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Channeling electronic stopping power of lithium ions in diamond: Contribution
of projectile inner-shell electrons
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The electronic energy loss of Li ion in diamond under a channeling condition is studied using real-time time-
dependent density functional theory. Simulations with and without inner-shell electrons explicitly considered in
describing the electron configuration of projectile Li ions are performed to understand their contribution to the
dissipation mechanism. It is found that the explicit involvement of inner-shell electrons is particularly important
in describing the charge state of the projectile during collision, especially in the high velocity regime where the
inner-shell orbital is indeed far from fully occupied during collision. Due to the overestimate of the electronic
screening, Li ions with inner-shell electrons that are frozen show only a reduced and hydrogenlike capability in
perturbing the host electronic system.
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I. INTRODUCTION

The energy loss of charged ions in materials is of critical
importance in technological fields such as nuclear power [1],
outer space exploration [2], biomedical imaging [3], three-
dimensional ion beam lithography [4], and so on. The
dissipative forces on swift ions are the result of elastic
collisions with nuclei (nuclear energy loss) and inelastic scat-
tering events (electronic energy loss). When the particle’s
kinetic energy is sufficiently large (typically greater than
tens of keV/nucleon), the dominant energy dissipation arises
from the electronic channel wherein the intruding ion in-
duces massive electronic excitations in the medium [5,6].
The energy loss to the host electrons is typically quanti-
fied by the energy transfer from the projectile to the target
electronic system per unit path length and formally denoted
as electronic stopping power (Se), which has the dimension
of force.

Ever since the concept of electronic stopping was pro-
posed, extensive efforts have been fueled aiming at predicting
the electronic stopping power and illuminating the mecha-
nisms that are involved. Early approximated analytical models
based on classical Coulomb scattering [7,8] were followed
later by Bethe’s quantum-oscillator strength formula [9]
and Lindhards linear-response treatment within the dielectric
formalism based on the free-electron gas [10]. The formu-
las developed by Bethe and Lindhard both fall within the
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linear-response formalism,

Se(v) = 4πZ2
eff e

4

v2
nL(v). (1)

In recent years, due to the rapid development of powerful
computers and modern electronic structural methods, it is
possible to obtain key parameters in analytical models directly
from first-principles theories [11–13]. Such parameter-free
methods have the potential to greatly go beyond analytical
models, as they provide a direct access to the freedom of
the electron, making it possible to study the nature of the
electronic excitations and even the chemical processes [14]
during the collision. However, a fully first-principles calcula-
tion of electronic stopping for velocities around and above the
maximum of the electronic stopping curve remains elusive.
One major reason is the complexity caused by the need to
introduce core electrons in this velocity regime [6,15–19].

The pioneer works about the inner-shell contribution to
the deceleration of the incident ion can trace back to the
d electrons excitation in transition metals [20,21], where a
pronounced increase in the curve slope of Se was found when
the projectile velocity exceeds the excitation threshold of d
electrons [22–25]. The follow-up works [6,15–19] deal with
the contribution of the core electron excitation of the target in
a wild range of velocity regimes and ion-target systems with
varied degrees of success. Generally, for a light intruding ion
(hydrogen and helium) with no inner-shell electron, calcula-
tion of Se only with the target valence electron that is explicitly
considered provides reasonably good agreement with the ex-
perimental data in the velocity regime below the stopping
maximum. For a heavy incident ion, Ojanperä et al. [26] have
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shown that the core electrons excitation of the projectile plays
a crucial role in determining Se as well. Ullah et al. [13]
studied the importance of deep-lying level states electrons
of both the projectile and target in self-irradiated Ni. Lee
et al. [19] reported that core electrons significantly affect
electronic stopping and also have an unexpected influence
on the charge state of the projectile. Despite these previous
works, the opening question of how and to what extent the
core electrons relevant charge state affects the electronic stop-
ping remains unresolved. Indeed, this is complicated by the
difficulty of estimating the bound state electron on a specific
orbital of the heavy ions in matter.

In this work, we mainly demonstrate, through real-
time time-dependent density functional theory (RT-TDDFT)
coupling Ehrenfest molecular dynamics (EMD) [27], the de-
privation of core electrons for Li ions moving in diamond.
We also investigate the electronic screening effect of inner-
shell electrons on the projectile’s capability to disturb the
target electronic system and the resulting stopping profile. The
choice of Li and diamond as the ion-target combination is
due to plenty of experimental data that are available for Li
in carbon, and the inner-shell 1s level for Li is not very deep,
so complete deprivation of the projectile bound electron can
be achieved at a reasonable, not too high velocity.

