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Vibronic coupling plays a pivotal role in molecular spectroscopy. We present a theoretical study on vibra-
tionally resolved x-ray photoelectron spectra (XPS) of seven azines (CxHyNz; pyridine, three diazines, two
triazines, and one tetrazine) at the nitrogen 1s edge, to explore the vibronic coupling effects as influenced by
consecutive replacement of the CH group with a N atom. Franck-Condon simulations were performed with
the Duschinsky rotation effect included, where the electronic structure was calculated by the density functional
theory. Validations on pyrimidine show good agreement with the experiment, weak functional dependence, and
weak mode mixing effect. We observed an evident blue shift in binding energies with the increasing number of N
atoms in this series, together with molecule-dependent vibronic fine structures. These molecules have either C2v

or Cs molecular symmetry at the optimized core-ionized geometries. Franck-Condon-active vibrational modes
were identified to be low frequency (500–1650 cm−1), totally symmetric (A1 or A′), in-plane ring deformation
modes. Core ionization on N∗ always leads to elongation of the N∗−N bond length, accompanied by an increase
of the ∠C−N∗−X bond angle (X = C, N). Our study predicts accurate theoretical reference spectra for the azine
family and provides useful information on the properties of the core-ionized states as influenced by the structural
change of CH ↔ N replacement.

DOI: 10.1103/PhysRevA.106.022811

I. INTRODUCTION

Vibronic coupling is an essential issue in molecular
electronic spectroscopy [1–4]. It brings in fingerprint fine
structures on the subelectronvolt scale that contain rich in-
formation on the electronic transition and nuclear motion. In
the x-ray regime, vibrationally resolved high-resolution x-ray
spectra of molecules [5–16] and ions [11,17–20] in the gas
phase have attracted the long interest of researchers ever since
the 1960s [21]. Especially, x-ray photoelectron spectroscopy
(XPS) serves as a “clean” example for interpreting the vi-
bronic coupling effects and has received extensive research
attention [5,6]. This is because XPS involves only one final
electronic state (at each core center), which avoids the com-
plexity of summing over multiple final states, for instance, in
x-ray absorption spectroscopy (XAS) [16]. The vibronic fine
structures in XPS carry information of the potential energy
surfaces (PESs) of the initial (ground) and final (core-ionized)
states and reflect the electronic and nuclear dynamics during
the core ionization process.

Theoretical simulation plays an important role in interpret-
ing the experimental fine structures. Such an interpretation can
help identify the vibronic coupling effects and characterize
properties of the transient core-ionized states. Among various
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recent theoretical developments [9–11,20,22–24], our strategy
[22] that combines the density functional theory (DFT) with
the full core hole (FCH) approximation and the Duschinsky
rotation (DR) method [25] has been demonstrated to predict
C 1s XPS spectra of a variety of small molecules (furan, ben-
zene, pyridine, etc.) in excellent agreement with experiments.
Besides, the usage of the DR method enables direct analysis
of the short-lived core-ionized structures. The successful re-
sults encourage us to extend the FCH-DR approach for more
applications.

XPS is widely used in the structural characterization of
molecules and materials. There are experimental libraries that
provide important references [26]. The well-known National
Institute of Standards and Technology (NIST) XPS database
[27] contains only binding energy (BE) information, as do
some books or manuals [28,29]. It is known that BEs reported
by different experiments may have inconsistencies owing to
the highly arbitrary calibration procedure [30] and some-
times may vary even over 1 eV. In this sense, construction
of a theoretical XPS library is important. A minilibrary for
nitrogen-containing molecules and ions was recently con-
structed by us [31], where the focus was only N 1s binding
energies. Spectral profiles carry richer information than just
BEs. Although there are also other experimental databases
[29,32–34] which contain spectra; they are mainly for various
solid-state materials. There is less on high-resolution gas-
phase spectra. The definition of “high-resolution” develops
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FIG. 1. Simulated N 1s XPS spectra of pyrimidine by using the
(a) DR and (b) LCM methods with different density functionals.
Spectra were convoluted with hwhm = 0.05 eV. All theoretical spec-
tra have been added by a small ad hoc shift δ (labeled by numbers in
eV) to better compare with the experiment [15].

with time, or rather with the development of instrumentation
techniques. Gas-phase spectra usually contain sharper peaks
and richer features than other phases. A theoretical library on
high-precision gas-phase spectra is expected to be more help-
ful than just BEs in understanding the fundamental molecular
physics.

