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A calculation of two-electron QED effects to all orders in the nuclear binding strength parameter Zα is
presented for the ground and n = 2 excited states of heliumlike ions. After subtracting the first terms of the
Zα expansion from the all-order results, we identify the higher-order QED effects of order mα7 and higher.
Combining the higher-order remainder with the results complete through order mα6 from Yerokhin and Pachucki
[Phys. Rev. A 81, 022507 (2010)], we obtain the most accurate theoretical predictions for the ground and
nonmixing n = 2 states of heliumlike ions with Z = 5–30. For the mixing 2 1P1 and 2 3P1 states, we extend the
previous calculation by evaluating the higher-order mixing correction and show that it defines the uncertainty of
theoretical calculations in the LS coupling for Z > 10.
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I. INTRODUCTION

Helium and heliumlike ions are the simplest few-body
atomic systems in nature. They have been extensively stud-
ied experimentally, measurements being facilitated by the
availability of long-lived metastable 3S and 3P states in their
spectrum [1]. The simplicity and the long history of exper-
imental studies make helium and heliumlike ions a widely
used testing ground for different methods of atomic-structure
calculations [2,3]. Alongside with the hydrogenlike atoms, the
heliumlike ions are the systems for which theoretical predic-
tions are the most accurate [4].

There are two essentially different approaches in ab initio
QED calculations of atomic energies. The first method, often
referred to as the “all-order” approach, starts with the Dirac
energies and accounts for the electron-electron interaction by
a systematic QED perturbation expansion. In this way one
includes all orders in the electron-nucleus binding strength
parameter Zα (where Z is the nuclear charge number and
α is the fine-structure constant) but expands in the electron-
electron interaction parameter 1/Z . For the high-Z ions the
electron correlation effects are small, and this approach yields
very accurate results [5–7]. For the lower-Z ions, however, the
relative contribution of uncalculated higher-order electron-
correlation effects grows and the accuracy of the method
diminishes. At present the most complete calculations for he-
liumlike ions with this method were reported in Refs. [8–10].

For low-Z systems and especially for the helium atom,
the best results are obtained with the method of the nonrel-
ativistic QED (NRQED). The starting point is the few-body
Schrödinger equation, which includes the Coulomb electron-
electron interaction to all orders. The relativistic and QED
effects are accounted for perturbatively, with the expansion
parameters α and Zα. For the helium atom both parameters
are small and the perturbation expansion converges rapidly,

yielding highly accurate theoretical predictions [11]. For heli-
umlike ions, however, the parameter Zα becomes larger and
the accuracy of the method diminishes, with uncalculated
higher-order effects enhanced by high powers of Z (up to Z9

in the case of fine-structure intervals [12]).
In order to achieve more accurate results, pure NRQED

calculations need to be complemented by a separate treatment
of higher-order (in Zα) effects, based on the all-order calcu-
lations. In this way, the two complementary approaches can
be merged, yielding an improved accuracy in the region of
medium Z , where each of these methods separately encoun-
ters difficulties. This “unified” approach was introduced for
heliumlike ions by Drake in Ref. [13]. It was advanced further
in our previous investigation [14], where all effects up to order
mα6 were taken into account. Recently, the unified approach
was applied to obtain the most accurate predictions for the fine
structure of lithiumlike ions [15].

The limitation on the accuracy of our previous work on
heliumlike ions [14] was coming from the fact that the
higher-order QED effects were obtained with the inclusion
of one-electron effects only (i.e., to the zeroth order in 1/Z).
The identification of the higher-order two-electron QED con-
tributions was not possible at that time, because of insufficient
numerical accuracy of the all-order QED calculations.

The goal of the present investigation is to perform a
high-precision numerical calculation of the two-electron QED
corrections to all orders in Zα and to identify the higher-order
mα7+ QED contribution to first order in 1/Z . The higher-order
correction obtained in this way is then added to the results
of Ref. [14], yielding improved theoretical predictions for
ionization energies of heliumlike ions.

An additional motivation for the present investigation
comes from the observation of a significant discrepancy
between theoretical predictions and experimental results
for the ionization energies of the triplet n = 2 states in
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the helium atom [16,17]. In view of this discrepancy,
it is important to cross-check the NRQED evaluation of
higher-order QED effects [16,18,19] against the all-order
calculations.

The paper is constructed as follows. Section II presents
a set of definitions and notations to be extensively used
throughout the paper. In Secs. III, IV, and V we describe our
all-order calculations of the screened self-energy, the screened
vacuum-polarization, and the two-photon exchange correc-
tions, respectively. In Sec. VI we compare the all-order results
for the nonmixing states with calculations performed within
the Zα-expansion approach and identify the remainder of or-
der mα7 and higher. In Sec. VII we describe the comparison of
the two approaches for the mixing 2 1P1 and 2 3P1 states and
calculate the mixing correction of order mα7 and higher. Fi-
nally, Sec. VIII presents our results for the ionization energies
and compares theoretical predictions with experimental data.
The relativistic units h̄ = c = 1 and Heaviside charge units
α = e2/(4π ) are used in the paper, unless explicitly specified
otherwise.

II. BASIC DEFINITIONS

Throughout the paper, we will extensively use several basic
QED operators: the operator of the electron-electron inter-
action I (ω), the one-loop self-energy operator �(ε), and the
one-loop vacuum-polarization potential UVP. The operator of
the electron-electron interaction I (ω) is defined by

I (ω, r1, r2) = e2 α
μ
1 αν

2 Dμν (ω, r12), (1)

where αμ = (1,α) are the Dirac matrices, r12 = r1 − r2, and
Dμν (ω, r12) is the photon propagator. The one-loop self-
energy operator �(ε) is defined by its matrix elements with
one-electron wave functions |a〉 and |b〉 as

〈a|�(ε)|b〉 = i

2π

∫ ∞

−∞
dω

∑
n

〈an|I (ω)|nb〉
ε − ω − uεn

, (2)

where the sum over n is extended over the complete spec-
trum of the Dirac equation (implying the summation over
the discrete states and the integration over the continuum
part of the spectrum) and u = 1 − iε is the infinitesimal ad-
dition which ensures the correct position of poles of the
electron propagator with respect to the integration contour.
The vacuum-polarization potential UVP is given by

UVP(x) = α

2π i

∫ ∞

−∞
dω

∫
d3y

1

|x − y| Tr[G(ω, y, y)], (3)

where G(ω) = (ω − hD)−1 is the Dirac-Coulomb Green func-
tion and hD is the one-electron Dirac-Coulomb Hamiltonian.

In order to simplify the following formulas, we use the
following short-hand notations [8] for the summations over
the Clebsch-Gordan coefficients in the initial- and the final-
state two-electron wave function:

Fi|i1i2〉 ≡ N
∑

μi1 μi2

CJM
ji1 μi1 , ji2 μi2

|i1i2〉, (4)

where |i1i2〉 is the direct product of the one-electron wave
functions |i1i2〉 = | ji1 li1μi1〉| ji2 li2μi2〉 and N is the normaliza-
tion factor, N = 1 for the nonequivalent electrons (i1 �= i2)
and N = 1/

√
2 for the case of equivalent electrons (i1 = i2).

We also introduce the permutation operators P and Q that
interchange the initial-state and final-state electrons, respec-
tively, ∑

P

(−1)P|Pi1Pi2〉 ≡ |i1i2〉 − |i2i1〉, (5)

∑
Q

(−1)Q|Qk1Qk2〉 ≡ |k1k2〉 − |k2k1〉, (6)

where the summation indices P and Q indicate that the sum-
mation is carried out over all permutations and (−1)P and
(−1)Q are the signs of the permutations.

