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Electric dipole moments generated by nuclear Schiff moment interactions:
A reassessment of the atoms 129Xe and 199Hg and the molecule 205TlF
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We present relativistic many-body calculations of atomic and molecular Schiff-moment interaction con-
stants including interelectron correlation effects using atomic Gaussian basis sets specifically optimized for
the Schiff interaction. Our present best results employing a Gaussian nuclear density function are αSM =
(0.362 ± 0.025) × 10−17 e cm

e fm3 for atomic 129Xe, αSM = (−2.26 ± 0.23) × 10−17 e cm
e fm3 for atomic 199Hg, and

WSM = (39 967 ± 3600) a.u. for the thallium nucleus in the molecule 205TlF. We discuss agreements and
discrepancies between our present results and those from earlier calculations on the atoms 129Xe and 199Hg.
Using the most recent measurements of P,T -odd electric dipole moments and the present interaction constants,
reliable upper bounds on the Schiff moments of the 199Hg and 205Tl nuclei are determined in the context of a
single-source assumption.

DOI: 10.1103/PhysRevA.106.022817

I. INTRODUCTION

The standard model (SM) of elementary particle physics
[1–3] is an extremely well-tested theory of fundamental par-
ticles and their interactions. However, it leaves a number
of firmly established observations about our universe unex-
plained, like its matter and energy content [4]. Specifically,
the SM does not allow the accommodation of baryon asym-
metry of the universe (BAU), i.e., the significant surplus of
denominational matter over antimatter in the universe [5].

A necessary condition for explaining the BAU is the viola-
tion of the combined discrete symmetries charge conjugation
and parity (CP), favoring the production of a matter over an
antimatter particle [6]. CP violation (CPV) has been observed
in the decay of certain mesons [7–9], and a partial theory of
CP violation has become an integral part of the SM [10].
However, it is generally agreed that this manifestation of CP
violation is insufficient for explaining the BAU. New sources
of CP violation are hence required, which in particular gen-
erally also yield flavor-diagonal CP violation [11]. Under the
assumption that CPT invariance (T denoting time reversal) of
fundamental physical laws holds [12], CPV implies the viola-
tion of T symmetry. The detection of an atomic or molecular
electric dipole moment (EDM), the Hamiltonian of which is
P, T -odd, would in turn indicate CPV. The SM CPV phases
[10,13] give rise to EDMs many orders of magnitude below
the current experimental limits (see Ref. [14] and references
therein), which makes EDMs nearly background-free probes
of beyond-SM CPV [15].
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The origins of nuclear, atomic, and molecular EDMs in
terms of fundamental CPV phases may be diverse [16–18].
In electronically closed-shell systems like atomic mercury
(Hg) [19] or molecular thallium fluoride (TlF) [20,21] the
situation is relatively complicated, and several hadronic mech-
anisms may contribute to the leading order. The nuclear Schiff
moment and the nucleon-electron tensor-pseudotensor inter-
action are the leading CPV sources at the hadronic and nuclear
energy scale in such systems.

The nuclear Schiff potential is a low-order P, T -odd term
in the expansion of the nuclear charge distribution [22,23]
which polarizes the electron cloud in an atomic system,
giving rise to atomic/molecular EDMs. Thus, atomic-scale
measurements search for or constrain the nuclear Schiff mo-
ment and—in turn—the underlying CPV sources. The chosen
systems and states have electronically closed shells which
strongly suppress leptonic CPV sources such as the elec-
tron EDM de and some semileptonic CPV sources such as
the nucleon-electron scalar-pseudoscalar coupling CS [24,25].
The currently most sensitive measurement [26] is |dHg| <

7.4 × 10−30e cm with spin-polarized mercury atoms, 199Hg,
leading to an upper bound on the Schiff moment of |SHg| <

3.1 × 10−13e fm3 (95% C.L.). In the calculation of this upper
bound an average over interaction constants from different
theory groups has been used. The upper bound translates
[19,27,57] into constraints on more fundamental parameters,
the CPV pion-nucleon couplings g(0)

π , g(1)
π , and g(2)

π ; the nu-
cleon EDMs dp and dn; the quantum chromodynamics �

parameter; and chromo-EDMs.
In the present paper we pursue several goals.
(i) The Schiff moment interaction in general is quite

strongly dependent on the quality of the atomic basis set
for the target nucleus in electronic-structure calculations, as
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has also been substantiated earlier [28,29]. Our calculations
confirm this finding for all systems we have studied so far.
In the present paper, we present a systematic approach to
extending standard atomic basis sets with the aim of a reliable
and economic description of the Schiff moment interaction in
both atoms and molecules. In the following section we define
our method for calculation of atomic and molecular Schiff
moment interactions and give a detailed description of the
strategy for optimizing required Gaussian basis sets.

(ii) In Sec. III we discuss applications to 129Xe, 199Hg, and
205TlF using a large optimized basis set for each respective
system and carefully taking into account interelectron correla-
tion effects shellwise and at various excitation ranks. Based on
our findings we address current disagreements among previ-
ously published results for atomic Schiff moment interactions
in 129Xe and 199Hg.

(iii) We conclude on our study in Sec. IV and use the
most recent experimental EDM measurements [26,30] and our
calculated interaction constants for these systems to derive
constraints on the respective nuclear Schiff moments.