The goal of this work is to extend our computational strat-
egy to the N 1s edge: we report our preliminary results on a
series of nitrogen-containing azine molecules, together with
a detailed analysis. During the literature survey, we notice
that there are fewer high-resolution XPS measurements for
molecules at other edges than at the C 1s edge. For exam-
ple, for the common molecule pyridine, to our knowledge,
no high-resolution XPS spectrum at the N 1s edge has been
reported (that at the C 1s edge has recently been reported
[9]; and high-resolution C 1s XAS of pyridine has also been
measured and calculated [14]). We thus wish to apply our cal-
culations to other edges for common molecules. Azines, also
known as azabenzenes, are six-membered aromatic molecules
with various N substitutions on benzene (replacing one or
more CH groups), with pyridine being the simplest member.
They are important building blocks of proteins, nucleic acids,
and energetic and optical materials. A series of azines with

varying N substitutions serve as a good model set to study
the N 1s core ionization structures, chemical shifts, and spec-
tral fine structures in response to systematic local structural
variations. This theoretical study aims to gain general rules to
understand the x-ray physics of molecules in this family.

We chose in total seven common azines for our study,
including one monoazine (i.e., pyridine), three diazines
(pyrimidine, pyridazine, and piperazine), two triazines (1,3,5-
and 1,2,4-triazine), and one tetrazine (1,2,3,5-tetrazine).
Three diazines are building blocks for designing optoelec-
tronic materials [35–37]. Pyrimidine is the precursor of some
nucleobases (uracil, thymine, and cytosine). Nitrogen-rich
triazines and tetrazines are structural motifs for developing
high-energy-density compounds [38–41]. 1,3,5-Triazine (i.e.,
s-triazine) is the most common triazine, which can be used
in synthesizing the two-dimensional material graphitic carbon
nitride (g-C3N4). 1,2,4,5-Tetrazine is widely used in explo-
sives [41] and solid fuels [42].

Although there are many innershell experimental and the-
oretical studies on azines (pyridine [31,43–49], pyrimidine
[31,47,50,51], pyrazine [31,47], pyridazine [31,47,52,53],
1,3,5-triazine [31,47,49,54], and 1,2,4,5-tetrazine [31,49]),
most have been on BEs. We noticed that some BE data contain
mistakes in the literature (see below) and require clarification.
Regarding high-resolution experimental N 1s XPS spectra of
azines, to our knowledge, only that on pyrimidine has been
reported [50]. Here we first validate our calculations based
on pyrimidine, by testing the influences of density functionals
and the mode mixing effect. Then, for all molecules, we ana-
lyze the chemical shifts, fine structures, vibronic transitions,
and active modes to understand the properties of the core-
ionized states in this family, with respect to the local CH ↔ N
structural change.

II. COMPUTATIONAL METHODS

A. Franck-Condon simulations

To simulate the vibrational profiles in XPS, the harmonic
oscillator approximation is assumed, and the normal vi-
brational modes of the ground (Q′) and core-ionized (Q)
electronic states, written in column vectors, are assumed to
be related to each other via the Duschinsky transformation
[25] as

Q′ = JQ + K. (1)

Here we followed Sharp and Rosenstock [55] to notate the ini-
tial (ground) and final (core-ionized) electronic states with and
without a prime, respectively. The Duschinsky rotation matrix

TABLE I. Vertical and adiabatic ionization potentials (Ivert and Iad), 0-0 transition energies (E00
DR and E00

LCM), and difference in zero-point
vibrational energies (�ε0) of pyrimidine simulated by the FCH method with different functionals. All energies are in electronvolts. LCM,
linear coupling model; DR, Duschinsky rotation method.

