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Nonlinear scaling in photon momentum transfer caused by two-electron effects
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The photon momentum transfer in the two-photon double ionization of helium is theoretically studied based
on the ab init io calculations. A nonlinear dependence of the transferred momentum on the photon energy is
identified at relatively small photon energies. As expected, the linear dependence is recovered with the slope
approaching 1.60 when the photon energy becomes sufficiently large. With a semianalytical model including the
Coulomb screen effect in the two-electron ground state, we can qualitatively reproduce the nonlinear dependence
and find that it is mainly contributed by the fast electron. However, compared with the results from the ab init io
calculations, the quantitative discrepancies at relatively small photon energies can be accounted for only by the
electron correlation in the intermediate state. The present study reveals the vital roles played by the two-electron
effects for the complicated photon momentum transfer process in the few-photon and few-electron systems.
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I. INTRODUCTION

In the theoretical studies of ionization dynamics, the dipole
approximation is usually employed, in which the laser pulse
is assumed to be independent on space coordinates. However,
this approximation will break down when the wavelength is
short enough to be comparable with the atom size or when the
laser field is so intense that the magnetic field effects cannot be
neglected [1]. The photon momentum transfer in the ioniza-
tion process is one of the prominent nondipole effects, which
is related to the unsymmetrical photoelectron distribution with
respect to the propagation direction of the pulse [2].

In 2011 it was experimentally determined that the pho-
ton momentum transferred to the photoelectron, in the single
ionization of atoms by intense 800 and 1400 nm circularly
polarized laser pulses [3], almost equals the average energy
of photoelectron divided by the speed of light. Later the shift
of photoelectron momentum spectra to the opposite direction
of the laser propagation was identified with linearly polarized
laser pulses [4]. Meantime, a large number of theoretical stud-
ies have been carried out [5–11]. In particular, Chelkowski
et al. found that the residual ion carries only part of the mo-
mentum corresponding to the ionization potential [8], which
was confirmed in a recent experiment [12].

In fact, the study of the photon momentum transfer in the
high-frequency weak-field regime has a much longer history.
Even in the early stage of quantum mechanics, Sommerfeld
et al. had shown that the photon can transfer a larger momen-
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tum to the electron than it carries [13]. The momentum-energy
scaling law has been derived for different initial states of
the hydrogen-like atoms [14,15]. Recently, theoretical studies
were extended to the two- and three-photon ionization of the
hydrogen-like atom [10,16] and to the one-photon single ion-
ization (PSI) of a diatomic molecule [17,18]. Benefiting from
the rapid development of the bright light sources from the
high-order harmonic generation [19,20] and the free-electron
lasers [21–23], the experimental measurements for the mo-
mentum transfer in high-frequency regime gradually have
become possible [24].

As a two-electron atom, helium provides an ideal platform
to study the electron correlation, which allows quantitative
comparisons of differential observables from theory and ex-
periment. One of recent examples is the photon momentum
transfer in the one-photon double ionization (PDI) [25], for
which a joint theoretical and experimental study reveals the
partition laws of the photon momentum among the three
particles. However, things will be much more complicated
and different in the regime of two-photon double ionization
(TPDI) of helium, which is the simplest case of the few-
photon and few-electron system where the photon momentum
transfer has not yet been explored. In particular, at rela-
tively low photon energies in the nonsequential and sequential
regime, it is crucial to investigate how the two-electron effects
including the electron correlation will change the partition
laws in the photon momentum transfer and alter the coeffi-
cients in the momentum-energy scaling.

In this work, we systematically study the photon mo-
mentum transfer in TPDI by solving the full-dimensional
time-dependent Schrödinger equation (TDSE). We find that
the photon momentum transfer is strongly affected by the
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FIG. 1. Illustration of the four steps of TPDI of helium. The
electron correlation in TPDI can be divided into three types, i.e., in
the initial state (a, I), in the intermediate state (b, II, III), and in the
final state (c, IV).

two-electron effect, which results in a nonlinear increase of
the coefficient of the momentum-energy scaling law. The ex-
pected value of 1.60 for the PSI of the ground state of the
hydrogen-like atom is found in the asymptotic regime at large
photon energies. Based on the virtual sequential picture [26]
including the Coulomb screen effect in the initial state, we de-
velop a semianalytical model that can qualitatively reproduce
our findings, while the electron correlation in the intermediate
state is needed to quantitatively reproduce the scaling law in
the relatively low photon energy regime.