II. THEORY AND METHODS

A. Theory

1. The atomic Schiff moment interaction Hamiltonian

The atomic Schiff moment interaction for a single electron
in the field of a point nucleus has been given as [see Ref. [22],
Eq. (8.75)]

ĤSM = −eS · ∇rδ(r), (1)

where the vector coefficient S := S I
I is the Schiff moment [31]

of the nucleus with I denoting nuclear spin and S the scalar
Schiff moment constant [32].

Recent developments use a more realistic finite nuclear
charge density, and the Hamiltonian for the interaction of an
electron with the Schiff potential [32] has been represented as

ĤSM = −eϕSM(r) = −3e
S · r̂

B
ρ(r), (2)

where B = ∫ ∞
0 ρ(r)r4dr, and ρ(r) is the nuclear charge den-

sity at position r.

2. Expectation value approach to Schiff moment interaction

Our principal strategy is to determine the E -field-
dependent P, T -odd energy shift �ε as a function of an
atomic interaction constant. The full details of the general
approach are found in Ref. [33]. Here, we present the specific
approach for the calculation of Schiff moment interaction
constants.

a. Atoms. For atomic calculations we include an external
homogeneous electric field Eext along the z axis. In an atom
with n electrons the associated P, T -odd energy shift can then
be expressed as an expectation value over the one-electron
Hamiltonian in Eq. (2) (here in a.u.):

�εSM = −Sz
3

B

〈
n∑

j=1

ẑ j ρ(r j )

〉
ψ (Eext )

, (3)

where ψ (Eext ) is the electronic wave function of the field-
dependent state. We first solve a zeroth-order problem,

Ĥ (Eext )|ψ (Eext )〉 = ε(Eext )|ψ (Eext )〉, (4)

with ε being the field-dependent energy eigenvalue and
Ĥ (Eext ) the Dirac-Coulomb Hamiltonian including the inter-
action term with the external field:

Ĥ (Eext ) := ĤDirac-Coulomb + Ĥ Int-Dipole

=
n∑
j

[
c α j · p j + β jc

2 − Z

r jK
114

]

+
n∑

k> j

1

r jk
114 +

∑
j

r j · Eext 114. (5)

Eext is weak (see below for details) and homogeneous, the
indices j and k run over n electrons, Z is the proton number
with the nucleus K placed at the origin, and α and β are
standard Dirac matrices. Eext is not treated as a perturbation
but is included a priori in the variational optimization of the
wave function, ψ (Eext ).

Technically, ψ (Eext ) is a configuration interaction (CI) vec-
tor [34] built from Slater determinants over field-dependent
four-spinors. In the atomic case the wave function is expanded
as follows:

ψ (Eext ) =̂ |MJ〉 =
dimF t (M,n)∑

I=1

c(MJ ),I (ST )(MJ ),I | 〉, (6)

where | 〉 is the true vacuum state, F t (M, n) is the symmetry-
restricted sector of the Fock space (MJ subspace) with n
electrons in M four-spinors, S = a†

i a†
j a

†
k . . . is a string of

spinor creation operators, and T = a†
l
a†

ma†
n . . . is a string of

creation operators of time-reversal transformed spinors. The
determinant expansion coefficients c(MJ ),I are generally ob-
tained as described in Refs. [35,36].

The electric dipole moment of the atomic system in terms
of the Schiff moment is

da = αSMSz, (7)

where using Eqs. (3) and (7) we define the Schiff moment
interaction constant as

αSM := �εSM

Sz Eext
=

− 3
B

〈∑n
j=1 ẑ jρ(r j )

〉
ψ (Eext )

Eext
. (8)

In the linear régime, Wa(ψ (Eext )) := − 3
B 〈ẑρ(r)〉ψ (Eext ) =

C Eext, where C is a constant with respect to Eext. From this
it follows that in the linear régime αSM = C, which is inde-
pendent of Eext. Through numerical analysis we determine the
quasilinearity of Wa for Eext = 0.0003 a.u. in the case of Xe
and for Eext = 0.000 24 a.u. in the case of Hg. Eext is oriented
along the z axis in the atomic case.

b. Molecules. In the molecular case the unperturbed wave
function ψ is not a P eigenstate; thus no external electric field
needs to be applied. The general strategy is similar to the one
for atoms but with some modifications. The energy shift is

022817-2



ELECTRIC DIPOLE MOMENTS GENERATED BY NUCLEAR … PHYSICAL REVIEW A 106, 022817 (2022)

written as

�εSM = −Sz
3

B

〈
n∑

j=1

ẑ jρ(r j )

〉
ψ

(9)

and the wave function is obtained from the zeroth-order prob-
lem

Ĥ |ψ〉 = ε|ψ〉, (10)

with

Ĥ := ĤDirac-Coulomb

=
n∑
j

[
c α j · p j + β jc

2 −
2∑
K

ZK

r jK
114

]

+
n∑

k> j

1

r jk
114 + VKL (11)

for a diatomic molecule where K runs over nuclei and VKL is
the classical electrostatic potential energy for the two Born-
Oppenheimer-fixed nuclei. The CI expansion of the electronic
wave function reads

ψ =̂ |�〉 =
dimF t (M,n)∑

I=1

c(�),I (ST )(�),I | 〉, (12)

where � is the total angular momentum projection. The
Schiff moment interaction constant for a target nucleus A of a
molecule is then written as

WSM(A) := �εSM(A)

Sz(A)
= − 3

B

〈
n∑

j=1

ẑ jρA(r j )

〉
ψ

. (13)

In practical applications the target nucleus is placed at the
origin of the reference frame.

