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We consider higher-order corrections to hyperfine coefficients related to the spin-orbit and spin-spin tensor
interactions in hydrogen molecular ions. The mα7 ln(α)-order radiative correction is derived in the NRQED
framework. We present complete numerical calculations, including as well the mα6-order relativistic correction,
for the case of H+

2 . The theoretical uncertainty is reduced by more than one order of magnitude with respect to
the Breit-Pauli level, down to a few ppm. We also compare our results with available rf spectroscopy data.
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I. INTRODUCTION

In recent years, precision spectroscopy of hydrogen molec-
ular ions has established itself as a fruitful direction for
fundamental metrology. Rovibrational transition frequencies
in HD+ have been measured with very high accuracies
[1,2] and compared with theoretical predictions [3] to obtain
improved determinations of the proton-electron mass ratio
or constrain hypothetical interactions beyond the Standard
Model [4]. In these works, accurate predictions of the hy-
perfine structure have been used to extract a “spin-averaged”
transition frequency from the measured hyperfine compo-
nents. Discrepancies between theory and experiments have
been observed in the hyperfine slitting of the rovibrational
lines [5,6], which in some cases increases the uncertainty of
rovibrational transition frequencies [2,7]. This makes it highly
desirable to improve further the hyperfine structure theory in
hydrogen molecular ions.

The theory of the leading hyperfine interaction, namely,
the “Fermi” spin-spin contact interaction that gives rise to
the main (∼1 GHz) splitting in HD+ and ortho-H+

2 , has been
recently improved [6,8]. The next step consists in improving
the next largest hyperfine coefficients, related to the electronic
spin-orbit and spin-spin tensor (dipolar) interactions [9,10]. It
is worth noting that the spin-orbit and spin-spin tensor interac-
tions, being essentially free of nuclear finite-size and structure
corrections, allow for more precise tests of the theory with
respect to the contact interaction. In Ref. [5] we derived the
effective Hamiltonian for relativistic corrections of order mα6

in the hydrogen molecular ions, following the nonrelativistic
QED (NRQED) approach that had been previously validated
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by applying it to the hyperfine splitting of the 2P state in
hydrogen [11]. This allowed us to get improved values of the
spin-orbit coefficient for a few states [5]. In this work, we
improve the theory further by deriving the radiative correction
at the following order mα7 ln α.

We then present extensive numerical calculations of the
spin-orbit and spin-spin tensor coefficients in the slightly
simpler case of H+

2 , whereas HD+ will be considered in
a forthcoming publication. There are several motivations to
study the hyperfine structure specifically in H+

2 . Recent efforts
and proposals towards high-resolution laser spectroscopy of
this ion [12–14] offer opportunities to test the theory; ac-
curate theoretical predictions of the hyperfine splitting are
also likely to be required to extract spin-averaged transition
frequencies, similarly to HD+ [1,2]. Moreover, H+

2 is of high
astrophysical importance due to its role in the formation of
H+

3 . This has made its radio-astronomical detection, using,
e.g., hyperfine transitions analogous to the 21-cm line in
atomic hydrogen, a long-standing goal [15–17]. Interest in
H+

2 is further enhanced by prospects of experimental studies
on the antihydrogen molecular ion H̄−

2 , aimed at performing
improved tests of the CPT symmetry [18]; some of these
tests could be performed through measurements of hyperfine-
Zeeman transitions. Finally, a few hyperfine intervals that are
essentially independent from the “Fermi” coefficients have
been measured with very high precision (∼10−7) [19], thus
providing a stringent test of theory for the spin-orbit and
spin-spin tensor interactions.

II. NRQED HAMILTONIAN

For calculation of mα7-order corrections, a more complete
version of the NRQED Hamiltonian used in our previous
works [5,11] is required. Namely, its coefficients should be
determined up to first order in α by matching NRQED and
QED scattering amplitudes [20–22]. Writing only the terms
that are relevant for the present consideration, the NRQED
Hamiltonian has the form
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HI = eA0 + π2

2m
− π4

8m3
− cF

e

2m
σ ·B − cD

e

8m2
[∂·E] + cS

e

8m2
σ ·(π×E − E×π)

+ cW
e

8m3
{π2, σ ·B} − cq2

e

8m3
σ ·[�B] + cp′ p

e

8m3
(σ ·π B·π + π·B σ ·π) + cM

e

8m3
{π, [∂×B]}

+ cX1

ie

128m4

[
π2, (π·E + E·π)

] + cX2

e

64m4
{π2, [∂·E]} − cX3

e

8m4
[�[∂·E]]

− cY1

e

64m4
{π2, σ ·(π×E−E×π)} + cY2

ie

4m4
εi jkσ

iπ j[∂·E]π k, (1)

where π = p − eA, E = −∂t A−∇A0, B = ∇×A, [X,Y ] =
XY − Y X , and {X,Y } = XY + Y X . Square brackets around
quantities imply that derivatives act only within the bracket
[this notation applies only to Eq. (1) and is not used in the
following].

The above expression differs from Eq. (1) of [22], which
is complete up to the order 1/m4, in several details. First,
we have omitted terms involving the coefficients cX4 and
cX7 − cX12 , which contribute only at orders mα8 and above,
and the two-photon (seagull) terms involving cA1 and cA2 ,
since for the corrections we aim to calculate it is sufficient
to perform a matching of one-photon scattering amplitudes.
Second, the terms involving the coefficients cW1 and cW2 have
been reformulated by introducing the coefficients cW and c2

q,
as done in [20,23]. In a similar way, we have reformulated
the terms involving cX5 and cX6 by introducing cY1 and cY2 .
The reason behind these transformations is to get simpler
expressions for the NRQED effective potentials. Finally, for
convenience we have changed the definitions of cX1 − cX3 by
introducing numerical prefactors in the corresponding terms.