The rest of this paper is organized as follows. In Sec. II
we give a brief introduction of our TDSE method and the
semianalytical model based on the virtual sequential picture.
In Sec. III we present our results about the momentum transfer
in the TPDI of helium. Detailed analysis is given to show the
importance of the two-electron effect. In Sec. IV we give a
brief summary. Unless otherwise stated, atomic units are used
throughout this work.

II. THEORETICAL METHODS

The process of TPDI of helium can be illustrated by the
four steps shown in Fig. 1. Due to the long-range nature of
the Coulomb potential, different vital roles may be played by
the electron correlation in each step, depending on the photon
energy and the duration of the applied laser pulse. Usually,
the electron correlation can be referred to the initial state,
the intermediate state, and the final state correlation. For the
sequential TPDI with a relatively long laser pulse, the electron
correlation in the intermediate state and the final state is of
less importance. However, in the nonsequential regime or for
a very short pulse, the electron correlation in these two stages
will be important [27].

Our calculations are mainly based on the numerical so-
lution to the full-dimensional TDSE beyond the dipole
approximation [25]. The interaction Hamiltonian can be writ-
ten either in the length gauge (LG) or in the velocity gauge
(VG) [25]. Details of our TDSE method can be found in our
previous paper [28]. Here we give only a brief introduction
of the method and specify the parameters used in this study.
In the spherical coordinates, we employ the finite element
discrete variable representation (FE-DVR) [29,30] method to
discretize the radial coordinates and the Lanczos propagator

to evolve the two-electron wave. The maximal numbers of the
single angular momentum (lmax) and total angular momentum
(Lmax) are set to be 5 and 4, respectively. The average radial
spacing is about 0.25 a.u. After the end of the pulse, the wave
function is further propagated for 40 a.u. so that one can
project it to the product of two Coulomb waves and obtain
the differential momentum distribution of the two electrons
P(k1, k2), from which all other physical observables can be
computed. The calculations are made for circularly polarized
laser pulses, propagating along z axis, with a wide range
of photon energies from 42 to 150 eV, but at a fixed peak
intensity of 1012 W/cm2 with the sin2 envelope. The pulse
duration is set to be 2 fs from 42 to 70 eV and 20 cycles
from 70 to 150 eV, respectively. The propagation time step is
0.01 a.u. Convergence of our results has been ensured against
the change of all spatial and temporal parameters.

To get the physical insights of the TDSE results, we turn to
the second-order time-dependent perturbation theory (TDPT)
based on the virtual sequential picture. Previously, it has been
used to study the total ionization probability and energy dif-
ferential spectrum in both the sequential TPDI regime and
the nonsequential TPDI regime [26,31–36]. According to the
model, the momentum distribution of the two electrons is
given by

Pmodel(k1, k2) =
∫

dk
∫ t f

ti

dt2 ei(E f −Es )t2〈 f |HI (t2)|s, k〉

×
∫ t2

ti

dt1 ei(Es−Ei )t1〈s, k|HI (t1)|i〉, (1)

in which |i〉 is the ground state of the helium and can be
calculated with the method of imaginary time propagation of
the two-electron TDSE, |s, k〉 is the intermediate state which
is approximated by the symmetric product of the Coulomb
wave and the ground state of He+, and | f 〉 is the symmetric
product of two Coulomb waves. In the velocity gauge, the
interaction Hamiltonian HI is given by

HI (t ) =
∑
j=1,2

{−iA(t ) · ∇ j − iα(k̂γ · r j )[E(t ) · ∇ j]

+α(k̂γ · r j )[A(t ) · E(t )]}, (2)

with α, k̂γ , A(t ), and E(t ) being the fine-structure constant,
the propagation direction of laser pulse, the vector potential,
and the electric field, respectively. All the Coulomb waves
are evaluated with the nuclear charge number of 2. As can
be noticed, part of the electron correlation in the initial state
has been taken into account by taking the exact ground state of
helium under the consideration of only one prominent partial
wave with l1 = l2 = L = M = 0, while the electron correla-
tion in the intermediate and final state is neglected.

