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In this paper we propose an experimentally viable scheme to enhance the sensitivity of force detection in
a hybrid optomechanical setup assisted by squeezed vacuum injection, beyond the standard quantum limit
(SQL). The scheme is based on a combination of the coherent quantum noise cancellation (CQNC) strategy
with a variational homodyne detection of the cavity output spectrum in which the phase of the local oscillator
is optimized. In CQNC, realizing a negative-mass oscillator in the system leads to exact cancellation of the
backaction noise from the mechanics due to destructive quantum interference. Squeezed vacuum injection
enhances this cancellation and allows sub-SQL sensitivity to be reached in a wide frequency band and at much
lower input laser powers. We show here that the adoption of variational homodyne readout enables us to enhance
this noise cancellation up to 40 dB compared to the standard case of detection of the optical output phase
quadrature, leading to a remarkable force sensitivity of the order of 10−19 N/

√
Hz, about 70% enhancement

compared to the standard case. Moreover, we show that at nonzero cavity detuning, the signal response can
be amplified at a level three to five times larger than that in the standard case without variational homodyne
readout, improving the signal-to-noise ratio. Finally, the variational readout CQNC developed in this paper may
be applied to other optomechanical-like platforms such as levitated systems and multimode optomechanical
arrays or crystals as well as Josephson-based optomechanical systems.
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I. INTRODUCTION

Optomechanical systems (OMSs) have been exploited in
different areas of quantum technologies, such as quantum
information processing and communication [1–4], quantum
memories [5,6], reversible microwave-to-optics converters
[7–11], microwave circulators [12,13], quantum correlations
[14–18], and quantum squeezing [19,20], as well as in funda-
mental physics [21–30]. Also, optomechanical-based sensors
have been recognized as an optimal candidate for the detection
of minuscule forces at the quantum limit [31] such as obser-
vation of gravitational waves [32]. In OMSs, cavity field shot
noise and radiation pressure backaction (BA) noise restrict
the force measurement sensitivity, leading to the standard
quantum limit (SQL) in force measurements [33,34]. These
two noise sources show opposite responses to the input field
power: As the cavity driving power grows, the shot noise de-
creases, while the radiation pressure BA noise increases [33].
Thus, lowering one results in strengthening the other one.
Consequently, at high input powers where quantum effects
are enhanced and the shot noise is negligible, the mechanical
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BA noise is dominant. Therefore, any effort to improve the
measurement sensitivity requires suppression of the BA noise.

Various strategies have been proposed for suppressing
the BA noise effects to achieve an ultrasensitive measure-
ment using optomechanical systems, such as utilizing a
shot-noise-limited microwave interferometer [35], degenerate
parametric amplification [36], backaction evasion techniques
[37–40], variational readout of the cavity output field [41], a
measurement-based feedback technique [42], coherent quan-
tum noise cancellation (CQNC) [43], and a noise reduction
scheme in systems with a single-mode mechanical resonator
in the hybrid system [44–48] as well as in systems with mul-
timode mechanical oscillators [49–52]. Among them, CQNC
is one of the most successful approaches of noise suppres-
sion which utilizes quantum interference. The idea of CQNC,
which was first introduced by Tsang and Caves [43], is based
on the exploitation of an ancillary oscillator with an effec-
tive negative mass to create an antinoise path to the system
dynamics to cancel out the BA noise of the mechanics. A
scheme based on the CQNC method in a hybrid OMS con-
sisting of an atomic ensemble and equipped with squeezed
vacuum injection has been proposed in Refs. [53–55], and it
has been recently realized experimentally [56]. By calculation
of the output cavity phase spectrum, it has been shown that
under the so-called perfect CQNC conditions, the BA noises
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due to the coupling of the intracavity radiation pressure with
the mechanical oscillator (MO) and with the atomic ensem-
ble completely cancel each other. Furthermore, it has been
demonstrated that the cavity shot noise can be suppressed
by injecting a squeezed vacuum light into the cavity. These
proposals rely on measuring the phase quadrature spectrum of
the output cavity field.

Motivated by the above-mentioned investigations, we have
been encouraged to improve the output detection method
by exploiting a variational homodyne readout [57] (see also
Refs. [41,58]) in which the local oscillator phase is optimized
for each parameter set rather than considering the standard
quadrature phase measurement common in optomechanical
force sensing. Under perfect CQNC conditions, which refers
to zero cavity detuning (resonant case) and perfect match-
ing between positive- and negative-mass MO parameters,
optimizing the phase of the homodyne detected quadrature
has no advantage. Nevertheless, for nonzero detuning and/or
in the presence of a mismatch between mechanical and
atomic parameters, properly adapting the phase of the detected
quadrature enables us to achieve noise reduction compared to
the standard case of Ref. [54], up to 40 dB when adjusting the
optomechanical parameters. Moreover, one can also amplify
the cavity output signal compared to the standard CQNC
scheme and, as a result, one can achieve simultaneous noise
reduction and output signal amplification in some cases.

The paper is organized as follows. Section II is devoted
to the description of the physical model of the system under
consideration. In Sec. III the linearized quantum Langevin
equations (QLEs) describing the system dynamics are ob-
tained. The enhancement of CQNC in the output spectrum
of a generic optical quadrature is shown and discussed un-
der different conditions in Sec. IV. The advantage of the
variational homodyne CQNC setup in force sensitivity, the
signal-to-noise ratio (SNR), and output signal amplification
are discussed in Sec. V. Conclusions are summarized in
Sec. VI.

II. SYSTEM

As illustrated schematically in Fig. 1, we consider a hybrid
optomechanical system consisting of an optical mode of a
Fabry-Pérot cavity with resonance frequency ωc and a MO
with an effective mass m, natural frequency ωm, and damping
rate γm, coupled to the cavity field via radiation pressure
interaction and subjected to an external classical force F̃ext.
Furthermore, the system contains an ensemble of Na effective
two-level atoms trapped inside the cavity and interacting with
the cavity mode. The cavity mode is coherently driven by a
classical field of frequency ωL, input power PL, and wave-
length λL. Moreover, in the cavity it is injected into a squeezed
vacuum field, provided by the finite bandwidth output of an
optical parametric oscillator (OPO), which is assumed to be
resonant with the cavity mode. The atomic ensemble interacts
nonresonantly with the intracavity field and a classical control
field. For sufficiently large Na, the atomic ensemble behaves
effectively as a negative-mass oscillator (NMO) by assuming
that the atoms are initially prepared in the higher-energy level
[54].

LO
Phase Modulated signal

Detector 2

Detector 1

Homodyne

Detection

Pump

OPO

MO

Pumping 

field

Effective two-level

atom

BS

output

FIG. 1. Schematic description of the system under consideration.
The system consists of a Fabry-Pérot cavity, in which a single-mode
MO is coupled to the radiation pressure of the cavity field. Further-
more, the cavity contains an ensemble of effective two-level atoms
with an effective transition rate ωσ = ωm that can be controlled by
a classical laser field with Rabi frequency �R. The atomic ensemble
behaves effectively as a negative-mass oscillator under Faraday inter-
action and bosonization process [54]. An external classical force F̃ext

is exerted on the MO acting as a sensor or test mass. The cavity is
also driven by a coherent light field with power PL and frequency
ωL . A squeezed vacuum light at resonance with the cavity mode,
ωsq = ωc, is also injected into the cavity. The cavity output field
enters the homodyne detection setup in order to extract information
on the external force and imprinted in the modulated phase of the
cavity output field.

After applying the bosonization procedure on the ultracold
atomic ensemble using the Holstein-Primakoff transforma-
tion, the Hamiltonian of the system in the frame rotating at
driving laser frequency ωL can be simplified as (for more
details of the derivation of the Hamiltonian, see Ref. [54])

Ĥ = h̄�c0â†â + h̄ωmb̂†b̂ − h̄ωmd̂†d̂ + h̄g0â†â(b̂ + b̂†)

+ h̄

2
G(â + â†)(d̂ + d̂†) − ih̄EL(â − â†) + ĤF , (1)

where �c0 = ωc − ωL is the cavity detuning, EL =√
PLκ/h̄ωL is the pumping rate of the input laser with κ the

cavity damping rate, G denotes the collective atomic coupling
with the cavity field, and g0 = ωcxzpf/L is the single-photon
optomechanical coupling strength, where xzpf = √

h̄/2mωm

is the zero-point fluctuation of the MO and L is the resting
length of the cavity. Note that we have considered only
the linear radiation pressure coupling between the MO and
the cavity field. Furthermore, the operators â, b̂, and d̂
are the annihilation operators of the cavity field, MO, and
an effective negative-mass MO due to the bosonization of
the atomic ensemble, respectively. The first three terms of
Eq. (1) represent the free Hamiltonians of the cavity field,
the MO, and the NMO, respectively. The fourth term of the
Hamiltonian denotes the optomechanical coupling between
the cavity field and the MO, while the fifth term refers to
the coupling between the atomic ensemble and the cavity
field. The sixth term accounts for the driving field and the last
term stands for the contribution of the external classical force
exerted on the MO, which is given by

ĤF = F̃extxzpf (b̂ + b̂†). (2)
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III. DYNAMICS OF THE SYSTEM

The dynamics of the system is determined by the QLEs as

˙̂a = −
(

i�c0 + κ

2

)
â − ig0â(b̂ + b̂†) − i

G

2
(d̂ + d̂†)

+ EL + √
κ âin, (3a)

˙̂b = −
(

iωm + γm

2

)
b̂ − ig0â†â + i√

2mh̄ωm
[η̂(t ) + F̃ext],

(3b)

˙̂d =
(

iωm − 


2

)
d̂ − i

G

2
(â + â†) +

√

d̂ in, (3c)

where 
 denotes the collective atomic dephasing rate. Here
we have introduced three noise processes, which include the
thermal noise acting on the MO that is represented by the
Brownian thermal noise operator η̂(t ), the optical input vac-
uum noise âin, and the optical vacuum fluctuations affecting
the atomic transitions represented by the bosonic operator
d̂ in. These noises are uncorrelated, and the only nonvanishing
correlation functions are

〈âin(t )âin(t ′)†〉 = 〈d̂ in(t )d̂ in(t ′)†〉 = δ(t − t ′), (4a)

〈η̂(t )η̂(t ′)〉 � h̄mγm[ωm(2n̄m + 1)δ(t − t ′) + iδ′(t − t ′)],

(4b)

where n̄m = [exp(h̄ωm/kBT ) − 1]−1 is the mean phonon num-
ber of a thermal bath with temperature T and δ′(t − t ′) is the
time derivative of the Dirac delta function. In the derivation of
Eq. (4b), we have assumed that the mechanical quality factor
Qm = ωm/γm is very large, justifying the weak damping limit
where the Brownian noise can be treated as a Markovian noise
[59].