B. Methods

1. Nuclear charge density

To describe the charge density, ρ(r), at position r for a
nucleus with Z protons, we in the present work use a Gaussian
model [37] with

ρ(r) = Z

(
ζ

π

) 3
2

e−ζr2
, (14)

where the exponent ζ is taken from Ref. [37]. This density is
used both for the calculation of the electronic wave function
and for the evaluation of the interaction constants in Eqs. (8)
and (13).

2. Matrix elements

We here present the main ideas of the Schiff moment inter-
action operator implementation. In a Gaussian nuclear model
the prefactor B introduced in Eq. (2) can be written in terms
of the parameter ζ from Eq. (14). Integration by parts leads to

B = 3

8πζ
. (15)

The electronic spinors constituting the wave function ψ in
Eqs. (8) and (13) are expanded as a linear combination of

TABLE I. Atomic Schiff moment interaction constant for Xe
calculated at the Hartree-Fock level including core contribution with
Gaussian nuclear density [37] for studying electronic-basis-set con-
vergence. Eext is set to 0.0003 a.u. Augmented basis sets are built
from Dyall’s QZ set including diffuse and correlating functions. We
compare with literature results which bear the closest theoretical
resemblance to our approach, i.e., perturbed Dirac-Fock theory.

αSM

Model (10−17 e cm
e fm3 ) εDCHF (a.u.)

DZ-21s15p −1.220 −7446.876435682
TZ-29s22p −0.379 −7446.895053545
QZ-34s28p 0.318 −7446.895409376

sp-densified QZ-67s55p 0.314 −7446.895379750

sp-densified+1sp QZ-69s57p 0.373 −7446.895401869
sp-densified+2sp QZ-71s59p 0.375 −7446.895401810
sp-densified+3sp QZ-73s61p 0.375 −7446.895401761
sp-densified+4sp QZ-75s63p 0.375 −7446.895401779
Double sp-densified QZ-133s109p 0.362 −7446.895392349
Double sp-densified+3sp 0.369 −7446.895401848

QZ-139s115p
Dzuba et al. [32] (RPA, 2002) 0.38 –
Ramachandran and Latha [43] 0.374 –

(CPHF, 2014)
Sakurai et al. [44] (CPDF, 2019) 0.38 –

primitive Gaussians in the DIRAC code. It is, therefore, con-
venient to contract with the exponential e−ζr2

from Eq. (14)
by adding ζ to the primitive Gaussian exponents. Then, the
matrix elements to be evaluated in Eqs. (8) and (13) can be
written as

〈ψ |e−ζr2
ẑ|ψ〉 = 〈ψζ |ẑ|ψ〉, (16)

where ψζ = ψe−ζr2
. Finally, the right-hand side of Eq. (16) is

evaluated as a dipole length integral in the DIRAC package.

3. Atomic basis sets

The nuclear Schiff moment gives rise to an asymmetric
charge distribution on the nuclear surface and a related con-
stant electric field inside the nucleus [31] that is oriented along
the nuclear spin I. The atomic Schiff moment interaction will,
therefore, predominantly affect atomic electronic wave func-
tions that penetrate the atomic nucleus. Equation (2) shows
that the Schiff moment interaction is P- and T -violating, thus
leading to a mixing of states with opposite parity and, there-
fore, predominantly to mixing of electronic s and p waves.

Our first goal was to investigate the performance of the
standard systematic N-tuple-zeta series of Gaussian basis sets
in calculating the Schiff moment interaction constant αSM

in Dirac-Coulomb Hartree-Fock (DCHF) approximation. The
results in Table I demonstrate that N = 4 is a minimal require-
ment for quantitatively reliable results. Still, compared to the
literature results that agree well in mean-field approximation,
a standard QZ basis set yields a too small result. Gaussian ba-
sis sets of quintuple-zeta (and higher) quality are currently not
available for heavy atoms and are time-consuming to develop
[38]. Given the physical nature of the Schiff moment inter-
action it is, therefore, as an alternative, strongly suggested to
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increase the s and p subspaces of the most extensive standard
Gaussian basis set in order to obtain an accurate description
of the relevant matrix elements, written generically as

〈s| − 3

B
ẑρ(r)|p〉. (17)

The strategy of our present basis-set optimization starts
from Dyall’s relativistic Gaussian basis set, QZ, extended with
diffuse and correlating functions [39]. This set is then further
augmented taking two criteria into account.

(i) Densification in the s and p spaces. Following the so-
called “even-tempered prescription” (see Ref. [40]) we insert
a Gaussian function between each adjacent pair of original
ones according to

ζn =
√

ζn−1 ζn+1, (18)

where ζi is the exponent in e−ζir2
of the ith Gaussian function

and ζn−1(ζn+1) is the next larger (smaller) exponent. This
procedure could in principle be repeated several times, but the
rapid increase in dimension of the s and p spaces leads to a
steep increase in computational cost.