Also, one can construct the initial state based on the
Hartree-Fock method, which is regarded as the noncorre-
lated wave function. The two-electron effect is limited to the
mean-field correlation, which can be regarded as the Coulomb
screen effect. The corresponding results in Sec. III are the
same as the partly correlated initial state, which suggests
the initial state electron correlation behaves as the Coulomb
screen effect here. Therefore, we will call it the Coulomb
screen effect hereafter.
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FIG. 2. (a) The sum of the momenta transferred to the two pho-
toelectrons for laser pulses with ω ∈ (42, 150) eV. Insets I and II
show a linear fitting in different ranges with the slope being 1.31
and 1.49, respectively. (b) F (see text for definition) as a function
of the photon energy. The horizontal gray dashed line represents the
asymptotic value of 1.60, corresponding to that for PSI of the ground
state of hydrogen-like atom. The vertical gray dashed line marks the
boundary of the sequential and the nonsequential regimes.

Please note that we numerically calculate the transition
matrix elements instead of using the value of a one-photon
single-ionization cross section [37], which means that the
phase information is preserved in our model. Details of the
TDPT model can be found in Appendix A.

III. RESULTS

The main physical quantities we concern in this work are
the averaged momenta of the two photoelectrons in the prop-
agation direction of laser pulse, whose sum can be evaluated
by

〈kz1 + kz2〉 = ∫∫
dk1 dk2(kz1 + kz2)P̃(k1, k2), (3)

where P̃(k1, k2) = P(k1, k2)/Ptotal with Ptotal =∫∫
dk1 dk2P(k1, k2). In Fig. 2(a) we show the results of

〈kz1 + kz2〉 as a function of Eex/c where the excess energy
Eex = 2ω − Ip with Ip being the double ionization potential
of helium. As expected, one finds that the total momentum
〈kz1 + kz2〉 is always a positive value regardless of the
photon energy. A striking feature is the nonlinear scaling at
relatively smaller photon energies, which can be confirmed
by a linear fitting in different regions of photon energies,
as shown in insets I and II of Fig. 2(a). The slope of the

linear fitting is 1.31 and 1.49, respectively. A better way
to show the nonlinear dependence is to define a parameter
F = 〈k1z + k2z〉/[(2ω − Ip)/c], whose value is shown in
Fig. 2(b) as a function of the photon energy ω. It is clearly
seen that F gradually increases and will eventually approach
the well-known value of 1.60, as will be seen below.

Using P(k1, k2) from TDSE or Pmodel(k1, k2) from the
model, one can calculate the momentum of the fast and the
slow electron in the propagation direction

〈kfast〉 = 2
∫∫

dk1 dk2kz1η(k1 − k2)P̃(k1, k2),
(4)

〈kslow〉 = 2
∫∫

dk1 dk2kz1η(k2 − k1)P̃(k1, k2),

where η is the Heaviside step function. Let us first consider
the photon energy range of (95, 150) eV, in which the virtual
sequential model is expected to work better in the sequential
regime. In the left column of Fig. 3, we show the results
from both the TDSE and the model. As one can see, very
good agreements are achieved for both the total momentum
and the individual momentum of each electron along the
laser propagation direction. Thus, in the sequential regime,
one can indeed regard the TPDI as a two-step process, i.e.,
the PSI of helium and the subsequent PSI of the ground
state of He+ (with the neglect of the shake-off mechanism
[35,38]). The current result for the photon momentum trans-
fer is consistent with previous studies [31,32,35]. Therefore,
after neglecting the small intercept term, the momentum-
energy scaling law in the photon momentum transfer can be
given by

〈kfast〉 = αf (ω − Ip1), 〈kslow〉 = αs(ω − Ip2),
(5)

〈ktotal〉 = αf + αs

2
(2ω − Ip) + αf − αs

2
(Ip2 − Ip1),

where Ip1 and Ip2 are the single ionization potential of He and
He+, respectively.

