field B2(t ), there is not only the linear absorption
process, but also the obvious nonlinear absorption process;
see Fig. 2(b) and Hamiltonian (5b). Taking the right sideband
as an example, for the linear absorption process, the atom
absorbs a rf photon with frequency ωp = ω1 + � + ωBS in
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the probe field Bp(t ) and cause �m′ = 1 transition with the
coupling strength 1+cos β

2 �p; see transition 7 in Fig. 2(b).
For nonlinear absorption processes, there are two channels of
Raman and cascade four-wave mixing [51,52]. In the cascade
four-wave mixing process, the dressed atoms absorb one rf
photon with frequency ωp and one rf photon with frequency
ω2 in the probe field Bp(t ) and dressed field B2(t ), respec-
tively, while the dressed field B1(t ) emits two rf photons with
frequency ω1, in which the frequencies satisfy the relation
� + ωBS − δ − δp ≈ 0 in the entire process; see transition 8
in Fig. 2(b). In the Raman four-wave mixing process, the
dressed atoms absorb a rf photon of frequency ωp in the probe
field Bp(t ) and then emit a rf photon of frequency ω2 into
the dressed field B2(t ), while the dressed field B1(t ) emits
a rf photon with frequency ω1 and absorbs the photon with
frequency ω1, where these frequencies satisfy the relation
� + ωBS − δ + δp ≈ 0 in the entire process; see transition
9 in Fig. 2(b). All of these transitions partially change the

atomic alignment distribution established by optical pumping.
Eventually, the atoms are forced to continuously absorb laser
photons and establish new dynamic alignment distribution.

To find the transparent form of dressed spectra (1), the
Hamiltonian (4) with Floquet transformation is brought into
the evolution equation, where the evolution of the polarized
atomic ensembles governed by the master equation ρ̇(t ) =
−i[H ′, ρ(t )] + Lρ(t ); see Appendix B for details of the
derivation. The density matrix ρ(t ) is straightforwardly ex-
panded to ρ(t ) = ∑k=2F

k=0

∑q=k
q=−k mk,q(t )Tk,q with a set of

kth-order irreducible tensor bases {Tk,q} [49] and brought into
the master equation, so that the expression of the steady-state
alignment transmission spectra is analytically given by

Slab(ωp) = Slab
− (ωp) + Slab

+ (ωp), (6)

with

Slab
± (ωp) = C

{
1

3
− 1

4

l=+∞∑
l=−∞

[ ∣∣�(l )
±

∣∣2

�
(l )2
± + γ 2

1±
− 3

∣∣�(l )
±

∣∣4

42
(
�

(l )2
± + γ 2

1±
)(

�
(l )2
± + γ 2

2±
)
]}

, (7)

where the detuning �
(l )
± = lδ + δ±, the coefficient

C = 3C2D(2)∗
0,0 (0, π

2 , π
2 )D(2)∗

0,0 (0, β, 0)mlab
0,0, and the spectral

linewidths γ 2
1±=�2 + |�(l )

± |2/4 and γ 2
2±=(�2 + |�(l )

± |2)/4.
The linewidth � is the equivalent relaxation rate of the
alignment. Spectra Slab

− (ωp) and Slab
+ (ωp) correspond to the

left continuum and the right continuum, respectively. Details
of the derivation of Eq. (6) can be found in Appendix B. The
Rabi frequency with second-order correction is given by

�
(l )
± = 1 ± cos β

2
�p

n=+∞∑
n=−∞

J2n+l (ξ1)Jn(ξ2)

− cos3 β

2
sin

β

2

√
2�2�p

� − δ

n=+∞∑
n=−∞

J2n+l+1(ξ1)Jn(ξ2)

+ cos
β

2
sin3 β

2

√
2�2�p

� + δ

n=+∞∑
n=−∞

J2n+l−1(ξ1)Jn(ξ2),

(8)

with arguments ξ1 = cos β

2 sin β

2
2
√

2�2
δ

and ξ2 =
cos2 β

2 sin2 β

2
�2

2
�δ

, where function Jn(z) is the Bessel
function of the first kind [53]. The arguments ξ1 and ξ2

are respectively derived from the first harmonic and the
second harmonic in the self-generated Floquet modulation.
From the spectra (6) and the Rabi frequency (8), it can
be seen that if the condition ξ2 → 0 is satisfied, only the
first harmonic in the self-generated Floquet modulation
�2m(t ) is considered, and the equivalent Rabi frequency
�

(l )
± returns to �

(l )
± = 1±cos β

2 �pJl (ξ1). When the system
satisfies the resonance condition δ± = 0, it is found that the
Hamiltonian (4) satisfies the generalized parity symmetry,
that is, PH ′(t + T/2)P = H ′(t ), where the definition of
the generalized parity operator P is the energy reversal

(F0 → −F0) of the system after half a period of modulation
(t → t + T/2) [54]. The continuum is symmetrical as shown
by the hollow green circles in Fig. 3(a), which is similar to the
resonance fluorescence spectrum with one modulated laser
light discussed previously [55,56]. Essentially, symmetry
for continuum is due to the fact that the Hamiltonian
modulated by the first harmonic satisfies generalized parity
symmetry [57]. Furthermore, only considering the nonlinear
modification of the probe by the field B2(t ), the two types of
four-wave mixing process symmetrically modify the profile
of the continuum to make the profile lighter [cf. the solid
blue circles in Fig. 3(a)]. However, notwithstanding that
only considering the first term of the Rabi frequency �

(l )
± ,

the continuum is pronouncedly asymmetric; see the hollow
black circles in Fig. 3(b). The relative magnitude of the
extremum amplitudes of each continuum depends on the
second harmonic modulation parameter ξ2 and on the relative
magnitude of the extremums of the square of the absolute
value of the probe Rabi frequency |�(l )

± |2; see Appendix C
for more details about |�(l )

± |2. The reason for the asymmetry
of the continuum, from the perspective of symmetry, is that
the second harmonic modulation breaks the symmetry of the
system. Therefore, the self-generated Floquet modulation
�2m(t ) modifies the symmetry and profile of the alignment
magnetic resonance spectra and the generalized parity of the
Hamiltonian with this Floquet modulation is absent [54] [the
solid purple circles in Fig. 3(b)].