We are interested in the regime where the cavity field
and the atomic ensemble are strongly driven and the system
is in the weak optomechanical coupling limit. Under these
conditions, we can linearize the dynamics of quantum fluc-
tuations around the semiclassical steady state by considering
system operators as Â → 〈Â〉 + δÂ so that the higher orders of
quantum fluctuation can be neglected with respect to the mean
field 〈Â〉 in the system dynamics. By introducing the ampli-
tude and phase quadratures of the three modes of the system
as X̂A = (Â + Â†)/

√
2 and P̂A = (Â − Â†)/i

√
2, respectively,

with A = a, b, and d , the linearized QLEs for the quantum
fluctuations are obtained as

δ ˙̂Xa = �cδP̂a − κ

2
δX̂a + √

κX̂ in
a , (5a)

δ ˙̂Pa = −�cδX̂a − gδX̂b − GδX̂d − κ

2
δP̂a + √

κP̂in
a , (5b)

δ ˙̂Xb = ωmδP̂b, (5c)

δ ˙̂Pb = −ωmδX̂b − γmδP̂b − gδX̂a + √
γm( f̂ + Fext ), (5d)

δ ˙̂Xd = −ωmδP̂d − 


2
δX̂d +

√

X̂ in

d , (5e)

δ ˙̂Pd = ωmδX̂d − GδX̂a − 


2
δP̂d +

√

P̂in

d , (5f)

where g = 2g0αs is the enhanced optomechanical coupling,
�c = �c0 − 2g2

0|αs|2/ωm is the effective cavity detuning, and

αs is the steady-state solution of the QLE for the cavity field
which can always be considered as a real number without any
loss of generality. We have also defined the scaled mechanical
thermal noise and external forces as f̂ (t ) = η̂(t )/

√
h̄mωmγm

and Fext = F̃ext/
√

h̄mωmγm, respectively.
We mention that modeling the system dynamics with the

linearized quantum Langevin equations is valid in the strong
drive (ncav � 1 or g/g0 � 1) and weak single-photon op-
tomechanical coupling regime (g0 	 ωm, κ). Typically, with
103 intracavity photons, linearization works well and optome-
chanical force sensing is used just in this linearized regime.

In the next section we will study the homodyne detection
of a generic quadrature of the cavity output field aiming at
force detection in the presence of the CQNC condition and
squeezed vacuum injection.

IV. ENHANCEMENT OF CQNC IN THE CASE
OF HOMODYNE MEASUREMENT OF A GENERIC

OPTICAL QUADRATURE

An external force acting on the MO shifts its position
and changes the cavity effective length, which is directly
reflected in the phase of the cavity output field. Consequently,
we have to measure the quadratures of the cavity output
field to extract the signal associated with the external force.
The quadrature of the cavity output field relates to that of
the intracavity field via the well-known input-output relation
âout = √

κδâ − âin. In order to choose an appropriate quadra-
ture, we define the generalized quadrature of the cavity output
field using a linear combination of both amplitude and phase
as

P̂out
a,θ = cos θ P̂out

a − sin θ X̂ out
a , (6)

where θ represents the phase angle of the local oscillator
(LO) of the homodyne detector, which should be optimized
so that the added noise imprinted to the output field spectrum
is minimized. We recall that the optomechanical interaction
imprints the optical amplitude quadrature noise on the
mechanical resonator, which is then mapped onto the
phase quadrature of the optical output field, a process
which is also at the origin of ponderomotive squeezing.
The resulting noise correlations between the optical
amplitude and phase quadratures allow the measurement
of unwanted noises to be reduced for an appropriate
choice of homodyne phase angle and these correlations
are those at the basis of the success of the variational
readout method. Recently, variational homodyne readout
has been employed in an ultracoherent optomechanical
system, and off-resonant force and displacement
sensitivity reaching 1.5 dB below the SQL have been
demonstrated [58].

Now, by solving Eqs. (5) for δX̂a and δP̂a in the frequency
domain and using the input-output relation, we obtain the
generalized quadrature P̂out

a,θ as

P̂out
a,θ (ω) =√

κχ ′
auθ

{
−g

√
γmχm( f̂ + Fext )

+ √
κ

[(
1 − 1

κχ ′
a

)
P̂in

a − χa�cX̂ in
a

]
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− G
√


χd

(
P̂in

d − 
/2 + iω

ωm
X̂ in

d

)

+ √
κχa(g2χm + G2χd )X̂ in

a

}

− χa�c sin θ P̂in
a − (κχa − 1) sin θ X̂ in

a , (7)

in which we have defined uθ = cos θ − χa�c sin θ , and also
introduced the susceptibilities of the cavity field, the MO, and
the atomic ensemble, respectively as

χa(ω) = 1

κ/2 + iω
, (8a)

χm(ω) = ωm(
ω2

m − ω2
) + iωγm

, (8b)

χd (ω) = −ωm(
ω2

m − ω2 + 
2/4
) + iω


(8c)

and the modified cavity mode susceptibility as

1

χ ′
a(ω)

= 1

χa(ω)
− χa(ω)�c[g2χm(ω) + G2χd (ω) − �c].

(9)
Equation (7) denotes the experimental signal which has to be
measured to estimate the external force Fext. We define the
generalized estimated external force as

F̂ est
ext,θ ≡ −1

g
√

κγmχ ′
aχmuθ

P̂out
a,θ ≡ Fext + F̂N,θ , (10)

in which F̂N,θ is the generalized added force noise, given by

F̂N,θ = f̂ −
√

κ

γm

1

gχm

[(
1 − 1

κχ ′
a

)
P̂in

a − χa�cX̂ in
a

]

+
√




γm

Gχd

gχm

(
P̂in

d − 
/2 + iω

ωm
X̂ in

d

)

−
√

κ

γm

g2χm + G2χd

gχm
χaX̂ in

a

+ B
g
√

κγmχ ′
aχm

[
χa�cP̂in

a + (κχa − 1)X̂ in
a

]
. (11)

Here we have defined B = sin θ/uθ . According to Eq. (11),
there are five different contributions to the added force noise.
The first term corresponds to the thermal noise of the MO.
The second term refers to the shot-noise contribution asso-
ciated with the cavity field, which is significant especially
at low driving power, and it is modified by the squeezed
injection, as demonstrated in [54]. The third term represents
the atomic noise originating from the interaction between the
atomic ensemble and the cavity field. The fourth term denotes
the backaction noise due to the radiation pressure coupling
of the cavity field with the MO and the atomic ensemble,
which grows by increasing the strength of the cavity field. The
last term represents the contribution to the added force noise
arising from the phase of the homodyne detection of the cavity
output field. Only a moment’s thought is needed to conclude
that this term vanishes for θ = 0.

A. Generalized force noise power spectral density

To quantify the sensitivity of the force measurement, we
define the generalized force noise power spectral density as

SF,θ (ω)δ(ω − ω′) = 1
2 [〈F̂N,θ (ω)F̂N,θ (−ω′)〉 + c.c.]. (12)

In the steady state, κ � ω, and in the presence of the squeezed
vacuum injection, the generalized spectral density of the
added force noise is given by (see Appendix A)

SF,θ (ω) = Sth(ω) + S f (ω) + Sat (ω) + Sb(ω) + Sh(ω)

+ S f b(ω) + S f h(ω) + Sbh(ω), (13)

where the first five terms correspond to the noise contributions
of the Brownian motion of the MO, the cavity field, the atomic
ensemble, the BA, and the homodyne phase, respectively:

Sth(ω) = kBT

h̄ωm
, (14)

S f (ω) = κ

g2γm|χm(ω)|2
[
�cIm[Z (ω)(1 − 2i ImM )]

+
(

1 + 1

κ2|χ ′
a(ω)|2 − 2 Reχ ′

a(ω)

κ|χ ′
a(ω)|2

)

×
(

N + 1

2
− ReM

)

+ 4�2
c

κ2

(
N + 1

2
+ ReM

)]
, (15)

Sat (ω) = |A(ω)|2
2

(
1 + ω2 + 
2/4

ω2
m

)
, (16)

Sb(ω) = 4g2

κγm

∣∣∣∣∣1 + G2

g2
R(ω)

∣∣∣∣∣
2(

N + 1

2
+ ReM

)
, (17)

Sh(ω) = 2B2

g2κγm|χ ′
a(ω)|2|χm(ω)|2

[(
1

2
+ 2�2

c

κ2

)(
N + 1

2

)

+
(

1

2
− 2�2

c

κ2

)
ReM + 2�c

κ
ImM

]
. (18)

Furthermore, the last three terms of Eq. (13) refer to
the quantum interferences associated with the joint action
of the different modes of the system. The term S f b(ω)
relates to the quantum interference between the cavity
field and the atomic ensemble, S f h(ω) originates from the
quantum interference between the cavity field and the ho-
modyne phase contribution, and Sbh(ω) corresponds to the
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backaction-homodyne phase interference

S f b(ω) = κ

γm
Im

[
(2i ImM − 1)

Z (ω)

χm(−ω)

(
1 + G2

g2
R(ω)