Provided with these excellent agreement in the sequential
regime, one can extend the results of the TDPT model in a
range of large photon energies, i.e., (800, 1000) eV, in which
region TDSE calculations are formidable due to the extremely
large computational resources. As shown in the right column
of Fig. 3, one finds that the slope indeed approaches the
expected value of 1.60 for the hydrogen-like atom [Fig. 3(b)].
A prominent feature from Figs. 3(c) and 3(d) is that the slope
of the slow electron is always close to 0.80. This good linear
dependence of the slow (the second) electron means that the
nonlinear dependence of the momentum-energy scaling law
of the TPDI mainly comes from the first PSI of helium αf

[cf. Eq. (5)]. Based on the nice agreement between results of
TDSE and the model and the fact that the Coulomb screen
effect in the initial state is included in our model, one can
infer that the nonlinear dependence in the momentum-energy
scaling law mainly origins from the Coulomb screen effect in
the initial state.

The nonlinear dependence induced by the Coulomb screen
effect of the first (the fast) electron can be understood as
follows. For the single-electron atom case, it was found that
the momentum-energy scaling law is dominated by the short-
range property of the potential in the ground state [16]. It
is known that the ionized electron momentum distribution is

023104-3



FANG, LIANG, JIANG, AND PENG PHYSICAL REVIEW A 106, 023104 (2022)

FIG. 3. The sum of the momenta transferred to the two photoelectrons and the respective momentum of each electron at different photon
energy range marked in each panel. The lines in each panel represent a linear fitting of the results from either the TDSE or the TDPT model,
and their slopes are indicated in the legend.

closely related to the Fourier transform of the initial state
in the real space [8]. Thus, for a single electron atom, a
higher electron energy (thus a corresponding higher photon
energy) will be related to the behavior of the shorter range
of the atomic potential where the cusp of the electron and
the nucleus exists. For the two-electron system, the behavior
of the extremely short range of the potential is still domi-
nated by the Coulomb potential between one electron and
the nucleus. However, with the intermediate photon energies
of tens of electron volts, the corresponding range in the real
space will be influenced by the cusp between the two elec-
trons [39–44] (equivalently, the Coulomb screen effect from
the two-electron effect), which results in the change of the
coefficient in the momentum-energy scaling law. In this spirit,
the nonlinear behavior can also be qualitatively reproduced by
the calculations of PSI of helium with a single-active-electron
(SAE) model potential with Veff = − 1

r [1 + (1 + 27
16 r)e− 27

8 r]
(for clarity, the results are shown in Appendix B). We find
that, although the SAE approximation works rather well in the
high-energy regime, there exist significant discrepancies from
results of the two-electron TDSE at lower photon energies,
which may be attributed to the electron correlation in the in-
termediate state. In addition, due to the nonlinear dependence
of the αf , the slower electron will carry a larger momentum in
the direction of laser pulse at extremely large photon energies,
which is shown in Fig. 3(d).

We now turn to the nonsequential and sequential regime of
the TPDI at smaller photon energies, where calculations from
both the TDSE and the TDPT model have been carried out. In
this region, we plot the momentum-energy scaling law against
the excess energy. One can compute the excess energy of the

fast and the slow electron, respectively, by

〈Efast〉 = 2
∫∫

dk1 dk2E1η(k1 − k2)P̃(k1, k2),
(6)

〈Eslow〉 = 2
∫∫

dk1 dk2E1η(k2 − k1)P̃(k1, k2),

with E1 = k2
1/2 whose definitions are suitable for both the

nonsequential and the sequential regime. In the sequential
regime for a relatively long pulse, one can numerically check
that these two formulas indeed reduce to 〈Efast〉 ≈ ω − Ip1

and 〈Eslow〉 ≈ ω − Ip2 respectively. The total excess energy is
always given by 〈Eexc〉 ≈ 2ω − Ip. With these, one can rewrite
the momentum-energy scaling law for the fast and the slow
electron in Eq. (5) as

〈kfast〉 = βf〈Efast〉, 〈kslow〉 = βs〈Eslow〉. (7)