IV. EXPERIMENTAL AND THEORETICAL
VERIFICATION

Experimentally, the system is scanned by a low-intensity
transverse rf field Bp(t ), and the magnetic-resonance align-
ment magnetic-resonance spectra Slab(ωp) can be observed by
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FIG. 3. The right continua of alignment magnetic-resonance
spectra Slab(ωp) with doubly dressed fields corresponding to the
different modifications from dressed field B2(t ). (a) Hollow green
circles: The system is modulated by the self-generated first harmonic
and the probe is not modified by the four-wave mixing process. Solid
blue circles: The system is modulated by the self-generated first har-
monic and the probe is modified by the four-wave mixing process. (b)
Hollow black circles: The system is modulated by the self-generated
first and second harmonics and the probe is not modified by the four-
wave mixing process. Solid purple circles: The system is modulated
by the self-generated first and second harmonics and the detection
is modified by the four-wave mixing process. The parameters used
in the calculation are ω0 = 152.210 kHz, ω1 = 152.210 kHz, ω2 =
152.220 kHz, �1 = 810 Hz, �2 = 243 Hz, and �p = 20 Hz.

monitoring changes in the optical power of the probe light. For
the system dressed by a intense rf field B1(t ), the alignment
magnetic-resonance spectra show the standard Autler-Townes
splittings as shown in Fig. 4(a), where the frequency separa-
tion between the two splittings depends on the Rabi frequency
�1 and the detuning �. However, for the system dressed by
two rf fields B1(t ) and B2(t ), when the frequency ω1 of the
strong dressed field B1(t ) is set to resonate with the Larmor
frequency ω0 and the frequency ω2 is detuned with ω1 by
10 Hz, compared with the Autler-Townes absorption spectra
produced by one dressed field [17,58], the presence of the
weak dressed field B2(t ) leads to the pronouncedly asym-
metric continuous broadened modification of the sidebands
for the alignment magnetic-resonance spectra; see Fig. 4(b).
The center of the broadened sideband continuum is located at
ω1 ± (� + ωBS). With the condition of the weak probe, each
sideband continuum is the accumulation of infinite Lorentz
functions whose center is ω1 ± (� + ωBS + lδ), linewidth is
γ1±, and weight factor is |�(l )

± |2 with the modification from
rf field B2(t ). There are two inflection points in the edge
area of each asymmetric continuum, and the frequencies ζ±2

and ζ±1 correspond to the frequency positions for maxima
and submaxima, respectively. The sideband continua quickly
decrease to zero after the maxima. The experimental data
(black circles) match well with the theoretical predictions
(blue continuous line). The physical picture for the forma-
tion of the spectra can be explained concisely as follows:
the alignment magnetic-resonance spectrum without dressing
from rf field B2(t ) is split into an Autler-Townes doublet by
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FIG. 4. The alignment magnetic-resonance spectra Slab(ωp) with
double rf dressing fields. The black circles are the experimental data
and the blue continuous line is the theoretical fit. (a) The alignment
magnetic resonance spectra are dressed by a strong rf field B1(t )
with resonant frequency ω1 = ω0 = 152.210 kHz. (b) The alignment
magnetic-resonance spectra are dressed by two rf fields B1(t ) and
B2(t ), where the strong one resonates with frequency ω0 and the
weak one is detuned at 10 Hz (ω2 = ω1 + 10 Hz). (c) The alignment
magnetic-resonance spectra are dressed by two nonresonant rf fields
B1(t ) and B2(t ) with ω1 = 152.310 kHz and ω2 = 152.320 kHz.
Other parameters are �1 ≈ 810 Hz, �2 ≈ 162 Hz, �p ≈ 20 Hz, and
� ≈ 50 Hz.

the transverse strong rf field B1(t ). Next, the self-generated
Floquet modulation modulates the sidebands of the Autler-
Townes splittings into asymmetrical continua. Note that the
asymmetry of the continuum originates from the second har-
monic modification in the self-generated Floquet modulation.
Moreover, when the strong dressed field B1(t ) is detuned to
the Larmor precession frequency ω0, the left and right con-
tinua are recognizably asymmetrical as shown in Fig. 4(c).
The physical mechanism is that the Rabi frequencies �

(l )
± of

the left and right continua are not equal due to detuning, i.e.,
β �= π/2. The self-generated Floquet modulation field and the
four-wave mixing processes make different modifications to
the two continua. From the perspective of parity symmetry,
due to the appearance of the detuning � �= 0, the generalized
parity of the system is completely destroyed. Furthermore,
the frequency detuning δ of the two dressed fields affects the
magnitude of the maxima and submaxima of the continua of
the alignment magnetic-resonance spectra. Figure 5 shows the
right continua of alignment magnetic-resonance spectra for
different detuning δ. It is obvious that the continuum with
a detuning of 10 Hz between the two dressed fields is more
symmetrical than the continuum with a detuning of 5 Hz. The
physical mechanism can be revealed as follows: the asymmet-
ric modification of the spectral continuum originates from the
second harmonic in the self-generated Floquet modulation.
The detuning δ affects the magnitudes of the arguments ξ1

and xi2 of the Bessel functions Jl (ξ1) and Jn(ξ2) of the first
kind in the probe Rabi frequency (8). when the detuning
δ increases, the argument ξ2 of the Bessel function Jn(ξ2)
decreases, and the corresponding value decreases, so the in-
fluence of the second harmonic modulation on the asymmetry
of the continuum decreases. According to Appendix C, it can
be approximated that the relative magnitudes of the maxima
and submaxima for the spectral sideband continuum depend
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FIG. 5. The right continua of alignment magnetic-resonance
spectra Slab(ωp) with different detuning δ of two rf dressed fields.
(a) Theoretical analytical calculation: The black and blue solid lines
correspond to detuning at 5 Hz and 10 Hz, respectively. (b) Ex-
perimental measurement data: The hollow black and blue circles
correspond to detuning of 5 Hz and 10 Hz, respectively. The pa-
rameters are ω0 = 152.210 kHz, ω1 = 152.210 kHz, �1 ≈ 810 Hz,
�2 ≈ 162 Hz, and �p ≈ 20 Hz.

on the ratio of the maxima and submaxima of the square of the
absolute value of the probe Rabi frequency. Under the limiting
condition that the argument ξ2 tends to zero, the continuum
is symmetric, which is similar to the symmetric continua
phenomenon previously seen in quantum dots [59] and in the
negatively charged single silicon vacancy (V −

Si ) color centers
in 4H silicon carbide (4H-SiC) [56].

It can be captured from Fig. 6 that, when the Rabi fre-
quency �1 increases within a certain range, the frequencies ζ1

and ζ2 corresponding to the two extreme values for the right
continuum increase linearly, while the frequencies ζ−1 and ζ−2

corresponding to the two extreme values of the left continuum
decrease linearly. This change in linear behavior is similar to
that of the two splittings in the Autler-Townes spectra [60],
both of which are caused by the strong dressed field B1(t ).
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FIG. 6. The four extreme positions ζ j ( j = ±1, ±2) of the align-
ment magnetic-resonance spectra versus the Rabi frequency �1 of
the strong dressed field B1(t ), in which subscript j takes 1(−1) and
2(−2) to correspond to the positions of the submaxima and maxima
of the right (left) continuum for the alignment magnetic resonance
spectrum, respectively. The parameters are ω0 = 152.210 kHz, ω1 =
152.210 kHz, ω2 = 152.220 kHz, �2 ≈ 162 Hz, and �p ≈ 20 Hz.