Functional Ivert Iad = ELCM
00 EDR

00 �ε0

CAM-B3LYP 405.06 404.90 404.91 0.009
M06-2X 404.88 404.69 404.71 0.015
BP86 404.96 404.79 404.80 0.012
B3LYP 404.97 404.80 404.81 0.011
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TABLE II. Vertical and adiabatic ionization potentials (Ivert and Iad), 0-0 transition energies (E 00
DR and E 00

LCM), and difference in zero-point
vibrational energies (�ε0) of seven molecules simulated by B3LYP. Comparison was made with experiments, with relative deviations given in
parentheses. All energies are in electronvolts.

Molecule Expt. Ivert Iad = ELCM
00 EDR

00 �ε0

Pyridine 404.70a/404.82b/404.90c 404.50 (−0.20/−0.32/−0.4) 404.26 (−0.44/−0.56/0.64) 404.29 0.029
Pyrimidine 405.20c/405.23d 404.97 (−0.23/−0.26) 404.80 (−0.40/−0.43) 404.81 0.011
Pyrazine 405.60c 405.24 (−0.36) 405.11 (−0.49) 405.12 0.012
Pyridazine 405.98e 405.52 (−0.46) 405.34 (−0.64) 405.35 0.011
1,3,5-Triazine 404.90f 405.49 (+0.59) 405.30 (+0.40) 405.30 −0.006
1,2,4-Triazine N4 — 405.80 405.66 405.65 −0.010

N2 — 406.01 405.83 405.82 −0.007
N1 — 406.33 406.16 406.15 −0.008

1,2,4,5-Tetrazine — 406.98 406.79 406.75 −0.036

aPan et al. [46].
bCavell and Allison [44].
cVall-llosera et al. [47].
dBolognesi et al. [50].
eHannay et al. [53].
fApen et al. [54].

J describes the mode mixing effect and it can be obtained
from the normal coordinates (L′ and L) in the two states as
J = (L′)T L. The column vector K = (L′)T M1/2�X describes
the displacement between the two sets of potential energy
surfaces, with M being the diagonal matrix of atomic masses
and �X = X − X ′ being the change between the equilibrium
geometries of the two states, respectively. The vibrational
profile can be computed as long as J, K , and vibrational fre-
quencies (ω′ and ω) in the two electronic states are obtained.
A practical approximation for vibrational profile simulations
is to assume J = 1 and ω′ = ω, which leaves the two sets of
PESs differing from each other only by a displacement (i.e., K
vector) of the equilibrium positions, known as the linear cou-
pling model (LCM) [56]. Both DR and LCM methods were
simulated within a time-independent (TI) [57] framework. In
comparison with various time-dependent approaches, the TI
solution computes multidimensional Franck-Condon factors
(FCFs) explicitly which are helpful for detailed analysis of
spectral fine structures.

B. Ionic potentials

Within the LCM and DR methods, the 0-0 vibrational
transition energies E00 are respectively given by [22],

ELCM
00 = Iad, (2)

EDR
00 = Iad + �ε0, (3)

where

Iad = EFCH|min FCH − EGS|min GS + δrel. (4)

In the above equations, Iad is the adiabatic IP computed ac-
cording to the �Kohn-Sham scheme [58]. min FCH and min
GS denote optimized structures of the FCH (i.e., state with
the removal of one electron from the core orbital) and ground
states, respectively. EFCH and EGS are the total energies of
the FCH and GS states, and �ε0 stands for the difference in
zero-point vibrational energies of both states. δrel in Eq. (4) is
a small uniform shift to consider the differential relativistic

effect related to the removal of an electron from the core
orbital (δrel = 0.3 eV was used for the N 1s core hole [58],
and we call the value after the relativistic correction as our
theoretical result). Additionally, we also computed the vertical
IP (at the GS geometry) for comparison,

Ivert = EFCH|min GS − EGS|min GS + δrel. (5)