The formulas for the two-electron QED corrections in
this paper will be written in the form that is often non-
symmetric with respect to the interchange of the initial- and
the final-state electron states. It is often the case that the
symmetry is preserved and can be proved explicitly. The ex-
ception is the case of nondiagonal matrix elements occurring
for the mixing 1P1 and 3P1 states; in this case it is as-
sumed that the formulas should be symmetrized with respect
(i1i2) ↔ (k1k2).

We will also use the following shorthand notations: 	a,b =
εa − εb, I ′(ω) = ∂I (ω)/(∂ω), and �′(ε) = ∂�(ε)/(∂ε).

III. SCREENED SELF-ENERGY

The derivation of the general formulas for the screened
self-energy correction was presented in Ref. [8]. We
here rearrange the formulas in a form suitable for
a numerical evaluation. The screened self-energy cor-
rection is conveniently represented as a sum of the
perturbed-orbital (po), reducible (red), and vertex (ver)
contributions,

	Esescr = 	Esescr,po + 	Esescr,red + 	Esescr,ver. (7)

The perturbed-orbital contribution is expressed in terms of
diagonal and nondiagonal matrix elements of the one-loop
self-energy operator �(ε),

	Esescr,po = Fi Fk

∑
PQ

(−1)P+Q

[
2

∑
n �=Pi1

〈Pi1|�
(
εPi1

)|n〉 〈nPi2|I
(
	Qk2,Pi2

)|Qk1Qk2〉
εPi1 − εn

+ 〈Pi1|�
(
εPi1

)|Pi1〉 〈Pi1Pi2|I ′(	Qk2,Pi2

)|Qk1Qk2〉
]
, (8)
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where the summation over n is performed over the complete Dirac spectrum. The reducible part of the screened self-energy
correction contains the derivative of the self-energy operator and is given by

	Esescr,red = Fi Fk

∑
PQ

(−1)P+Q〈Pi1|�′(εPi1

)|Pi1〉 〈Pi1Pi2|I
(
	Qk2,Pi2

)|Qk1Qk2〉. (9)

The vertex part of the screened self-energy correction is

	Esescr,ver = Fi Fk

∑
PQ

(−1)P+Q i

2π

∫ ∞

−∞
dω

∑
n1n2

〈Pi1n2|I (ω)|n1Qk1〉 〈n1Pi2|I
(
	Qk2,Pi2

)|n2Qk2〉(
εPi1 − ω − u εn1

)(
εQk1 − ω − u εn2

) . (10)

The numerical evaluation of the screened self-energy cor-
rections is based on the use of the analytical representation
of the Dirac-Coulomb Green function in terms of the Whit-
taker functions; see Ref. [20] for details. The perturbed-orbital
contribution 	Epo is expressed in terms of diagonal and non-
diagonal matrix elements of the one-loop self-energy operator
�(ε), which are computed by numerical methods described
in detail in Refs. [21,22]. The general scheme of evalua-
tion of the reducible and vertex corrections was developed
in Ref. [23]. The contributions of the free electron propa-
gators are separated out and calculated in the momentum
space, after a covariant regularization of ultraviolet diver-
gences and an explicit cancellation of divergent terms. The
remaining (many-potential) contributions contain infrared-
divergent terms, arising when the energy differences in the
energy denominators vanish [e.g., in Eq. (10) with n1 = Pi1
and n2 = Qk1]. The divergent terms in the vertex and re-
ducible contributions are separated out and regularized by
introducing a finite photon mass. The divergencies cancel out
in the sum of the vertex and the reducible contributions (see
Appendix B of Ref. [20] for details), leaving a finite remainder
to be calculated numerically.

The many-potential reducible contribution was computed
as a derivative of the one-loop self-energy operator by the
method developed in Ref. [22]. The many-potential vertex
contribution contains two bound electron propagators and
represents the main computational difficulty. In the present
work, we evaluate it with the technique described in detail
in Ref. [20], which was recently employed for the evaluation
of the self-energy screening corrections to the g factor [24].
The expansion over the partial waves in the vertex term is the
main source of the numerical uncertainty. It was extended up
to |κmax| = 50, with the remainder of the tail estimated by a
polynomial fitting of the expansion terms in 1/|κ|.

Numerical results of our computations of the screened
self-energy correction are presented in Table I in terms of
the scaled function Gsescr (Zα), with the leading α and Zα

dependence pulled out:

	Esescr = mα2(Zα)3 Gsescr (Zα). (11)

Results in Table I are obtained for the point nuclear charge
model and, unless explicitly specified, in the Feynman gauge.
For Z = 20, results are presented also for the Coulomb gauge
for the photon connecting the two electrons. In the case of the
mixing (1s2p j )1 configurations, contributions to the matrix
elements of the effective Hamiltonian in the j j-coupling are
presented, see Sec. VII. The off-diagonal (1s2pj )1 matrix
elements are listed under the label “offdiag.”

The comparison presented in Table I shows that our present
results are in good agreement with those from previous com-
putations [7,8] but are more accurate. It is also demonstrated
that our numerical results are gauge invariant well within the
estimated numerical uncertainty.

IV. SCREENED VACUUM-POLARIZATION

The derivation of the general formulas for the screened
vacuum-polarization correction was presented in Ref. [8].
We now summarize the final formulas needed for the actual
calculation. The screened vacuum-polarization correction is
conveniently represented as a sum of the perturbed-orbital
(po) and the photon-propagator (ph) contributions:

	Evpscr = 	Evpscr,po + 	Evpscr,ph. (12)

The perturbed-orbital contribution is analogous to that for the screened self-energy and is expressed in terms of matrix
elements of the one-loop vacuum-polarization potential:

	Evpscr,po = Fi Fk

∑
PQ

(−1)P+Q

[
2

∑
n �=Pi1

〈Pi1|UVP|n〉 〈nPi2|I
(
	Qk2,Pi2

)|Qk1Qk2〉
εPi1 − εn

+ 〈Pi1|UVP|Pi1〉 〈Pi1Pi2|I ′(	Qk2,Pi2

)|Qk1Qk2〉
]
. (13)

The remaining part of the screened vacuum-polarization is given by the correction to the photon propagator,

	Evpscr,ph = Fi Fk

∑
PQ

(−1)P+Q〈Pi1Pi2|Uph
(
	Qk2,Pi2

)|Qk1Qk2〉, (14)
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TABLE II. The screened vacuum-polarization correction for the n = 1 and n = 2 states of He-like ions, in units α2(Zα)3.

Z (1s1s)0 (1s2s)0 (1s2s)1 (1s2p1/2)0 (1s2p1/2)1 (1s2p3/2)1 (1s2p3/2)2 offdiag

10 0.117 77 0.024 78 0.016 87 0.006 95 0.004 27 0.001 60 0.006 82 −0.003 714
12 0.117 30 0.024 73 0.016 74 0.006 94 0.004 27 0.001 59 0.006 76 −0.003 679
14 0.117 04 0.024 73 0.016 65 0.006 95 0.004 27 0.001 59 0.006 70 −0.003 650
16 0.116 99 0.024 78 0.016 58 0.006 97 0.004 29 0.001 59 0.006 65 −0.003 626
18 0.117 13 0.024 88 0.016 53 0.007 02 0.004 31 0.001 59 0.006 61 −0.003 607

20 0.117 47 0.025 03 0.016 51 0.007 08 0.004 35 0.001 60 0.006 58 −0.003 592
0.117 0.025 0.017 0.007 0.005 0.001 0.007 −0.004 Ref. [8]

24 0.118 7 0.025 48 0.016 53 0.007 26 0.004 45 0.001 61 0.006 53 −0.003 575
28 0.120 7 0.026 13 0.016 64 0.007 52 0.004 60 0.001 64 0.006 50 −0.003 574

30 0.122 0 0.026 54 0.016 73 0.007 67 0.004 70 0.001 65 0.006 49 −0.003 579
0.122 0.026 6 0.016 8 0.007 7 0.004 6 0.001 8 0.006 7 −0.003 5 Ref. [8]