For the following calculations, π can be replaced by p in
the last three lines because the terms involving A contribute
only at higher orders.

The QED scattering amplitude at tree level for a static
scalar field A0(q) is

AQED
E (p, p′) = −iA0J0(p, p′), (2)

where p, p′ are the four-momenta of the incident and scattered
particle, and J is the charge-current density operator, which is

written in terms of the Dirac and Pauli form factors F1(q2) and
F2(q2) (with q = p′ − p):

Jμ = ie u(p′)
(
γ μF1(q2) + iκ

2m
σμνqνF2(q2)

)
u(p). (3)

Here κ is the particle’s anomalous magnetic moment, and
u(p), u(p′) are on-shell Dirac spinors. Using the nonrelativis-
tic normalization condition u∗(p)u(p) = 1, a Dirac spinor can
be expressed in terms of a Schrödinger-Pauli spinor ψ (p) as

u(p) =
√

Ep + m

2Ep

(
ψ (p)

σ·p
Ep+m ψ (p)

)
, Ep =

√
m2 + p2. (4)

It can then be expanded in powers of p2/m2:

u(p) ≈
([

1 − p2

8m2 + 11p4

128m4 + · · · ]ψ
σ·p
2m

[
1 − 3p2

8m2 + · · · ]ψ
)

. (5)

The form factors can also be expanded as

F1(q2) = F 1 − F
′
1

q2

m2
+ F

′′
1

q4

m4
+ · · · , (6)

F2(q2) = F 2 − F
′
2

q2

m2
+ · · · (7)

with F 1 = F 2 = 1 for an electron. Using Eqs. (2)–(3) and
(5)–(7), one gets the following expansion of the QED scat-
tering amplitude:

AQED
E (p, p′) = ψ∗(p′)eA0

[
F 1 − q2

8m2
(F 1 + 2κF 2 + 8F

′
1) + i

σ ·(q×p)

4m2
(F 1 + 2κF 2)

+ q4

8m4
(F

′
1 + 2κF

′
2 + 8F

′′
1 ) − i

σ ·(q×p)q2

4m4
(F

′
1 + 2κF

′
2) + q2(p′2 + p2)

64m4
(3F 1 + 4κF 2)

+ (p′2 − p2)2

128m4
(5F 1 + 4κF 2) − i

σ ·(q×p)(p′2 + p2)

32m4
(3F 1 + 4κF 2) + · · ·

]
ψ (p). (8)

Similarly, for a vector field A(q), the scattering amplitude

AQED
M (p, p′) = −iAμJμ(p, p′) (9)
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can be expanded as follows:

AQED
M (p, p′) = ψ∗(p′)eA·

[
− (p′ + p)

2m
F 1 − i

(σ×q)

2m
(F 1 + κF 2) + q2(p′ + p)

16m3
(8F

′
1 + κF 2) + (p′ + p)(p′2 + p2)

8m3
F 1

+ q(p′2 − p2)

16m3
(F 1 − κF 2) + i

(σ×q)(p′2 + p2)

8m3
F 1 + i

[σ×(p′ + p)](p′2 − p2)

16m3
F 1

+i
(σ ·p′)(p×q) + (σ ·p)(p′×q)

8m3
κF 2 + i

q2(σ×q)

16m3
(κF 2 + 8F

′
1 + 8κF

′
2)

]
ψ (p). (10)

The NRQED scattering amplitude is directly obtained from the Hamiltonian (1). For a scalar field one gets

ANRQED
E (p, p′) = ψ∗(p′)eA0

[
1 − cD

q2

8m2
+ icS

σ ·[q×(p′ + p)]

8m2
+ cX1

(p′2 − p2)2

128m4
+ cX2

(p′2 + p2)q2

64m4
+ cX3

q4

8m4

− icY1

(p′2 + p2)σ ·[q×(p′ + p)]

64m4
+ icY2

σ ·[q×(p′ + p)]q2

8m4

]
ψ (p), (11)

and for a vector field:

ANRQED
M (p, p′) = ψ∗(p′)eA·

[
− (p′ + p)

2m
− icF

(σ×q)

2m
+ (p′2 + p2)(p′ + p)

8m3
+ icW

(p′2 + p2)(σ×q)

8m3
+ icq2

q2(σ×q)

8m3

+ icp′ p
(σ ·p′)(p×q) + (σ ·p)(p′×q)

8m3
+ cM

q2(p′ + p)

8m3

]
ψ (p). (12)

Matching Eq. (11) with Eq. (8) and Eq. (12) with Eq. (10) allows us to determine the coefficients of the NRQED Hamiltonian.
Note that the last term in the third line of Eq. (10) does not appear in the corresponding NRQED expression (12), because it is
gauge dependent and thus does not contribute to the scattering amplitude. Our final result is

cF = F 1 + κF 2, cD = F 1 + 2κF 2 + 8F
′
1, cS = F 1 + 2κF 2,

cW = F 1, cq2 = 1

2
(κF 2 + 8F

′
1 + 8κF

′
2), cp′ p = κF 2, (13)

cM = 1

2
(κF 2 + 8F

′
1), cX1 = 5F 1 + 4κF 2, cX2 = 3F 1 + 4κF 2,

cX3 = F
′
1 + 2κF

′
2 + 8F

′′
1, cY1 = 3F 1 + 4κF 2, cY2 = −(F

′
1 + 2κF

′
2).