)]
− 8�c

κγm
Re

(
1 + (G2/g2)R(ω)

χm(−ω)

)(
N + 1

2
+ ReM

)
, (19)

S f h(ω) = − B
g2γm|χm(ω)|2

{
2�cRe

(
Z (ω)

χ ′
a(−ω)

)(
N + 1

2
− ReM

)
− 2�cRe

(
χa(ω)

χ ′
a(−ω)

)(
N + 1

2
+ ReM

)

− Im

[
(2iImM + 1)

(
4�2

c/κ
2

χ ′
a(ω)

+ 1 − κZ (−ω)

χ ′
a(−ω)

− 1

κ|χ ′
a(ω)|2

)]}
, (20)

Sbh(ω) = − 2B
κγm

[
2�c

κ
Im

(
(2i ImM + 1)

1 + (G2/g2)R(ω)

χm(ω)χ ′
a(ω)

)
+ 2Re

(
1 + (G2/g2)R(ω)

χm(ω)χ ′
a(ω)

)(
N + 1

2
+ ReM

)]
, (21)

where

Z (ω) = χa(ω)

(
1 − 1

κχ ′
a(−ω)

)
, (22a)

R(ω) = χd (ω)

χm(ω)
, (22b)

A(ω) = G

g

√



γm
R(ω). (22c)

Note that in the derivation of the power spectral density given
by Eq. (13), we used the fact that in the limit of ω/κ 	 1
(resolved-sideband regime), the optical susceptibility can be
approximated as χa � 2/κ (see Appendix C). Moreover, the
squeezing parameters M and N relate to the effective second-
order nonlinearity ε and cavity decay rate γ of the OPO as
M = (εγ /2)(1/b2

x + 1/b2
y ) and N = (|ε|γ /2)(1/b2

x − 1/b2
y )

with bx = γ /2 − |ε| and by = γ /2 + |ε| (see Appendix D for
experimental constraints on the squeezing parameter N to con-
sider its maximum value in the following graphs in figures).
We recall that with the chosen units, the noise spectral density
is dimensionless and in order to convert it to N2 Hz−1 units we
have to multiply by the scale factor h̄mωmγm.

B. CQNC conditions

The CQNC effect, which refers to the perfect cancellation
of the backaction noise at all frequencies, leads to significant
noise suppression in force detection. According to the fourth
term of Eq. (11), for g = G and χd = −χm, the mechanical
backaction and the atomic backaction contributions to the
added force noise cancel each other at all frequencies and
hence they offer noise and antinoise paths to the signal force.
Strictly speaking, the CQNC refers to the perfect matching of
(i) the mirror-field with the atom-field couplings, i.e., g = G,
(ii) the mechanical dissipation rate with the dephasing rate of
the atoms, i.e., 
 = γm, and (iii) the mechanical susceptibility
χm with the atomic susceptibility χd , which is realized when
the MO has a high-quality factor. One can easily conclude that
in the presence of the perfect CQNC conditions we have 1 +
(G2/g2)R(ω) = 0 and hence Sb(ω) = S f b(ω) = Sbh(ω) = 0.
As a consequence, under perfect CQNC conditions, the gen-

eralized spectral density of the added force given by Eq. (13)
reduces to

SF,θ (ω) = kBT

h̄ωm
+ 1

2

(
1 + ω2 + γ 2

m/4

ω2
m

)
+ κ

g2γm|χm(ω)|2

×
(

1

2
μ2

+ + �(N, M, y) + �(N, M, y, θ )

)
, (23)

where we have introduced the normalized detuning as y ≡
�c/κ and μ± ≡ 1

2 ± 2y2. The functions � and � represent
the contributions of the injected squeezing and the homodyne
phase to the optomechanical shot noise, respectively, and are
given by

�(N, M, y) = μ2
+N + (8y2 − μ2

+)ReM − 4yμ−ImM,

(24a)

�(N, M, y, θ ) = 2B2
[
μ3

+
(
N + 1

2

) + μ−μ2
+ReM

+ 2yμ2
+ImM

] + B[
4yμ2

+
(
N + 1

2

)
+ 4yμ+(μ− + 1)ReM − 2μ+(μ− − 4y2)

× ImM
]
. (24b)

Note that with the chosen units, the spectral density of the
added force noise is dimensionless and it should be multiplied
by the scale factor h̄mωmγm in order to convert it to N2 Hz−1

units. According to Eq. (23), the homodyne phase contribution
to the noise spectrum can be considered as a shot-noise-like
term and consequently we expect that it decreases by increas-
ing the strength of the cavity field.

We have to compare the noise spectrum in our scheme
with that of a bare optomechanical setup, which serves as
a standard system formed by an optical cavity coupled to a
MO. The SQL for stationary force detection comes from the
minimization of the force spectrum of the standard system at
a given frequency over the driving power, which is given by
[54]

SSQL(ω) = 1

γm|χm(ω)| . (25)

As mentioned in [54], by considering M = |M| exp(iφ),
in the absence of the homodyne detection (θ = 0), the
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optimized parameters for the injected squeezing in order to
suppress the shot noise contributions as much as possible are
|M| = √

N (N + 1) (pure squeezing) and

φopt (y) = 4yμ−
μ2+ − 8y2

, (26)

which can be obtained by minimizing the noise spectrum
given by Eq. (23) over the phase of the squeezing parameter
φ for θ = 0. Since we want to make a proper comparison
between the cases of θ = 0 and θ �= 0, we have assumed that
the phase of the squeezing parameter in our scheme, even for
θ �= 0, is given by Eq. (26).

The appropriate quadrature of the cavity output field is
determined by minimizing the noise spectrum over the ho-
modyne phase angle θ , which under the perfect CQNC
conditions, yields

tan θopt = − K/2L

1 − y(K/L)
, (27)

where

K = 4yμ2
+
(
N + 1

2

) + 4yμ+(μ− + 1)ReM

− 2μ+(μ− − 4y2)ImM, (28a)

L = 2μ3
+
(
N + 1

2

) + 2μ−μ2
+ReM + 4yμ2

+ImM. (28b)

By substituting Eqs. (28) in Eq. (23), the minimized noise
spectrum in the presence of the perfect CQNC is obtained as

Smin
F,θopt

(ω) = kBT

h̄ωm
+ 1

2

(
1 + ω2 + γ 2

m/4

ω2
m

)

+ κ

g2γm|χm(ω)|2
(

1

2
μ2

+ + �(N, M, y) − K2

4L

)
.

(29)

In the case when the cavity is driven at resonance, i.e., y =
0, one can easily conclude that φopt = 0, K = 0, and hence
θopt = 0. Consequently, in this case, the homodyne phase
contribution to the shot noise vanishes and does not improve
the sensitivity of the force detection. This means that under
perfect CQNC conditions and at cavity resonance (�c = 0),
the phase quadrature P̂out

a is the optimal output quadrature
which has to be measured to extract the external force signal.
In the case of off-resonance cavity driving, i.e., y �= 0, as
demonstrated in Eq. (29), in the regime where the function L
given by Eq. (28) becomes positive, the homodyne phase con-
tribution to the shot noise leads to the reduction of the noise
spectrum, which results in the improvement of the force detec-
tion sensitivity. Note that the advantage of our scheme against
the simple phase detection scheme in Ref. [54] is given by

δSCQNC ≡ Smin
F,θopt

(ω) − SF,θ=0(ω) = − κ

4g2γm|χm(ω)|2
(

K2

L

)
,

(30)

where δSCQNC refers to a noise reduction advantage, which
can be redefined in decibel scale as

δSCQNC =10 log10

(
Smin

F,θopt
(ω)

SF,θ=0(ω)

)
. (31)

FIG. 2. Force noise spectral density versus ω/ωm, with an opti-
mized squeezed injected light, i.e., |M| = √

N (N + 1) with N = 10,
and φ = φopt. The results are plotted for the case of off-resonance
cavity driving, with y = 1/2 (red dashed line for θ = 0 and purple
dotted line for θ = θopt) and y = 1 (blue dash-dotted line for θ = 0
and orange dash–double-dotted line for θ = θopt). The black solid
line corresponds to the SQL. The other parameters are ωm/2π =
300 kHz, γm/2π = 30 mHz, g0/2π = 300 Hz, λL = 780 nm, PL =
24 μW (i.e., g/g0 = 4.91 × 103), and κ/2π = 10 MHz.

Let us now illustrate how the contribution of the rotated
quadrature defined by Eq. (6), which is equivalent to the effect
of the homodyne phase, together with the squeezed vacuum
field injection into the cavity under the CQNC conditions,
affects the noise cancellation. We consider the experimen-
tally feasible system parameters [54] ωm/2π = 300 kHz,
γm/2π = 30 mHz, g0/2π = 300 Hz, λL = 780 nm, PL =
24 μW (i.e., g/g0 = 2αs = 2

√
n̄cav = 2

√
PL/h̄ωLκ = 4.91 ×

103), κ/2π = 10 MHz, and effective mass m = 1 ng.
Since under perfect CQNC conditions and resonant cavity

driving (� = 0) the optimized quadrature is the phase quadra-
ture, which has been investigated in Ref. [54], in Sec. IV B we
focus our attention on the nonzero detuning case in the perfect
CQNC condition. In Sec. IV C we investigate both zero and
nonzero detuning in the imperfect CQNC condition.

In Fig. 2 the spectral density of the force noise optimized
over the squeezing parameters [M = √

N (N + 1) and φopt]
is plotted versus the normalized frequency ω/ωm. This plot
clearly shows the advantage of the homodyne detection with
an optimized phase angle θopt in reducing the noises present in
the force spectrum. In Fig. 3 we plot the spectrum of the noise
reduction advantage δSICQNC given by Eq. (31) for different
detunings. This illustrates that in the close vicinity of mechan-
ical resonance frequency ωm, the noise reduction advantage is
greater for larger values of cavity detuning, while it vanishes
when the cavity drives resonantly, as expected. The spectrum
of the noise reduction advantage δSCQNC for different values of
squeezing parameter N is plotted in Fig. 4. This figure reveals
that the noise reduction advantage increases at all frequencies
as the squeezing parameter N grows. The effect of the cavity
driving power, which is proportional to (g/g0)2, on the force
noise spectrum is illustrated in Fig. 5.