32 0.123 4 0.026 99 0.016 84 0.007 85 0.004 80 0.001 66 0.006 49 −0.003 588
36 0.126 9 0.028 07 0.017 13 0.008 28 0.005 06 0.001 70 0.006 50 −0.003 615
40 0.131 2 0.029 38 0.017 52 0.008 81 0.005 37 0.001 74 0.006 54 −0.003 657

where Uph is the radiatively corrected photon propagator:

Uph(δ, x, y) = α2

2π i

∫ ∞

−∞
dω

∫
d3z1d3z2 αμ Dμν (δ, x, z1) Tr[αν G(ω − δ/2, z1, z2) αρ G(ω + δ/2, z2, z1)]Dρσ (δ, z2, y) ασ . (15)

The screened vacuum-polarization correction was first cal-
culated for the ground state of heliumlike ions in Refs. [5,6]
and for the n = 2 excited states in Ref. [8]. The numer-
ical calculation of the present work follows the general
scheme developed in these studies. The Wichmann-Kroll part
of the vacuum-polarization potential UVP was computed for
the point nuclear charge with help of approximate formulas
obtained in Refs. [25–27]. The summation over the Dirac
spectrum in Eq. (13) causes no problem and can be computed
in different ways. In the present work we chose to use the B-
splines basis set method [28], which is technically the simplest
choice in this case.

The vacuum-polarization correction to the photon prop-
agator is standardly separated into the Uehling and the
Wichmann-Kroll parts [6]. The calculation of the Uehling part
is relatively straightforward and was performed with formulas
from Ref. [6]. The Wichmann-Kroll part of the radiatively cor-
rected photon propagator is more difficult to compute but its
contribution is very small for the range of the nuclear charges
considered in the present work. We therefore exclude this
correction from our calculation, estimating its upper bound to
make sure that it does not contribute on the level of our present
interest. For the largest Z considered in this work, Z = 40, we
estimate the contribution to the function Gvpscr to be less than

1 × 10−4 for the (1s)2 state and less than 1 × 10−5 for the
n = 2 states [29]. As Z decreases, the contribution diminishes
quickly and can be completely ignored in the context of the
present investigation.

Our numerical results for the screened vacuum-
polarization correction are presented in Table II in terms
of the scaled function Gvpscr (Zα) defined as

	Evpscr = mα2(Zα)3 Gvpscr (Zα). (16)

The comparison presented in the table shows that our results
are in agreement with previous calculations [6,8].

V. TWO-PHOTON EXCHANGE

The two-photon exchange correction was first calcu-
lated for the ground state of heliumlike ions in Ref. [30].
Calculations for the n = 2 excited states were performed inde-
pendently by several groups over the course of several decades
[8,9,31–34].

We here follow the approach of Ref. [8] and express the
two-photon exchange correction as a sum of the irreducible
(ir) and the reducible (red) contributions:

	E2ph = 	E2ph,ir + 	E2ph,red. (17)

The irreducible part is given by

	E2ph,ir = Fi Fk

∑
P

(−1)P i

2π

∫ ∞

−∞
dω

{
En �=E (0)∑

n1n2

〈Pi1Pi2|I (ω)|n1n2〉 〈n1n2|I
(
ω − 	k1,Pi1

)|k1k2〉(
εPi1 + ω − uεn1

)(
εPi2 − ω − uεn2

)
+

∑
n1n2

〈Pi1n2|I (ω)|n1k2〉 〈n1Pi2|I
(
ω − 	k1,Pi1

)|k1n2〉(
εPi1 + ω − uεn1

)(
εk2 + ω − uεn2

)
}

, (18)
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where En = εn1 + εn2 and E (0) is the energy of the reference state. The condition En �= E (0) for excluding intermediate states
from the summation over n1 and n2 in the above formula should be understood differently for the case of nonmixing and the
case of mixing states. In the former case (in this work, for all states except 2 1P1 and 2 3P1), the reference state corresponds to
an isolated level, with E (0) = εi1 + εi2 = εk1 + εk2 . The terms to be excluded from the summation are thus (n1, n2) = (i1, i2) and
(i2, i1). In the latter case, the reference state belongs to a subspace of quasidegenerate levels (in this work, the 2 1P1 and 2 3P1

states), and one should exclude all of them from the summation, (n1, n2) = (1s, 2p1/2), (1s, 2p3/2), (2p1/2, 1s), (2p3/2, 1s).
The reducible part accounts for the terms excluded from the summation over n1 and n2 in the irreducible part. It is given by

	E2ph,red = Fi Fk

∑
P

(−1)P i

4π

∫ ∞

−∞
dω

En=E (0)∑
n1n2

〈Pi1Pi2|I (ω)|n1n2〉 〈n1n2|I
(
ω − 	k1,Pi1

)|k1k2〉

×
[

1(
εPi1 + ω − εn1 + i0

)(
εPi2 − ω − εn2 − i0

) + 1(
εPi1 + ω − εn1 − i0

)(
εPi2 − ω − εn2 + i0

)]
. (19)

It might be noted that the terms in the reducible part have
the same form as the terms excluded from the summation
in the irreducible part but differ from them by signs of the
infinitesimal imaginary additions in the pole positions. Note
also that formulas for the quasidegenerate states have some
arbitrariness in them, which corresponds to a possibility to
reassign small contributions to higher orders of perturbation
theory [35]. In particular, authors of Ref. [9] used a different
choice of the reference-state energy. This arbitrariness leads
to very small numerical changes in the results.

The numerical evaluation of the two-photon exchange cor-
rections is rather involved, but relatively well established
at present. Unlike the self-energy correction computed with
help of the analytical representation of the Dirac-Coulomb
Green function, all previous computations of the two-photon
exchange [8,9,31–34] were performed using the spectral rep-
resentation of the Green function, with help of the B-spline
finite basis set method [28]. The reason behind this is purely
technical. First, the radial integrations are more efficiently
computed in the spectral representation. Second, the compu-
tation of the ω integration along the contour extending near
poles of the electron propagator is easier implemented for the
spectral representation of the Green function.

In the present work we follow the previous studies and use
the B-spline finite basis set method [28] for the evaluation of
the two-photon exchange correction. We note that we do not
use the the dual-kinetical-balance (DKB) basis set [37] since
we perform calculations for the point nuclear charge, while
the DKB method is formulated for an extended nuclear-charge
model only. The numerical procedure used in this work is very
similar to the one developed for the two-photon exchange cor-
rection to the bound-electron g factor and described in detail
in Ref. [38]. The computation was performed in two gauges,
the Feynman and the Coulomb one. The results obtained in
the two gauges agree well within the estimated numerical
uncertainty.

The computation of the two-photon exchange correction
needs to be performed to a very high numerical accuracy,
because of the presence of the nonrelativistic (∼(Zα)0)
and relativistic (∼(Zα)2) contributions. The QED part of
the two-photon exchange enters in the order (Zα)3 only;
its identification thus entails severe numerical cancellations
in the low-Z region. By contrast, the screened self-energy
and vacuum-polarization corrections scale as (Zα)3, so their

numerical uncertainty is less crucial for the determination of
the total two-electron QED correction.

The dominant sources of numerical uncertainty for the two-
photon exchange correction are the convergence with respect
to the number of basis functions N and the truncation of
the partial-wave expansion. Our calculations were performed
typically for several sets of B-splines with N up to N = 125
and then extrapolated to N → ∞. The infinite partial-wave
summation over the relativistic angular momentum quantum
number κ was extended up to |κmax| = 25, with the remaining
tail estimated by the polynomial fitting of the expansion terms
in 1/|κ|.

Numerical results of our calculation are summarized in
Table III. They are obtained for the point nuclear charge dis-
tribution and, unless explicitly specified, the Feynman gauge.
For Z = 20, we present in addition results obtained in the
Coulomb gauge. The comparison presented in the table shows
that our values are in good agreement with results obtained
previously but are more accurate.