(ii) Addition of sp pair(s) of even-tempered dense and
diffuse functions. In order to obtain a more extended basis set
in a balanced way, we add a pair of Gaussian functions—one
diffuse and one dense—to the respective densified basis set.
The new compact exponent ζn+1 is obtained according to

ζn+1 = ζ 2
n

ζn−1
, (19)

where ζn and ζn−1 are the two most compact coefficients in the
sp-densified basis set defined in the latter point (i).

The new diffuse exponent is obtained accordingly:

ζn−1 = ζ 2
n

ζn+1
, (20)

where ζn−1 is the new more diffuse coefficient and ζn and ζn+1

are the two most diffuse coefficients in the sp-densified basis
set defined in point (i).

As shown in Table I for Xe neither is the total Dirac-
Coulomb Hartree-Fock energy (εDCHF) improved (lowered)
nor is the Schiff moment interaction constant αSM changed
substantially by a second densification if the respective densi-
fication is accompanied by the addition of a sufficient number
of pairs of even-tempered compact and diffuse functions
(respectively, +1sp and +3sp for simple and double den-
sification, see Table VII). For this reason, we densify the
original basis set only once. From Tables I, III, and VII and
Fig. 1, respectively, we conclude that our accurate and most
economic basis set to describe αSM for Xe and Hg is the single
sp-densified Dyall’s cvQZ+1sp.

Combining the two aforementioned criteria, we propose a
systematic method to optimize Gaussian basis sets suited to
address the Schiff moment interaction constant αSM. The start-
ing point is an even-tempered (s, p)-space densification. Then,
compact and diffuse (s, p) pairs are added until a minimal
DCHF energy converged at a level of ≈10−6 a.u. in reached,
as is shown in Fig. 1. Under these circumstances αSM shall be
considered converged at the DCHF level.

FIG. 1. εDCHF variation from sp-densified QZ for Xe.

4. Molecular basis sets

Obtaining a suitable basis set for a target atom in a diatomic
molecule can be achieved by following steps 1 and 2 described
in the latter atomic case for the atom with the target nucleus
A [see Eq. (13)]. However the basis-set optimization must
be done by calculating εDCHF and WSM(A) in the molecular
field. The internuclear distance R is kept fixed during the
whole process. It is obtained from experimental data in the
present case. For TlF, we conclude from Table V that our
accurate and most economic basis set to describe WSM(A) is
the sp-densified Dyall’s cvQZ+1sp.

III. RESULTS FOR SCHIFF MOMENT INTERACTION

A. Technical details

All present calculations have been carried out using a lo-
cally modified version of the DIRAC program package [41].
The chosen symmetry group is the double-point group C∗

2v .
Small components of the Dirac spinors are generated through
the restricted-kinetic-balance [42] prescription and all small-
component integrals are explicitly taken into account.

B. 129Xe

Previous calculations have been carried out in random-
phase approximation (RPA) [32] and within the coupled-
perturbed Dirac-Hartree-Fock (CPHF) framework [43] yield-
ing very similar results. In recent work using the relativistic
normalized coupled-cluster method in singles and doubles ap-
proximation (RNCCSD) [44], interelectron correlation effects
have been taken into account and a contribution of ≈ −15%
to αSM is reported, which is unexpectedly large for Xe. Our
general-excitation-rank CI method can test this claim.

In Table II the results from a series of systematic cal-
culations including electron correlation effects from various
atomic shells and at various maximum excitation ranks are
compiled. As has also been found earlier [45], even the
leading correlation effects from the valence shells (5s, 5p),
described by double excitations, are weak in the ground state
of atomic Xe. In our model SD8 they decrease αSM by only
around 6%. The model SDT8 introduces all triple excitations
and the model SDTQ_0.2au_SDT8 in addition introduces a
subset of quadruple excitations (where the spinor space for
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TABLE II. Atomic Schiff moment interaction constant for Xe
including electron correlation effects and the core contribution using
the Dyall-cvQZ-69s57p basis set and a Gaussian nuclear density
[37]. Eext is set to 0.0003 a.u.

CI model/virtual cutoff αSM (10−17 e cm
e fm3 )

DCHF 0.373
SD8/5au 0.348
SD8/10au 0.353
SD8/20au 0.352
SD8/50au 0.352
SDT8/10au 0.351
SDTQ_0.2au_SDT8/10au 0.355

S10_SD18/10au 0.355
S10_SD18/20au 0.359
S10_SD18/50au 0.359
SD10_SD18/20au 0.362

S8_SD16/20au 0.352
S8_SD16/50au 0.353
SD8_SD16/10au 0.355

SD8_SD16/20au 0.352
SD8_SDT16/10au 0.353

S8_SD8_SD24/20au 0.352

Final present 0.362 ± 0.025

Dzuba et al. [32] (RPA, 2002) 0.38
Dzuba et al. [45] (RPA, 2009) 0.38
Ramachandran and Latha [43] (CPHF, 2014) 0.374
Sakurai et al. [44] (CPDF, 2019) 0.38
Singh et al. [46] (CCSDpT) 0.337
Sakurai et al. [44] (RNCCSD, 2019) 0.32 ± 0.002

these quadruples has been truncated at 0.2 a.u.) to the model
SD8. Including these higher excitation ranks affects the Schiff
interaction constant by less than 1%. Excitations out of the
4d shell lead to an increase of about 3%. Here we have not
tested higher excitation ranks than doubles since the differ-
ence from adding single and double excitations out of the 4d
shell is already small (around 1%). Finally, the correlation
contributions from core shells 3s, 3p, 4s, and 4p are seen
to be smaller than 1%. Higher-rank core-valence excitations
from shells that contribute directly to the Schiff interaction
have been taken into account through the model SD8_SDT16
which includes triple excitations from the 5s and 5p shells as
well as triple excitations that are combined singles (doubles)
from 4s and 4p and doubles (singles) from 5s and 5p. Their
effect is observed to be smaller than 1% as well.