As can be seen from Fig. 4(a), it is interesting to note
that the global behavior of the fast electron and the slow
electron can still be well described by the model, although
the electron correlation in the intermediate state for the nonse-
quential TPDI regime is neglected. What is more, one finds the
momentum-energy scaling law for the fast electron is almost
the same from the nonsequential to the sequential regime
of the TPDI, as shown in Fig. 4(b). However, if the linear
fitting of the fast electron is done in the regimes of 42–50 eV
and 58–70 eV, respectively, the slope will be 1.29, 1.27 for
the TDPT model and 1.17, 1.21 for the TDSE. The model
loses the ability to well reproduce the TDSE results, which is
attributed to the neglecting of the electron correlation in the
intermediate state. This is confirmed by the results of TDSE
propagation with the Hartree-Fock initial state, which can be
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FIG. 4. The total and respective photon momentum transferred at relatively lower photon energies of ω ∈ (42, 70) eV. The gray dashed
line in (a) marks the boundary of the nonsequential and the sequential regimes. In (b), (c), and (d), the photon momentum transferred for the
fast or the slow electron is linearly fitted in different ranges of its average energy divided by c, with the slope indicated in the legend.

seen in Table I. For the slow electron, the TDPT model fails
to describe the scaling law in the nonsequential regime but
successfully predicts it in the sequential regime, as shown
in Figs. 4(c) and 4(d). The difference also comes from the
electron correlation in the intermediate state.

One notices that the momentum-energy scaling law in the
sequential TPDI at smaller photon energies is consistent with
that at large photon energies discussed previously. However,
according to Eq. (7), the scaling law in the nonsequential
regime should be given by

〈ktotal〉 = βf〈Efast〉 + βs〈Eslow〉

=
[
βf + βs

2
+ βf − βs

2

〈Ediff〉
〈Etotal〉

]
〈Etotal〉, (8)

where 〈Ediff〉 = 〈Efast〉 − 〈Eslow〉 and 〈Etotal〉 = 〈Efast〉 +
〈Eslow〉. According to the numerical results in Figs. 4(b) and
4(c), one gets βf ≈ 1.20 and βs ≈ 1.10, which means that the
total coefficient approximately equals the average of βf and

βs. This can be confirmed by the TDSE results in the photon
energy range of [42, 50] eV. From the above discussions,
in the relatively low photon energy regime, the Coulomb
screen effect in the initial state and electron correlation in
the intermediate state both play important roles. Finally,
we mention that it is appropriate to neglect the electron
correlation in the final state, which is confirmed by projection
with different free-propagation time.

IV. SUMMARY

In summary, the photon momentum transfer in the two-
photon double ionization of helium is theoretically studied by
solving the full dimensional TDSE and by a virtual sequential
TDPT model in a wide range of photon energies. We find that
the coefficient of momentum-energy scaling law related to
the photon momentum transfer increases nonlinearly with the
photon energy and ultimately approaches the expected value
of 1.60 for the PSI of the ground state of a hydrogen-like atom.

TABLE I. Results of TDSE propagation with fully correlated ground state (FC) or Hartree-Fock ground state (HF).

〈kfast〉a 〈Efast〉b 〈kslow〉a 〈Eslow〉b

ω (eV) FC HF FC HF FC HF FC HF

42 0.979 0.979 14.24 14.24 0.211 0.211 4.829 4.829
46 2.878 2.878 36.38 36.38 0.685 0.685 11.21 11.21

54.4 8.770 8.770 101.2 101.2 0.703 0.703 9.505 9.505
68 13.50 13.50 156.5 156.5 5.653 5.653 52.33 52.33

aAverage momentum is given in 10−3 a.u.
bAverage energy is given in 10−2 a.u.
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More detailed studies reveal that the Coulomb screen effect in
the initial state plays a vital role in the nonlinear momentum-
energy scaling law. In particular, in order to quantitatively
evaluate the coefficient of the momentum-energy scaling law,
one needs to consider the intermediate state electron correla-
tion. The present study represents an important step to explore
the photon momentum transfer in the few-photon and few-
electron systems, which will trigger possible experimental
investigations in the near future.
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APPENDIX A: DETAILS OF THE TDPT MODEL

In this Appendix, we show the details of the TDPT model
of a helium atom beyond dipole approximation. The laser
propagation direction is set to be the z axis.