II. METHOD AND COMPUTATIONAL DETAILS

Considering that the Se is a velocity-resolved quantity, for
simplicity, the intruding ions are constrained to move at a
given constant velocity along the negative z direction. The
ionic motion of target atoms is neglected by fixing the host
ions in the equilibrium positions as their instantaneous dis-
placements are less than 0.01% of the lattice parameter and
ionic velocities change less than 10−4 a.u. during ion-target
interaction. Under such conditions, the system’s total energy
is not conserved, and thus instead of the decrease in projec-
tile kinetic energy, the excess in total system energy is used
in determining the stopping power. As the incident ion is
released to moves, the time-dependent Kohn-Sham (TDKS)
equation describes the evolution of the electron density and
energy of the system, using the approximated enforced time-
reversal symmetry (AETRS) method [28],

ih̄
∂ϕi(�r, t )

∂t
=

[
− h̄2∇2

2m
− VKS

]
ϕi(�r, t ), (2)

with

VKS = −
∑

I

ZI

| �RI (t ) − �r|
+

∫
n(�r′, t )

|�r − �r′|d �r′ + Vxc(�r′, t ), (3)

where ZI and �RI (t ) denote the charge and ionic position vec-
tor of the Ith nuclei, respectively, m is the electron mass,
and ϕi(�r, t ) is the orbital of the ith electron, be it either on
the projectile or target. Vxc is the time-dependent exchange-
correlation potential, which is initially a functional of the
electron density n(�r′, t ′) at all points �r′ and at all times t ′ < t .
Since the adiabatic local-density approximation with Perdew-
Wang analytic parametrization [29] is exploited in the present
work, Vxc is only a functional of instantaneous electron den-
sity n(�r′, t ), and any memory effects of Vxc are neglected.
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FIG. 1. Evolution of electrons bound to the 1s orbital for initial
neutral and bare incident Li ions with velocity 1.2 a.u. along the
whole trajectory, respectively. The region between the gray lines is
inside the diamond crystal.

The other two terms of VKS are the external potential from
the nuclei and the Hartree potential between the electrons,
respectively.

In order to obtain the number of electrons on the specific
orbital of the intruding ion, a recently developed projected
density of states (PDOS) method [30] is exploited. We first
calculate the PDOS on the specific orbital of the ion by pro-
jecting all single orbital states of the system onto it,

ρ j (ε) =
∑

n

〈ψn(t )| j〉〈 j|ψn(t )〉δ(ε − εn), (4)

where εn is the eigenvalue of the eigenstate ψn. The number
of bound electrons on the j orbital of the particular ion is
obtained by integrating ρ j (ε) below the Fermi energy (EF) and
multiplying the occupation number per state. Such method
avoids the artificiality in partitioning the belongs of the elec-
trons. A more detailed introduction about PDOS can be found
in Ref. [30].

The simulations are implemented by exploiting the OC-
TOPUS ab initio real-space code [31,32]. There is no basis
set; the external potential, electronic density, and KS orbitals
are discretized in a set of mesh grid points with a uniform
spacing of 0.18 Å along the three spatial coordinates in the
simulation box, which corresponds to an energy cutoff of
about 1160.59 eV in the plane-wave basis. A small time step
of 0.001 fs is adopted to ensure the stability of the time-
dependent computations. Simulations with smaller time steps
and grid spacings achieve essentially the same results.

We found that it is difficult for the initial bare Li projec-
tile to accumulate electrons on to the 1s orbital and reach
charge equilibrium states during collisions, while the charge
stripping from the neutral incident ion is much more effi-
cient (see Fig. 1); a similar finding has also been reported by
Lee et al. [19]. Thus, neutral projectiles are employed in the
present work. First, a ground-state density functional theory
(DFT) calculation with incident atom placed 6 Å above the
target thin film is performed to obtain the converged static
states of the projectile and target simultaneously; very little
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FIG. 2. Electronic stopping power (black open squares and cir-
cles) for channeled Li ions as a function of velocity along the
centroid trajectory of the 〈100〉 direction, together with the SRIM-
2013 predictions (solid line), experimental data (solid symbols) by
Santry [35], Lin [36], Andersen [37], Mertens [38,39], Liu [40], and
also TDDFT simulation results by Ojanperä [26] for Li in graphene.
For comparison, the simulated electronic stopping for the channeled
proton along the same trajectory is also plotted. The inset shows the
sketch of the centroid trajectory along the 〈100〉 direction.