66 88 110 132 154 176 198 220 242

93

186

279

372

465

558

651

=
2
-
1
(H
z)

2(Hz)

Theoretical fitting

Experimental data

FIG. 7. The positional interval �ζ = ζ2 − ζ1 between the max-
ima and submaxima of the right continuum for the alignment
magnetic-resonance spectra versus the Rabi frequency �2 of the
weak field B2(t ). The parameters used in the calculation and experi-
ment are ω0 = 152.210 kHz, ω1 = 152.210 kHz, ω2 = 152.220 kHz,
�1 ≈ 810 Hz, and �p ≈ 20 Hz.

Moreover, the frequency interval �ζ = |ζ±2 − ζ±1| of the
extreme values in each continuum remains constant during
the change of the strong dressed field B1(t ). The reason why
the frequency interval �ζ remains the same is that the argu-
ment ξ1 of Bessel function Jl (ξ1), which mainly determines
the extreme positions, is unchanged. Furthermore, under the
condition that the Rabi frequency �1 of the strong rf field
B1(t ) remains constant and the Rabi frequency �2 of the
weak rf field B2(t ) changes in a certain small range, the
frequency interval �ζ between the maxima and submaxima
of the right continuum of the alignment magnetic-resonance
spectrum can be approximately considered to vary linearly
with the Rabi frequency �2; see Fig. 7. it is noteworthy
that the approximately linear curve does not extrapolate to
zero at �2 = 0. This phenomenon is revealed as follows:
on the one hand, the extreme positions ζ j ( j = ±1,±2) of
the spectral continuum is related to the extreme positions
of the square |�(l )

± |2 of the absolute value of the probe
Rabi frequency. The positions Pright and Pleft of the max-
ima and submaxima of |�(l )

+ |2 in the right continuum for
the alignment magnetic resonance spectra are approximately
Pright = [ξ1] − k2 and Pleft = −|[ξ1] + k1| with (k1 or k2 =
0, 1, 2, . . .), where [x] denotes the integer part satisfying the
relation [x] � x < [x] + 1. When the argument ξ2 is large, k1

and k2 are not equal. the interval �P between the maxima
and submaxima is �P = |2[ξ1] + k1 − k2|. Then in this case,
when �2 directly tends to 0, argument ξ1 tends to 0, but
�P is |k1 − k2| �= 0. On the other hand, because the spec-
tral continuum is synthesized by the summation of infinite
Lorentzian peaks with different resonance points, the average
effect of the summation is also considered. In addition, be-
cause the magnitude of the value of |�(l )

+ |2 corresponding to
the different l on both sides of the extreme of |�(l )

+ |2 is not
symmetrical with respect to the extreme position, the average
effect of the summation will also shift the extreme position of
the continuum. According to the analysis of the above two
aspects, the approximately linear curve of Fig. 7 does not
extrapolate to zero within the range of our typical
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experimental parameters. Considering the results of Figs. 6
and 7 comprehensively, the Rabi frequency �1 or �2 of the
dressed field B1(t ) or B2(t ) corresponds to the frequency ζ j

corresponding to the extreme values in the continua in a linear
one-to-one correspondence. This linear conversion relation-
ship between frequency and amplitude has certain reference
significance in the field of precision measurement of magnetic
fields [18]. Moreover, two rf fields with small frequency de-
tuning δ can be measured simultaneously for our system.

V. CONCLUSION

We investigate an alignment magnetic-resonance system
dressed by two transverse rf fields with different frequencies,
both theoretically and experimentally. The alignment mag-
netic resonance spectra differ qualitatively from both the one
dressing case [60,61] and the two dressing case with two fields
of equal frequencies [59,62]. Due to the dressing from the
weak field B2(t ), the system self-generates robust longitudinal
Floquet modulation �2m(t ) with first and second harmonics.
The modulation of the self-generated first harmonic to the
system changes the Autler-Townes doublet structure into a
double symmetric continua, where the generalized parity of
the system is present. The two continua are composed of in-
finite Lorentz spectra accumulated and separated by the Rabi
frequency �1 of the strong dressed field; the bandwidth of
each continuum is determined by the Rabi frequency �2 of
the weak dressed field. However, the self-generated second
harmonic modulation changes the continua from symmetric
to asymmetric because the modulation destroys the general-
ized parity symmetry of the system. Moreover, the nonlinear
modification of the probe by the weak rf field B2(t ) also
verifies the existence of four-wave mixing in the radio fre-
quency band. Furthermore, the frequency corresponding to
the extreme points of the continua has the linear one-to-one
correspondence with the Rabi frequency of the modified field,
which is a constructive guide to the study of indirect measure-
ment of physical quantities.

In addition, our results also show that the ground-state
atoms of the coated alkali-metal atom gas cell have the ad-
vantages of narrow linewidth and high stability, which can
be used as a supplementary platform for studying the in-
teraction between electromagnetic fields and atoms in the
radio frequency band. The direct application of the alignment
magnetic-resonance system modified by double harmonics
is the precise measurement for rf magnetic fields [63,64].
Since this double-dressing structure can change the profile
of the spectra and control the spectral width, it can be used
for spectral shaping [65,66]. It can also be used for the re-
search and development of tunable wideband rf sources and
receivers [67,68]. In addition, the spectra can also be used to
study atomic optical filters [69,70]. Therefore, the magnetic
dressing provides a versatile tool for studying dressed spectra
[71], precision measurements [17], quantum control [72,73],
quantum simulations [74], and so on.
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APPENDIX A: DERIVATION OF LASER-DETECTED
ALIGNMENT-BASED MAGNETIC-RESONANCE

SPECTRA (1)

In the experiments, alignment magnetic-resonance spec-
tra are obtained with a weakly resonant linearly polarized
light pump-probe structure [75], where the resonant linearly
polarized light is used to prepare the ground-state atomic-
alignment polarization state on the one hand, and to detect the
ground-state magnetic-resonance spectra on the other hand.
The detailed process is that weak resonant linearly polarized
laser aligns with the hyperfine structure transition 6 2S1/2,
Fg = 4 ↔ 6 2P1/2, Fe = 3. Weak lasers pump atoms from
the ground-state hyperfine sublevels to the excited hyperfine
sublevels, where a depopulation process occurs. Since the
pumping rate is much smaller than the spontaneous emission
rate, the spontaneous emission of the excited state brings
the atoms back to the ground-state hyperfine sublevels for a
repopulation process. When the system reaches a steady state,
the depopulation process of the laser and the repopulation
process of the spontaneous emission make the atoms at the
hyperfine sublevels establish a dynamic equilibrium [76]; at
the same time, the distribution of thermal atoms also changes
from the thermal equilibrium distribution [77] to the align-
ment polarization distribution [78]. When the polarized atoms
undergo magnetic-resonance interaction with the magnetic
fields, the alignment distribution will be partially destroyed,
and the atoms are forced to absorb laser photons to establish a
new dynamic equilibrium. During this process, the transmitted
optical power of the probe laser will change, and this change
can reflect the atomic-alignment magnetic resonance informa-
tion. Next, we obtain the probe expressions of the alignment
magnetic-resonance spectra by means of the master equa-
tion [79,80]. In the laboratory frame, the quantization axis z is
set as the polarization direction of the pump-probe laser and
the atoms are coupled with the laser in the configuration of the
π transition. The master equation for the interaction between
the resonant linearly polarized pump-probe laser and atoms
and spontaneous emission relaxation process is

dρ

dt
= −i[Hlaser, ρ] + Lseρ, (A1)

with

HAL = V ∗
0 �0 + V0�

†
0 , (A2a)

