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Dynamics of a single trapped ion in a high-density medium: A stochastic approach
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Based on the Langevin equation, a stochastic formulation is implemented to describe the dynamics of a trapped
ion in a bath of ultracold atoms, including an excess of micromotion. The ion dynamics is described following a
hybrid analytical-numerical approach in which the ion is treated as a classical impurity in a thermal bath. As a
result, the ion energy’s time evolution and distribution are derived from studying the sympathetic cooling process.
Furthermore, the ion dynamics under different stochastic noise terms is also considered to gain information on the
bath properties’ role in the system’s energy transfer processes. Finally, the results obtained from this formulation
are contrasted with those obtained with a more traditional Monte Carlo approach.
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I. INTRODUCTION

In recent years it has been possible to combine optical traps
and Paul traps in a single experimental setup to obtain cold hy-
brid atom-ion systems [1], combining two emerging research
fields: ultracold atoms and cold ions [2]. These hybrid systems
are expected to incorporate the essential advantages of the two
components representing a new promising scenario to study
fundamental aspects of matter and light-matter interaction
and to develop quantum technologies [3]. Hybrid ion-atom
systems allow us to study charged-neutral interactions in a
controllable way, thus revolutionizing physical chemistry and
paving the way to a new field of research: cold chemistry [4].
Additionally, atom-ion hybrid systems offer a platform for
studying the impurity physics of a charged particle in a neutral
sea. This problem is usually approached by a many-body [5,6]
or a few-body [7] perspective.

Most of the prospects and applications of hybrid atom-ion
systems rely on reaching the quantum s-wave regime [3].
Ultracold atomic gases can be readily prepared in the 100-nK
regime [8,9]. Then, it is necessary to use sympathetic cooling
to cool down ions by bringing in contact ions with an ultracold
gas (buffer gas). However, the time dependence of the electric
field in Paul traps limits the temperature of the trapped ions
in a buffer gas [10]. Although, using atom-ion combinations
with a large mass ratio [11] such as 6Li-Yb+ can alleviate
this effect. In general, atom-ion dynamics is studied from
three different approaches: a Monte Carlo approach [12], a
molecular dynamics approach [13], and a few-body ab initio
approach [14–16]. However, there is an alternative perspective
to atom-ion systems in which most of the degrees of freedom
of the bath are integrated out, yielding an effective ion-bath
interaction.
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This work studies the dynamics of a single ion in a
buffer gas from a stochastic approach. In particular, instead
of considering all degrees of freedom of the bath, these are
substituted by an effective stochastic force. Such a force can
be modeled with different types of noise terms, which in
principle allows exploring the role of the bath properties in the
ion’s dynamic and cooling processes via solving the Langevin
equation—giving the possibility of gaining insights into the
mechanisms of energy transfer between the ion and the bath.
The paper is structured as follows. Section II is devoted to
explaining the model based on the Langevin equation and
the generalized Langevin equation (GLE) for the ion in the
atomic bath, and Secs. III and IV present the main results of
this formulation. In Sec. V, the more traditional hard spheres
molecular dynamics methodology is introduced, and the re-
sults are contrasted with those of the stochastic formulation.
Finally, Sec. VI summarizes the main results of the work and
presents some perspectives.

II. LANGEVIN EQUATION MODEL

It is well-known that the motion of a single ion in a Paul
trap is described by the Mathieu equation [4]

d2r j

dt2
+ �2

4
[a j + 2q j cos(�t )]r j = Fmm, j

m
, (1)

where j = (x, y, z), � is the trap frequency, and the coeffi-
cients aj and q j depend on the mass of the ion and on the
parameters of the trap. In particular, they are proportional to
the dc and ac voltages applied to the trap, respectively, and
both are inversely proportional to the distance between oppo-
site electrodes [17]. Fmm, j is the force due to possible external
fields or excess micromotion sources, such as stray electric
fields or phase differences between the ac potentials applied
to the electrodes [17]. The homogeneous form of Eq. (1)
admits solutions via the Floquet theorem [18]. In particular, in
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the limit of a j � q2
j/2 � 1 and making use of the adiabatic

approximation, the approximate ion’s position is given by

r j (t ) ≈ Aj cos(ω jt + φ)
(

1 + q j

2
cos(�t )

)
= Aj cos(ω jt + φ) + Aj

q j

2
cos(ω jt + φ) cos(�t ),

where constants A j and φ j depend on the initial conditions.
The adiabatic or pseudopotential approximation consists of
separating the slow secular motion, driven by the secular

frequency ω j = �
2

√
a j + q2

j

2 , from the fast superimposed mi-
cromotion driven by frequencies � ± ω j .