C. Computational details

All electronic structure calculations were performed at the
DFT level with the B3LYP functional [59–61] by using the
GAMESS-US software package [62,63]. Fine integration grid
and tight gradient convergence tolerance (3.3 × 10-5 Hartree
Bohr-1) were set. A double-basis-set technique [22] was used,
where for geometry relaxation and vibrational frequency cal-
culations two different basis sets, χGS and χFCH, were used for
the GS and FCH states, respectively. All energy differences
[see Eqs. (4) and (5)] were calculated with the same basis
set, χFCH. The cc-pVTZ basis set [64,65] was chosen for χGS.
χFCH was defined based on χGS, where the triple-ζ quality
individual gauge for localized orbital (IGLO-III) basis set
[66] was set for the core-ionized nitrogen (N∗). In systems
with more than one nitrogen, the model core potential (MCP)
together with the corresponding MCP/TZP basis set [67–69]
was employed for each nonexcited nitrogen, which avoids the
mixing of N 1s orbitals. The choice of basis sets followed
a previous work [22], where assessment on basis sets based
on benzene had validated its accuracy in reproducing the
experimental C 1s XPS fine structures. FCH calculations were
performed with restricted occupations to avoid variational
collapse.

Consequent FCF simulations were performed by a mod-
ified [22] version of the DYNAVIB package [70] interfaced
to GAMESS-US, which read DFT results of initial and final
states (optimized structures, vibration frequencies, and normal
modes). In practice, the FCFs were computed in terms of
relative energies (taking the 0-0 transition energy as zero).
The raw spectrum was then calibrated by adding absolute
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FIG. 2. Simulated vibrationally resolved N 1s XPS spectra of all azines under study by using the B3LYP-DR method. The same scale of
the Y axis is used for all molecules. For 1,2,4-triazine, both atom-specific and total spectra are shown. Vertical thin lines are stick transitions.
Major transitions (threshold of FCFs used: F � 0.04) are especially indicated with vertical thick lines in different colors (bars from left to
right correspond to legends from top to bottom). For each transition, the subscript is the mode index.

0-0 transition energy, computed via Eqs. (2) and (3). Stick
spectra were convoluted by a Lorentzian line shape with
a half-width-at-half-maximum (hwhm) of 0.05 eV for all
molecules except 1,2,4-triazine. 1,2,4-Triazine contains three
nonequivalent centers (N1, N2, and N4), and a slightly smaller
hwhm = 0.04 eV was used to better show the vibronic fine
structures. The summation of each atom-specific spectra gives
the final total spectrum.

III. RESULTS AND DISCUSSION

1. Validations on functionals for pyrimidine

Figure 1 displays vibrationally resolved XPS spectra of
pyrimidine simulated by using different density functionals.
Our choice of functionals covers one pure generalized gra-
dient approximation (GGA) functional (BP86 [60,71]), two
hybrid GGA functionals (B3LYP [59–61] and CAM-B3LYP
[72]), and one meta GGA functional (M06-2X [73–75]).
In both Duschinsky rotation [Fig. 1(a)] and linear coupling
model [Fig. 1(b)] calculations, it is found that all func-
tionals predict very similar spectral profiles with only a
small deviation (at most 0.2 eV) in absolute binding ener-
gies, showing a weak influence of functionals. Besides, the

similarity between DR and LCM curves also indicates a weak
mode mixing effect here. The experimental spectrum [15]
featured two peaks at 405.15 and 405.20 eV, with a separa-
tion of 0.05 eV. Our theoretical spectra agree well with the
experiment.