1. The transition matrix elements of a single-electron atom

Before we show the TDPT model for the TPDI of a helium
atom, we show the transition matrix elements for the PSI of
a single-electron atom. For a single-electron atom interacting
with the laser field, in the velocity gauge, the Hamiltonian is
given by

H = H0 − iA(t ) · ∇ + α(k̂γ · r)[A(t ) · E(t )]

− iα
(
k̂γ · r

)
[E(t ) · ∇]

= H0 + D + Ha + Hb, (A1)

with H0, D, Ha, and Hb being the field-free Hamiltonian,
dipole term, and two nondipole terms, respectively. We sup-
pose that the initial state |i〉 is s state and the final state |k〉 can
be represented by the Coulomb wave. Then the expression of
the initial state and final state can be written by

|i〉 = R(r)Y 0
0 (r̂),

|k〉 = 1√
2πk

∑
l,m

ile−i(σl +δl )
[
Y m

l (k̂)
]∗

R̃k,l (r)Y m
l (r̂). (A2)

Then the transition matrix elements can be given by

〈k|D|i〉 = D(k)Ax
[
Y −1

1 (k̂) − Y 1
1 (k̂)

]
+ D(k)iAy

[
Y −1

1 (k̂) + Y 1
1 (k̂)

]
,

〈k|Ha|i〉 = A(k)(AxEx + AyEy)Y 0
1 (k̂), (A3)

〈k|Hb|i〉 = B(k)Ex
[
Y −1

2 (k̂) − Y 1
2 (k̂)

]
+ B(k)iEy

[
Y −1

2 (k̂) + Y 1
2 (k̂)

]
,

where the definition of the parameters D(k), A(k), and B(k)
can be written by

D(k) = − 1√
12πk

ei(σ1+δ1 )

×
∫

dr[rR̃k,1(r)]

(
∂

∂r
− 1

r

)
[rR(r)],

A(k) = (−i)α
1√
6πk

ei(σ1+δ1 )

×
∫

dr[rR̃k,1(r)]r[rR(r)],

B(k) = (−i)3α
1√

60πk
ei(σ2+δ2 )

×
∫

dr[rR̃k,2(r)]

[
r

∂

∂r
− 1

]
[rR(r)]. (A4)

2. The transition matrix elements of the TDPT model

As described in Sec. II, the expressions of the momen-
tum distribution of the two electrons in the TDPT model
Pmodel(k1, k2) and the interaction Hamiltonian HI are given
in Eqs. (1) and (2), respectively.

In the TDPT model, the initial state |i〉, the intermediate
state |s, k〉, and the final state | f 〉 can be given by

|i〉 = R(r1, r2)

r1, r2
Y 0

0 (�1)Y 0
0 (�2),

|s, k〉 = 1√
2

[|k(r1)〉|s(r2)〉 + |k(r2)〉|s(r1)〉], (A5)

| f 〉 = 1√
2

[|k1(r1)〉|k2(r2)〉 + |k1(r2)〉|k2(r1)〉],

with |s〉 = RHe+ (r)Y 0
0 (r̂). Therefore, taking the symmetry of

two electrons into consideration, the two matrix elements in
Eq. (1) can be given by

〈s, k|HI |i〉 =
√

2〈k(r1)s(r2)|HI (r1)|i〉,
〈 f |HI |s, k〉 = 〈k1(r)|HI (r)|s(r)〉δk2,k

+〈k2(r)|HI (r)|s(r)〉δk1,k. (A6)

FIG. 5. The parameter F SAE as a function of the photon energy.
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One finds that in order to calculate the two-electron momen-
tum distribution, we need only to know the transition matrix
elements for single electron, which has already been given.
In past studies based on the virtual sequential picture [26,31–
36], dipole approximation is used, and the transition matrix

elements in Eq. (A6) can be related to the cross section [37].
However, in order to consider the nondipole effect, we need
to calculate the transition matrix elements numerically.