This can be compared with Ref. [22] with the help of the relationships

cW + cq2 = cW1 , cq2 = cW2 ,

cY1 = 32cX5 , −cY1 + 8cY2 = 32cX6 , (14)

which are easily obtained using the equation q2 = p′2 + p2 − 2p′ ·p. Our results are in agreement with those of Ref. [22], except
for cX1 and cX3 . Note that these two coefficients do not depend on spin and therefore do not play any role in the interactions
studied in this work. For the electron case, the first expansion coefficients of the form factors are

F
′
1 = α

3π

[
ln

(m

λ

)
− 3

8

]
+ · · · , F

′′
1 = α

20π

[
ln

(m

λ

)
− 11

12

]
+ · · · , aeF

′
2 = α

12π
+ · · · , (15)

where λ is a photon mass, and ae is the electron’s anomalous magnetic moment. The coefficients of the NRQED Hamiltonian
are then

cF = 1 + ae, cD = 1 + 2ae + 8

3

α

π

[
ln

(m

λ

)
− 3

8

]
, cS = 1 + 2ae,

cW = 1, cq2 = ae

2
+ 4

3

α

π

[
ln

(m

λ

)
− 1

8

]
, cp′ p = ae, (16)

cM = ae

2
+ 4

3

α

π

[
ln

(m

λ

)
− 3

8

]
, cX1 = 5 + 4ae, cX2 = 3 + 4ae,

cX3 = α

π

[
11

15
ln

(m

λ

)
− 13

40

]
, cY1 = 3 + 4ae, cY2 = −1

3

α

π

[
ln

(m

λ

)
+ 1

8

]
.

022816-3



HAIDAR, KOROBOV, HILICO, AND KARR PHYSICAL REVIEW A 106, 022816 (2022)

It is important to note that logarithmic contributions can
be immediately obtained by substituting the photon mass
λ in the ln(m/λ) terms with the natural energy scale mα2

(see, e.g., [24]).

III. HYPERFINE STRUCTURE CORRECTIONS AT
ORDERS mα6 AND mα7 ln(α)

A. Terms contributing at the order mα6

Effective potentials contributing to the spin-orbit and spin-
spin tensor interactions can be obtained from the NRQED
Hamiltonian, Eq. (1), using perturbation theory. For the mα6

order, this has been done in our previous work [5]. We recall
these results before moving on to the corrections appearing at
order mα7 ln(α). We use natural relativistic units (h̄ = c = 1)
and the following notations: se is the electron spin, Z1, Z2

and M1, M2 are the nuclear charges and masses (here Z1 =
Z2 = 1, M1 = M2 = mp), ra = re − Ra (a = 1, 2) is the posi-
tion of the electron with respect to nucleus a, and pe, P1, P2

are the impulse operators for the electron and both nuclei,
respectively.

We first list the corrections to the electronic spin-orbit
interaction. The total energy correction can be written as

�Eso(6) = �EA
so(6) + �EB

so(6). (17)

Here the first term is the first-order contribution, given by the
expectation value of a mα6-order effective Hamiltonian:

�EA
so(6) = 〈Hso(6)〉,

Hso(6) = cWUW + cY1UY1 + cSUCM + UMMN ,

UW = Za

4m3Ma

{
p2

e,
1

r3
a

(
ra×Pa

)}·se,

UY1 = − Za

16m4

{
p2

e,
1

r3
a

(ra×pe)

}
·se,

UCM = Z2
a

4m2Ma

1

r4
a

(ra×Pa)·se + Z1Z2

4m2M1

1

r1r3
2

(r2×P1)·se

+ Z1Z2

4m2M2

1

r3
1r2

(r1×P2)·se

− Z1Z2

4m2Ma

1

r3
1r3

2

(r1×r2)(ra ·Pa)·se,

UMMN = − Z2
a

2m2Ma

1

r4
a

(ra×pe)·se, (18)

with implicit summation over a = 1, 2. 〈·〉 denotes an expecta-
tion value with the nonrelativistic wave function ψ0. We have
omitted retardation terms, which were considered in [5] and
shown to be negligibly small. The second term of Eq. (17)
is the second-order contribution, which arises from various
terms of the Breit-Pauli Hamiltonian:

�EB
so(6) = �Eso-HB + �Eso-ret + �E (1)

so-so,

�Eso-HB = 2〈HsoQ(E0 − H0)−1QHB〉,
�Eso-ret = 2〈HsoQ(E0 − H0)−1QHret〉,
�E (1)

so-so = 〈[HsoQ(E0 − H0)−1QHso](1)〉,

(19)

where H0 and E0 are, respectively, the nonrelativistic
Hamiltonian and energy, and Q is a projection operator on
a subspace orthogonal to ψ0. A(k) denotes the term of rank
k in the decomposition of A as a sum of irreducible tensor
operators. The involved terms of the Breit Pauli-Hamiltonian
are

HB = − p4
e

8m3
+ Zaπ

2m2
δ(ra),

Hret = Za

2

pi
e

m

(
δi j

ra
+ ri

1r j
1

r3
a

)
P j

a

Ma
,

Hso = Za(1+2ae)

2m2

(ra×pe)·se

r3
a

− Za(1+ae)

mMa

(ra×Pa)·se

r3
a

.