VI. HIGHER-ORDER QED: NONMIXING STATES

We now turn to comparing our present calculations per-
formed to all orders in Zα with results obtained in the
framework of the Zα expansion. After the agreement of the
two approaches is demonstrated, we will proceed to identi-
fying the higher-order QED remainder that can be added to
the results of the NRQED calculations of Ref. [14]. We start
with the nonmixing states, i.e., the ground and all n = 2 states
except 2 1P1 and 2 3P1.

A. Comparison with Zα expansion

In order to identify the QED part of our all-order results,
we need first to remove the nonrelativistic and relativistic
contributions from the two-photon exchange correction. The
QED part of the two-photon exchange is given by the function
G2ph defined as

	E2ph = mα2[a20 + (Zα)2 a40 + (Zα)3 G2ph(Zα)]. (20)

Here the coefficient a20 arises from the Z−2 term of the 1/Z
expansion of the nonrelativistic energy, whereas a40 comes
from the Z−2 term of the 1/Z expansion of the Breit correction
∼mα4. The function G2ph(Zα) contains terms of order mα5
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TABLE IV. Coefficients of the Zα expansion of the two-photon
exchange correction.

a20 a40

1 1S0 −0.157 666 43 −0.636 506 9
2 1S0 −0.114 510 14 −0.281 858 6
2 3S1 −0.047 409 30 −0.042 775 5
2 1P1 −0.157 028 66 −0.090 632 2
2 3P0 −0.072 998 98 −0.303 523 4
2 3P1 −0.072 998 98 −0.162 129 4
2 3P2 −0.072 998 98 −0.047 315 7
(2 1P1, 2 3P1) 0 −0.004 718 5

and higher. Numerical results for the coefficients a20 and a40

were obtained in Ref. [14] and are summarized in Table IV.
The total two-electron QED correction is defined as the

sum of the self-energy, vacuum-polarization, and two-photon-
exchange parts,

	E2elQED ≡ mα2 (Zα)3 G2elQED(Zα)

= mα2 (Zα)3 [Gsescr + Gvpscr + G2ph]. (21)

It should be noted that the above definition of the two-electron
QED contribution includes only one-loop effects. It does not
include the two-loop correction, for which no all-order calcu-
lations have been performed so far. The Zα expansion of the
function G2elQED reads

G2elQED(Zα) = L a51 + a50 + αL a61

+ (Zα) a60 + (Zα)2 G(7+)
2elQED, (22)

where L ≡ ln(Zα)−2 and G(7+)
2elQED is the higher-order remain-

der,

G(7+)
2elQED(Zα) = L2 a72 + L a71 + a70 + (Zα)L a81 + · · · .

(23)

The coefficients a51, a50, and a61 were obtained in Ref. [14]
by fitting the 1/Z expansion of the NRQED results. The coef-
ficient a60 was also obtained in Ref. [14], but for our present
purposes it needed to be reevaluated to exclude the two-loop
contribution. The coefficient a72 is proportional to the Dirac δ

function and is immediately obtained from the hydrogen the-
ory. Specifically, a72 is induced by the self-energy coefficient
A62(ns) = −1 [see Eq. (8) of Ref. [39]],

a72 = A62
c1

π
= −c1

π
, (24)

where c1 is the 1/Z1 coefficient of the 1/Z expansion of the
matrix element of the Dirac δ function:〈

π

Z3
[δ3(r1) + δ3(r2)]

〉
= c0 + c1

Z
+ c2

Z2
+ · · · . (25)

The coefficients ci for the n = 1 and n = 2 states of heliumlike
ions are given in Table I of Ref. [13]. The coefficient a71 for
the triplet states is evaluated in the present work on the basis
of formulas derived in Ref. [16]. For the singlet states, a71 is
unknown. The nonlogarithmic mα7 correction was evaluated
in Ref. [16] for helium; no results for its 1/Z expansion
coefficients were reported yet. The logarithmic coefficient in

the next order, a81, is also proportional to the Dirac δ function
and thus can be obtained from the hydrogen theory. Specifi-
cally, a81 = (427/192 − ln 2) c1 [40,41]. The summary of all
known Zα-expansion coefficients is given in Table V.

In Fig. 1 we present a comparison of our all-order calcu-
lations of the two-electron QED contribution with predictions
based on the Zα expansion. We conclude that the all-order
results in the low-Z region converge to the predictions of the
Zα expansion and that the difference is consistent with the
expected magnitude of higher-order effects.

After checking the consistency of our all-order calculations
with the known terms of the Zα expansion, we are now in a
position to obtain numerical results for the higher-order re-
mainder function G(7+)

2elQED defined by Eq. (22), by subtracting
contributions of lower orders in Zα from the all-order results.
Since our numerical calculations are performed for Z � 10,
we have to use an extrapolation in order to get results for
smaller values of Z . The extrapolation is complicated by the
presence of logarithms in the expansion of the function. For
the triplet states, we make use of the NRQED results for the
logarithmic coefficients a72, a71, and a81 in order to improve
the accuracy of the extrapolation. Specifically, we subtract all
known logarithmic terms, apply a polynomial extrapolation,
and then readd the logarithmic terms back. For the singlet
states, the logarithmic coefficient a71 is not known, so we had
to include the single logarithmic term into the fitting function.
For this reason, the accuracy of the fit was lower for the singlet
than for the triplet states.

B. Higher-order QED contribution

The calculation of all QED effects up to order mα6 to
energies of the n = 1 and n = 2 states of light heliumlike
ions was performed in Ref. [14]. These results needed to be
complemented with a separate treatment of the higher-order
effects of order mα7 and higher.

The higher-order QED contribution to the ionization en-
ergy of a 1snl j state was evaluated in Ref. [14] as a sum of
three parts,

E (7+) = E (7+)
D + E (7+)

1ph + E (7+)
rad , (26)

where the first term is the higher-order part of the Dirac
energy of the nl j one-electron state, the second term is the
higher-order part of the one-photon exchange correction, and
the third term is the higher-order part of the radiative QED
correction. The first two terms are readily evaluated numeri-
cally, whereas the radiative QED contribution was evaluated
in Ref. [14] by rescaling the hydrogenic result with the expec-
tation value of the Dirac δ function. Specifically, the following
expression was used:

E (7+)
rad = [

E (7+)
rad,H(1s) + E (7+)

rad,H(nl j )
]

×
〈

π
Z3 [δ3(r1) + δ3(r2)]

〉
1 + δl,0

n3

− E (7+)
rad,H(1s), (27)

where E (7+)
rad,H(nl j ) is the hydrogenic radiative correction of

order of mα7 and higher. The approximation of Eq. (27) is
sometimes referred to as the hydrogenic approximation.

Formula (27) is exact to the leading (zeroth) order in 1/Z
but approximate to higher orders in 1/Z . In the present work,

022815-8
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TABLE V. Coefficients of the Zα expansion of the one-loop two-electron QED correction.

a51 a50 a61 a60 a72 a71

1 1S −0.659 550 48 1.658 816 0 1/16 −4.3711 0.425 033
2 1S −0.137 744 61 0.325 517 0 1/81 −1.1041 0.089 554
2 3S −0.089 756 44 0.191 147 5 0 −0.6514 0.067 317 −0.4829
2 1P1 0.003 158 46 −0.017 559 8 1/243 0.0062 −0.006 954
2 3P0 −0.036 478 76 0.106 210 2 0 −0.6796 0.027 359 −0.3681
2 3P1 −0.036 478 76 0.081 192 9 0 −0.3088 0.027 359 −0.3171
2 3P2 −0.036 478 76 0.059 452 5 0 −0.2117 0.027 359 −0.2556
(2 1P1, 2 3P1) 0 0.011 962 3 0

we calculated the two-electron QED correction to all orders
in Zα. With this calculation, we can improve on Eq. (27) and
make it exact to the first order in 1/Z for the dominant one-
loop effects. We obtain the additional contribution to be added
to Eq. (27) as

E (7+)
add = G(7+)

2elQED − [
E (7+)

1loop,H(1s) + E (7+)
1loop,H(nl j )

] c1

Z
(
1 + δl,0

n3

) ,

(28)

where G(7+)
2elQED is defined by Eq. (22), E (7+)

1loop,H is the one-loop

part of E (7+)
rad,H, and c1 is the 1/Z1 coefficient of the expansion

of the matrix element of the δ function; see Eq. (25). The
subtraction in Eq. (28) is needed in order to remove the double
counting of terms already included into the approximation of
Eq. (27).