LSEρ = �

(
2Je + 1

2Jg + 1

) q=1∑
q=−1

D[�q]ρ, (A2b)

where HAL and LSEρ are the Hamiltonian for the atom-laser
interaction and spontaneous emission, respectively. The Rabi
frequency for the coupling of the atoms in the ground state
Fg = 4 and the excited state Fe = 3 with the laser is V0 =
−〈Jg‖d‖Je〉E , in which 〈Jg‖d‖Je〉 and E are the electric-
dipole matrix element and the laser amplitude, respectively.
Symbols Jg and Je are fine-structure angular momenta of the
ground state and excited state. The lowering operator from
Eqs. (A2a) and (A2b) between any two hyperfine structure
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sublevels |Fg, mg〉 and |Fe, me〉 is

�q =
∑

Fg,mgFe,me

(−1)Fe+Jg+I+1C1,q
FgmgFeme

× √
(2Fe + 1)(2Jg + 1)

×
{

Je Jg 1
Fg Fe I

}
|Fg, mg〉〈Fe, me|,

(A3)

where I is the nuclear spin quantum number and {:::} is
the Wigner 6- j symbol. The Lindblad superoperator D[�q]ρ
is defined by D[�q]ρ = �qρ�†

q − 1
2�†

q�qρ − 1
2ρ�†

q�q. The
subscript q takes −1, 0, 1 corresponding to the σ− transition,
π transition, and σ+ transition, respectively. The coefficient
� is the rate of spontaneous emission. Since the pumping
rate V0 of the linearly polarized pump-probe laser is much
smaller than the decay rate � of the spontaneous emission,
i.e., V0 � �, the matrix elements ρFem,Fgm between the ground
state and the hyperfine sublevels of the excited state can be
obtained by adiabatically removing the excited states |Fe, me〉
according to adiabatic approximation [81], where m means
that the indices of the hyperfine sublevels of the ground and
excited states are equal (mg = me). The details of the density
matrix elements ρFem,Fgm are given by

ρFgmFem =
8i�Fem

FgmV0

3�
ρFgmFgm, (A4)

with

�
Fem
Fgm = (−1)m+Jg+I

√
2Jg + 1

(
Fe 1 Fg

m q −m

)

× √
(2Fg + 1)(2Fe + 1)

{
Jg Je 1
Fe Fg I

}
.

(A5)

The off-diagonal matrix element ρFem,Fgm is related to the de-
tection absorption of the linearly polarized pump-probe laser.
Therefore, the linearly polarized pump-probe laser absorption

is [82–84]

α = α0

m=4∑
m=−4

∣∣�Fem
Fgm〈Jg|‖d‖Je〉

∣∣2

�
Fem
FgmV0

Im[ρFgmFgm]. (A6)

Here the coefficient α0 = 4πNωL/h̄c is a constant, where
N is the atomic density, ωL is the pump-probe laser
transition frequency in the absence of a magnetic field,
c is the speed of light, and h̄ is Planck’s constant.
According to the transformation relationship ρFgmFgm =∑k=2Fg

k=0

∑q=k
q=−k (−1)Fg−m

√
2k + 1(Fg Fg k

m −m −q)mlab
k,q between

the density matrix element and the state multipole mlab
k,q [49],

the pump-probe laser absorption expression in the tensor rep-
resentation is obtained as

α = α0

9

(
14mlab

0,0 −
√

77mlab
2,0

)
, (A7)

where the atomic multipole moments mlab
0,0 and mlab

2,0 are the
monopole moment and alignment in the laboratory frame
[36], respectively. The alignment magnetic-resonance absorp-
tion spectra described by atomic multipole moments for
the linearly polarized pump-probe laser is proportional to
C0mlab

0,0 + C2mlab
2,0. The coefficients C0 and C2 contain an-

alyzing power, amplifier gain factors, and optical power
dependencies [45]. The monopole moment mlab

0,0 is related
to the total population of ground-state atoms [76], which is
just a number and has nothing to do with the information
carried by the spectra. The main influence on the spectra
is alignment mlab

2,0. Therefore, the laser-detected alignment
magnetic-resonance spectra can be given by

Slab(ωp) = C2mlab
2,0. (A8)

APPENDIX B: DERIVATION OF EQS. (4) AND (6)

The total Hamiltonian in the dressed-state representation
with rotating frequency � is

H ′
tot(t ) = H ′

2(t ) + H ′
p(t ), (B1)

with

H ′
2(t ) = �2

(
cos2 β

2
F ′

−1e−i�t +
√

2 cos
β

2
sin

β

2
F ′

0 + sin2 β

2
F ′

1ei�t

)
eiδt

−�2

(
sin2 β

2
F ′

−1e−i�t −
√

2 cos
β

2
sin

β

2
F ′

0 + cos2 β

2
F ′

1ei�t

)
e−iδt , (B2a)

H ′
p(t ) = �p

(
cos2 β

2
F ′

−1e−i�t +
√

2 cos
β

2
sin

β

2
F ′

0 + sin2 β

2
F ′

1ei�t

)
eiδpt

−�p

(
sin2 β

2
F ′

−1e−i�t −
√

2 cos
β

2
sin

β

2
F ′

0 + cos2 β

2
F ′

1ei�t

)
e−iδpt , (B2b)

where the Hamiltonian H ′
2(t ) and H ′

p(t ) are derived from
the Hamiltonian H2 and Hp in the original representation,
respectively. In the Hamiltonian H ′

2, the terms containing F ′
0

directly synthesize the longitudinal first harmonic Floquet

modulation

1stH eff
tot (t ) = 2

√
2�2 cos

β

2
sin

β

2
F ′

0 cos δt . (B3)
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The high-frequency oscillation terms with frequencies (� ±
δ) and (� ± δp) in the Hamiltonian H ′

tot(t ) satisfy the con-
ditions (� ± δ), (� ± δp) � cos2 β

2 �2, sin2 β

2 �2, cos2 β

2 �p,
sin2 β

2 �p, so these terms can use the perturbation theory
[50,85] to give the effective Hamiltonian. For the effective
Hamiltonian of each order, the low-frequency terms are kept
and the high-frequency oscillation terms are ignored. There-
fore, the effective Hamiltonian is given by