(20)

We now turn to the electron-nucleus spin-spin tensor interac-
tion. Similarly, we have

�E (2)
ss(6) = �E (2)A

ss(6) + �E (2)B
ss(6), (21)

where the first term is the expectation value of a mα6-order
effective Hamiltonian:

�E (2)A
ss(6) = 〈

H (2)
ss(6)

〉
,

H (2)
ss(6) = cWU (2)

W + cSU (2)
CM,

U (2)
W = − 1

4m2

{
p2

e,
r2

aμe ·μa−3(μe ·ra)(μa ·ra)

r5
a

}
,

U (2)
CM = − Za

6m

r2
aμe ·μa − 3(μe ·ra)(μa ·ra)

r6
a

− 1

6m

[
Z2

(r1 ·r2)μe ·μ1 − 3(μe ·r1)(μ1 ·r2)

r3
1r3

2

+ Z1
(r1 ·r2)μe ·μ2 − 3(μe ·r2)(μ2 ·r1)

r3
1r3

2

]
.

(22)

Here μe and μa are the electronic and nuclear magnetic
moments. Neglecting the electron’s anomalous magnetic mo-
ment, we get μe = −(|e|/m)se. In H+

2 , μa = 2μpμN Ia, where
μp is the proton’s magnetic moment in units of the nuclear
Bohr magneton μN , and Ia the spin operator of nucleus a. The
second-order contribution is

�E (2)B
ss(6) = �E (2)

ss-HB
+ �E (2)

so-ss + �E (2)
so-soN

,

�E (2)
ss-HB

= 2
〈
H (2)

ss Q(E0 − H0)−1QHB
〉
,

�E (2)
so-ss = 2

〈[
H (2)

ss Q(E0 − H0)−1QHso
](2)〉

,

�E (2)
so-soN

= 2
〈[

HsoQ(E0 − H0)−1QHsoN

](2)〉
.

(23)

It involves two additional terms of the Breit-Pauli
Hamiltonian:

H (2)
ss =

[
μe ·μa

r3
a

− 3
(μe ·ra)(μa ·ra)

r5
a

]
− 8πα

3
μe ·μaδ(ra),

HsoN = 1

m

(ra×pe)·μa

r3
a

− 1

Ma

(
1 − ZampIa

Maμa

)
(ra×Pa)·μa

r3
a

.

(24)

We have changed our notations of the first-order terms with
respect to Ref. [5] in order to clearly identify their link to
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the terms of the NRQED Hamiltonian. UCM and UMMN denote
seagull terms with simultaneous exchange of a Coulomb and
a magnetic photon (CM), and of two magnetic photons at the
nucleus (MMN ). The correspondence with notations used in
our earlier work [5] is the following:

UW ↔ U2b, UY1 ↔ U1b, UCM ↔ U5a, UMMN ↔ U6b,

U (2)
W ↔ U (2)

2d , U (2)
CM ↔ U (2)

5b . (25)

None of the coefficients involved in the terms listed in this
section have any logarithmic contribution at first order in α

[see Eq. (16)]. One can conclude that these terms do not
contribute to the order mα7 ln(α). Since the nonlogarithmic
mα7-order correction is not considered in the present work, in
our numerical calculations we truncate the expressions of all
coefficients at zero order in α.

B. Terms contributing at the order mα7 ln(α)

Contributions at this order stem from spin-dependent co-
efficients of the NRQED Hamiltonian that depend on ln(α),
i.e., cq2 and cY2 , and can be derived using perturbation theory
as done in [5,11]. The first contribution is from a transverse
photon exchange with the cq2 term on the electron side and a
dipole vertex [labeled 2N in Eq. (7) of [5]] on the nucleus side.
The corresponding effective potential in momentum space is

Uq2 =
[ ie

8m3
q2(σ×q)

]k[
Zae

(Pa + P′
a)

2Ma

]l

×
[
− 1

q2

(
δkl − qkql

q2

)]

= iZae2

16m3Ma
(σ×q)·(Pa + P′

a)

= − iZae2

16m3Ma
[q×(Pa + P′

a)]·σ. (26)

After Fourier transform, the effective potential in real space is
found to be

Uq2 = iZae2

8m3Ma
[pe×4πδ(ra)Pa − Pa×4πδ(ra)pe]·se. (27)

The other contribution is due to a Coulomb photon exchange
with the cY2 term on the electron side and a Coulomb vertex
[2N in Eq. (7) of [5]] on the nucleus side:

UY2 =
[ ie

8m4
σ ·[q×(p′ + p)]q2

]
[−Zae]

[
1

q2

]

= − iZae2

4m4
(q×p)·σ, (28)

which yields for the real-space effective potential

UY2 = iZae2

2m4
[pe×4πδ(ra)pe]·se. (29)

Both terms contribute to the spin-orbit interaction. The total
effective potential of order mα7 ln(α) is thus obtained as

Hso(7 ln) = cq2Uq2 + cY2UY2 , (30)

where only logarithmic terms are taken into account in the
expressions of the coefficients cq2 and cY2 [Eq. (16)]:

cq2 ≡ 4

3

α

π
ln(α−2), cY2 ≡ −1

3

α

π
ln(α−2). (31)

Note that the nonrecoil term Uq2 had been obtained for an
electron in an external potential in [25] (see also [26]),
but the recoil term UY2 had not been considered so far, to
the best of our knowledge. There is also a second-order
perturbation term:

�EB
so(7 ln) = 2 〈HsoQ(E0 − H0)−1QH(5 ln)〉, (32)

where

H(5 ln) = α3 4

3
ln(α−2)Zaδ(ra) (33)

is the logarithmic part of the effective Hamiltonian describing
leading-order radiative corrections. The total correction to the
spin-orbit interaction at this order is

�Eso(7 ln) = �EA
so(7 ln) + �EB

so(7 ln), (34)

with

�EA
so(7 ln) = 〈Hso(7 ln)〉. (35)

From the above discussion of logarithmic terms in the
NRQED Hamiltonian coefficients, it is clear that there are
no effective potentials contributing to the spin-spin tensor
interaction at the order mα7 ln(α). The only contribution is
thus the second-order term

�E (2)
ss(7 ln) = 2

〈
H (2)

ss Q(E0 − H0)−1QH(5 ln)
〉
. (36)

The explicit expressions of corrections to the spin-orbit and
spin-spin tensor coefficients, which in the H+

2 case are denoted
by ce and d1 respectively [see Eq. (3) of [9] for definitions],
in terms of reduced matrix elements of the effective potentials
listed in this section, are given in Appendix A (see [27] for
details).