The final present value is thus calculated as follows. As
base value we take the result where the greatest number of
electrons has been included in the correlation expansion, from
the model S8_SD8_SD24/20au. To this we add corrections
due to higher excitation ranks in the valence shells and corre-
lations among and with the 4d electrons, according to

αSM(Final)

= αSM(S8_SD8_SD24/20au)

+αSM(SDTQ_0.2au_SDT8/10au) − αSM(SD8/10au)

+αSM(SD10_SD18/20au) − αSM(SD8/20au)

+αSM(SD8_SDT16/10au) − αSM(SD16/10au).

TABLE III. Atomic Schiff moment interaction constant for Hg
calculated at Hartree-Fock level including core contribution with
Gaussian nuclear density [37] for studying electronic-basis-set con-
vergence. Eext is set to 0.000 24 a.u. Augmented basis sets are built
from Dyall’s QZ set including diffuse and correlating functions.

Model αSM (10−17 e cm
e fm3 ) εDCHF (a.u.)

DZ 6.480 −19648.85451859
TZ −1.267 −19648.89380174
QZ-34s30p −2.690 −19648.88766826
sp-densified QZ-67s59p −2.898 −19648.88651484

sp-densified+1sp QZ-69s61p −2.887 −19648.88727782

sp-densified+2sp QZ-71s63p −2.887 −19648.88727627
sp-densified+3sp QZ-73s65p −2.884 −19648.88727625
sp-densified+4sp QZ-75s67p −2.896 −19648.88727630
sp-densified+5sp QZ-77s69p −2.897 −19648.88727619
sp-densified+6sp QZ-79s71p −2.900 −19648.88727624
sp-densified+7sp QZ-81s73p −2.886 −19648.88727628
sp-densified+8sp QZ-83s75p −2.886 −19648.88727631

Dzuba et al. [32] −2.8 –

To this final value we assign an uncertainty of 7% by adding
individual uncertainties due to the nuclear density model
(3%), the atomic basis set (2%), the higher excitation ranks
(1%), and the Breit interaction (1%) that is not present in our
Hamiltonian, Eq. (5).

Our final result including the error estimate is not in accord
with the coupled-cluster result from Ref. [44]. According to
Dzuba [47] correlation contributions beyond the RPA in the
case of the Xe atom are not greater than ≈3%. Our final
result indeed shows small total correlation effects and is in
agreement with the results from Refs. [32,45,46].

C. 199Hg

In Table III we present results of DCHF calculations for the
Hg atom and demonstrate their convergence with optimized
basis sets, similar to what has been shown in Table I for the
Xe atom. Table IV shows correlated results for the mercury
atom. Including only single and double excitations for the
12 outermost electrons (shells 5d and 6s) yields a correlation
contribution of roughly 10% on top of the DCHF value. This
is a significantly greater contribution than the corresponding
one in atomic xenon. However, the model SD12 is still not
sufficient. Adding full triple excitations to the wave function
expansion results in a further 6.5% decrease of αSM on the
absolute. Comparing the model SDT12 with the more approx-
imate expansion SD10_SDT12 shows that the effect of three
holes in the 5d spinor space is rather unimportant (only 0.2%
of the DCHF value) and that it is the combined higher excita-
tions out of the 5d and 6s shells that have to be accounted for.
We accomplish this through the model SD10_SDTQ12 where
the excitation rank for a maximum of two holes in the 5d
spinors is maximal. This model yields another 2.4% decrease,
on the absolute, at a cutoff of 5 a.u. for the virtual spinors.

Additional effects on αSM from excitations out of the
atomic core spinors are accounted for using a virtual cutoff
of 20 a.u. We find that one- and two-hole configurations in the
5p shell (model SD6_SD18) contribute a mere 0.5%. On the
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TABLE IV. Atomic Schiff moment interaction constant for Hg
including electron correlation effects and the core contribution using
the Dyall-cvQZ-69s61p basis set and a Gaussian nuclear density
[37]. Eext is set to 0.000 24 a.u.