H eff
tot (t ) = 2ndH eff

tot (t ) + 3ndH eff
tot (t ), (B4)

where the parameters 2ndH eff
tot and 3rdH eff

tot represent the second-
and third-order effective Hamiltonians, respectively. The
second-order effective Hamiltonian is given by

2ndH eff
tot (t ) = −iH ′

tot(t )
∫ t

dt ′H ′
tot(t

′)

= −i[H ′
2(t ) + H ′

p(t )]
∫ t

dt ′[H ′
2(t ′) + H ′

p(t ′)]

= 2ndH eff
22 (t ) + 2ndH eff

2p (t ) + 2ndH eff
pp (t ), (B5)

with

2ndH eff
22 = −iH ′

2(t )
∫ t

dt ′H ′
2(t ′)

≈ ωBSF ′
0 − 2 cos2 β

2
sin2 β

2

�2
2

�
F ′

0 cos 2δt, (B6a)

2ndH eff
2p = −iH ′

2(t )
∫ t

dt ′H ′
p(t ′) − iH ′

p(t )
∫ t

dt ′H ′
2(t ′)

≈ �p

(√
2 cos

β

2
sin3 β

2

�2

�
e−iδt −

√
2 sin

β

2
cos3 β

2

�2

�
eiδt

)
F ′

−1e−i(�+δp)t

−�p

(√
2 cos

β

2
sin3 β

2

�2

�
eiδt −

√
2 sin

β

2
cos3 β

2

�2

�
e−iδt

)
F ′

1ei(�+δp)t

+�p

(√
2 cos

β

2
sin3 β

2

�2

�
e−iδt −

√
2 sin

β

2
cos3 β

2

�2

�
eiδt

)
F ′

−1e−i(�−δp)t

−�p

(√
2 cos

β

2
sin3 β

2

�2

�
eiδt −

√
2 sin

β

2
cos3 β

2

�2

�
e−iδt

)
F ′

1ei(�−δp)t , (B6b)

2ndH eff
pp = −iH ′

p(t )
∫ t

dt ′H ′
p(t ′). (B6c)

Here frequency shift ωBS = �2
2(

sin4 β

2
�+δ

+ cos4 β

2
�−δ

) is the Bloch-
Siegert-like shift [8]. The effective Hamiltonian 2ndH eff

22 (t )
is the second-order modification of the weak rf field B2(t ).
The effective Hamiltonian 2ndH eff

2p (t ) is the second-order mod-
ification of the weak rf field B2(t ) and probe field Bp(t ).

The effective Hamiltonian 2ndH eff
pp (t ) is the second-order self-

modification of the probe field Bp(t ). Note that since the Rabi
frequency �p of the probe field is very small, the second-order
effect 2ndH eff

pp (t ) can be ignored. The third-order effective
Hamiltonian is

3ndH eff
tot (t ) = −H ′

tot(t )
∫ t

H ′
tot(t

′)
∫ t ′

H ′
tot(t

′′)dt ′′dt ′

= −[H ′
2(t ) + H ′

p(t )]
∫ t

[H ′
2(t ′) + H ′

p(t ′)]
∫ t ′

[H ′
2(t ′′) + H ′

p(t ′′)]dt ′′dt ′

= 3rdH eff
22 (t ) + 3rdH eff

2p (t ) + 3rdH eff
pp (t ),

(B7)

with

3rdH eff
22 (t ) = −H ′

2(t )
∫ t

H ′
2(t ′)

∫ t ′

H ′
2(t ′′)dt ′′dt ′

≈ 2
√

2�3
2

(
cos5 β

2 sin β

2

2δ� − �2
− cos β

2 sin5 β

2

2δ� + �2
− cos3 β

2 sin3 β

2

δ2 − �2

)
F ′

0 cos δt

+ 2
√

2�3
2(2δ2 + �2) cos3 β

2 sin3 β

2

(4δ2 − �2)(δ2 − �2)
F ′

0 cos 3δt, (B8a)
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3rdH eff
2p (t ) = −[

H ′
2(t ) + H ′

p(t )
][∫ t

H ′
2(t ′)

∫ t ′

H ′
p(t ′′)dt ′′dt ′ +

∫ t

H ′
p(t ′)

∫ t ′

H ′
2(t ′′)dt ′′dt ′

]

− H ′
2(t )

∫ t

H ′
p(t ′)

∫ t ′

H ′
p(t ′′)dt ′′dt ′ − H ′

p(t )
∫ t

H ′
2(t ′)

∫ t ′

H ′
2(t ′′)dt ′′dt ′, (B8b)

3rdH eff
pp (t ) = −H ′

p(t )
∫ t

H ′
p(t ′)

∫ t ′

H ′
p(t ′′)dt ′′dt ′. (B8c)

The effective Hamiltonians 3rdH eff
22 (t ), 3rdH eff

2p (t ), and 3rdH eff
pp (t ) represent the third-order self-modification of the weak rf field

B2(t ), the third-order modification between the weak rf field B2(t ) and the probe field Bp(t ), and the third-order self-modification
of the probe field Bp(t ), respectively. In our experiments, typical values of the optimized experimental parameters are ω0 ≈
152.210 kHz, ω1 ≈ 152.210 kHz, ω2 ≈ 152.220 kHz, �1 ≈ 810 Hz, �2 ≈ 243Hz, � ≈ 50 Hz, and �p ≈ 20 Hz. Combined
with our experimental parameters and the comprehensive analysis of Eqs. (B3) and (B8a), the first harmonic coefficient in
Eq. (B3) is much larger than that in Eq. (B8a), so the first harmonic modulation generated by the third-order perturbation can
be ignored. The coefficient of the second harmonic in Eq. (B6a) is much larger than the coefficient of the third harmonic in
Eq. (B8a), so the third harmonic modulation present in the system can be ignored. Considering that �p is much smaller than �2,
the Hamiltonian 3rdH eff

2p (t ) and 3rdH eff
pp (t ) in the third-order effective Hamiltonian 3rdH eff

tot (t ) can also be ignored. Therefore, the
total Hamiltonian with the second-order modification effect is given by

H ′(t ) = �2m(t )F ′
0 + �p[ f±(t )F ′

−1e−iδ±t − f ∗
±(t )F ′

1eiδ±t ], (B9)

with

m(t ) = 2
√

2 cos
β

2
sin

β

2
cos δt − 2

�2

�
cos2 β

2
sin2 β

2
cos 2δt, (B10a)

f±(t ) = 1 ± cos β

2
+

√
2

�2

� + δ
cos

β

2
sin3 β

2
e−iδt −

√
2

�2

� − δ
cos3 β

2
sin

β

2
eiδt , (B10b)

where the detuning δ± is given by δ± = � + ωBS ∓ δp. The
subscript “+” (“−”) corresponds to the right (left) sideband
of the spectra. The dimensionless parameters m(t ) and f±(t )
are related to the Floquet modulation and probe modification,
respectively. Next, the Floquet transformation is performed on
the Hamiltonian, and the transformation operator U (t ) is