IV. NUMERICAL RESULTS

A. Variational method

The main features of our numerical method have been de-
scribed in Ref. [5]. The wave function for a rovibrational state
(v, L) is expanded in terms of exponentials of interparticle
distances in the following way:

�0(R, r1) =
∑

l1+l2=L

Y l1l2
LM (R̂, r̂1)Gl1l2 (R, r1, r2),

Y l1l2
LM (R̂, r̂1) = Rl1 rl2

1 {Yl1 (R̂) ⊗ Yl2 (r̂1)}LM,

Gl1l2 (R, r1, r2) =
N/2∑
n=1

{Cn Re[e−αnR−βnr1−γnr2 ]

+ Dn Im[e−αnR−βnr1−γnr2 ]},

(37)

with R = R2 − R1. The complex exponents αn, βn, γn are
generated in a pseudorandom way in several intervals, which
play the role of variational parameters. We have used two
intervals for the lower vibrational states (0 � v � 4) and four
for higher states (5 � v � 9).
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TABLE I. Convergence of the reduced matrix elements involved in the first-order terms UW and UY1 [Eq. (18)] for the (L = 1, v = 4) state
of H+

2 (values are given in a.u).

N p2
e

1
r3
1

[r1×pe] p2
e

1
r3
2

[r2×pe] p2
e

1
r3
1

[r1×P1] p2
e

1
r3
2

[r2×P2]

1400 −0.209756[−03] −0.211145[−03] −0.718198 −0.718358
1600 −0.211462[−03] −0.212048[−03] −0.718194 −0.718138
1800 −0.210752[−03] −0.210806[−03] −0.718136 −0.718143
2000 −0.210069[−03] −0.211858[−03] −0.718145 −0.718142
2200 −0.210909[−03] −0.210218[−03]
2400 −0.211099[−03] −0.211191[−03]
2600 −0.211024[−03] −0.211042[−03]

B. Second-order terms

Second-order terms have a general expression of the type
〈AQ(E0 − H0)−1QB〉. They are evaluated by solving numeri-
cally the equation

(E0 − H0)ψ (1) = (B − 〈B〉) ψ0, (38)

and calculating the scalar product 〈�0|A|ψ (1)〉. In order to
solve Eq. (38), ψ (1) is expanded in an “intermediate” vari-
ational basis following Eq. (37). As discussed in [5], the
most difficult contributions for numerical evaluation are the
singular second-order terms: �Eso-HB [Eq. (19)], �Ess-HB ,
[Eq. (23)], �EB

so(7 ln) [Eq. (32)], and �E (2)
ss(7 ln) [Eq. (36)]. In-

deed, if B = HB or B = H(5 ln) in Eq. (38), the intermediate
wave function ψ (1) behaves like 1/r1 (1/r2) at small electron-
nucleus distances, resulting in very slow convergence. To
circumvent this problem, we rewrite the second-order energy
shift as [5]

〈AQ(E0 − H0)−1QB〉
= 〈AQ(E0 − H0)−1QB′〉 + 〈UA〉 − 〈U 〉〈A〉, (39)

where

U = c1

r1
+ c2

r2
,

B′ = B − (E0 − H0)U − U (E0 − H0).
(40)

For the case B = HB, we have

ca = μa(2μa − me)

4m3
e

Za, (41)

with μa = Mame/(Ma + me), and for B = H(5 ln),

ca = α3 4

3
ln(α−2)Za ×

(
−μaZa

2π

)
. (42)

The replacement of B by B′ in Eq. (38) reduces the singularity
of the intermediate wavefunction. The remaining logarithmic
singularity ψ (1) ∼ ln(r1) [ln(r2)] still slows the convergence,
and necessitates expanding ψ (1) in a “multilayer” basis set
(see Table I in [5] for an example), where the first subsets
(between 2 and 4) approximate the regular part, and eight
additional subsets contain growing exponents βn (γn) up to
104 in order to reproduce the singular behavior.

C. Convergence study

We now analyze the convergence of our numerical results.
For first-order terms, sufficient accuracy is quite easily ob-

tained; for illustration, the reduced matrix elements involved
in calculation of UW and UY1 [Eq. (18)] are shown in Table I. It
is worth noting that the expectation values in columns 2 and 3
(as well as 4 and 5) are not found to be exactly equal in our nu-
merical calculations, as they should be due to the symmetry of
the problem with respect to the exchange of nuclei. This is be-
cause the permutation symmetry is not explicitly implemented
in our basis functions, which would be difficult to do with
our choice of coordinates (R, r1) [Eq. (37)]. The observed
asymmetries provide a useful cross-check of the precision of
our results. Convergence is slower for the terms involving
(ra×pe), which are related to the electronic contribution to the
total orbital momentum, because their nonzero value entirely
comes from the smaller “non-σ” [i.e., l2 �= 0 in Eq. (37)]
components of the wave function. For the same reason, these
matrix elements are smaller than those involving (ra×Pa)
by a factor of order m/Ma ∼ 10−3. Overall, first-order terms
are obtained with at least three or four significant digits of
accuracy.