influence on the electronic structures between the stationary
projectile and target atoms is found under such distance. To
investigate the effect of the projectile’s core electrons excita-
tion, two pseudopotentials, namely, Li1 (with one 2s explicit
electron) and Li3 (with two 1s and one 2s explicit electrons)
that are with and without 1s states frozen in the ionic core, are
employed. The frozen electrons cannot polarize or take part
in any dynamical process. For the host C atoms, only 2s and
2p electrons are explicitly included. All the atoms including
the projectile and target in the present work are represented by
norm-conserving nonlocal pseudopotentials, factorized in the
Kleinman-Bylander form [33].

Instead of converging a classical ensemble average of the
projectile trajectories, the “centroid trajectory” suggested in
Refs. [17,26,34] is used to reduce the vast computational
cost of RT-TDDFT simulations. Such channeling trajectory is
often considered to be a good approximation of an ensemble
average over all trajectories [17,26,34]. Thus, we have chosen
electronic stopping power along this trajectory to represent
the electronic energy loss rate during the collisions. A rela-
tively thick 2 × 2 × 10 conventional cell with 320 C atoms is
employed as the target to get the intruding ion fully equili-
brated during passage through the crystal. The diamond thin
film and projectile are placed in a simulation box with size
12 × 12 × 60 Å3. No periodic boundary conditions are used
in this work. The electronic stopping powers are extracted
by linear fitting of the excess of the system energy over the
last 6 Å range in the solid to keep from the presence of
preequilibrium contribution.

III. RESULTS AND DISCUSSION

Figure 2 presents the simulated Se results for the mo-
tion of Li ions with velocities of 0.1–6.0 a.u. along the

centroid trajectory in the 〈100〉 channel of the diamond thin
film. The SRIM-2013 [41] predictions and experimental data
by Santry [35], Lin [36], Andersen [37], Mertens [38,39], and
Liu [40] are also shown. For Li1, the calculated results begin
to significantly deviate from the SRIM and experimental data
when the velocity exceeds 0.3 a.u. For Li3, there is excellent
agreement between the simulated results and the experimental
data nearly up to the stopping maximum. However, above
the stopping maximum, the Li3 data also underestimate the
experimental electronic stopping. Such result can be attributed
to the neglecting target C K-shell excitation [18] in this work.
To support this assertion, we calculated the threshold of the
impact velocity for the excitation of the 1s electron of C using
the method suggested by Lim et al. [11] and Lee et al. [19].
The channeling of the projectile through a periodic lattice can
be viewed as the time-dependent perturbation to the target
material; the energy is quantified as h̄ω, with ω = 2πv/λ,
where λ is the distance between equivalent lattice positions
(for the 〈100〉 channel of diamond, λ = a/4, where a is the
lattice parameter). The threshold velocity vth can be obtained
by equating perturbation h̄ω to the binding energy �E , giving

vth = λ�E

h
, (5)

where h is Planck’s constant. We estimate that for the 1s
electron of C with binding energy about 289 eV [42], it
only contributes to electronic stopping for a projectile with
velocities above 2.8 a.u., coinciding with the very velocity
in which the simulated stopping begins to underestimate the
experimental data. At v = 0.45 a.u., the simulated results for
Li3 underestimate about 27% of the experimental electronic
stopping, higher than the case for proton in water where
K-shell accounts 15% of the total electronic stopping [18].
This can be qualitatively justified by the fact that the 1s level
for O is deeper than that of C, and thus the 1s electrons of
target C in the present work are more readily excited. Impor-
tantly, one should also keep in mind that the centroid path
approximation [17,26,34] employed in this work may also be
responsible for the underestimation of experimental electronic
stopping for the large velocities because, along this path, the
proton projectile does not come near the target silicon atoms.

Regarding the amplitude and position of the stopping
maximum, the calculated results for Li3 are 124 eV/Å at
v = 2.5 a.u., which only slightly underestimate the exper-
imental data and SRIM prediction of about 126 eV/Å at
v = 2.8 a.u. For Li1, the stopping maximum occurs at v = 0.9
a.u. and the value is 25.5 eV/Å, significantly deviating from
the experimental data. For comparison, we also calculated the
Se for a proton along the same trajectory. As can be seen, the
amplitude of the stopping maximum for Li1 is comparable to
that of the proton, 24 eV/Å at 2.0 a.u. The reason for this will
be discussed in the following part.