According to the discussion above, the transition matrix
elements of the TDPT model can be given by

〈s, k|HI |i〉 = �1
1(k)Ax

[
Y −1

1 (k̂) − Y 1
1 (k̂)

] + �1
1(k)iAy

[
Y −1

1 (k̂) + Y 1
1 (k̂)

] + �1
2(k)Ex

[
Y −1

2 (k̂) − Y 1
2 (k̂)

]
+�1

2(k)iEy
[
Y −1

2 (k̂) + Y 1
2 (k̂)

] + �1
10(AxEx + AyEy)Y 0

1 (k̂)

=
∑
l,m

(−m)�1
l

(
F x

l − miF y
l

)
Y m

l (k̂) + �1
10(F x

1 F x
2 + F y

1 F y
2 )Y 0

1 (k̂) (l = 1, 2; m = 1,−1),

〈k|HI |s〉 = �2
1(k)Ax

[
Y −1

1 (k̂) − Y 1
1 (k̂)

] + �2
1(k)iAy

[
Y −1

1 (k̂) + Y 1
1 (k̂)

] + �2
2(k)Ex

[
Y −1

2 (k̂) − Y 1
2 (k̂)

]
+�2

2(k)iEy
[
Y −1

2 (k̂) + Y 1
2 (k̂)

] + �2
10(AxEx + AyEy)Y 0

1 (k̂)

=
∑
l,m

(−m)�2
l (F x

l − miF y
l )Y m

l (k̂) + �2
10

(
F x

1 F x
2 + F y

1 F y
2

)
Y 0

1 (k̂) (l = 1, 2; m = 1,−1), (A7)

where the parameters are written by

�1
1(k) = − 1√

6πk

∫∫
dr1 dr2ei(σ1+δ1 )[r1R̃k,1(r1)][r2RHe+ (r2)]

(
∂

∂r1
− 1

r1

)
R(r1, r2),

�1
2(k) = (−i)3α

1√
30πk

∫∫
dr1 dr2ei(σ2+δ2 )[r1R̃k,2(r1)][r2RHe+ (r2)]

(
r1

∂

∂r1
− 1

)
R(r1, R2),

�1
10(k) = (−i)α

1√
3πk

∫∫
dr1 dr2ei(σ1+δ1 )[r1R̃k,1(r1)][r2RHe+ (r2)]r1R(r1, R2),

�2
1(k) = − 1√

12πk

∫
drei(σ1+δ1 )[rR̃k,1(r)]

(
∂

∂r
− 1

r

)
[rRHe+ (r)],

�2
2(k) = (−i)3α

1√
60πk

∫
drei(σ2+δ2 )[rR̃k,2(r)]

(
r

∂

∂r
− 1

)
[rRHe+ (r)],

�2
10(k) = (−i)α

1√
6πk

∫
drei(σ1+δ1 )[rR̃k,1(r)]r[rRHe+ (r)],

F x
1 = Ax, F y

1 = Ay, F x
2 = Ex, F y

2 = Ey. (A8)

Based on these expressions, one can derive the momentum
distribution of two electrons Pmodel(k1, k2). As for the calcu-
lation parameters, the average radial spacing is about 0.1 a.u.,
and there are only 26 partial waves without free-propagation
time. Other parameters are the same as TDSE calculation.

APPENDIX B: MOMENTUM TRANSFER
WITH SAE APPROXIMATION

We show the results of PSI of helium based on the SAE ap-
proximation, which is briefly mentioned in Sec. III. The model
potential is expressed by Veff = − 1

r [1 + (1 + 27
16 r)e− 27

8 r] with

FIG. 6. The momentum transferred to the electron with SAE approximation at different photon energy regimes. The lines in each panel
represent the linear fitting, and their slopes are indicated in the legends.
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the ionization energy ISAE
p1 = 24.6 eV. The calculation is done

through propagation with single-electron TDSE program with
FE-DVR. We show the results of the parameter F SAE =
〈kz〉/(ω − ISAE

p1 /c) as a function of photon energy in Fig. 5.
Clearly one finds that the nonlinear behavior also appears,
which is consistent with the discussion in Sec. III. As well, we
show the momentum transferred to electron at three different
energy regimes in Fig. 6. In the spirit of virtual sequential

picture, these results should be compared with the fast elec-
tron of TPDI. The corresponding slopes of fast electron in
these regimes of two-electron TDSE results are 1.17, 1.21,
and 1.43, respectively. One finds in the energy regime from 95
to 150 eV that the slope of SAE approximation is almost the
same as the fast electron in TPDI. However, the slope in the
relatively slow energy regime deviates from the fast electron
in TPDI.
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