This figure shows that the variational homodyne CQNC re-
duces the force noise spectrum, notably at low driving powers.
In fact, homodyne detection at the optimized phase angle θopt

leads to the third term in the second line of Eq. (29), which is
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FIG. 3. Noise reduction advantage δSICQNC in decibel scale ver-
sus ω/ωm, with an optimized squeezed injected light, i.e., |M| =√

N (N + 1) with N = 10, and φ = φopt. Different curves correspond
to y = 0 (black dotted line), y = 0.5 (blue solid line), and y = 1 (red
dashed line). The other parameter values are the same as those in
Fig. 2.

shot-noise-like, i.e., proportional to 1/g2, and negative, hence
reducing the total shot-noise contribution to the force noise
spectrum compared to the standard case when θ = 0 [see
Eqs. (29) and (30)].

This result can also be observed in Fig. 6, which illustrates
the effect of the cavity driving power on the noise reduction
advantage. As it is evident, the noise reduction advantage
diminishes as the cavity driving power increases. Moreover,
increasing the squeezing parameter N leads to an increase of
the noise reduction advantage, which, interestingly, rises up to
40 dB for N = 25.

C. Imperfect CQNC conditions

1. Resonant case (�c = 0)

Perfect backaction noise cancellation requires that the me-
chanical parameters match perfectly to the atomic ones. As

FIG. 4. Noise reduction advantage in decibel scale versus ω/ωm.
Here we set the normalized detuning y = 1

2 and consider different
values for the squeezing parameter: N = 0 (purple dotted line),
N = 5 (blue dashed line), N = 15 (red dash-dotted line), and N = 25
(black solid line). The other parameter values are the same as those
in Fig. 2.

FIG. 5. Force noise spectral density versus (g/g0 )2, at the fre-
quency ω = ωm + 4γm. Here we set the normalized detuning y = 1

2
and consider different values for the squeezing parameter: N = 0
(green solid line for θ = θopt and brown dotted line for θ = 0), N = 5
(blue dashed line for θ = θopt and orange densely dashed line for
θ = 0), N = 15 (red dash–triple-dotted line for θ = θopt and yellow
dash-dotted line for θ = 0), and N = 25 (gray dash–double-dotted
line for θ = θopt and black densely dash–double-dotted line for θ =
0). The other parameter values are the same as those in Fig. 2.

discussed in [54], one can make the resonance frequency of
the collective atomic mode equal to the mechanical reso-
nance frequency ωm by tuning the magnetic field exerted on
the atomic ensemble. Moreover, by adjusting the cavity and
atomic driving rates, one can match the field-atom coupling G
to the field-mirror coupling g and also match the two decay
rates 
 and γm. However, in practice, matching the two latter
parameters is more involved and therefore it is relevant to
investigate if variational homodyne detection can be useful in
the absence of perfect matching of the coupling and decay
rates. First, we consider the zero-detuning case, i.e., �c = 0.
Here we still consider the optimum values for the squeez-
ing parameters obtained earlier under the CQNC conditions,

FIG. 6. Noise reduction advantage in decibel scale versus
(g/g0 )2, at the frequency ω = ωm + 4γm. Here we set the normal-
ized detuning y = 1

2 and consider different values for the squeezing
parameter: N = 0 (purple dotted line), N = 5 (blue dashed line),
N = 15 (red dash-dotted line), and N = 25 (black solid line). The
other parameter values are the same as those in Fig. 2.
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i.e., optimized pure squeezing with |M| = √
N (N + 1) and

φ = φopt (0) = 0. Minimizing the generalized spectral density
of the force noise given by Eq. (13) over the homodyne phase
angle θ yields

tan θopt = 4g2

κ
|χm(ω)|2Re

(
1 + (G2/g2)R(ω)

χm(ω)

)
(32)

for the optimum homodyne phase. By substituting Eq. (32) in
Eq. (13), one can obtain the optimized force noise spectrum
as

Smin
F,θopt

(ω) = kBT

h̄ωm
+ 


2γm

G2

g2
R(ω)

(
1 + ω2 + 
2/4

ω2
m

)

+ κ

g2γm|χm(ω)|2
(

N + 1

2
−

√
N (N + 1)

)

+ 4g2

κγm

∣∣∣∣∣1 + G2

g2
R(ω)

∣∣∣∣∣
2(

N + 1

2
+

√
N (N + 1)

)

− 4g2

κγm

[
Re

(
1 + (G2/g2)R(ω)

χm(ω)

)]2

× |χm(ω)|2
N + 1

2 + √
N (N + 1)

. (33)

Here the last term corresponds to the subtraction associated
with the choice of the optimal homodyne phase θopt. It is
proportional to the squared optomechanical coupling g2 and
therefore, in the situation considered here, it can be treated
as a backaction-like term. Here we also have to take into
account that stability conditions imply that the squeezing pa-
rameter N cannot be too small, that is, one has to impose
that N > Nmin, and, in fact, for N < Nmin, the total force noise
spectrum of Eq. (33) becomes negative. Therefore, force noise
reduction is maximum close to the stability threshold, close
N = Nmin, which generally depends upon G/g, 
/γm, and
also ω. For example, considering (G − g)/g = 10−3, (
 −
γm)/γm = 10−2, and ω = ωm + 4γm, the numerical solution
of the nonlinear algebraic equation SF,θopt (ω) = 0 for Nmin

leads to Nmin = 0.168 403. According to Eq. (33), in the
case of imperfect CQNC and the resonant cavity driving, the
noise reduction brought by the homodyne phase optimization
is

δSICQNC = − 4g2

κγm

[
Re

(
1 + (G/g)2R(ω)

χm(ω)

)]2

× |χm(ω)|2
N + 1/2 + √

N (N + 1)
, (34)

which can be rewritten in decibel scale.
Figure 7 explicitly shows the force noise reduction asso-

ciated with the optimization over the phase of the homodyne
detected quadrature: We have plotted the spectral density of
the force noise versus the frequency and compared the results
with the SQL of the force measurement and also with the case
of perfect CQNC. This figure shows that although the noise
spectrum under imperfect CQNC exceeds that under perfect
CQNC conditions, it still remains below the SQL in a broad

FIG. 7. Spectral density of the force noise versus ω/ωm, in
the case of the resonant cavity driving �c = 0, with an optimized
squeezed injected light with φ = φopt (0) = 0, |M| = √

N (N + 1),
and N = 0.2. We choose the mismatches between the MO and the
effective NMO parameters as (G − g)/g = 10−3 and (
 − γm )/γm =
−0.2 (blue dash-dotted line for θ = 0 and red dashed line for θ =
θopt). The green dotted line and black solid line correspond to the
perfect CQNC and SQL, respectively. The other parameter values
are the same as those in Fig. 2.

band around the resonance peak. Furthermore, it demonstrates
that for (G − g)/g = 10−3 and (
 − γm)/γm = −0.2, the
variational readout of the cavity output field obviously reduces
the force noise spectrum around the resonance frequency ω =
ωm. The impact of coupling and decay rate mismatches on
the noise reduction advantage is explicitly shown in Fig. 8.
This figure shows that the noise reduction advantage is more
sensitive to the coupling rate mismatch than to the decay rate
mismatch. For instance, when the coupling rate mismatch is
about 0.5% (G/g � 0.995), a 2.0% variation of the decay
rate mismatch (from 
/γm = 1.02 to 
/γm = 1.04) leads to
a nearly 4 dB change in the noise reduction advantage, while
a 2% variation of the coupling rate mismatch, at any decay rate

FIG. 8. Noise reduction advantage (in decibels), at off-resonance
frequency ω = ωm − 4γm versus the coupling mismatch G/g (hori-
zontal axis) and decay rate mismatch 
/γm (vertical axis). Here we
consider an optimized squeezed injected light with φ = φopt (0) = 0,
|M| = √

N (N + 1), and N = 0.126. In addition, we assume that the
cavity is driven at resonance �c = 0. The other parameters are the
same as those in Fig. 2.
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FIG. 9. Noise reduction advantage (in decibels) at off-resonance
frequency ω = ωm − 4γm versus the dissipation rate mismatch 
/γm

(vertical axis) and the squeezing parameter N (horizontal axis) in
the case of resonant cavity driving �c = 0. The coupling rate mis-
match is (G − g)/g = 0.02 and an optimized squeezed light with
φ = φopt (0) = 0 and |M| = √

N (N + 1) is considered. The other
parameter values are the same as those in Fig. 2.

mismatch, is equivalent to at least a 12 dB change in the noise
reduction advantage. Furthermore, this figure demonstrates
that when the coupling rates are perfectly matched (G = g),
the noise reduction advantage is negligible. This is due to the
fact that for G = g, by considering the system parameters as
in Fig. 7, we can conclude that (see Appendix B)

δSICQNC ≈ − 4g2

κγm

(1 − 
/γm)2

N + 1/2 + √
N (N + 1)

, (35)

which is negligible for any values of 
/γm within the inter-
val considered in Fig. 8. Moreover, Fig. 9 shows how the
squeezing parameter N affects the noise reduction advantage.
This figure shows that δSICQNC increases as the squeezing
parameter N decreases, and eventually it reaches its maximum
value. This behavior is expected from Eq. (34), which shows
that δSICQNC is inversely proportional to N . As it is clear from
Fig. 9, in a large parameter range the noise reduction advan-
tage is less than 16 dB, while, as shown in the inset, in a very
tiny region close to the instability threshold, with 0.1250 �
N � 0.1256 and 0.0387 � (
 − γm)/γm � 0.0392, the ad-
vantage brought by the optimization over the homodyne phase
in reducing the backaction noise can be improved up to 40 dB.
As we have already remarked, according to Eq. (34), the noise
reduction advantage improves as the cavity driving power
increases. This behavior is illustrated in Fig. 10, which com-
pares the force noise spectrum at the optimal homodyne phase
(θ = θopt) with that for the standard CQNC (θ = 0) studied in
Ref. [54]. In the case of perfect coupling rate matching G = g,
choosing the optimal phase quadrature provides no advantage
in reducing the force noise spectrum compared to the standard
detection with θ = 0. In contrast, in the absence of perfect
matching of the coupling rates, Fig. 10 shows the advantage
of variational homodyne readout in reducing the backaction
noise. This result is confirmed in Fig. 11, in which the noise
reduction advantage is plotted versus the cavity driving power.
Analogous to Fig. 10, this figure shows that the noise reduc-
tion advantage increases as the cavity driving power grows.