Table I lists detailed energy results computed by differ-
ent functionals. These functionals predicted vertical IPs at
404.9–405.1 eV and adiabatic IPs (i.e., the 0–0 transition
energy by the LCM method) at 404.7–404.9 eV, respectively.
The effect of functionals to either IP is within 0.2 eV. The
small deviation between both IPs by each functional (ca.
0.2 eV) indicates a small deviation of PESs between the
ground and core-ionized states. The 0–0 transition energies
predicted by the DR method are very close to those by pre-
dicted by the LCM method, staying at 404.7–404.9 eV. This
is because the zero-point energies of the initial and final
states are similar (�ε0 ∼ 0.01–0.02 eV). The small �ε0 val-
ues indicate similar curvatures of the PESs of both states.
Owing to the weak sensitivity of functionals for all these
energetic values and spectral profiles, to keep consistency,
we simply followed our previous study [22] and used B3LYP
for all consequent calculations. This does not influence our
conclusions.
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(a)
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FIG. 3. Analyses of contributions of different 0-n transitions until convergence. 0-0 transition energy is taken as zero (i.e., relative BEs
are used). Black (thick) line: Recapture of theoretical spectrum in Fig. 2. Colored (thin) lines: Individual 0-n transitions (from left to right,
n = 0, 1, 2, 3, . . .). The same scale of the Y axis is used in all panels.

2. Ionic potentials and 0-0 transition energies

Table II lists N 1s IPs of all the seven molecules computed
by B3LYP. Generally, the vertical (adiabatic) ionic potentials
cover a range of 404.5–407.0 (404.3–406.8) eV, with chemical
shifts of 0.03–2.5 (0.04–2.5) eV. From mono- to tetrazine (i.e.,
with the increase of the number of N atoms), both IPs increase
monotonically (except for a tiny violation from pyridazine
to 1,3,5-triazine, where IPs of the latter drop by less than
0.1 eV). A comparison was made with available experiments:
our theoretical vertical (adiabatic) IPs deviate no more than
0.6 (0.6) eV from experiments, with a mean absolute deviation
(MAD) of ca. 0.4 (0.5) eV. This validates the accuracy of our
simulations. Similar accuracy by DFT was predicted previ-
ously for 1s binding energies of light elements [31,76,77].

For isomers with close BEs, their relative values (i.e.,
�BE) were also well reproduced, with slightly better ac-
curacy. For example, for the three diazine isomers with
meta-, para-, and ortho-positions of the two nitrogens (i.e.,

pyrimidine, pyrazine, and pyridazine), the computed BEs
(405.0, 405.2, and 405.5 eV) exhibit relative chemical shifts
of 0.0, 0.3, and 0.6 eV, respectively. The results indicate the
sensitivity of N 1s BEs subject to the CH ↔ N replacement
in different positions, where the adjacent N-N group gives the
largest BE. Our calculations well reproduced the BEs reported
by different experiments (405.2 [15,47], 405.6 [47], and 406.0
[54] eV) with deviations of −0.2, −0.4, and −0.5 eV, respec-
tively. It seems that the deviation of theory from experiment
has the same direction for the three isomers. Hence, our pre-
dicted order is the same as the experiment, and the relative
BEs agree well with the experiments (0.0, 0.4, and 0.8 eV).

It is necessary to mention that we noted a mistake for the
experimental BEs of pyridazine and pyridine in the experi-
mental work by Hannay et al. [53], where the same table
captions were used for both molecules [78]. For this reason,
the wrong number was then cited by Vall-llosera et al. [47]
to compare with their theoretical result of pyridazine, which
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FIG. 4. Active vibrational modes for all molecules at the final state structure (min FCH). Molecular point group at this geometry is given
in parentheses. Star denotes the ionized N center (N∗). Below each figure, the mode index, the vibrational frequency (in cm−1), and the
corresponding FC factors (see sticks in Fig. 2) are indicated. The symmetry of each mode is indicated on the top left.

thus led to a relatively large deviation (and in the opposite
direction) between experiment and theory [79]. Our calculated
results (405.0, 405.2, and 405.5 eV) agree well with those by
Vall-llosera et al. (405.0, 405.2, and 405.4 eV) and clarified
this mistake in the literature.

As shown in Table II, small �ε0 values (−0.04–0.03 eV)
were predicted. In other words, the 0-0 energies predicted by
the DR and LCM methods are similar. Such results indicate
weak Duschinsky rotation effects in this family. Note that in
the case of the benzene C 1s spectrum [22], the �ε0 value is
much larger (0.08 eV, or about twice the value), where DR and
LCM spectra show larger separation in energies.