Model αSM (10−17 e cm
e fm3 )

DCHF −2.887

SD2/10au −2.597
SD2/20au −2.599
SD2/50au −2.598

SD12/10au −2.614
SD12/20au −2.621
SD12/50au −2.623
SDT12/10au −2.426
SD10_SDT12/5au −2.408
SD10_SDT12/10au −2.420
SD10_SDT12/20au −2.425
SD10_SDTQ12/5au −2.339
S6_SD18/20au −2.599
SD18/20au −2.608

SD20/10au −2.568
SD20/20au −2.590
SD10_SDT20/10au −2.278

S20_SD32/20au −2.649
SD32/20au −2.696

SD34/20au −2.666

Final present −2.26 ± 0.23

Dzuba et al. [45] (CI+MBPT) −2.6
Latha et al. [50] (CCSD, 2015) −2.46
Singh and Sahoo [51] (CCSDpT, 2015) −2.16
Radžiūtė et al. [52] (MCDF, 2016) −2.22
Sahoo and Das [48] −1.77 ± 0.06

other hand, one- and two-hole configurations in the 4 f shell
(model S20_SD32) contribute about 3%. It is noteworthy that
these two corrections are opposed to each other: Excitations
out of p shells decrease electron density in p-shell configu-
rations that contribute directly to the generic Schiff moment
interaction matrix element in Eq. (17). This leads to an abso-
lute decrease of αSM. On the other hand, excitations out of the
f shell reduce the screening of nuclear charge on electrons in
directly contributing shells and so lead to an absolute increase
of αSM. The same effect can be observed when the 5d shell is
opened for excitations (model SD12 vs SD2). This interpreta-
tion of the physics of correlation effects on the Schiff moment
interaction in Hg is confirmed when higher-rank core-valence
excitations from atomic shells that contribute directly to this
interaction are taken into account, similar to what we have
done for Xe above. The model SD10_SDT20 comprises more
than 1.6 × 109 Slater determinants and includes full triple ex-
citations from the 5s, 5p, and 6s shells in addition to combined
triple excitations involving those shells and the 5d shell. These
excitations lead to a decrease of αSM on the absolute by about
6%, which is significantly greater than the corresponding
correction for Xe. Accounting for such types of quadruple
excitations in the expansion is computationally too expensive,
but from the understanding of the general effects we can
predict that their inclusion would lead to a further (absolute)

decrease of αSM on the order of a few percent only, due to
increasing energy denominators in a perturbative picture.

We, therefore, obtain our final value from a base value with
the largest number of correlated electrons (SD34) improved
by a correction for higher combined excitations (triples and
quadruples) from the valence and the outer core shells, ac-
cording to

αSM(Final)

= αSM(SD34/20au)

+αSM(SD10_SDT12/20au) − αSM(SD12/20au)

+αSM(SD10_SDTQ12/5au) − αSM(SD10_SDT12/5au)

+αSM(SD10_SDT20/10au) − αSM(SD10_SDT12/10au).

The first of these two corrections—the one due to combined
triple excitations—amounts to 6.8% of the DCHF value. The
second—due to combined quadruple excitations—amounts to
2.4% of the DCHF value. No higher excitations from the
valence shells make a contribution larger than about 0.3%.

The uncertainty estimate for Hg results from adding indi-
vidual uncertainties for the nuclear density model (3%), the
atomic basis set (2%), the higher excitation ranks (4%), and
the Breit interaction (1%).

Including estimated uncertainties our final result is in
agreement with earlier CI + MBPT calculations by Dzuba
et al. as well as with coupled-cluster calculations by Singh
et al. and Latha et al. and the MCDF calculation by
Radžiūtė et al. The most recent other high-level calculation
by Sahoo et al. disagrees with all of these results.

A closer look at the results in Table I of Sahoo and Das
[48] reveals an inconsistency: When taking the combined
power k of the operators T (0) and T (0)† to infinity in Eq. (13)
ibidem only a small correction (around −1.3%) to the dipole
polarizability of Hg is observed compared to the calculation
with k = 5, which is physically reasonable. However, for the
nuclear Schiff moment interaction this correction amounts to
12% and for the P, T -violating tensor-pseudotensor (T-PT)
interaction even to more than 20%. The final result for the
T-PT interaction in Ref. [48] also stands in stark disaccord
with the result for the T-PT interaction in Ref. [49] and with
the literature results cited therein.

D. TlF

Both in Ref. [28] and in our present work a careful and
extensive optimization of atomic Gaussian basis sets for the Tl
atom in TlF has been carried out. As can be seen in Table V,
the DCHF result for our final sp-densified+1sp QZ-69s63p
basis set differs from the corrected literature result of Quiney
et al. [21,28] by only 2.2%. We consider this agreement as
a further confirmation of the reliability of our technique of
basis-set optimization. The DCHF result obtained by Skrip-
nikov et al. [53] is within about 4% of the result obtained by
Quiney et al. [28].

In Table VI we compile correlated Schiff moment interac-
tions for TlF using various CI models. The main correction
to the DCHF result comes from valence correlations among
the 6s (Tl) and 2p (F) electrons (model SD8), quenching the
interaction constant by nearly 9%. Full triple excitations out of
these shells further reduce the value by almost 2% and in addi-
tion by a similar amount when a leading set of quadruple exci-
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TABLE V. Molecular Schiff moment interaction constant for TlF
calculated at the Hartree-Fock level including the core contribution
with Gaussian nuclear density [37] at R = 3.94 a.u. [54] for study-
ing electronic-basis-set convergence. Augmented basis sets are built
from Dyall’s QZ set including diffuse and correlating functions.

Model WSM(Tl) (a.u.) εDCHF (a.u.)