FIG. 10. Force noise spectrum versus (g/g0 )2 at off-resonance
frequency ω = ωm + 4γm in the case of resonant cavity driving
�c = 0. An optimized squeezed injected light with φ = φopt (0) =
0, |M| = √

N (N + 1), and N = 0.1245 is considered. Different
curves correspond to G = g and (
 − γm )/γm = 0.1 (green solid
line for θ = θopt and brown dotted line for θ = 0), (G − g)/g =
0.01 and (
 − γm )/γm = 0.1 (blue dashed line for θ = θopt and or-
ange densely dashed line for θ = 0), (G − g)/g = −(
 − γm )/γm =
0.1 (red dash–double-dotted line for θ = θopt and yellow densely
dash–double-dotted line for θ = 0), and (G − g)/g = 0.2 and (
 −
γm )/γm = −0.1 (purple dash-dotted line for θ = θopt and black dash–
triple-dotted line for θ = 0). The other parameter values are the same
as those in Fig. 2.

For instance, in the case of (G − g)/g = (
 − γm)/γm = 0.1,
homodyne CQNC leads to the reduction of the force noise up
to 35 dB over the standard CQNC in Ref. [54] at sufficiently
high driving powers.

FIG. 11. Noise reduction advantage (in decibels) versus (g/g0)2

at off-resonance frequency ω = ωm + 4γm in the case of resonant
cavity driving �c = 0. An optimized squeezed injected light with
φ = φopt (0) = 0, |M| = √

N (N + 1), and N = 0.1245 is considered
here. Different curves correspond to G = g and (
 − γm )/γm = 0.1
(green dotted line), (G − g)/g = 0.01 and (
 − γm )/γm = 0.1 (blue
dashed line), (G − g)/g = 0.05 and 
 = γm (red densely dashed
line), (G − g)/g = 0.1 and 
 = γm (purple solid line), (G − g)/g =
(
 − γm )/γm = 0.1 (orange dash-dotted line), and (G − g)/g = 0.2
and (
 − γm )/γm = −0.1 (black dash–double-dotted line). The other
parameter values are the same as those in Fig. 2.
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FIG. 12. Spectral density of the force noise SF (ω) versus the
normalized frequency ω/ωm, in the case of the off-resonance cavity
driving with �c/κ = 1. An optimized squeezed injected light with
|M| = √

N (N + 1) and N = 1 is considered. Different curves corre-
spond to (G − g)/g = 10−5 and 
 = γm (blue dashed line for θ = 0
and red dotted line for θ = θopt); the black solid line corresponds to
the SQL. The other parameter values are the same as those in Fig. 2.

2. Off-resonant case (�c �= 0)

In this section we consider imperfect CQNC conditions
when the cavity is driven off-resonance (�c �= 0). We derived
the most general form of the force noise spectrum earlier in
Sec. IV A. Here we minimize the force noise spectrum SF,θ (ω)
given by Eq. (13) over the parameter θ and obtain

Smin
F,θopt

(ω) = SF,θ=0(ω) − K ′2

4L′ (36)

FIG. 13. Noise reduction advantage (in decibels) versus the cou-
pling rate mismatch (horizontal axis) and the parameter N (vertical
axis), at off-resonance frequency ω = ωm − 4γm and in the case of
off-resonant cavity driving with �c/κ = 1. An optimized squeezed
injected light with |M| = √

N (N + 1) is considered here. We also
assume that the decay rate mismatch is (
 − γm )/γm = 0.2. The
other parameter values are the same as those in Fig. 2.

for the minimized force noise spectrum, in which

tan θopt = − K ′/2L′

1 − y(K ′/L′)
(37)

is the optimum phase of the homodyne detection and

L′ = 2

g2κγm|χ ′
a(ω)|2|χm(ω)|2

[
μ+

(
N + 1

2

)
+ μ−ReM + 2y Im(M )

]
, (38a)

K ′ = 1

g2γm|χm(ω)|2
{

4�cRe

(
Z (ω)

χ ′
a(−ω)

)
ReM + Im

[
(2i ImM + 1)

(
4y2

χ ′
a(ω)

− 1

κ|χ ′
a(ω)|2 + 1 − κZ (−ω)

χ ′
a(−ω)

)]}

− 2

κγm

[
2 Re

(
1 + (G/g)2R(ω)

χm(ω)χ ′
a(ω)

)(
N + 1

2
+ ReM

)
+ 2y Im

(
(2i ImM + 1)

1 + (G/g)2R(ω)

χm(ω)χ ′
a(ω)

)]
. (38b)

Similar to the previous cases, the advantage of our op-
timized CQNC scheme in reducing the force noise over
the standard CQNC is determined by the noise reduction
advantage

δSICQNC = −K ′2

4L′ , (39)

which implies that our scheme is advantageous as long as
L′ is positive. In Fig. 12 we compare the force noise spec-
trum in our scheme with that considered in [54] and with
the SQL of the force measurement. According to this figure,
we see that the variational homodyne CQNC with optimized
quadrature phase mitigates the effect of imperfect matching
conditions. Our numerical calculations demonstrate that the
noise reduction advantage is more sensitive to the coupling
rate mismatch rather than to the decay rate mismatch such that

for y = 1 and the optimum parameters for squeezed injected
light such as φ = φopt (1) and |M| = √

N (N + 1), with N =
10, the noise reduction advantage is suddenly increased by
16 dB as the coupling rate mismatch grows. Figure 13 shows
that noise reduction is amplified as N increases, such that for
(
 − γm)/γm = 0.2 and (G − g)/g > 0.015 the noise reduc-
tion advantage can be increased by 15 dB for 10 < N < 25.
We also investigate how the cavity driving power affects the
noise reduction advantage in Figs. 14 and 15, which demon-
strate the variation of the force noise spectrum and the noise
reduction advantage versus the cavity driving power, respec-
tively. According to Fig. 15, although the noise reduction
remains nearly constant in a wide range of driving powers,
i.e., (g/g0)2 < 105, it decreases as the driving power grows
and eventually vanishes at a specific driving power which is
determined by solving the equation K ′ = 0 [Eq. (38b)] for
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FIG. 14. Force noise spectrum versus (g/g0)2 at off-resonance
frequency ω = ωm − 4γm and in the case of off-resonant cavity driv-
ing �c/κ = 1. An optimized squeezed vacuum injected light with
φ = φopt (1), |M| = √

N (N + 1), and N = 20 is considered. Differ-
ent curves correspond to (G − g)/g = 0.05 and (
 − γm )/γm = 0.1
(green solid line for θ = θopt and brown dotted line for θ = 0),
(G − g)/g = 0.1 and (
 − γm )/γm = 0.15 (blue dashed line for θ =
θopt and orange dash-dotted line for θ = 0), (G − g)/g = 0.15 and
(
 − γm )/γm = 0.2 (purple dash–double-dotted line for θ = θopt and
red dash–triple-dotted line for θ = 0). The other parameter values
are the same as those in Fig. 2.

(g/g0)2. For example, when the cavity detuning is �c/κ = 1
and the coupling rate and the decay rate mismatches are (G −
g)/g = 0.1 and (
 − γm)/γm = 0.2, respectively, the homo-
dyne CQNC with an optimized phase angle θopt shows a 18 dB
advantage in reduction of the force noise over the standard
CQNC.

FIG. 15. Noise reduction advantage (in decibels) versus (g/g0)2

at off-resonance frequency ω = ωm − 4γm and in the case of off-
resonant cavity driving with �c/κ = 1. An optimized squeezed
vacuum injected light with φ = φopt (1), |M| = √

N (N + 1), and
N = 20 is considered. Different curves correspond to (G − g)/g =
+0.05 and (
 − γm )/γm = +0.1 (purple solid line), (G − g)/g =
−0.05 and (
 − γm )/γm = −0.1 (red dotted line), (G − g)/g =
+0.1 and (
 − γm )/γm = +0.2 (blue dash-dotted line), (G − g)/g =
−0.1 and (
 − γm )/γm = −0.2 (green dashed line), and (G −
g)/g = +0.2 and (
 − γm )/γm = +0.3 (orange dash-double-dotted
line). The other parameter values are the same as those in Fig. 2.