In Table VI we collect our final results for the higher-
order QED correction. For transparency, we separate the
correction into three parts according to the order in 1/Z (the
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FIG. 1. The two-electron QED correction for nonmixing states of He-like ions, as a function of the nuclear charge number Z , in terms
of the function G2elQED defined by Eq. (21). The dots and solid line (black) present results of all-order numerical calculation. The dashed
line (green) shows the contribution of the leading Zα-expansion term of order α2(Zα)3; the dashed-dotted line (violet) is the contribution
of two first Zα-expansion terms of order α2(Zα)3 and α2(Zα)4; and the double-dotted dashed line (pink) shows the contribution of two first
Zα-expansion terms plus the hydrogenic estimate of the higher-order terms.

022815-9



YEROKHIN, PATKÓŠ, AND PACHUCKI PHYSICAL REVIEW A 106, 022815 (2022)

TABLE VI. The higher-order QED and finite nuclear size (FNS)
contributions for the ground and the nonmixing n = 2 states. Units
are mα2(Zα)5.

Z 1/Z0 1/Z1 1/Z2+ FNS Total

11S
6 −67.917 7.105 −0.670 9.354 −52.13 (60)
8 −78.259 6.447 −0.433 9.022 −63.22 (36)
10 −87.192 5.964 −0.308 9.411 −72.12 (27)
14 −102.405 5.304 −0.184 7.836 −89.45 (17)
18 −115.469 4.911 −0.124 7.856 −102.83 (12)

20 −121.511 4.786 −0.106 7.533 −109.30 (11)
24 −133.013 4.641 −0.079 7.405 −121.046 (91)
28 −144.127 4.609 −0.062 7.354 −132.226 (83)
30 −149.658 4.629 −0.056 7.731 −137.354 (80)

21S
6 −7.967 1.320 −0.353 0.993 −6.01 (33)
8 −9.182 1.168 −0.230 1.002 −7.24 (21)
10 −10.246 1.079 −0.164 1.075 −8.26 (15)
14 −12.119 0.989 −0.098 0.925 −10.303 (87)
18 −13.831 0.962 −0.066 0.948 −11.987 (58)
20 −14.670 0.966 −0.056 0.917 −12.843 (49)
24 −16.380 1.001 −0.042 0.917 −14.504 (38)
28 −18.197 1.070 −0.033 0.925 −16.236 (30)
30 −19.170 1.115 −0.030 0.980 −17.104 (28)

23S
6 −7.967 2.041 −0.122 1.090 −4.958 (41)
8 −9.182 1.757 −0.078 1.075 −6.428 (34)
10 −10.246 1.565 −0.055 1.137 −7.601 (31)
14 −12.119 1.321 −0.033 0.963 −9.868 (18)
18 −13.831 1.179 −0.022 0.978 −11.696 (14)
20 −14.670 1.131 −0.019 0.943 −12.615 (13)
24 −16.380 1.064 −0.014 0.938 −14.391 (12)
28 −18.197 1.028 −0.011 0.943 −16.237 (12)
30 −19.170 1.019 −0.010 0.998 −17.163 (11)

23P0

6 0.615 0.280 −0.234 −0.128 0.53 (26)
8 0.707 0.249 −0.150 −0.094 0.71 (18)
10 0.763 0.243 −0.106 −0.078 0.82 (13)
14 0.764 0.276 −0.063 −0.045 0.931 (77)
18 0.602 0.351 −0.043 −0.034 0.876 (53)
20 0.450 0.401 −0.036 −0.028 0.787 (46)
24 −0.016 0.525 −0.027 −0.020 0.462 (35)
28 −0.732 0.679 −0.021 −0.014 −0.088 (29)
30 −1.196 0.768 −0.019 −0.012 −0.460 (26)

23P2

6 0.381 0.661 −0.234 −0.129 0.68 (11)
8 0.456 0.559 −0.151 −0.095 0.769 (79)
10 0.518 0.489 −0.107 −0.080 0.821 (60)
14 0.625 0.400 −0.063 −0.048 0.914 (36)
18 0.711 0.348 −0.043 −0.037 0.979 (25)
20 0.748 0.329 −0.036 −0.032 1.009 (21)
24 0.812 0.301 −0.027 −0.026 1.060 (16)
28 0.865 0.282 −0.021 −0.022 1.103 (13)
30 0.888 0.275 −0.019 −0.022 1.121 (12)

zeroth-, first-, and higher-order contributions). The 1/Z0 part
is the one-electron contribution and is given by the sum
E (7+)

D (nl j ) + E (7+)
rad,H(nl j ), as tabulated in Refs. [39,42]. The

1/Z1 term consists of the one-photon exchange correction
E (7+)

1ph , the one-loop two-electron QED contribution G(7+)
2elQED,

and the two-loop two-electron QED contribution evaluated
within the hydrogenic approximation. The 1/Z2+ term is
given by the 1/Z2+ part of Eq. (27).

An important point is the estimation of the uncertainty of
the higher-order QED correction, because it directly translates
into the uncertainty of the total theoretical energies. The dom-
inant error comes from the 1/Z2 one-loop QED effects. We
estimate it by rescaling the corresponding 1/Z correction, with
a conservative factor of 1.5, namely,

1.5 E (7+)
add

c2

Zc1
,

where c1 and c2 are the δ-function expansion coefficients from
Eq. (25). Another uncertainty comes from the two-electron
two-loop QED effects. It is important that to the order mα7,
the hydrogenic approximation is exact for the two-loop effects
[16], so that the uncertainty comes from the mα8+ contribu-
tions only. We take it to be 100% of the 1/Z mα8+ two-loop
QED correction, as delivered by the hydrogenic approxi-
mation. Furthermore, we include the uncertainty due to our
extrapolation of E (7+)

add (for Z < 10) and the uncertainty from
the one-electron two-loop QED corrections [39,42]. Adding
all four uncertainties quadratically, we arrive at the error esti-
mates listed in Table VI.

Table VI presents also results for the finite nuclear size
(fns) correction. Although its nominal order is mα4, this cor-
rection is additionally suppressed by a square of the nuclear
charge radius, which makes it comparable in magnitude to
the mα7+ QED effects. Data presented in Table VI show that
our theoretical predictions are sensitive to nuclear effects,
specifically, to the fns correction. Defining the sensitivity as
the ratio of the theoretical uncertainty in Table VI to the fns
correction, we find that the best sensitivity is achieved for the
2 3S ionization energy, where it varies from 4% for Z = 6 till
1% for Z = 30.

VII. HIGHER-ORDER QED: MIXING STATES

Among the n = 2 states of heliumlike ions there are two
that have the same values of the total angular momentum
and parity, namely, the 2 1P1 and 2 3P1 states. These states
strongly mix with each other, especially for medium-Z ions,
and thus should be treated as quasidegenerate.