QZ-34s31p 42877 −20374.47704191
sp-densified QZ-67s61p 30737 −20374.47575145

sp-densified+1spQZ-69s63p 45419 −20374.47660904

sp-densified+2sp QZ-71s65p 45540 −20374.47660743
sp-densified+3sp QZ-73s67p 45584 −20374.47660800
sp-densified+4sp QZ-75s69p 45602 −20374.47660786
sp-densified+5sp QZ-77s71p 45578 −20374.47660735
sp-densified+6sp QZ-79s73p 45594 −20374.47660803
sp-densified+7sp QZ-81s75p 45602 −20374.47660837
sp-densified+8sp QZ-83s77p 45584 −20374.47660780

Quiney et al. [28] (DCHF)a 46444
Skripnikov et al. [53] (DCHF) 48377

aValue from Ref. [28] corrected in Ref. [21] for the use of a more
accurate operator for the Schiff moment interaction.

tations is added to the expansion, model 0.8auSDTQ8_SDT8
(where up to four particles are allowed in shells below an
energy cutoff of 0.8 a.u.). Correlation contributions from the
shells 1s and 2s (F) and 5s and 5p (Tl) are seen to be small,
amounting to an increase of WSM by only about 1.5%.

For TlF we obtain our final best result from a base value
obtained with the model cvQZ+/SDT10_10au and adding
corrections for quadruple excitations from the valence shells,
correlation contributions from 1s (F) and 5s, 5p (Tl) shells,

TABLE VI. Molecular Schiff moment interaction constant for
the thallium nucleus in TlF including electron correlation effects
and the core contribution using the Dyall-cvQZ-69s63p basis set
(denoted cvQZ+ in the Table) and a Gaussian nuclear density [37] at
R = 3.94 a.u. [55].

Basis set/Model WSM(Tl) (a.u.)

cvQZ/DCHF 42877
cvQZ+/DCHF 45419

cvQZ+/SD8_5.5au 40779
cvQZ+/SD8_10au 41198
cvQZ+/SD8_20au 41431
cvQZ+/SD8_40au 41438
cvQZ+/SDT8_5.5au 39954
cvQZ+/SDT8_10au 40314
cvQZ+/SDT8_20au 40495
cvQZ+/0.8auSDTQ8_SDT8_5.5au 38863

cvQZ+/SD10_10au 41584
cvQZ+/SDT10_10au 40544
cvQZ+/SD16_10au 41762

cvQZ+/SD18_10au 41838
cvQZ+/SD20_10au 41858

Final present 39967±3600

Flambaum et al. [21,29] (operator-shifted CC) 40539
Skripnikov et al. [53] [CCSD(T)] 37192
Abe et al. [56] (CC) 41136

and a cutoff correction for the valence shell correlations, ac-
cording to

WSM(Final)

= WSM(cvQZ+/SDT10_10au)

+WSM(cvQZ+/0.8auSDTQ8_SDT8_5.5au)

−WSM(cvQZ+/SDT8_5.5au)

+WSM(cvQZ+/SD20_10au) − WSM(cvQZ+/SD10_10au)

+WSM(cvQZ+/SD8_40au) − WSM(cvQZ+/SD8_10au).

The uncertainty estimate for TlF results from adding indi-
vidual uncertainties for the nuclear density model (3%), the
atomic basis set (2%), the higher excitation ranks (2%), the
innershell correlations (1%), and the Breit interaction (1%).

Our final best result is in agreement with both the operator-
shifted results from Ref. [29] by Flambaum et al. in Ref. [21]
and the recent CCSD(T) calculation by Skripnikov et al. [53].
The calculation by Abe et al. [56] uses an older form of the
Schiff moment interaction operator. If scaled in the way the
result obtained by Petrov et al. [29] has been corrected in
Ref. [21], then the result would end up fairly close to the
CCSD(T) result obtained by Skripnikov et al. [53]. Thus,
for TlF all high-level-correlated many-body calculations yield
values in accord with each other for the Schiff moment inter-
action.

IV. CONCLUSIONS

Using the P, T -violating energy shift �ε from the most re-
cent measurements on the present systems and our calculated
interaction constants we can determine the nuclear Schiff mo-
ment S itself, in the context of a single-source assumption. It
results from the relation

�ε = 2WSMS, (21)

where using our final central value for WSM from Table VI and
the measured frequency shift of (1.4 ± 2.4) × 10−4 Hz from
Ref. [30] yields

S(205Tl) = (3.9 ± 6.8) × 10−11 e fm3 (22)

for the Schiff moment of the 205Tl nucleus. The CEN-
TREX Collaboration [20] aims at a significant increase in
sensitivity to hadronic T -violating fundamental interactions
which—combined with the recent results for WSM—will lead
to stronger constraints on the nuclear Schiff moment in the
case of a null measurement with tighter uncertainties.

The limit on the nuclear Schiff moment can be used to
infer limits on the CPV pion-nucleon couplings, the QCD
� parameter, and chromo-EDMs following the relations in
Ref. [21].