V. SENSITIVITY, SNR, AND SIGNAL-RESPONSE
AMPLIFICATION

In this section it is worthwhile to clarify the advantage of
the variational homodyne readout CQNC over the standard
CQNC in sensitivity, SNR, and signal-response amplification.
We follow the approach introduced in Refs. [47,53] to obtain
these quantities. Based on Eq. (10), there are two contributions
to the estimated external force obtained from the experimental
signal: The first is the external classical force exerted on the
MO, i.e., Fext, and the second one is the added force noise
F̂N,θ , given by Eq. (11), which yields the spectral density of
the added force noise SF,θ (ω) obtained in Eq. (13). The SNR
is defined as the ratio of the signal to the variance of the noise,
i.e., the square root of the SF,θ (ω) [42], as

SNR ≡ |Fext (ω)|√
SF,θ (ω)

. (40)

The sensitivity of a force sensor S(ω) is defined as the mini-
mum magnitude of the force signal Fext(ω) for which the SNR
of the force measurement becomes one, i.e., SNR = 1. From
Eq. (40), the sensitivity of the force sensor considered here is
given by

S(ω) = √
SF,θ (ω). (41)

Let us now examine the advantage of the present scheme in
which we optimize the phase of the detected quadrature com-
pared to the standard CQNC studied in Ref. [54], in improving
the force measurement sensitivity. We compare the results at a
given frequency, in this case at ω = ωm − 0.2Qmγm = 0.8ωm.
As mentioned in Sec. IV, under perfect CQNC conditions
and at resonant cavity driving, the noise reduction advantage
vanishes and therefore there is no sensitivity improvement.
However, for nonzero cavity detuning, e.g., �c/κ = 1

2 , and
the squeezing parameter N = 10 (and still perfect CQNC),
the force sensitivity with the optimized phase angle θ =
θopt is 1.759 × 10−19 N Hz−1/2, while for θ = 0, i.e., stan-
dard CQNC, it is 6.194 × 10−19 N Hz−1/2, i.e., an almost
71.60% improvement. In the case of imperfect CQNC con-
ditions, such that (G − g)/g = 0.01 and (
 − γm)/γm = 0.1,
when �c = 0 and the squeezing parameter is N = 0.125,
the force sensitivity for θ = θopt is 6.126 × 10−17 N Hz−1/2,
while for θ = 0 it is 6.514 × 10−17 N Hz−1/2, which is about
a 5.95% improvement in sensitivity. It should be noted
that the squeezing parameter N = 0.125 considered in this
case corresponds just to the stability threshold value Nmin

for which the noise reduction advantage is maximum (see
Fig. 9). Moreover, for the case in which the imperfect CQNC
holds such that (G − g)/g = 0.01 and (
 − γm)/γm = 0.1,
when the cavity detuning is �c = κ and the squeezing pa-
rameter is N = 25, the force sensing sensitivity is 3.494 ×
10−16 N Hz−1/2 by considering θ = θopt, while for θ = 0 it
is 3.804 × 10−16 N Hz−1/2, which is equivalent to an 8.13%
enhancement.

We now investigate the effect of the variational homodyne
detection scheme on the signal-response amplification. From
Eq. (10) one can rewrite the cavity homodyne-output spec-
trum as

Sout
Pa,θ

(ω) = Rc(ω, θ )SF,θ (ω), (42)
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in which

Rc(ω, θ ) ≡ g2κγm|χ ′
a(ω)|2|χm(ω)|2[uθ ]2 (43)

is the signal-response power. The homodyne-output signal
can be amplified only if Rc(ω, θ ) > 1 (signal amplification
condition) [53]. We are interested in examining the output sig-
nal amplification in regimes where the force noise reduction
occurs simultaneously. In particular, we want to investigate
whether the homodyne detection with an optimized phase
angle is able to simultaneously reduce the force noise and
amplify the output signal, compared to the standard case with
θ = 0. Note that the signal-response power for this latter case
is obtained by setting θ = 0 in Eq. (43). Since uθ=0 = 1, we
conclude that in the standard case of phase detection we have
Rst

c (ω) = g2κγm|χ ′
a(ω)|2|χm(ω)|2. It is worth defining a pa-

rameter to describe the advantage of the variational detection
scheme over the standard one in amplification of the output
signal as

R ≡ Rc(ω, θ )

Rst
c .(ω)

= [uθ ]2, (44)

which we call the signal improvement. It is obvious that
R > 1 (signal improvement condition) denotes the regime
where the variational homodyne detection scheme provides
an improved signal, R = 1 corresponds to the regime in which
variational homodyne detection and phase detection schemes
are equivalent in terms of the output signal power, and in
the regime where R < 1 the variational homodyne detection
scheme attenuates the signal. As described in Sec. IV, the
noise reduction advantage occurs at θ = θopt. Therefore, the
variational homodyne CQNC scheme simultaneously shows a
noise reduction advantage and provides an improved signal if
and only if R|θopt = [uθopt ]

2 > 1.
Figure 16 shows the signal-response power Rc(ω, θ ) ver-

sus frequency ω/ωm. We recall that under perfect CQNC
conditions and zero detuning (�c = 0), the optimized quadra-
ture for which the force noise spectrum is minimized is the
phase quadrature, i.e., θopt = 0. Consequently, the variational
homodyne detection scheme shows no advantage over the
standard CQNC at all frequencies in terms of the signal-
response power, i.e., Rc(ω, θopt ) = Rst

c (ω). We can conclude
that under the perfect CQNC conditions and resonant cavity
driving, the variational homodyne CQNC scheme does not
provide an improved signal, i.e., R = 1. In this case, both
variational homodyne detection and phase detection schemes
show signal amplification in a narrow band around the reso-
nance frequency ω = ωm [see Fig. 16(a), blue solid and green
dash-dotted lines]. In this case, the amplification bandwidth is
Bon

CQNC = 4.86 × 103γm.
When the perfect CQNC conditions hold and the cavity is

driven off-resonantly with �c = κ , the variational homodyne
CQNC strategy provides an improved signal at all frequen-
cies so that R � 3.638. Although signal improvement, i.e.,
R > 1, occurs at all frequencies, signal amplification, i.e.,
Rc(ω, θ ) > 1, is only observed in a narrow band around the
mechanical resonance frequency ω � ωm [see Fig. 16(a), red
dashed and black dotted lines]. The amplification bandwidth
BCQNC for the variational homodyne CQNC scheme with the
optimized phase θopt is Bhom,off

CQNC = 1.45 × 104γm, while for the

FIG. 16. Power of signal response versus ω/ωm under the
(a) perfect and (b) imperfect CQNC conditions. Different curves in
(a) correspond to �c = κ (red dashed line for θ = θopt and black dot-
ted line for θ = 0) and �c = 0 (blue solid line for θ = θopt and green
dash-dotted line for θ = 0). In (b) we consider (G − g)/g = 10−4 and
(
 − γm )/γm = 0.01 for coupling rate and decay rate mismatches.
Different curves in (b) refer to �c = 0 (blue solid line for θ = θopt

and green dash-dotted line for θ = 0) and �c = κ (red dashed line
for θ = θopt and black dotted line for θ = 0). In both cases we
consider an optimized vacuum injected light with φ = φopt(y), |M| =√

N (N + 1), and N = 10. The other parameter values are the same
as those in Fig. 2.

standard phase detection scheme with θ = 0 it is Bst,off
CQNC =

7.64 × 103γm. Interestingly, over a region with the bandwidth
of BCQNC around the mechanical resonance frequency ωm,
our optimization strategy shows simultaneous noise reduction
advantage and signal amplification.

Under imperfect CQNC conditions, the situation is a lit-
tle more complicated. We consider (G − g)/g = 10−4 and
(
 − γm)/γm = 0.01 for the coupling rate and decay rate
mismatch, respectively. First, in the case of on-resonance
cavity driving (�c = 0), Fig. 16(b) illustrates that the
variational homodyne detection scheme shows signal am-
plification, i.e., Rc(ω, θopt.) > 1, in an extremely narrow
bandwidth of Bhom,on

ICQNC = 1.51 × 103γm around the resonance
frequency ωm (blue solid line), while in this case the
amplification bandwidth for the standard phase detection
scheme is Bst,on

ICQNC = 4.74 × 103γm (green dash-dotted line).
Figure 17 shows the signal improvement for the case of
imperfect CQNC conditions with (G − g)/g = 10−5 and
(
 − γm)/γm = 0.1. According to this figure, when the
cavity is driven on-resonance (dashed green line), the vari-
ational homodyne detection scheme neither improves nor
weakens the cavity signal at all frequencies (R = 1), ex-
cept in a bandwidth of 1.78 × 104γm around the resonance
frequency ωm. Within this narrow frequency band, the
variational homodyne detection scheme provides a weaker
signal compared to the phase detection scheme, i.e., R <

1. As a result, in the case of imperfect CQNC con-
ditions and on-resonance cavity driving, the variational
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FIG. 17. Signal amplification advantage versus ω/ωm, consid-
ering the imperfect CQNC conditions with (G − g)/g = 10−4 and
(
 − γm )/γm = 0.1. Different curves correspond to �c = 0 (green
dashed line) and �c = κ (blue solid line). The other parameter values
are the same as those in Fig. 16.

homodyne detection scheme proposed here shows no advan-
tage over the standard phase detection scheme considered in
[54] in terms of signal amplification and improvement.

In the case of imperfect CQNC conditions and off-
resonance cavity driving with �c = κ , Fig. 16(b) demon-
strates that in the variational homodyne detection with θ =
θopt, signal amplification, i.e., Rc(ω, θopt ) > 1, does not oc-
cur at all, except in an extremely narrow band around ω =
ωm − 21.8γm with a bandwidth of Bhom,off

ICQNC = 13.8γm. One
should zoom in to be able to observe this miniature amplifi-
cation. In contrast, the standard phase detection scheme leads
to signal amplification, i.e., Rst

c (ω) > 1, within a bandwidth
of Bst,off

ICQNC = 7.61 × 103γm around the mechanical resonance
frequency ωm. On the other hand, Fig. 17 illustrates that
our variational homodyne detection scheme provides an im-
proved signal, i.e., R > 1, over the standard phase detection
scheme at all frequencies, except in an asymmetrical fre-
quency band with the bandwidth of �ωR<1 = 1.30 × 104γm

around the mechanical resonance frequency ωm (blue solid
line). Furthermore, according to this figure, we observe a
peak in signal improvement at ω = 1.0014ωm with R = 5,
while in other frequencies (except in �ωR<1) the signal im-
provement is approximately 3.18. We conclude that in the
case of imperfect CQNC conditions and off-resonant cavity
driving, the proposed strategy of variational homodyne detec-
tion scheme provides an improved signal at all frequencies
(except in �ωR<1) versus the standard phase detection scheme
considered in [54]. However, we showed that the variational
homodyne detection strategy shows no signal amplification,
while the standard phase detection scheme results in signal
amplification over a region with the bandwidth of Bst,off

ICQNC
(which is smaller than �ωR<1) around ωm.