Second-order terms, especially the singular terms dis-
cussed above, require heavier numerical calculations. This
is illustrated in Table II, which shows the convergence of
�Eso-HB [Eq. (19)]. The quantities appearing in this table are

Aa =
〈
vL

∥∥∥∥ 1

r3
a

(ra × pe)Q(E0 − H0)−1QH ′
B

∥∥∥∥vL

〉
, (43)

where H ′
B is the effective Hamiltonian obtained by applying

the transformation (40) to B = HB, whereas the left-hand side
appears in the nonrecoil part of Hso [Eq. (20)]. From Table II
it can be estimated that these matrix elements are obtained
with three significant digits. Second-order matrix elements
involving (ra × Pa) in the left-hand side, corresponding to the
recoil part of Hso, exhibit faster convergence (not shown in
Table II), similarly to what was discussed for first-order terms.
A term that deserves a separate discussion, �E (1)

so-so [Eq. (19)],
is also shown in Table II. Again, only the contributions from
the nonrecoil part of Hso, which are the most difficult to
converge, are shown. These contributions, denoted by ae

0 and
ae

+, are obtained from Eq. (A6) by replacing Aso with Ae
so,

which includes only the first term of Hso:

Ae
so = Za

2m2

(ra×pe)

r3
a

. (44)

The corresponding contribution to ce is [see Eq. (A5)]

�c(6)
e |soe−soe = −1

2

1

L(L + 1)
[(L + 1)ae

− + ae
0 − Lae

+]. (45)
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TABLE II. Convergence of second-order terms contributing to �Eso-HB and to �E (1)
so-so for the (L = 1, v = 4) state of H+

2 (values are given
in a.u).

N A1 A2 ae
0 ae

+ �c(6)
e |soe−soe

8000 −0.746134[−04] −0.801218[−04] −0.12654393[−01] −0.12680066[−01] −0.6418[−05]
10 000 −0.795165[−04] −0.797075[−04] −0.12657847[−01] −0.12680231[−01] −0.5596[−05]
12 000 −0.796812[−04] −0.797663[−04] −0.12657987[−01] −0.12680252[−01] −0.5566[−05]
14 000 −0.796931[−04] −0.797285[−04] −0.12658040[−01] −0.12680278[−01] −0.5560[−05]
16 000 −0.797234[−04] −0.797646[−04] −0.12658073[−01] −0.12680294[−01] −0.5555[−05]

As can be seen from Table II, the quantities ae
0, ae

+ converge
more rapidly than A1 and A2, in accordance with the fact that
Hso is less singular than H ′

B. However, due to a quasicancel-
lation between the different angular momentum components,
they are larger than the total contribution �c(6)

e |so−so by sev-
eral orders of magnitude. As a consequence, they need to
be calculated with a high relative accuracy, which requires
using a large variational basis. From the results of Table II,
the numerical uncertainty of �c(6)

e |so−so may be conservatively
estimated to 10−7Ehα

4 (where Eh is the Hartree energy), i.e.,
less than 2 Hz.

D. Results

The values of all the contributions to the spin-orbit coeffi-
cient ce are given in Table III for a few states of interest for
experiments. Note that the term UMMN [Eq. (18)] was omitted,
because it was found to be smaller than 1 Hz, which is neg-
ligible with respect to the overall uncertainty. Our theoretical
values of ce can be found in the last column. Complete results
for the rovibrational states (0 � L � 4, 0 � v � 9) are given
in the Supplemental Material [28].

The numerical uncertainty is dominated by the singu-
lar second-order term �Eso-HB ; from the convergence study
shown in the previous paragraph and similar tests performed
for higher vibrational states, it is estimated to be smaller than
10 Hz for all rovibrational states. The theoretical uncertainty
is mainly due to the yet uncalculated nonlogarithmic correc-
tion of order mα7 [26,29]. We estimate it to about one third of
the mα7 ln(α) correction, which corresponds to 100–150 Hz
or 3–4 ppm.

Regarding the spin-spin tensor interactions, we write the
related term of the H+

2 effective spin Hamiltonian [9] in the
following way:

Hss(2)
eff = d1(2L2(se ·I) − 3[(L·se)(L·I) + (L·I)(L·se)])

(46)

This definition differs from that of Ref. [9] by a factor 3(2L −
1)(2L + 3) = 15 (for L = 1), but coincides with that of the
E6 coefficient in the HD+ effective spin Hamiltonian [10],
which facilitates future comparison between H+

2 and HD+.
The values of all the contributions to the d1 coefficient are
given in Table IV for a few L = 1 states, whereas complete
results for the rovibrational states (0 � L � 4, 0 � v � 9) are
given in the Supplemental Material [28]. The second-order
terms �E (2)

so-ss and �E (2)
so-soN

have been omitted because they
were found to be much smaller than the overall uncertainty.
The numerical uncertainty, dominated by the singular second-
order term �E (2)

ss-HB
, is estimated to be smaller than 1 Hz for all

rovibrational states. Similarly to the spin-orbit coefficient, the
theoretical uncertainty due to the yet uncalculated nonloga-
rithmic correction of order mα7 is estimated to about one third
of the mα7 ln(α) correction, which corresponds to 10–20 Hz
or about 2 ppm.