In Fig. 3, we present the number of electrons on the specific
orbital and the effective charge states (atomic number minus
the sum of the electron number of all orbitals on a specific
ion) of Li1, Li3, and proton. The electron number is obtained
by averaging the bound electron on a specific orbital over the
same ion path as the calculation of stopping. As can be seen in
the figure, 1s electrons of Li3 decrease with velocity and reach
zero at 3.0 a.u. The number of 2s electrons reaches a peak at
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FIG. 3. Electron number (left axis, red hollow symbols and line)
on the specific orbital of Li1 and Li3 and the effective charge states
(right axis, blue hollow symbols) of the Li1, Li3, and proton. The
charge states (right axis, blue solid symbols) for the Li ion’s impact
with graphene by Ojanperä [26] are also plotted.

0.3 a.u. and then decreases to zero at 1.1 a.u. for both Li1 and
Li3. The effective charge states for Li1, Li3, and proton reach
the steady state at around 0.9, 2.5, and 2.0 a.u., corresponding
to the stopping maximums shown in Fig. 1, respectively. Such
result indicates that the velocity where the projectile electrons
get fully striped may determine the position of the stopping
maximums. The fully striped states for Li1 and the proton
are Z∗ = 1, and the amplitudes of the stopping maximum
are comparable. Thus we interpret that the amplitude of the
stopping maximum may be dependent on the fully striped
charge state.

It is noted that our charge state results for Li1 agree well
with the simulated results by Ojanperä [26], while there is
a considerable discrepancy for Li3 at low velocities below
v = 4 a.u. This can be attributed to the extent of equilibra-
tion of the projectile charge since, in their work, the target
graphene with only one C layer would probably lead to the
preequilibrium of their partially striped incident Li3 ions, es-
pecially in the low-velocity regime where the bound electrons
are more easily kept at pace with the fast-moving ion. The
agreement between the Li1 results can be ascribed to the fact
that the loosely bounded 2s electron could be easily deprived,
and thus its deprivation is less affected by the number of
crystal layers that are experienced.

In order to investigate the effect of electronic screening
of the bound electron on the ion’s capability to perturb the
target’s electronic structure, we compute the carriers (holes
and excited electrons) distribution due to electronic exci-
tations when a projectile propagates through the diamond
thin film. The time-dependent occupation of the electronic
states in the valence band and conduction band is obtained
by projecting all time-dependent Kohn-Sham wave func-
tions ψn(t ) onto the ground-state Kohn-Sham orbitals ϕi

as [25,43]

Cocc(εi ) =
∑

n

|〈ϕi|ψn(t )〉|2, (6)

-

-

-
- - -

FIG. 4. The instantaneous distribution of the carriers induced by
projectiles with velocities of 0.9 a.u. at t = 1.2 fs; the Fermi energies
are set to zero eV. The inset shows the displacement-resolved number
of excited electrons. The region between the blue dashed lines in the
inset is inside the target.

where εi is the eigenvalue of ϕi. To compute the change in the
electronic distribution or the electron-hole excitation distribu-
tion P(ε), we subtract the ground-state occupation from Cocc,

P(ε) = [Cocc(εi ) − Oocc(εi )]δ(ε − εi ), (7)

where Oocc(εi ) is the occupation of the ground-state Kohn-
Sham orbitals ϕi. The total number of excited electrons can be
obtained as

N =
εi<EF∑

i

[Oocc(εi ) − Cocc(εi )]δ(ε − εi ). (8)

In Fig. 4, we present the instantaneous distribution of the
carriers induced by Li1 and Li3 with velocity of 0.9 a.u. at
t = 1.2 fs. The negative and positive values of P(ε) show
the density of empty and filled states below and above EF

due to the electronic excitations caused by the moving pro-
jectile, respectively. We also show in the inset the number of
excited electrons, N , induced by Li1 and Li3 all through the
ion trajectory. As can be seen, the amplitudes of the carriers
distribution caused by Li3 are much higher than Li1, and
the number of excited electrons induced by Li3 along the
trajectory is significantly more than that of Li1. This means
that the capability to excite an electron directly depends on
the charge state of the projectile, and the electronic screening
effect would be overestimated for a projectile with inner-shell
electrons that are frozen.