VI. SUMMARY, DISCUSSION, AND OUTLOOK

In this paper we have studied the effect of the optimization
of the local phase oscillator in the homodyne detection on
the reduction of the backaction noise in force sensing based

on CQNC in a hybrid OMS consisting of an optomechanical
cavity equipped with an atomic ensemble as a NMO. We have
shown that when the parameters of the atomic ensemble are
chosen appropriately, it behaves effectively as a NMO, whose
interaction with the intracavity field creates an antinoise path
to the system dynamics, which allows the cancellation of the
backaction noise of the MO [53,54]. We have also inves-
tigated the advantage of the proposed detection strategy in
enhancing force sensing sensitivity and amplification of the
signal-response power.

Under CQNC conditions, that is, the perfect matching of
atomic and mechanical parameters, the backaction noise of the
atomic ensemble cancels perfectly the mechanical one. More-
over, the cavity field shot noise can be suppressed by injecting
a squeezed vacuum light into the cavity field. Under these
circumstances, force detection is limited only by atomic noise,
which is the price to pay for the realization of this scheme.
In this work we demonstrated that a variational homodyne
measurement of the cavity output field where the phase of
the local oscillator is optimized allows further reduction of
the force noise and improves the force detector sensitivity. We
focused on two different situations, cases when perfect CQNC
conditions hold and when they do not.

When perfect CQNC conditions hold and the cavity field
is driven on-resonance (�c = 0), no advantage is obtained in
terms of noise reduction and signal improvement compared
to the standard case where the phase quadrature is measured.
On the other hand, in the off-resonance case (�c �= 0), one
has a remarkable reduction of the force noise in a broad band
around the mechanical resonance frequency ωm up to 40 dB
(see Fig. 4) and at the same time an improvement of the
signal-response power by a factor of R = 3.638 occurs. In
addition, the noise reduction increases with increasing squeez-
ing parameter N and with decreasing driving field strength.
Furthermore, in this case (perfect CQNC conditions and off-
resonant cavity driving), the variational homodyne CQNC
scheme broadens the frequency bandwidth over which the
signal amplification occurs, i.e., Rc(ω, θopt ) > 0.

Then we demonstrated that under the imperfect CQNC
conditions, when the cavity is resonantly driven (�c = 0), the
optimized homodyne measurement of the proper cavity output
field quadrature reduces the force noise in a wide frequency
range around the mechanical resonance frequency ωm. In this
case, the noise reduction is more sensitive to the coupling
rate mismatch rather than the decay rate mismatch. We also
showed that noise reduction due to the optimized homodyne
measurement is remarkable at large cavity driving powers so
that it can be increased up to 35 dB. On the other hand, we
have demonstrated that in this case the variational homodyne
strategy reduces the signal amplification bandwidth compared
to the standard phase detection scheme. In terms of signal
improvement, homodyne detection with an optimized phase
angle θopt does not provide an improved signal compared to
the standard phase detection scheme, in the case of imperfect
CQNC conditions and on-resonance driving. In particular, in
this case, we showed that signal improvement is R = 1 at all
frequencies, except in the narrow bandwidth around ωm within
which R < 1. Consequently, under these conditions, the varia-
tional homodyne CQNC shows simultaneous noise reduction
and signal amplification within the frequency bandwidth of
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Bhom,on
ICQNC around ωm, but does not provide an improved signal

compared to the standard phase detection scheme.
In the case when the perfect CQNC conditions breaks and

the cavity is driven off-resonantly (�c �= 0), noise reduction is
again more sensitive to the coupling rate mismatch than to the
decay rate mismatch and we have found that noise reduction is
enhanced as the parameter N increases, such that for large val-
ues of N , it can reach 24 dB (see Fig. 13). We have also shown
that in the case of nonzero detuning, the variational homodyne
CQNC scheme shows almost no signal amplification, but pro-
vides an improved signal at all frequencies, except in �ωR<1

around ωm in which the output signal is weakened. In contrast,
the phase detection scheme shows signal amplification within
the bandwidth of Bst,off

ICQNC around ωm. Consequently, under the
imperfect CQNC conditions and off-resonant cavity driving,
the variational homodyne detection strategy simultaneously
reduces the force noise and provides an improved signal at all
frequencies (except in �ωR<1) while it does not show signal
amplification.

We have also demonstrated that the optimized homodyne
detection improves the force sensing sensitivity compared to
the standard phase detection scheme. The maximum value
of sensitivity improvement is 71.60%, obtained for the case
of perfect CQNC conditions and off-resonant cavity driving,
while the sensitivity improvement for imperfect CQNC con-
ditions reduces to less that 10%.

As an outlook, the proposed CQNC assisted by the varia-
tional readout can be extended to other optomechanical-like

platforms to enhance the performance of the measurement,
for example, in a levitated optomechanical-based sensor [42],
an ultracoherent optomechanical sensor [58], multimode op-
tomechanical arrays [49–51,51], a hybrid system [60], and
the ultrasensitive optomechanical gyroscope proposed in [61]
which is based on the CQNC method in dual cavity.
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APPENDIX A: SPECTRAL DENSITY
OF ADDED FORCE NOISE

Using Eq. (11), the power spectral density of the force
noise is written as

〈F̂N,θ (ω)F̂N,θ (−ω′)〉 = Sth(ω,ω′) + S f (ω,ω′) + Sat (ω,ω′) + Sb(ω,ω′) + Sh(ω,ω′) + S f b(ω,ω′) + S f h(ω,ω′) + Sbh(ω,ω′),
(A1)

where

Sth(ω,ω′) = 〈 f̂ (ω) f̂ (−ω′)〉 , (A2)

S f (ω,ω′) = κ

g2ωmχm(ω)χm(−ω′)

[(
1 − 1

κχ ′
a(ω)

)(
1 − 1

κχ ′
a(−ω′)

) 〈
P̂in

a (ω)P̂in
a (−ω′)

〉 − �cχa(−ω′)

×
(

1 − κ

κχ ′
a(ω)

) 〈
P̂in

a (ω)X̂ in
a (−ω′)

〉 − �cχa(ω)

(
1 − 1

κχ ′
a(−ω′)

) 〈
X̂ in

a (ω)P̂in
a (−ω′)

〉 + �2
cχa(ω)

× χa(−ω′)
〈
X̂ in

a (ω)X̂ in
a (−ω′)

〉 ]
, (A3)

Sat (ω,ω′) = G2
χd (ω)χd (−ω′)
g2γmχm(ω)χm(−ω′)

( 〈
P̂in

d (ω)P̂in
d (−ω′)

〉 − 
/2 − iω′

ωm

〈
P̂in

d (ω)X̂ in
d (−ω′)

〉 − 
/2 + iω

ωm

〈
X̂ in

d (ω)P̂in
d (−ω′)

〉

+ (
/2 + iω)(
/2 − iω′)
ω2

m

〈
X̂ in

a (ω)X̂ in
a (−ω′)

〉 )
, (A4)

Sb(ω,ω′) = κ

g2γm

g2χm(ω) + G2χd (ω)

χm(ω)

g2χm(−ω′) + G2χd (−ω′)
χm(−ω′)

〈
X̂ in

a (ω)X̂ in
a (−ω′)

〉
, (A5)

Sh(ω,ω′) = B2

g2κχm(ω)χm(−ω′)χ ′
a(ω)χ ′

a(−ω′)
{
�2

cχa(ω)χa(−ω′)
〈
P̂in

a (ω)P̂in
a (−ω′)

〉 + �cχa(ω)[κχa(−ω′) − 1]

× 〈
P̂in

a (ω)X̂ in
a (−ω′)

〉 + �cχa(−ω′)[κχa(ω) − 1]
〈
X̂ in

a (ω)P̂in
a (−ω′)

〉 + [κχa(ω) − 1][κχa(−ω′) − 1]

× 〈
X̂ in

a (ω)X̂ in
a (−ω′)

〉 }
, (A6)
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S f h(ω,ω′) = − B
g2γmχm(ω)χm(−ω′)χ ′

a(−ω′)

[
�cχa(−ω′)

(
1 − 1

κχ ′
a(ω)

) 〈
P̂in

a (ω)P̂in
a (−ω′)

〉 + [κχa(−ω′) − 1]

×
(

1 − 1

κχ ′
a(ω)

) 〈
P̂in

a (ω)X̂ in
a (−ω′)

〉 − �2
cχa(ω)χa(−ω′)

〈
X̂ in

a (ω)P̂in
a (−ω′)

〉

− �cχa(ω)[κχa(−ω′) − 1]
〈
X̂ in

a (ω)X̂ in
a (−ω′)

〉 ] − B
g2γmχm(ω)χm(−ω′)χ ′

a(ω)

×
[
�cχa(ω)

(
1 − 1

κχ ′
a(−ω′)

) 〈
P̂in

a (ω)P̂in
a (−ω′)

〉 − �2
cχa(ω)χa(−ω′)

〈
P̂in

a (ω)X̂ in
a (−ω′)

〉

+ [κχa(ω) − 1]

(
1 − 1

κχ ′
a(−ω′)

) 〈
X̂ in

a (ω)P̂in
a (−ω′)

〉 − �cχa(−ω′)[κχa(ω) − 1]
〈
X̂ in

a (ω)X̂ in
a (−ω′)

〉 ]
, (A7)

S f b(ω,ω′) = κ

g2γm

g2χm(−ω′) + G2χd (−ω′)
χm(ω)χm(−ω′)

χa(−ω′)

[(
1 − 1

κχ ′
a(ω)

) 〈
P̂in

a (ω)X̂ in
a (−ω′)

〉 − �cχa(ω)
〈
X̂ in

a (ω)X̂ in
a (−ω′)

〉 ]

+ κ

g2γm

g2χm(ω) + G2χd (ω)

χm(ω)χm(−ω′)
χa(ω)

[(
1 − 1

κχ ′
a(−ω′)

) 〈
X̂ in

a (ω)P̂in
a (−ω′)

〉 − �cχa(−ω′)
〈
X̂ in

a (ω)X̂ in
a (−ω′)

〉 ]
,

(A8)

Sbh(ω,ω′) = − B
g2γm

g2χm(ω) + G2χd (ω)

χm(ω)χm(−ω′)χ ′
a(−ω′)

χa(ω)
{
�cχa(−ω′)

〈
X̂ in

a (ω)P̂in
a (−ω′)

〉 + [κχa(−ω′) − 1]
〈
X̂ in

a (ω)P̂in
a (−ω′)

〉 }

− B
g2γm

g2χm(−ω′) + G2χd (−ω′)
χm(ω)χm(−ω′)χ ′

a(ω)
χa(−ω′)

{
�cχa(ω)

〈
P̂in

a (ω)X̂ in
a (−ω′)

〉 + [κχa(ω) − 1]
〈
X̂ in

a (ω)X̂ in
a (−ω′)

〉 }
.