V. COMPARISON WITH EXPERIMENTS

We now use our values of the ce and d1 coefficients
to obtain improved theoretical predictions of the hyperfine
intervals measured in [19], see Table V. To do this, we di-
agonalize the effective spin Hamiltonian of Ref. [9]. The

TABLE III. Corrections to the spin-orbit interaction coefficient ce for a few rovibrational states of H+
2 (in kHz). The leading-order

(Breit-Pauli) value c(BP)
e (Ref. [9]) is given in column 2. Columns 3–5 and 6–8 are respectively the first-order and second-order contributions

[Eqs. (18) and (19)] at the mα6 order, and the total correction at this order, �c(6)
e , is given in column 9. Columns 10–12 are the first-order

[Eqs. (35) and 30] and second-order [Eq. (32)] contributions at the mα7 ln(α) order, respectively. The total correction at this order, �c(7 ln)
e ,

is given in column 13. The last column is our value of ce. Its estimated uncertainty (equal to one third of �c(7 ln)
e ) is indicated between

parentheses.

(L, v) c(BP)
e UY1 UW UCM �Eso-HB �E (1)

so-so �Eso-ret �c(6)
e UY1 Uq2 �Eso-H(5 ln) �c(7 ln)

e ce (this work)

(1,0) 42 416.318 1.551 −3.631 0.028 2.765 0.414 0.333 1.460 −0.035 0.060 −0.486 −0.460 42 417.32(15)
(1,4) 32 654.638 1.205 −2.979 0.055 2.154 0.325 0.261 1.020 −0.027 0.049 −0.364 −0.342 32 655.32(11)
(1,5) 30 437.196 1.127 −2.813 0.058 2.010 0.305 0.239 0.925 −0.025 0.046 −0.337 −0.316 30 437.80(11)
(1,6) 28 280.421 1.049 −2.645 0.059 1.858 0.283 0.220 0.824 −0.023 0.044 −0.312 −0.292 28 280.95(10)
(2,0) 42 162.530 1.542 −3.601 0.027 2.733 0.412 0.336 1.447 −0.034 0.060 −0.481 −0.456 42 163.52(15)
(2,1) 39 571.598 1.451 −3.440 0.036 2.579 0.388 0.311 1.326 −0.032 0.057 −0.448 −0.424 39 572.50(14)
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TABLE IV. Corrections to the spin-spin tensor interaction coefficient d1 for a few rovibrational states of H+
2 (in kHz). The leading-order

(Breit-Pauli) value d (BP)
1 (Ref. [9]) is given in column 2. Columns 3–4 and 5 are respectively the first-order and second-order contributions

[Eqs. (22) and (23)] at the mα6 order. The total correction at this order, �d (6)
1 , is given in column 6. Column 7 is the second-order contribution

at the mα7 ln(α) order [Eq. (36)]. The last column is our value for d1. Its estimated uncertainty (equal to one third of �d (7 ln)
1 ) is indicated

between parentheses. To match the notations of Ref. [9], all values should be multiplied by 3(2L − 1)(2L + 3) = 15.

(L, v) d (BP)
1 U (2)

W U (2)
CM �E (2)

ss-HB
�d (6)

1 �d (7 ln)
1 d1 (this work)

(1,0) 8565.983 −0.802 0.092 0.951 0.241 −0.050 8566.174(17)
(1,4) 6537.247 −0.642 0.079 0.740 0.178 −0.039 6537.386(13)
(1,5) 6080.287 −0.603 0.076 0.676 0.149 −0.036 6080.400(12)
(1,6) 5637.524 −0.564 0.072 0.629 0.137 −0.033 5637.627(11)

values of the spin-spin contact interaction coefficient bF are
taken from [6]; it is worth recalling that they have been
found to be in excellent agreement with experimental rf
spectroscopy data [30]. The smaller hyperfine coefficients
cI and d2, which respectively describe the nuclear spin-
orbit and the proton-proton spin-spin tensor interaction, are
calculated in the framework of the Breit-Hamiltonian with
account of the electron’s anomalous magnetic moment [9].
The values of all the coefficients used here can be found in
Table VI (Appendix B).

In order to estimate the uncertainties of the theoretical
hyperfine intervals fv , we calculated the derivatives

γce,v = ∂ fv
∂ce

, γcI ,v = ∂ fv
∂cI

, . . . . (47)

Their values for the three rovibrational levels of interest are
given in Table VII (Appendix C). The uncertainty of fv is
calculated via propagation of the uncertainties of the hyperfine
coefficients. Note that this uncertainty only weakly depends
on our assumptions regarding correlations, because it is dom-
inated by the uncertainty of the ce coefficient, whereas the
second largest uncertainty, from d1, is smaller by more than
one order of magnitude. Assuming no correlations between
uncertainties of different coefficients, the total uncertainty is

u( fv ) =
√

[γce,vu(ce, v)]2 + [γcI ,vu(cI , v)]2 + [γbF ,vu(bF , v)]2 + [γd1,vu(d1, v)]2 + [γd2,vu(d2, v)]2. (48)

The uncertainties u(ce) and u(d1) have been estimated above,
u(bF ) is taken from [6], and for the coefficients calculated at
the Breit-Pauli level we take u(cI ) = α2cI and u(d2) = α2d2.

The comparison between theory and experiment, presented
in Table V, reveals a reasonable agreement. The observed de-
viations, which range between 1.2 and 1.6 σ , may for example
be caused by a slight underestimate of the nonlogarithmic
correction of order mα7 to the spin-orbit coefficient ce.

In conclusion, we have advanced the hyperfine structure
theory in hydrogen molecular ions by calculating higher-order
corrections to the spin-orbit and spin-spin tensor interactions.
This allowed us to improve the accuracy of the related hy-

TABLE V. Comparison between theory and experiment for
the hyperfine splitting between the (F = 1/2, J = 3/2) and (F =
1/2, J = 1/2) states (in MHz). The second column gives the theoret-
ical prediction obtained from calculation of the hyperfine coefficients
at the Breit-Pauli level, and the third one is our prediction including
higher-order corrections to bF , ce, and d1. The experimental values
are shown in the last column.