The QED theory of quasidegenerate states was developed
in the framework of the two-time Green function approach
in Refs. [8,35]. Within this method, the energies of the 2 1P1

and 2 3P1 states are determined as eigenvalues of the effective
2 × 2 Hamiltonian in the j j coupling,

H j j =
(〈(1s2p1/2 )1|H |(1s2p1/2 )1〉 〈(1s2p1/2 )1|H |(1s2p3/2 )1〉

〈(1s2p3/2 )1|H |(1s2p1/2 )1〉 〈(1s2p3/2 )1|H |(1s2p3/2 )1〉
)

≡
(

H1/2 H1/2,3/2

H3/2,1/2 H3/2

)
, (29)

022815-10



QED CALCULATIONS OF ENERGY LEVELS OF … PHYSICAL REVIEW A 106, 022815 (2022)

with H3/2,1/2 = H1/2,3/2. The all-order calculations described in
Secs. III–V provide results for the matrix elements of the
Hamiltonian H j j .

For light ions, the LS-coupling scheme yields better re-
sults and the Zα-expansion calculations are usually performed
within the LS coupling. For comparing with the Zα-expansion
calculations, it is convenient to transform the effective Hamil-
tonian H j j delivered by the all-order calculations to the LS
coupling by [43]

HLS = RH j j R−1 ≡
(

HT HST

HST HS

)
, (30)

where the unitary matrix R is

R =
(

a −b
b a

)
, (31)

with a = √
2/3 and b = √

1/3. The indices S and T in the
matrix elements stand for the singlet (2 1P) and triplet (2 3P)
states, respectively. The explicit form of the matrix elements
is

HT = b2 H3/2 + a2 H1/2 − 2ab H1/2,3/2, (32)

HS = a2 H3/2 + b2 H1/2 + 2ab H1/2,3/2, (33)

HST = ab [H1/2 − H3/2] + (a2 − b2)H1/2,3/2. (34)

We note that the eigenvalues of H j j and HLS are the same
since R is unitary.

The eigenvalues of HLS denoted as ES and ET are ob-
tained as

ET = HT + Emix, (35)

ES = HS − Emix, (36)

where Emix is the mixing correction

Emix = HT − HS

2

⎡
⎣

√
1 +

(
2HST

HT − HS

)2

− 1

⎤
⎦. (37)

For small Z , the nondiagonal matrix element HST is sup-
pressed by a factor of α2 as compared to the diagonal ones.
For this reason Emix is a small correction when Z → 0. For
|HST | � |HS − HT | we can expand the square root in Eq. (37),
obtaining

Emix = H2
ST

HT − HS
+ H4

ST

(HT − HS )3
+ · · · . (38)

The terms in the right-hand-side of this formula can be
identified as the second-order, fourth-order, and so on per-
turbation corrections for the single-level perturbation theory.
This shows the equivalence of the perturbation theory for
quasidegenerate states and that for a single level: the pertur-
bation expansion for quasidegenerate states corresponds to a
resummation of the expansion for the single level, accounting
for terms with small energy denominators to all orders.

In Ref. [14] the mixing contribution was accounted for
within the lowest order of perturbation theory (as a part of
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FIG. 2. The absolute value of the mixing correction Emix divided
by mα6Z7 × 10−2. Black dots show results of all-order QED calcula-
tions; the dotted line (brown) is the contribution of the leading term
of the α expansion E (6)

mix; the dashed line (green) corresponds to the
complete formula (37) that includes the next-to-leading terms of the
α expansion; and the solid line (blue) is obtained with the complete
formula including all known contributions.

the mα6 correction),

E (6)
mix =

[
H (4)

ST

]2

H (2)
T − H (2)

S

, (39)

where H (2)
T = E0(2 3P) and H (2)

S = E0(2 1P) are the nonrela-
tivistic energies of the 2 3P and 2 1P states, respectively, and

H (4)
ST = 〈2 3P|H (4)|2 1P〉, (40)

with H (4) being the Breit Hamiltonian. In the present work,
we extend this formula for Emix by including higher-order
corrections. Specifically, we take HS and HT to be the com-
plete energies of the 2 1P and 2 3P states as evaluated in
Ref. [14] (but without the mixing mα6 contribution) and the
nondiagonal matrix element determined as

HST = H (4)
ST + α H (5)

ST + α2 H (6+)
ST . (41)

The mα5 correction to the nondiagonal matrix element is

H (5)
ST = 〈2 3P|H (5)|2 1P〉, (42)

where H (5) is the anomalous magnetic moment correction to
the Breit Hamiltonian, given by Eq. (14) of Ref. [14]. Fur-
thermore, H (6+)

ST is the correction to the nondiagonal matrix
element of order mα6 and higher. In it we retain only the
contribution of zeroth order in 1/Z , which is, according to
Eq. (34),

H (6+)
ST = ab

[
E (6+)

rad,H(2p1/2) − E (6+)
rad,H(2p3/2)

]
, (43)

where E (6+)
rad,H(nl j ) is the one-electron radiative correction of

order mα6 and higher.
Figure 2 shows a comparison of the mixing correction

Emix evaluated within the Zα-expansion approach in the LS
coupling and the corresponding correction obtained with the
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FIG. 3. The two-electron QED contribution for the sum of the di-
agonal (1s2p1/2)1 and (1s2p3/2)1 matrix elements, expressed in terms
of the function G2elQED(Z ) defined by Eq. (21). The line description
is the same as for Fig. 1.

all-order approach in the j j coupling [after the coupling trans-
formation according to Eq. (30)]. We find good agreement
of the results obtained with different approaches. It is clearly
seen that the leading-order formula (39) is adequate for very
low Z but starts to deviate significantly from the complete
results for Z > 10.

A detailed comparison between the all-order and Zα-
expansion calculations for the mixing states is complicated by
the fact that the matrix elements of the effective Hamiltonian
in different methods are not directly comparable to each other.
It is known [44] that the effective Hamiltonian is defined up
to a unitary transformation and the equivalence of different
methods is achieved for the eigenvalues but not for individual
matrix elements. More exactly, the equivalence of the matrix
elements exists in the nonrelativistic limit but breaks down
on the level of relativistic corrections. Indeed, we find perfect
agreement for the leading coefficient of the Zα expansion of
the two-photon exchange correction a20 as obtained from the
NRQED calculation (see Table IV) and from the all-order
calculations [after transformation to the LS coupling with
Eq. (30)]. Already for the next-order coefficient a40, however,
there is no direct equivalence on the level of individual matrix
elements.

While a direct comparison of matrix elements in different
methods does not seem to be possible, one can still [44] com-
pare the trace of the Hamiltonian matrix since it is preserved
by a unitary transformation. Indeed, we find that the sum of
the a40 coefficients obtained from the all-order calculation for
the (1s2p1/2)1 and (1s2p3/2)1 diagonal matrix elements yields
−0.252 72, which is close to −0.252 762 obtained for the sum
of the a40 coefficients for the 2 1P1 and 2 3P1 diagonal matrix
elements in Table IV.

In Fig. 3 we present a comparison of the two-electron
QED contribution for the sum of the diagonal (1s2p1/2)1

and (1s2p3/2)1 matrix elements evaluated with the all-order
approach and within the Zα-expansion method. The Zα-
expansion coefficients are taken from Tables IV and V. We
observe that the all-order results converge to predictions of
the Zα expansion in the low-Z region and that the difference

TABLE VII. The higher-order QED and finite nuclear size con-
tributions for the mixing n = 2 states. Units are mα2(Zα)5.