U (t ) = e−i
∫ t dt ′�2m(t ′ )F ′

0 = e−i(ξ1 sin δt−ξ2 sin 2δt )F ′
0 , (B11)

where the dimensionless parameters ξ1 and ξ2 are ξ1 =
2
√

2 cos β

2 sin β

2
�2
δ

and ξ2 = cos2 β

2 sin2 β

2
�2

2
�δ

, respectively.
The Hamiltonian H ′(t ) after Floquet transformation U (t ) is

H ′
F (t ) = U †(t )H ′(t )U (t ) + i

dU †(t )

dt
U (t )

= �p

l=+∞∑
l=−∞

n=+∞∑
n=−∞

J2n+l (ξ1)Jn(ξ2) f±(t )F ′
−1e−i(δ±+lδ)t

− �p

l=+∞∑
l=−∞

n=+∞∑
n=−∞

J2n+l (ξ1)Jn(ξ2) f ∗
±(t )F ′

1ei(δ±+lδ)t .

(B12)

Here the identity relationship eix sin θ = ∑m=+∞
m=−∞ eimθ Jm(x) is

used, which can be obtained by the Laurent series expansion
of the function e

1
2 x(t− 1

t ) in 0 < |t | < ∞ and taking t = eiθ (x
is the parameter variable) [53]. Therefore, the lth Floquet
Hamiltonian with rotating frequency lδ is given by

H ′(l )
F = �±F ′

0 + �
(l )
± (F ′

−1 − F ′
1 ), (B13)

with

�
(l )
± = 1 ± cos β

2
�p

n=+∞∑
n=−∞

J2n+l (ξ1)Jn(ξ2)

− cos3 β

2
sin

β

2

√
2�2�p

� − δ

n=+∞∑
n=−∞

J2n+l+1(ξ1)Jn(ξ2)

+ cos
β

2
sin3 β

2

√
2�2�p

� + δ

n=+∞∑
n=−∞

J2n+l−1(ξ1)Jn(ξ2),

(B14)

where the probe Rabi frequency �
(l )
± is the modified Rabi

frequency with nonlinearity. The detuning �± is defined by
�± = δ± + lδ. The evolution of the density matrix is gov-
erned by the master equation

ρ̇ = −i
[
H ′(l )

F , ρ
] + Lρ, (B15)

where Lρ represents the relaxation process of the system,
which is mainly composed of three types of relaxation pro-
cesses: the optical pump relaxation process [86], the ground-
state spin-exchange collision relaxation process [87,88], and
the transit relaxation process [44]. To study the evolution of
alignment concisely, we expand the density operator ρ into an
ensemble of polarized atoms with hyperfine angular momen-
tum according to the atomic multipole moments mk,q:

ρ =
2F∑

k=0

k∑
q=−k

mk,qTk,q, (B16)
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where Tk,q is the irreducible tensor [49]. The multipole moments mk,q are defined by mk,q=〈T †
k,q〉 = trρT †

k,q [36]. According to

Eqs. (B13), (B15), and (B16), the evolution of the alignment components m(l )
2,q of the atomic ensemble is

ṁ(l )
2,−2 = i2�

(l )
± m(l )

2,−2 − i
√

2�
(l )
± m(l )

2,−1 − �2,−2m(l )
2,−2, (B17a)

ṁ(l )
2,−1 = i�(l )

± m(l )
2,−1 − i

√
3�

(l )
± m(l )

2,0 − i
√

2�
(l )
± m(l )

2,−2 − �2,−1m(l )
2,−1, (B17b)

ṁ(l )
2,0 = −i

√
3�

(l )
± m(l )

2,−1 − i
√

3�
(l )
± m(l )

2,1 − �2,0m(l )
2,0 − �0,0m0,0, (B17c)

ṁ(l )
2,1 = −i�(l )

± m(l )
2,1 − i

√
3�

(l )
± m(l )

2,0 − i
√

2�
(l )
± m(l )

2,2 − �2,1m(l )
2,1, (B17d)

ṁ(l )
2,2 = −i2�

(l )
± m(l )

2,2 − i
√

2�
(l )
± m(l )

2,1 − �2,2m(l )
2,2, (B17e)

where the coefficient �2,q (with q = −2, . . . , 2) is the relaxation coefficient of alignment and satisfies the relationship �2,q =
�2,|q| [46]. The monopole moment m0,0 is the injection of the system, which is equal to the population divided by

√
2F + 1 [76].

When the steady-state condition ∂t m
(l )
2,0 ≡ 0 is satisfied, the solution of the incoherent component of the lth alignment is

m(l )
2,0

m0,0
= �0,0

[(
�

(l )2
± + �2

2,1

)(
4�

(l )2
± + �2

2,2

) − 4
(
2�

(l )2
± + �2,1�2,2

)∣∣�(l )
±

∣∣2 + 4
∣∣�(l )

±
∣∣4]

(−)Z
, (B18)

with

Z = 4(�2,0 + 3�2,2)
∣∣�(l )

±
∣∣4 + �2,0

(
�

(l )2
± + �2

2,1

)(
4�

(l )2
± + �2

2,2

)
+ 2

[
�2,1�2,2(2�2,0 + 3�2,2) − 4�

(l )2
± (�2,0 − 3�2,1)

]∣∣�(l )
±

∣∣2
.

(B19)

Equation (B18) can be simplified substantially if we consider the isotropic relaxation process, i.e., �2,2 � �2,1 � �2,0 ≡ �,
which is without loss of generality. The steady-state analytical expression of alignment m(l )

2,0 is given by

m(l )
2,0 = 1

3
− 1

4

[ ∣∣�(l )
±

∣∣2

�
(l )2
± + γ 2

1±
− 3

∣∣�(l )
±

∣∣4

42
(
�

(l )2
± + γ 2

1±
)(

�
(l )2
± + γ 2

2±
)
]
, (B20)

where the spectral linewidths γ 2
1±=�2 + |�(l )

± |2/4 and
γ 2

2±=(�2 + |�(l )
± |2)/4. The symbol “+”(“−”) corresponds to

the right (left) sideband for the incoherent term of alignment
of the lth Floquet state. The first term of Eq. (B20) is constant,
which has nothing to do with the information carried by the
spectra and can be ignored. The second term is the standard
Lorentz line type. The third term is formed by the multiplica-
tion of two Lorentz spectra with different line widths, which is
the correction term of the spectra. The spectra (6) is obtained
by substituting Eq. (B20) into Eq. (1).