(L, v) Theory [9] Theory (this work) Experiment [19]

(1,4) 15.371 0(9) 15.371 316(56) 15.371 407(2)
(1,5) 14.381 2(8) 14.381 453(52) 14.381 513(2)
(1,6) 13.413 2(7) 13.413 397(48) 13.413 460(2)

perfine coefficients in H+
2 by about one order of magnitude

and reach agreement with rf spectroscopy data at a level of
4–6 ppm. In the future, the theory can be improved further
by calculating nonlogarithmic mα7-order corrections to the
spin-orbit coefficient. Application to HD+, which has been a
subject of several high-precision experiments in recent years,
will be presented in a forthcoming paper.

APPENDIX A: EXPRESSIONS OF CORRECTIONS TO THE
HYPERFINE COEFFICIENTS

All the first-order terms contributing to the spin-orbit inter-
action, Eqs. (18), (35), and (30), as well as the second-order
terms �Eso−HB , �Eso−ret in Eq. (19) and �EB

so(7 ln) [Eq. (32)],
can be written in the form 〈Ui〉 = 〈Ai ·se〉, where Ai is a
vector operator acting on space variables. The corresponding
correction to the spin-orbit coefficient (denoted by ce in H+

2
[9]) is then obtained from the Wigner-Eckart theorem as

�ce(v, L) = 〈vL||Ai||vL〉
〈L||L||L〉 = 〈vL||Ai||vL〉√

L(L + 1)(2L + 1)
. (A1)

Similarly, the first-order terms contributing to the spin-spin
tensor interaction [Eq. (22)], and the second-order terms
�E (2)

ss-HB
in Eq. (23) and �E (2)

ss(7 ln) [Eq. (36)], can be written

in the form 〈Ui〉 = 〈T(2)
i ·U(2)〉, where T(2)

i is an operator of
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TABLE VI. Hyperfine coefficients for a few rovibrational states
of H+

2 (in kHz). The value of bF (resp. cI , d2) is taken from [6]
(resp. [9]). Uncertainties are discussed in the main text. To match
the notations of Ref. [9], all the d2 values should be multiplied by
3(2L − 1)(2L + 3) = 15.

(L, v) bF cI d2

(1,4) 836 728.705 −35.826 −16.414
(1,5) 819.226 705 −34.148 −15.531
(1,6) 803 174.518 −32.385 −14.633

rank 2 acting on space variables, and (see Appendix B in [5])

U(2)
μ = {se ⊗ I}(2)

μ =
√

3

2

[
1

2

(
si

eI j + s j
eI j

) − δi j

3
(se ·I)

](2)

μ

.

(A2)

Here I = I1 + I2 is the total nuclear spin. Using again the
Wigner-Eckart theorem and the relationship

(L ⊗ L)(2) · (se ⊗ I)(2)

= 1

2

√
3

2

[
(L·se)(L·I) + (L·I)(L·se) − 2

3
L2(se ·I)

]
,

(A3)

one gets for the correction to the tensor coefficient (denoted
by d1 in H+

2 [9])

�d1(v, L) = − 1

2
√

6

〈vL||T(2)
i ||vL〉

〈L||(L ⊗ L)(2)||L〉

= − 〈vL||T(2)
i ||vL〉

2
√

L(L + 1)(2L − 1)(2L + 1)(2L + 3)
.

(A4)

Some of the second-order terms are more complicated be-
cause they involve a coupling of two spatial operators of rank
1 or 2. This case was treated in detail in the Appendix B of
[5]; we give here only the final formula for the term �E (1)

so−so
in Eq. (19), as obtained by applying Eqs. (B3) and (B6) of that
reference:

�ce(v, L) = −1

2

1

L(L + 1)
[(L + 1)a− + a0 − La+], (A5)

TABLE VII. Derivatives of the interval between the (F =
1/2, J = 3/2) and (F = 1/2, J = 1/2) states for three rovibrational
levels of H+

2 .

(L, v) γce,v γcI ,v γbF ,v γd1,v γd2,v

(1,4) 0.488 −1.989 0.0013 −0.266 0.257
(1,5) 0.489 −1.990 0.0012 −0.252 0.244
(1,6) 0.490 −1.991 0.0011 −0.238 0.230

where

a− = − 1

2L + 1

∑
n �=0

〈vL‖Aso‖vnL − 1〉〈vnL − 1‖Aso‖vL − 1〉
E0 − En

,

a0 = 1

2L + 1

∑
n �=0

〈vL‖Aso‖vnL〉〈vnL‖Aso‖vL〉
E0 − En

,

a+ = − 1

2L + 1

∑
n �=0

〈vL‖Aso‖vnL + 1〉〈vnL + 1‖Aso‖vL + 1〉
E0 − En

.

(A6)

Aso is the spatial part of the spin-orbit Hamiltonian Hso in
Eq. (20), i.e. Hso = Aso·se.

APPENDIX B: OTHER COEFFICIENTS OF THE
EFFECTIVE SPIN HAMILTONIAN

We give in Table VI the values of all the coefficients of
the H+

2 effective spin Hamiltonian (see Eq. (3) of [9]) in
the three rovibrational states for which theoretical hyperfine
intervals are calculated and compared with experimental data
(see Table V).

APPENDIX C: DERIVATIVES OF HYPERFINE INTERVALS
WITH RESPECT TO THE HYPERFINE COEFFICIENTS

We give in Table VII the values of the derivatives γce,v ,
γcI ,v, . . . (as defined in Eq. (47)) for the same three rovi-
brational states. These quantities are required to estimate the
uncertainties of theoretical hyperfine intervals (see Eq. (48)).
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