Z 1/Z0 1/Z1+ MIX FNS Total

2 1P1

6 0.459 −0.149 0.174 0.027 0.51 (21)
8 0.539 −0.143 0.315 0.021 0.73 (30)
10 0.600 −0.131 0.311 0.019 0.80 (50)
14 0.671 −0.103 −1.930 0.012 −1.3 (13)
18 0.675 −0.071 −13.743 0.010 −13.1 (25)
20 0.649 −0.054 −27.391 0.009 −26.8 (33)
24 0.536 −0.017 −81.309 0.008 −80.8 (50)
28 0.333 0.023 −183.583 0.008 −183.2 (65)
30 0.193 0.045 −255.344 0.009 −255.1 (71)

2 3P1

6 0.537 0.742 −0.174 −0.129 0.98 (71)
8 0.623 0.703 −0.315 −0.094 0.92 (66)
10 0.681 0.667 −0.311 −0.079 0.96 (73)
14 0.718 0.619 1.930 −0.046 3.2 (14)
18 0.638 0.602 13.743 −0.035 14.9 (25)
20 0.549 0.603 27.391 −0.029 28.5 (33)
24 0.260 0.621 81.309 −0.022 82.2 (50)
28 −0.199 0.660 183.583 −0.017 184.0 (65)
30 −0.502 0.686 255.344 −0.016 255.5 (71)

is consistent with the expected magnitude of higher-order
effects.

Despite good agreement between the two methods, we
presently do not see a way to separate out the higher-order
two-electron QED contribution that can be unambiguously
added to Zα-expansion results for the mixing states. The
reason is that Emix mixes different orders of Zα and 1/Z
expansions so that some double-counting seems to be un-
avoidable. For this reason we restrict ourselves to retaining
only the one-electron part of the higher-order QED effects.
Our final results for the higher-order QED correction for the
mixing states are summarized in Table VII. The 1/Z0 term
is the sum of the Dirac energy and the radiative contribution.
The radiative part is, according to Eqs. (32) and (33),

E (7+)
rad,H(2 3P1) = 1

3 E (7+)
rad,H(2p3/2) + 2

3 E (7+)
rad,H(2p1/2), (44)

E (7+)
rad,H(2 1P1) = 2

3 E (7+)
rad,H(2p3/2) + 1

3 E (7+)
rad,H(2p1/2), (45)

and the same for the Dirac energy E (7+)
D . The 1/Z1+ term

contains the radiative correction within the hydrogenic ap-
proximation (27). The fourth column shows results for the
higher-order mixing correction δE = Emix − E (6)

mix. The finite
nuclear size correction is listed in the fifth column of the table.

The dominant theoretical uncertainty is caused by the mix-
ing correction. It comes through H (6+)

ST and is induced by
contributions of order 1/Z1 and higher omitted in Eq. (43). We
estimate the magnitude of the omitted effects as (8/Z ) H (6+)

ST ,
where the prefactor of 8 = n3 accounts for the fact that the
1/Z1 contribution is enhanced by the admixture of the 1s
electron state.

The results collected in Table VII show that the higher-
order mixing correction grows fast with increase of Z and
becomes dominant already at Z = 14. Correspondingly, the
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TABLE VIII. Theoretical ionization energies of the ground and the nonmixing n = 2 excited states of heliumlike ions, in eV, 1 eV =
27.211 386 245 988 a.u.

Z A 1 1S0 2 1S0 2 3S1 2 3P0 2 3P2 Ref.

5 11 259.374 4095 (15) 56.569 281 05 (80) 60.806 181 969 (85) 56.417 932 23 (60) 56.413 410 95 (26)
259.374 40 (2) 56.569 277 (15) 60.806 181 (17) 56.417 930 9 (5) 56.413 410 4 (4) [14]

6 12 392.090 5875 (26) 87.702 7960 (14) 93.128 352 06 (18) 87.685 5982 (11) 87.670 310 62 (50)
7 14 552.067 4680 (43) 125.652 8520 (24) 132.275 521 40 (34) 125.776 2109 (20) 125.739 052 56 (88)
8 16 739.327 0757 (67) 170.427 3032 (39) 178.254 625 55 (62) 170.694 2194 (33) 170.618 5383 (15)
9 19 953.898 447 (10) 222.035 5951 (59) 231.075 0281 (11) 222.446 8404 (50) 222.309 3293 (23)
10 20 1195.808 475 (15) 280.486 8810 (86) 290.746 1290 (17) 281.042 6591 (74) 280.812 2429 (34)
11 23 1465.099 543 (22) 345.794 144 (12) 357.281 4596 (27) 346.492 900 (11) 346.129 6103 (49)
12 24 1761.805 457 (29) 417.968 719 (16) 430.692 9183 (30) 418.809 227 (14) 418.263 0745 (64)

1761.804 9 (10) 417.968 56 (11) 430.692 90 (11) 418.809 14 (2) 418.263 03 (2) [14]
1761.804 7 (2) 417.968 9 (1) 430.692 9 (1) 418.809 2 (1) 418.263 0 (1) [8]

13 27 2085.977 675 (39) 497.026 358 (21) 510.996 9945 (43) 498.005 959 (18) 497.215 7863 (86)
14 28 2437.658 788 (51) 582.981 104 (26) 598.208 4225 (55) 584.097 729 (23) 582.990 066 (11)
15 31 2816.909 423 (63) 675.851 568 (33) 692.346 6318 (70) 677.101 841 (30) 675.589 728 (14)
16 32 3223.781 337 (80) 775.654 618 (41) 793.429 2528 (89) 777.035 871 (37) 775.017 688 (17)
17 35 3658.344 41 (10) 882.411 785 (51) 901.478 679 (12) 883.920 107 (46) 881.278 372 (22)
18 40 4120.666 36 (13) 996.144 406 (62) 1016.517 087 (15) 997.775 684 (57) 994.375 840 (26)

4120.667 2 (9) 996.144 3 (3) 1016.516 8 (2) 997.775 4 (2) 994.375 6 (2) [10]
4120.665 3 (4) 996.144 6 (2) 1016.517 0 (1) 997.775 8 (3) 994.375 7 (1) [8]

19 39 4610.807 89 (16) 1116.872 475 (75) 1138.565 273 (19) 1118.624 164 (69) 1114.313 372 (32)
20 40 5128.858 40 (19) 1244.623 304 (89) 1267.651 485 (24) 1246.490 895 (82) 1241.096 747 (38)
21 45 5674.904 20 (23) 1379.423 80 (11) 1403.803 533 (30) 1381.402 010 (98) 1374.731 277 (45)
22 48 6249.023 07 (28) 1521.299 10 (12) 1547.047 425 (37) 1523.383 92 (12) 1515.221 274 (53)
23 51 6851.311 46 (34) 1670.279 22 (15) 1697.414 119 (45) 1672.465 89 (14) 1662.572 575 (62)
24 52 7481.863 27 (41) 1826.394 10 (17) 1854.934 471 (54) 1828.678 23 (16) 1816.790 721 (72)
25 55 8140.787 72 (49) 1989.677 64 (20) 2019.643 353 (66) 1992.053 73 (18) 1977.882 359 (84)
26 56 8828.188 09 (58) 2160.162 56 (23) 2191.574 459 (79) 2162.625 73 (21) 2145.853 312 (96)

8828.189 6 (25) 2160.162 5 (8) 2191.574 2 (7) 2162.625 3 (7) 2145.853 0 (7) [9]
8828.187 5 (11) 2160.163 2 (7) 2191.574 5 (6) 2162.626 1 (10) 2145.853 2 (2) [8]

27 59 9544.183 39 (68) 2337.886 07 (26) 2370.765 981 (94) 2340.430 43 (24) 2320.710 82 (11)
28 58 10288.886 21 (80) 2522.883 72 (29) 2557.254 48 (11) 2525.504 31 (28) 2502.460 95 (13)
29 63 11062.431 11 (94) 2715.197 98 (34) 2751.083 47 (13) 2717.888 06 (32) 2691.112 45 (14)
30 64 11864.939 4 (11) 2914.866 90 (38) 2952.292 00 (15) 2917.621 11 (36) 2886.671 37 (16)

uncertainty due to missing 1/Z1+ contributions in the non-
diagonal matrix element H (6+)

ST becomes overwhelming for
Z > 14. This reflects the failure of the LS coupling scheme
and the advantage of using the j j coupling for medium and
high-Z ions.