APPENDIX C: CHARACTERISTICS FOR THE SQUARE OF
THE ABSOLUTE VALUE

OF THE PROBE RABI FREQUENCY |�(l )
± |2

According to Eq. (B20), with the weak probe power
limit (�p → 0), the alignment magnetic-resonance spectra
can be considered to be formed by the superposition of
infinite Lorentz peaks with different resonance positions
ω1 ± (� + ωBS + lδ). The peak value of each Lorentz peak
is proportional to |�(l )

± |2 and the contribution of Lorentz
peaks at different resonance positions to the alignment
magnetic-resonance spectra is different. Moreover, according
to Figs. 8(a) to 8(f), the distribution of |�(l )

+ |2 with the Floquet
summation index l is similar to the distribution of the align-
ment magnetic resonance spectra with the probe frequency
ωp. Therefore, studying the characteristics of |�(l )

± |2 is helpful
to understand the properties of the alignment magnetic reso-

nance spectra. According to Eq. (B14) and Figs. 8(a) to 8(f),
the following conclusions are drawn.

(i) When only the first harmonic modulation is considered
(ξ2 = 0), |�(l )

+ |2 is symmetric about l = 0; when both the first
harmonic and the second harmonic modulation are consid-
ered, |�(l )

+ |2 is asymmetric about l = 0 and the positions of
the maxima and submaxima will shift.

(ii) When only the first harmonic modulation is consid-
ered, the position Pright of the maximum value on the right
of |�(l )

+ |2 and the position Pleft of the maximum value on
the left and the argument ξ1 approximately satisfy the rela-
tionship respectively: Pright = [ξ1] − k and Pleft = −|[ξ1] + k|,
(k = 0, 1, 2, . . . , ), where [x] denotes the integer part satis-
fying the relation [x] � x < [x] + 1. The value range of the
variable ξ1 is different and the corresponding value of k is
also different. As shown in Fig. 8(a), when the value of ξ1 is
small, the value of k is approximately considered to be zero.
When the value of ξ1 is larger, the value of k is nonzero [see
Figs. 8(b) and 8(c)].

(iii) As shown in Figs. 8(e) and 8(f), when ξ1 is large, the
position Pleft of the submaximum of |�(l )

+ |2 is offset com-
pared to the position Pleft in conclusion (ii). The position of
the submaximum can be expressed as Pleft = −|[ξ1] + k1|,
(k1 = 0, 1, 2, . . . , ). The position Pright of the maximum value
of |�(l )

+ |2 is also offset from the position Pright in conclusion
(ii), which is Pright = [ξ1] − k2, (k2 = 0, 1, 2, . . . , ). It is es-
pecially worth noting that when �2 is large, k1 and k2 are
not equal. Therefore, the interval �P between the maxima

023108-12



SELF-GENERATED FLOQUET MODULATION IN A … PHYSICAL REVIEW A 106, 023108 (2022)

FIG. 8. The square of absolute value of probe Rabi frequency �
(l )
+ versus the Floquet summation index l for right continuum. (a)–(c) con-

sider only the first harmonic modulation (2
√

2�2 cos β

2 sin β

2 cos δt). (d)–(f) are the cases where the first harmonic (2
√

2�2 cos β

2 sin β

2 cos δt)
and second harmonic (−2�2

�2
�

cos2 β

2 sin2 β

2 cos 2δt) modulation are considered at the same time. The parameters used in the cal-
culation are (a) �2 = 20 Hz, ξ1 ≈ 2.83, ξ2 = 0; (b) �2 = 100 Hz, ξ1 ≈ 14.14, ξ2 = 0; (c) �2 = 150 Hz, ξ1 ≈ 21.21, ξ2 = 0; (d) �2 =
20 Hz, ξ1 ≈ 2.83, ξ2 ≈ 0.01; (e) �2 = 100 Hz, ξ1 ≈ 14.14, ξ2 ≈ 0.22; (f) �2 = 150 Hz, ξ1 ≈ 21.21, ξ2 ≈ 0.49. Other parameters are ω0 =
152.210 kHz, ω1 = 152.210 kHz, �1 = 810 Hz, and �p = 20 Hz.

and submaxima is �P = |Pright − Pleft| = |2[ξ1] + k1 − k2|.
Then in this case, when �2 directly tends to 0, argument ξ1

tends to 0, but �P is |k1 − k2| �= 0. However, by analyzing
Fig. 8(d), when ξ1 is small, the positions of the extreme values
are basically consistent with conclusion (ii). However, in this
case, the two extreme positions of the spectra are submerged
within the linewidth and cannot be distinguished. Therefore,
the position relationship of the extreme values of the spectra
satisfied in the case of small �2 and the case of large �2 is
different. In addition, the ratio of maxima to submaxima in
the spectral continua can be approximately proportional to the
ratio of the maxima to submaxima of |�(l )

± |2.

(iv) Because the spectral continuum is synthesized by the
summation of infinite Lorenz peaks with different resonance
points, the average effect of the summation is also considered.
Since the magnitude of the value of |�(l )

+ |2 corresponding to
the different l on both sides of the extreme point of |�(l )

+ |2
is not symmetrical with respect to the extreme value position,
the average effect of the summation will also shift the extreme
value position of the continuum.

According to the above analysis of |�(l )
± |2, the forma-

tion process and characteristics of the alignment magnetic-
resonance spectra dressed by the double rf fields can be further
understood.
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J. Vučković, npj Quantum Inf. 6, 80 (2020).

[57] F. Grossmann, T. Dittrich, P. Jung, and P. Hänggi, Phys. Rev.
Lett. 67, 516 (1991).

[58] E. Saglamyurek, T. Hrushevskyi, A. Rastogi, K. Heshami, and
L. J. LeBlanc, Nat. Photonics 12, 774 (2018).

[59] Y. He, Y.-M. He, J. Liu, Y.-J. Wei, H. Y. Ramírez, M. Atatüre,
C. Schneider, M. Kamp, S. Höfling, C.-Y. Lu, and J.-W. Pan,
Phys. Rev. Lett. 114, 097402 (2015).

[60] M. O. Assunção, G. S. Diniz, L. Sanz, and F. M. Souza, Phys.
Rev. B 98, 075423 (2018).

[61] M. A. Sillanpää, J. Li, K. Cicak, F. Altomare, J. I. Park, R. W.
Simmonds, G. S. Paraoanu, and P. J. Hakonen, Phys. Rev. Lett.
103, 193601 (2009).

[62] H. S. Freedhoff and Z. Ficek, Phys. Rev. A 55, 1234 (1997).
[63] I. M. Savukov, S. J. Seltzer, M. V. Romalis, and K. L. Sauer,

Phys. Rev. Lett. 95, 063004 (2005).
[64] V. Gerginov, Phys. Rev. Applied 11, 024008 (2019).
[65] H. H. Jen and Y.-C. Chen, Phys. Rev. A 93, 013811 (2016).
[66] M. C. Stowe, A. Pe’er, and J. Ye, Phys. Rev. Lett. 100, 203001

(2008).
[67] M. Piccardo, M. Tamagnone, B. Schwarz, P. Chevalier, N. A.