A stronger constraint than the one in Eq. (22) can be placed
on the Schiff moment of the 199Hg nucleus. Using the upper
bound on the Hg EDM of

|dHg| < 7.4 × 10−30 e cm (23)

from Ref. [26] and our central value for the Schiff moment
interaction from Table IV yields an upper bound to the Hg
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TABLE VII. Atomic Schiff moment interaction constant αSM for Xe calculated at the Hartree-Fock level including the core contribution
with Gaussian nuclear density [37] for studying electronic-basis-set convergence using several s- and p-space densifications and the addition
of denser and more diffuse (s, p) function pairs. Eext is set to 0.0003 a.u. Augmented basis sets are built from Dyall’s QZ with diffuse and
correlating functions. +1sp means one denser s and p function; one more diffuse s and p function has been added to the basis set.

Model (s, p) space αSM (10−17 e cm
e fm3 ) εDCHF (a.u.)

QZ 34s28p 0.318 −7446.895409376
QZ +1sp* 36s30p 0.369 −7446.895386026
Simple sp-densified QZ 67s55p 0.314 −7446.895379750
Simple sp-densified QZ+1sp 69s57p 0.373 −7446.895401869
Double sp-densified QZ 133s109p 0.362 −7446.895392349
Double sp-densified QZ+1sp 135s111p 0.359 −7446.895401000
Double sp-densified QZ+2sp 137s113p 0.354 −7446.895401764
Double sp-densified QZ+3sp 139s115p 0.369 −7446.895401848
Double sp-densified QZ+4sp 141s117p 0.372 −7446.895401815
Double sp-densified QZ+5sp 143s119p 0.375 −7446.895401836
Double sp-densified QZ+6sp 145s121p 0.376 −7446.895401842
Double sp-densified QZ+7sp 147s123p 0.375 −7446.895401832
Double sp-densified QZ+8sp 149s125p 0.376 −7446.895401826
Double sp-densified QZ+9sp 151s127p 0.376 −7446.895401837
Double sp-densified QZ+10sp 153s129p 0.376 −7446.895401813
Triple sp-densified QZ 265s217p 0.051 −7446.895394063
Triple sp-densified QZ+1sp 267s219p 0.684 −7446.895399110

Schiff moment:

|SHg| < 3.3 × 10−13 e fm3. (24)

This is the same value as the one proposed in Ref. [26]
where an average over various uncorrelated and correlated
Schiff moment interactions from the literature was used. In
the present case a rigorously calculated interaction parameter

αSM(Hg) including the effects of interelectron correlations in
the Hg atom ground state replaces that average value, which
it happens to match. The nuclear Schiff moment of 129Xe and
199Hg has recently been calculated as a function of the strong
π -meson-nucleon interaction constants [57]. Combined with
these dependencies our results can be used to constrain these
interaction constants and as a function of the nucleon EDMs
[58].

TABLE VIII. Atomic Schiff moment interaction constant αSM (10−17 e cm
e fm3 ) for Xe calculated at the Hartree-Fock level including the core

contribution with Gaussian nuclear density [37] for studying electronic-basis-set convergence by addition of denser (s, p) pairs versus addition
of denser (s, p) and more diffuse (s, p) pairs. Eext is set to 0.0003 a.u. Augmented basis sets are built from Dyall’s QZ set with diffuse and
correlating functions.

Addition of (s, p) dense pairs Addition of (s, p) dense/diffuse pairs

Model (s, p) space αSM εDCHF (a.u.) (s, p) space αSM εDCHF (a.u.)

QZ 34s28p 0.318 −7446.895409376 34s28p 0.318 −7446.895409376
QZ+1sp 35s29p 0.368 −7446.895385894 36s30p 0.369 −7446.895386026
QZ+2sp 36s30p 0.369 −7446.895384072 38s32p 0.369 −7446.895384244
QZ+3sp 37s31p 0.369 −7446.895383784 40s34p 0.370 −7446.895383956
QZ+4sp 38s32p 0.369 −7446.895383738 42s36p 0.371 −7446.895383915
QZ+5sp 39s33p 0.371 −7446.895383742 44s38p 0.370 −7446.895383987
QZ+6sp 40s34p 0.370 −7446.895383941 46s40p 0.370 −7446.895384141
QZ+7sp 41s35p 0.370 −7446.895383410 48s42p 0.372 −7446.895384163
QZ+8sp 42s36p 0.370 −7446.895383571 50s44p 0.376 −7446.895382476

sp-densified QZ 67s55p 0.314 −7446.895379750 67s55p 0.314 −7446.895379750
sp-densified QZ+1sp 68s56p 0.378 −7446.895401868 69s57p 0.373 −7446.895401869
sp-densified QZ+2sp 69s57p 0.375 −7446.895401802 71s59p 0.375 −7446.895401810
sp-densified QZ+3sp 70s58p 0.376 −7446.895401801 73s61p 0.375 −7446.895401762
sp-densified QZ+4sp 71s59p 0.376 −7446.895401801 75s63p 0.375 −7446.895401779
sp-densified QZ+5sp 72s60p 0.378 −7446.895401802 77s65p 0.376 −7446.895401790
sp-densified QZ+6sp 73s61p 0.375 −7446.895401802 79s67p 0.375 −7446.895401745
sp-densified QZ+7sp 74s62p 0.375 −7446.895401799 81s69p 0.374 −7446.895401770
sp-densified QZ+8sp 75s63p 0.376 −7446.895401800 83s71p 0.375 −7446.895401790
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APPENDIX

Tables VII and VIII give details on the basis-set optimiza-
tion for Xe.
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