To verify our above argument about the charge-state-
dependent stopping profile, we decompose the definition of
electronic stopping,

dE/dx = dE/dt × 1

v
= dN/dt × �E × 1

v
, (9)

where dN/dt is the number of excited electrons per unit of
time, which can be viewed as the capability of exciting a
host electron, �E is the average energy loss in exciting per
electron, and 1/v decides the interaction time. By linear fitting
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FIG. 5. The velocity-resolved number of electrons excited per
unit of ion path and excitation rate for Li3 and Li1. See more details
in the text.

the number of excited electrons over the last 6 Å in crystal, we
get the number of electrons excited per unit path, dN/dx, and
such value divided by the stopping power yields �E ,

�E = dE/dN = dE/dx

dN/dx
. (10)

In Fig. 5, we present the dN/dx and dN/dt for Li3 and Li1,
respectively. In the present work, dN/dx has the dimension of
|e−|/Å; since we mainly care about the trend of such values,
the dN/dt is obtained by directly multiplying the atomic units
velocity, and arb. units is employed in Fig. 5. Similar usage
is also employed in Fig. 6. It can be seen that dN/dx for Li3
and Li1 reach their maximum at 1.8 and 0.6 a.u., which posit
ahead of the corresponding stopping maximums. Considering
the discrepancy in interaction time for a projectile with dif-
ferent velocity, the reciprocal velocity scaled values dN/dt
are more suitable for reflecting the real electronic excitation
capability. As can be seen for Li3 and Li1, dN/dt reach their

FIG. 6. The velocity-resolved average energy loss per excitation
and the corresponding values scaled by velocity for Li3 and Li1. See
more details in the text.

FIG. 7. Velocity-resolved ratio between Li3 and Li1, and ratio
between Li1 and proton for the calculated electronic stopping power
and projectile effective charge state. The dashed gray lines represent
ratios of 3 and 1, respectively, which is expected from linear-response
theory when assuming a fully ionized charge state.

maximum at 2.5 and 0.9 a.u., respectively, coinciding with the
position of the stopping maximum in Fig. 1 and also the veloc-
ities’ Li ions get fully deprived in Fig. 2. Such result confirms
that the capability to excite an electron directly depends on the
charge state of the projectile, and the position of the stopping
maximum is closely related to the very velocity where the
projectile gets fully deprived.

In Fig. 6, we show the velocity-resolved �E and �E/v,
and the curves for Li3 and Li1 match very well below
v = 2.5 a.u., indicating that �E is not sensitive to the pro-
jectile charge state in the relative low-velocity regime. It is
noted that the values of �E/v keep constant at about 25
keV/a.u. within a wild velocity range from 0.8 to 2.5 a.u.,
covering the region around the stopping maximums of Li3
and Li1. This means the charge state relevant electron excit-
ing capability dN/dt dominates the stopping profile in such
velocity regime.

Thus far, our results show the effective charge state is in
positive correlation with the electronic stopping. This corrob-
orates the corrected linear-response theory, where electronic
stopping depends quadratically on the effective charge state
Zeff of the projectile with velocity v. It is interesting to
examine to what extent our calculated results match the linear-
response theory.

Figure 7 shows the ratios between Li3, Li1, and proton
for the calculated electronic stopping power and projectile
effective charge state. For the case between Li3 and Li1, the
two quantities are in good agreement at very low velocities,
where 1s electrons are only slightly deprived; the ratio reaches
3 for ion velocities higher than v = 6 a.u., where 1s electrons
are fully deprived. For the case Li1 and a proton, except
at very low velocity, the two quantities match well and the
ratio reaches 1 for velocity above 1.5 a.u. Generally, with
1s electrons constrained to be excited, Li1 shows hydrogen-
like behavior, especially in the high-velocity regime. For Li3,
with the deprivation of 1s electrons increasing with velocity,
its energy loss characteristic gradually changes from Z = 1
to Z = 3.

022807-5



LI, XUE, AND ZHANG PHYSICAL REVIEW A 106, 022807 (2022)

IV. CONCLUSIONS

To summarize, TDDFT simulations with and without the
inner-shell electrons included in describing the charge states
of the incident ion are performed. Inner-shell electrons exci-
tation is found to be crucial to the charge state of a heavy
projectile and the resulting electronic stopping profile. Due to
the overestimation of electronic screening, a heavy ion with
inner-shell electrons that are frozen can only perform like
an ion with lower Z in energy dissipation. Our calculated
results of the effective charge state and electronic stopping

show qualitative agreement with the linear-response theory.
This work sheds light on the theoretical research on energy
loss of a heavy ion.
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