3. Vibronic fine structures and assignments

Figure 2 displays vibrationally resolved N 1s XPS spectra
[80] of all molecules simulated by the B3LYP-DR method.

The monotonically increasing relationship between core BE
and the number of N atoms is illustrated in a more vivid way.
Vibrationally resolved spectra of all these molecules (atomic-
specific spectra in the case of 1,2,4-triazine) show evident
differences. The FC factors converge quickly at n = 5 in most
cases (n = 7 for 1,2,4,5-tetrazine), subject to a convergence
threshold of 0.99 used throughout the work (Fig. 3). For all
these molecules, 0-1 transitions have the highest intensities,
which appear at ca. 0.1 eV above each 0-0 transition. Differ-
ent relative ratios of 0-0, 0-1, and 0-2 contributions tune the
spectral details in each molecule, leading to several fingerprint
features in the broad peak. Thus, not only the BEs but the
spectral profiles are also sensitive to the CH ↔ N structural
variations within this family. Our calculations show that BE
is the primary criterion to distinguish one structure from an-
other in the family, but the spectral fine structures provide
additional signatures for relatives with similar energies (e.g.,
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FIG. 5. Comparison of optimized geometries at the initial and final states (min GS and min FCH). At each structure, bond lengths (in Å)
and angles (in degrees) near the ionized N center (N∗, indicated by star) are labeled and the molecular point group is given.

pyridazine and 1,3,5-triazine). In case of relatively low exper-
imental resolution, one will observe peak asymmetries instead
of fingerprint signatures. Among these molecules, only 1,2,4-
triazine contains three nonequivalent N centers, which makes
its total spectrum distinctive from the total spectra of the other
molecules.

Major stick transitions are also interpreted, where a thresh-
old for FCFs, F � 0.04, was used to filter weak transitions.
It is found that for all these molecules, only a few (1–3)
vibrational modes make large contributions. For instance, for
pyrimidine, three low-frequency modes, ω3 (620 cm−1), ω5

(699 cm−1), and ω8 (1010 cm−1), are Franck-Condon active.
The three 0 → 1 transitions make major contributions to the
stronger feature at 405.23 eV. The weaker feature at 405.15 eV
comes from the 0-0 transition. For all these molecules, it
is clear that the lowest-energy feature comes from the 0-0
transition. Those higher-energy features are mainly from 0-1
and 0-2 transitions, as illustrated in Fig. 2.

4. Active vibrational modes

Further, Fig. 4 depicts the active vibrational modes in-
volved in Fig. 2. At the optimized core-ionized structures,
these molecules belong to either the C2v (pyridine, pyrazine,
and 1,3,5-triazine) or the Cs (the rest) point group. In general,
the active modes are all found to be low frequency (500–1650
cm−1), in-plane ring deformation modes. They all belong to
the totally symmetric irreducible representation, i.e., A1 for
C2v molecules or A′ for Cs molecules.

Similar vibrational modes can be identified in different
molecules. For example, for all molecules one can always
track an active ring stretching mode at ca. 590–670 cm−1 (ω3

in each molecule) involving mainly N* and the atom (C or
N) in its para-position. Besides, in most molecules (except
1,2,4,5-tetrazine or N1 ionized 1,2,4-triazine), another ring
stretching mode of ca. 1000 cm−1 is active, involving three
atoms in meta-positions. Interestingly, no hydrogen vibrations
(either C-H stretching or bending) are found to be active.
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TABLE III. Structural changes of each molecule at its optimized FCH state (min FCH) as compared to the optimized ground state (min
GS). Selected bond lengths (in Å) and angles (in degrees) near the ionized nitrogen (N∗) are listed (see structures and absolute structural
parameters in Fig. 5).