VIII. RESULTS AND DISCUSSION

In Table VIII we collect our final results for theoretical
ionization energies of the ground and the nonmixing n = 2
excited states of heliumlike ions with the nuclear charges
Z = 5–30. We do not present results for Z < 5 since in this
region the 1/Z expansion employed in the all-order approach
ceases to be useful. For each element, calculations are per-
formed for one isotope with the mass number A specified in
the table. The nuclear masses are obtained from the atomic
masses tabulated in Ref. [45], and the nuclear radii are taken
from Ref. [46]. Our results include all nonrecoil QED effects
up to order mα6 and the recoil effects up to order m2α5/M,

as calculated for Z � 12 in Ref. [14]. For Z > 12, we sum up
the 1/Z-expansion coefficients listed in Ref. [14]. In addition
to the NRQED results, we include the higher-order mα7+ cor-
rection calculated in this work and summarized in Table VI.

In Table VIII our present results are compared with those
from our previous work [14] and by other authors [8–10].
For Z � 12, our calculation is in excellent agreement with
previous calculations performed within the all-order approach
[8–10] and improves their accuracy by more than an order of
magnitude. For Z � 12, we significantly improve upon our
previous results [14] but also find small deviations in some
cases. The reason for the deviations is that the hydrogenic
approximation used in Ref. [14] for estimations of the higher-
order two-electron QED effects turned out to be less accurate
than expected. Indeed, it can be seen from Figs. 1 and 2 that
the addition of the higher-order correction calculated within
the hydrogenic approximation leads to significant improve-
ments only in the case of the 2 3S state. For other states,
the hydrogenic approximation largely overestimates the actual
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TABLE IX. Same as Table VIII but for the mixing n = 2 states.

Z 2 1P1 2 3P1 Ref.

5 53.809 194 15 (36) 56.419 9395 (14)
53.809 194 4 (1) 56.419 9393 (4) [14]

6 84.188 092 04 (92) 87.687 1467 (31)
7 121.371 7397 (23) 125.775 1315 (64)
8 165.365 9011 (55) 170.686 923 (12)
9 216.176 651 (13) 222.428 084 (22)
10 273.807 646 (28) 281.005 369 (41)
11 338.266 548 (59) 346.428 077 (75)
12 409.556 49 (12) 418.705 94 (13)

409.556 460 (6) 418.705 96 (17) [14]
409.556 4 (1) 418.705 9 (1) [8]

contribution and even worsens the results for the 2 P0 and
2 P1 states. We conclude that in the case under considera-
tion the hydrogenic approximation yields only the order of
magnitude of the effect but does not provide a quantitative
prediction.

In Table IX we present theoretical energies for the mixing
states, 2 1P1 and 2 3P1. As compared to our previous investi-
gation [14], we added the higher-order mixing correction and
reevaluated the uncertainty. The values of theoretical energies
did not change much, but the uncertainty was increased typ-
ically by a factor of 2 or 3. Our results for Z = 12 are in
good agreement with the values by Artemyev et al. [8]. We do
not report results for Z > 12 for the mixing states, since their
uncertainty increases rapidly (see Table VII) and the present
method becomes less accurate than all-order calculations in
the j j coupling [8–10].

Table X compares our theoretical predictions for the in-
trashell n = 2 transition energies in heliumlike ions with
results of previous calculations and available experimental
data. We observe that for transitions between nonmixing
states, our calculation improves the theoretical accuracy typi-
cally by an order of magnitude as compared to the previous
calculations. Theoretical and experimental results summa-
rized in the table are in good agreement with each other. The
differences are consistent with the combined error estimates
and are of different signs, which leads to the conclusion that
no systematic deviation is observed. The differences grow
rapidly with Z , which reflects the fact that both theoretical and
experimental uncertainties are strongly Z-dependent. The the-
oretical predictions for transitions between nonmixing states
are more accurate than the experimental results for the whole
interval of Z studied. By contrast, for transitions involving the
mixing states the theoretical accuracy is significantly lower.
Results for the fine-structure intervals are presented for the
sake of completeness since more complete calculations with
full inclusion of the mα7 effects are available in this case [12].

Summarizing, we performed high-precision calculations
of the two-electron QED effects to all orders in the nuclear
binding strength parameter Zα and identified the higher-order
effects of order mα7 and higher. By using the “unified” ap-
proach, we combined together the NRQED calculation of
Ref. [14] complete to order mα6 and all-order calculations of
one-electron and two-electron QED effects. In the result we

TABLE X. Comparison of theoretical and experimental n = 2
intrashell transition energies, in cm−1.

Z Theory Experiment Difference Ref.

2 3S1 –2 3P0

5 35 393.6211 (49) 35 393.627 (13) −0.006 (13) [47]
35 393.628 (14)a

8 60 978.788 (27) 60 978.44 (52) 0.35 (52) [48]
60 978.85 (14)a

12 95 848.43 (11) 95 851.27 (92) 0.15 (93) [49]
95 849.0 (9)a

95 848.(1)b

14 113 810.42 (19) 113 806.7 (3.7) 3.7 (3.7) [49]
113 809.(2)b

18 151 159.61 (47) 151 164.0 (4.1) −4.4 (4.1) [50]
151 158.(3)b

26 233 487.3(1.8) 232 558. (550) 71.(550) [13]
233 484.(10)b

233 485.(9)c

2 3S1 –2 3P2

5 35 430.0876 (22) 35 430.084 (9) 0.004 (9) [47]
35 430.088 (14)a

7 52 720.1766 (76) 52 720.23 (69) −0.05 (69) [48]
52 720.18 (7)a

8 61 589.198 (13) 61 589.70 (53) −0.50 (53) [48]
61 589.21 (14)a

10 80 122.195 (31) 80 123.33 (83) −1.1 (0.8) [48]
80 122.3 (4)a

12 100 253.451 (57) 100 255.9 (1.9) −2.5 (1.9) [49]
100 253.7 (9)a

100 253. (1)b

14 122 744.326 (98) 122 740.4 (3.6) 3.9 (3.6) [49]
122 744.(1)b

18 178 581.19 (24) 178 589.3 (5.1) −8.1 (5.1) [50]
178 581.(2)b

26 368 765.9(1.0) 368 976.(125) −210.(125) [51]
368 767.(6)b

368 767.(5)c

2 3S1 –2 3P1

5 35 377.432 (11) 35 377.424 (13) 0.008 (17) [47]
35 377.429 (14)a

8 61 037.634 (99) 61 037.62 (93) 0.01 (93) [48]
61 037.65 (14)a

12 966 81.5 (1.1) 966 83.(6) −2. (6) [52]
966 82.(1)a

2 1S0 –2 3P1

7 986.251 (55) 986.3180 (7) −0.07 (6) [53]
986.36 (7)a

2 3P0 –2 3P1

7 8.706 (54) 8.6707 (7) 0.035 (54) [53]
8.675 (21)a

8.6731 (67)d

12 833.0 (1.1) 833.133 (15) −0.1 (1.1) [54]
832.2 (0.2)a

834.(1)b

2 3P2 –2 3P1

9 957.82 (18) 957.8730 (12) −0.05 (18) [55]
957.797 (54)a

957.886 (79)d

aYerokhin and Pachucki [14];
bArtemyev et al. [8];
cKozhedub et al. [9];
dPachucki and Yerokhin [12].
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obtained improved theoretical predictions for ionization ener-
gies of the ground and nonmixing n = 2 states of heliumlike
ions with Z = 5–30. Theoretical predictions for the mixing
2 1P1 and 2 3P1 states are obtained for Z = 5–12. Their ac-
curacy is lower than that for the nonmixing states since the
higher-order QED effects are included within the one-electron
approximation only. In order to advance the theory of the
mixing states further, one needs to extend the NRQED ap-
proach to embrace the perturbation theory of quasidegenerate
states.
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