(A9)

The correlation functions appearing in Eqs. (A2)–(A9) in the
Fourier space are given by

〈
f̂ (ω) f̂ (−ω′)

〉 = (
n̄m + 1

2

)
δ(ω − ω′) � kBT

h̄ωm
δ(ω − ω′),

(A10a)〈
X̂ in

a (ω)X̂ in
a (−ω′)

〉 = (
N + 1

2 + ReM
)
δ(ω − ω′), (A10b)〈

P̂in
a (ω)P̂in

a (−ω′)
〉 = (

N + 1
2 − ReM

)
δ(ω − ω′), (A10c)〈

X̂ in
a (ω)P̂in

a (−ω′)
〉 = i

2
(1 − 2i ImM )δ(ω − ω′), (A10d)

〈
P̂in

a (ω)X̂ in
a (−ω′)

〉 = − i

2
(1 + 2i ImM )δ(ω − ω′), (A10e)〈

X̂ in
d (ω)X̂ in

d (−ω′)
〉 = 〈

P̂in
d (ω)P̂in

d (−ω′)
〉 = 1

2δ(ω − ω′),

(A10f)〈
P̂in

d (ω)X̂ in
d (−ω′)

〉 = − 〈
X̂ in

d (ω)P̂in
d (−ω′)

〉 = i

2
δ(ω − ω′).

(A10g)

Using these expressions, one finally gets the generalized
spectral density of added force noise, Eq. (13).

APPENDIX B: ESTIMATION OF NOISE REDUCTION IN
THE CASE OF IMPERFECT CQNC AND G = g

According to Eq. (34), the amount of noise reduction �S
due to homodyne detection with optimum phase angle θopt is

proportional to[
Re

(
1 + (G/g)2R(ω)

χm(ω)

)]2

|χm(ω)|2. (B1)

In the Markovian limit κ � ωm, we keep only the zeroth order
of ω/κ and we therefore have

Re

(
1 + (G/g)2R(ω)

χm(ω)

)
�ωm

(
1 − ω2

ω2
m

)2(
1 + G2

g2
Rr

)

+ ωγm

ωm

G2

g2
Ri, (B2)

where

Rr = −1 − ω2
(γm − 
)(
ω2

m − ω2
)2 + ω2
2

, (B3a)

Ri = ω(γm − 
)
(
ω2

m − ω2
)

(
ω2

m − ω2
)2 + ω2
2

. (B3b)

By considering the same parameters as those used in Fig. 8,
we conclude that[
Re

(
1 + (G/g)2R(ω)

χm(ω)

)]2

|χm(ω)|2
∣∣∣∣∣
ω=ωm+4γm

�
(

1 − 


γm

)2

.

(B4)
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FIG. 18. Optical susceptibility χa(ω) versus the scaled frequency
ω/κ . Different curves correspond to Re[χa(ω)] (red solid line),
Im[χa(ω)] (blue dashed line), and χa(ω) ∼ 2/κ (black dash-dotted
line).

This result shows that in the case of imperfect CQNC and G =
g, the amount of noise reduction is

�S|ω=ωm+4γm ∝
(

1 − 


γm

)2

. (B5)

APPENDIX C: ESTIMATION OF OPTICAL
SUSCEPTIBILITY χa(ω)

According to Eq. (8a), the optical susceptibility χa(ω) can
be written as

χa(ω) = Re[χa(ω)] + i Im[χa(ω)], (C1)

with

Re[χa(ω)] = κ/2

κ2/4 + ω2
, (C2)

Im[χa(ω)] = − ω

κ2/4 + ω2
. (C3)

From these equations one can see that by decreasing the ratio
ω/κ , the imaginary part of χa(ω) decreases. In Fig. 18 we
illustrate the optical susceptibility versus the scaled frequency
ω/κ . This figure shows that if the ratio ω/κ is less than
0.070, approximating the optical susceptibility as χa ∼ 2/κ

introduces lower than 1% error in the value of |χa(ω)|, while
for ω/κ = 0.03 the error is 0.1%. Throughout the paper, we
choose the frequency ω of the order of the mechanical res-
onance frequency ωm and we choose the parameters so that
ωm/κ = 0.03 to satisfy the resolved sideband regime. As a
result, approximating the optical susceptibility as χa(ω) ∼
2/κ does not introduce a substantial error to the calculations.
However, for ωm/κ = 0.3 it causes 17% error.

In the case of perfect CQNC conditions and off-resonant
cavity driving, the noise reduction advantage given by Eq. (30)
is proportional to (ωm/κ )−1 and therefore the smaller the
value of ωm/κ , the greater the noise reduction advantage.

In the case of imperfect CQNC conditions, a completely
different behavior is obtained. Based on Eq. (34), when the
imperfect CQNC conditions hold and the cavity is driven
resonantly, the noise reduction advantage is proportional to

ωm/κ . Therefore, lowering the ratio ωm/κ leads to the noise
reduction advantage which shows the advantage of the vari-
ational homodyne detection over the phase detection scheme
versus the frequency. This means that the advantage of the
variational homodyne detection disappears for small values of
ωm/κ , i.e., the strong resolved-sideband regime.

APPENDIX D: ESTIMATION OF SQUEEZING
PARAMETER N

The quantum description of the electromagnetic field
predicts a class of states for which the variances in the
field quadrature operators X̂1 = (â† + â)/

√
2 and X̂2 = (â† −

â)/i
√

2, with â (â†) the annihilation (creation) operator of the
light field, are limited by

σX1σX2 = 1
4 , (D1)

in which σXi =
√

〈X̂ 2
i 〉 − 〈X̂i〉2, with i = 1, 2. Coherent light,

for which the variances of the two quadratures are equal, be-
longs to this class. Reducing the uncertainty in one quadrature
below this state refers to squeezing. Equation (D1) dictates
that squeezing of one quadrature must increase the uncertainty
in the orthogonal quadrature, an effect known as antisqueez-
ing. A detailed description of quantum squeezing can be found
in standard textbooks of quantum optics [62]. In the following,
we introduce a brief review on such states.

Theoretically, the squeezed state of light is obtained by
operating the squeezing operator on the vacuum state of light.
The squeezing operator is defined by

Ŝ = exp
[

1
2ξ ∗â2 − 1

2ξ (â†)2
]
, (D2)

where ξ = rei�, with r and � the squeezing strength and
phase, respectively. It is straightforward to show that the
variances of the squeezed state of light are given by σ 2

X1
=

e−2r/4 and σ 2
X2

= e2r/4. It is obvious that the squeezing is
characterized by e−2r . Consequently, it is useful to define an
experimental quantity as the squeezing level, which is defined
as V− = e−2r [63]. As mentioned in [54], one can represent the
squeezing parameter N in terms of the squeezing strength r as
N = sinh2(r). Combining these expressions, one can rewrite
the squeezing parameter in terms of the squeezing level as

N = 1
4 (V −1/2

− − V 1/2
− )2. (D3)

Experimental realization of squeezed states is based on the
nonlinear optical phenomena [62]. The most efficient method
of squeezed state generation utilizes a subthreshold optical
parametric oscillator (OPO), in which a nonlinear crystal, for
example, β barium borate (BBO), periodically poledlithium
niobate (PPLN), or periodically poled titanyl phosphate
(PPKTP) (for more details see Refs. [64–69] and references
therein), is used as a nonlinear medium in the OPO. By uti-
lizing the PPKTP crystal, Takeno et al. obtained a squeezing
level of −9 dB [70], which is equivalent to the squeezing
parameter of N = 3.0349, while Dwyer et al. demonstrated
a squeezing level of approximately 20 dB [71], which is
equivalent to the squeezing parameter of N � 24.37 and the
highest squeezing level reported to date. That is why we have
considered Nmax = 25 in the present paper.

023107-16



HOMODYNE COHERENT QUANTUM NOISE CANCELLATION … PHYSICAL REVIEW A 106, 023107 (2022)

[1] K. Stannigel, P. Komar, S. J. M. Habraken, S. D. Bennett, M. D.
Lukin, P. Zoller, and P. Rabl, Phys. Rev. Lett. 109, 013603
(2012).

[2] K. Stannigel, P. Rabl, A. S. Sørensen, M. D. Lukin, and P.
Zoller, Phys. Rev. A 84, 042341 (2011).

[3] K. Stannigel, P. Rabl, A. S. Sørensen, P. Zoller, and M. D.
Lukin, Phys. Rev. Lett. 105, 220501 (2010).

[4] B. Rogers, N. Lo Gullo, G. De Chiara, G. M. Palma, and M.
Paternostro, Quantum Meas. Quantum Metrol. 2, 11 (2014).

[5] E. A. Sete and H. Eleuch, Phys. Rev. A 91, 032309 (2015).
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