Molecule N∗−N N∗−C (–C)a N∗−C (–N)a ∠C−N∗−X b ∠N∗−C–C ∠N∗−C–N

Pyridine — −0.008 — +6.50 −3.82 —
Pyrimidine — −0.005 +0.002 +5.85 −3.51 −4.08
Pyrazine — −0.011 — +6.98 −4.06 —
Pyridazine +0.037 −0.031 — +6.41 −3.02 —
1,3,5-Triazine — — +0.003 +1.36 — −0.36
1,2,4-Triazine N4 — −0.009 +0.005 +6.40 −5.39 −3.95

N2 +0.044 — −0.030 +6.02 — −3.26
N1 +0.039 −0.039 — +6.67 −3.32 —

1,2,4,5-Tetrazine +0.054 — −0.048 +5.13 — −3.58

aThe second nearest atom to N∗ is included in parentheses.
bX = C, N.

This is consistent with the fact that in these molecules each
H atom is never directly bonded to an N atom. By contrast,
some C-H vibrational modes were found to be active in x-ray
spectra at the C 1s edge, for instance, in the XPS spectrum of
benzene [22], and in the XAS spectra of polycyclic aromatic
hydrocarbons [16]. Such a difference in the N 1s and C 1s
edges is related to the locality of core ionizations.

5. Changes in symmetry and structure

Figure 5 compares the optimized structures [80] of all
molecules in the ground and core-ionized states, and Table III
summarizes the essential changes near N*. Pyridine (C2v) and
1,2,4-triazine (Cs) keep the same molecular symmetry in both
states. While for other molecules, core ionization leads to a
reduction of the molecular symmetry: C2v → Cs (pyrimi-
dine, pyridazine), D2h → Cs (1,2,4,5-tetrazine), D2h → C2v

(pyrazine), and D3h → C2v (1,3,5-triazine).
We also find that core ionization leads to an increase of the

bond angle ∠C−N∗−X (X = C, N). The increment is 5.1◦–
7.0 for all molecules except 1,3,5-triazine, which is only 1.4◦
(from 114.3◦ to 115.6◦). Similar increments in bond angles at
the core center were found in benzene C 1s ionization [22].
Correspondingly, the bond angle ∠N∗−C–C (∠N∗−C–N) is
decreased by 3.0◦−5.4◦ (0.4◦−4.1◦).

Concerning the bond lengths, we found that the changes
are more complex than bond angles which depend on bond
types. Two types of bonds, N∗−N and N∗−C, are formed in
these molecules. For N∗−N, there is a simple general rule:
these bond lengths are increased by 0.04–0.05 Å, from 1.32–
1.33 Å to 1.37 Å. This is in contrast to the C 1s edge, where
C∗−X bond reductions were found in several molecules (ben-
zene, furan, pyrrole, thiophene, pyridine) [22]. While for the
N∗−C bond lengths, the changes are found to be influenced
by the second nearest atom (i.e., the atom one bond away):
when it is carbon, i.e., N∗−C (–C), the bond length is always
reduced (by 0.01–0.03 Å); when it is nitrogen, i.e., N∗−C

(–N), both an increase and a decrease in bond lengths can be
found.

IV. SUMMARY AND CONCLUSIONS

In summary, we have predicted N 1s vibrationally re-
solved spectra of seven heterocyclic azine molecules using
the B3LYP-DR method and analyzed their active vibrational
modes and structural changes. Tests on pyrimidine show that
different density functionals generate similar spectral profiles
and small deviations in binding energies, and the Duschinsky
effects are weak. Within this azine family, the number and
the position of N atoms strongly affect the N 1s BEs. A
monotonically increasing relationship between core BE and
the number of N atoms is found.

The underlying vibronic transitions of major peaks are
analyzed in detail. It is found that the active vibrational modes
of these molecules are all low-frequency (500–1650 cm−1),
totally symmetric in-plane modes. It is found that the intro-
duction of the N 1s core hole always leads to an increase in
the bond angle ∠C−N∗−X and correspondingly to a decrease
in ∠N∗−C−X (X = C, N). Concerning the bond lengths, the
N∗−N bonds are always stretched, while the N∗−C bonds can
be either stretched or shortened. Our study predicts accurate
spectra of the series and provides detailed information on the
properties of the core-ionized states. Simulated spectral data
and Cartesian coordinates of each optimized geometry in this
study are provided in the Supplemental Material [80].
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