Rubin, Y. Wang, C. A. Wang, M. K. Connors, D. McNulty,
A. Belyanin, and F. Capasso, Proc. Natl. Acad. Sci. 116, 9181
(2019).

[68] Y. Yan, C. Liu, H. Wu, and Y. Dong, International Journal of
Antennas and Propagation 2017, 6198686 (2017).

[69] L. D. Turner, V. Karaganov, P. J. O. Teubner, and R. E.
Scholten, Opt. Lett. 27, 500 (2002).

[70] Z. He, Y. Zhang, H. Wu, P. Yuan, and S. Liu, J. Opt. Soc. Am.
B 26, 1755 (2009).

023108-14

https://doi.org/10.1038/s41567-020-0918-5
https://doi.org/10.1364/OE.437555
https://doi.org/10.1103/PhysRevApplied.13.024066
https://doi.org/10.1103/PhysRevLett.120.033202
https://doi.org/10.1103/PhysRevA.100.053416
https://doi.org/10.1103/PhysRevA.104.033307
https://doi.org/10.1103/PhysRevLett.113.243002
https://doi.org/10.1063/1.3149495
https://doi.org/10.1103/PhysRevE.103.052139
https://doi.org/10.1088/1367-2630/aa723a
https://doi.org/10.1126/science.abg8102
https://doi.org/10.1038/s41567-020-01120-z
https://doi.org/10.1103/PhysRevLett.121.210501
https://doi.org/10.1140/epjb/e2020-100595-0
https://doi.org/10.1126/sciadv.abe0719
https://doi.org/10.1103/PhysRevLett.128.233201
https://doi.org/10.1103/PhysRevX.4.021030
https://doi.org/10.1103/PhysRevLett.127.140604
https://doi.org/10.1103/PhysRevX.12.021061
https://doi.org/10.1103/PhysRevA.74.033401
https://doi.org/10.1103/PhysRevLett.101.073601
https://doi.org/10.1103/PhysRevLett.124.043602
https://doi.org/10.1038/s41467-020-15899-1
https://doi.org/10.1103/RevModPhys.74.1153
https://doi.org/10.1103/PhysRevA.85.022125
https://doi.org/10.1103/PhysRevApplied.10.034035
https://doi.org/10.1103/PhysRevLett.127.233202
https://doi.org/10.1103/PhysRevA.103.053112
https://doi.org/10.1103/PhysRevA.74.063415
https://doi.org/10.1103/PhysRevA.89.033406
https://doi.org/10.1139/p07-060
https://doi.org/10.1103/PhysRevA.95.023803
https://doi.org/10.1103/PhysRevA.76.053827
http://dlmf.nist.gov/
https://doi.org/10.1103/PhysRevA.100.013823
https://doi.org/10.1088/0022-3700/13/14/012
https://doi.org/10.1038/s41534-020-00310-0
https://doi.org/10.1103/PhysRevLett.67.516
https://doi.org/10.1038/s41566-018-0279-0
https://doi.org/10.1103/PhysRevLett.114.097402
https://doi.org/10.1103/PhysRevB.98.075423
https://doi.org/10.1103/PhysRevLett.103.193601
https://doi.org/10.1103/PhysRevA.55.1234
https://doi.org/10.1103/PhysRevLett.95.063004
https://doi.org/10.1103/PhysRevApplied.11.024008
https://doi.org/10.1103/PhysRevA.93.013811
https://doi.org/10.1103/PhysRevLett.100.203001
https://doi.org/10.1073/pnas.1903534116
https://doi.org/10.1155/2017/6198686
https://doi.org/10.1364/OL.27.000500
https://doi.org/10.1364/JOSAB.26.001755


SELF-GENERATED FLOQUET MODULATION IN A … PHYSICAL REVIEW A 106, 023108 (2022)

[71] J. Meinel, V. Vorobyov, B. Yavkin, D. Dasari, H. Sumiya, S.
Onoda, J. Isoya, and J. Wrachtrup, Nat. Commun. 12, 2737
(2021).

[72] R. Debroux, C. P. Michaels, C. M. Purser, N. Wan, M. E.
Trusheim, J. Arjona Martínez, R. A. Parker, A. M. Stramma,
K. C. Chen, L. de Santis, E. M. Alexeev, A. C. Ferrari, D.
Englund, D. A. Gangloff, and M. Atatüre, Phys. Rev. X 11,
041041 (2021).

[73] J. Wu, J. Liu, Y. He, Y. Zhang, J. Zhang, and S. Zhu, Phys. Rev.
A 98, 043829 (2018).

[74] I. M. Georgescu, S. Ashhab, and F. Nori, Rev. Mod. Phys. 86,
153 (2014).

[75] G. Di Domenico, H. Saudan, G. Bison, P. Knowles, and A.
Weis, Phys. Rev. A 76, 023407 (2007).

[76] M. Auzinsh, D. Budker, and S. Rochester, Optically Polarized
Atoms: Understanding Light-Atom Interactions (Oxford Univer-
sity Press, New York, 2010).

[77] P. Zhang, V. Kharchenko, A. Dalgarno, Y. Matsumi, T.
Nakayama, and K. Takahashi, Phys. Rev. Lett. 100, 103001
(2008).

[78] E. Breschi and A. Weis, Phys. Rev. A 86, 053427 (2012).
[79] D. Loss and D. P. DiVincenzo, Phys. Rev. A 57, 120

(1998).
[80] W. Happer, Rev. Mod. Phys. 44, 169 (1972).
[81] Y. Chang, Y.-H. Guo, and J. Qin, Phys. Rev. A 99, 063411

(2019).
[82] S. Menon and G. S. Agarwal, Phys. Rev. A 59, 740

(1999).
[83] L. Margalit, M. Rosenbluh, and A. D. Wilson-Gordon, Phys.

Rev. A 87, 033808 (2013).
[84] T. Zigdon, A. D. Wilson-Gordon, and H. Friedmann, Phys. Rev.

A 80, 033825 (2009).
[85] R. Tan, G.-x. Li, and Z. Ficek, Phys. Rev. A 78, 023833

(2008).
[86] P.-L. Qi, X. Geng, G. Yang, G. Huang, and G. Li, J. Opt. Soc.

Am. B 37, 3303 (2020).
[87] T. Scholtes, S. Pustelny, S. Fritzsche, V. Schultze, R. Stolz, and

H.-G. Meyer, Phys. Rev. A 94, 013403 (2016).
[88] Y. Shi, T. Scholtes, Z. D. Grujić, V. Lebedev, V. Dolgovskiy,
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