The dynamics of a trapped ion in contact with a buffer gas
is more involved due to its collisions with the gas particles.
In this scenario, one possible way to treat such dynamics is
assuming that the ion behaves as a trapped Brownian particle
in a given bath. As a result, it is possible to simulate the ion’s
dynamics as a Langevin stochastic process. In particular, in
the case of an ion in a linear Paul trap, the degrees of freedom
are decoupled, leading to the following stochastic differential
equation for the motion for the jth component:

d2r j

dt2
+ 1

m

∫ t

0
�(t − t ′)v j (t

′)dt ′ + �2

4
[a j + 2q j cos(�t )]r j

= Fmm, j

m
+ ζ (t )

m
, (2)

where v j = dr j/dt and the new terms in comparison to
Eq. (1),

∫ t
0 �(t − t ′)v j (t ′)dt ′ and ζ (t ), represent forces aris-

ing from the interaction between the ion and the bath. The
former represents a friction force coming from the few-body
physics of atom-ion interactions, whereas the latter represents
a stochastic force.

ζ (t ) is a random force resulting from the thermal fluctu-
ations associated with the bath after integrating out most of
their degrees of freedom. The random force is fully deter-
mined by its statistical properties as

〈ζ (t )〉 = 0 and 〈ζ (t )ζ (s)〉 = C(t − s), (3)

where C(t − s) is the force correlation function at two dif-
ferent times, t and s. The friction and the stochastic forces
are intimately related via the fluctuation-dissipation theorem
(FDT) as [19].

�(t − t ′) = 1

2kBT
C(t − t ′), (4)

where kB is the Boltzmann constant, and T is the temperature
of the bath.

In the following, we use two distinct models for the
stochastic force, namely, a white noise model and a colored
noise model, to study the behavior of a trapped ion interacting
with an atomic bath. In addition, the results are contrasted
with results from Monte Carlo simulations.

III. WHITE NOISE BATH

Assuming that the stochastic force represents a white noise,
we find

〈ζ (t )〉 = 0 and 〈ζ (t )ζ (s)〉 = Dδ(t − s), (5)

where δ(x) stands for the Dirac delta function of argument x,
and D is the strength of the noise. Equation (5) establishes that
the force at two different times is uncorrelated, and hence, the
force acting on the ion only depends on the actual state of the
bath. That is, a white noise leads to Markovian dynamics of
the ion in a bath.

In this scenario, the FDT yields

�(t − t ′) = D

2kBT
δ(t − t ′), (6)

and the ion’s dynamics is given by the following Langevin
equation:

d2r j

dt2
+ γ

m

dr j

dt
+ �2

4
[a j + 2q j cos (�RFt )]r j

= Fmm, j

m
+ ζ (t )

m
, (7)

where we have introduced the friction coefficient defined as
γ = D

2kBT .

A. Dynamics of the ion

Here, we assume a linear Paul trap configuration such
that qx = −qy, qz = 0, and ax = ay = az

2 , satisfying a j �
q2

j/2 � 1. In addition, we explicitly include the additional

term Fmm, j

m = eEj

m = Ẽ j ( j = x and y) resulting from a radial
stray electric field. The few-body physics regarding atom-ion
interaction is encapsulated in the diffusion coefficient, which
is obtained through the Chapman-Enskog approximation [20]
fed with the thermally averaged diffusion cross section, as it
is described in Appendix A. Next, by virtue of the FDT, it is
possible to calculate the friction coefficient from the diffusion
coefficient and solve the Langevin equation, leading to the
following equations for the mean position and velocity of the
ion:

d〈v j〉
dt

+ γ ′〈v j〉 + �2

4
[a j + 2q j cos(�t )]〈r j〉 = Ẽ j,

d〈r j〉
dt

= 〈v j〉, (8)

where we have made γ

m = γ ′ to simplify the notation. Hence,
the time evolutions of the mean square values of velocity and
position, and of the cross correlations, read as

d

dt

⎛
⎝

〈
r2

j

〉〈
v2

j

〉
〈r jvi〉

⎞
⎠ = M

⎛
⎝

〈
r2

j

〉〈
v2

j

〉
〈r jvi〉

⎞
⎠ +Ẽ j

⎛
⎝ 0

〈v j〉
〈r j〉

⎞
⎠, (9)

with M given by⎛
⎝ 0 0 2

0 −2γ ′ −�2

2 [a j + 2q j cos(�t )]
−�2

4 [a j + 2q j cos(�t )] 1 −γ ′

⎞
⎠ .

Equation (9) is solved numerically using a fourth-order
Runge-Kutta method for the j = x component, we use vx = v

for simplicity [21], and the results are shown in Figs. 1 and
2. Figure 1 displays the time-averaged mean square position
and velocity, 〈x2〉 and 〈v2〉, respectively, as a function of q j ,
keeping a and � fixed in the absence of excess micromotion
(Ẽ j = 0). In this figure, it is noticed that the larger the value
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FIG. 1. Variation of the mean square x position and x velocity
with respect to the qx = q parameter. The trap parameter was kept as
a = −8 × 10−6 and � = 2π × 106 Hz. The points are the numerical
calculations, the dashed line is the first approximation described by
Eq. (13), and the solid line corresponds to the second approximation
given by Eq. (15). Panels (a) and (b) show 〈v2〉 vs q and 〈x2〉 vs q,
respectively. Additionally, the calculations were performed consider-
ing a 171Yb+ ion in an ultracold cloud of 6Li.

of q is, the smaller the mean square position of the ion is. On
the contrary, the average square velocity of the ion increases
with q. To further understand the observed behavior, we have
conducted a theoretical analysis of the average mean square
position and velocity of the ion based on a continued-fraction
expansion following Ref. [22]. In particular, we find that 〈r2

j 〉,
denoted here as σrr for simplicity, satisfies

˙̇ ˙σ rr = − 3γ ′σ̈rr −
(

�2

2
[a j + 2q j cos(�t )] + 2γ ′2

)
σ̇rr

− {γ ′�2[a j + 2q j cos(�t )]}σrr + 2D

m

+ 4Ẽγ ′〈r j〉 + 4Ẽ〈v j〉, (10)

FIG. 2. Variation of the time-averaged mean square x velocity
with respect to the qx = q parameter for different stray fields. The
trap parameters were fixed to a = −8 × 10−6 and � = 2π × 106 Hz.
The curves have been obtained numerically considering a 171Yb+-6Li
mixture.

which, in the long-time regime, can be solved via the Fourier
expansion method using the following ansatz:⎛

⎝〈x2〉
〈v2〉
〈xv〉

⎞
⎠ =

⎛
⎝

∑
n xne−in�t∑
n vne−in�t∑
n cne−in�t

⎞
⎠ .

In the case of t � 1/γ ′, i.e., a quasistationary state is reached
and Eq. (10) yields

Qnxn + Q−
n xn−1 + Q+

n xn+1

= 2

(
D

m
+ 2Ẽ2

x γ ′

ω2

)
δn,0 +

(
Ẽ2

x qγ ′

ω2
± Ẽ2

x q�

ω2
i

)
δn,±1,

(11)

with
Qn = −in3�3 − 3γ ′n2�2 + 2(γ ′2 + a�2)n�i + γ ′�2a,

Q±
n = q�2

2
[�i(2n ± 1) + 2γ ′].

In the absence of excess micromotion, Eq. (11) simplifies
to xn+1 = S+

n xn for n � 0 and xn−1 = S−
n xn for n � 0, with

S±
n = − Q∓

n±1

Qn±1 + Q±
n±1S±

n±1

. (12)

Next, assuming γ ′2
�2 � 1, the time-independent component of

the Fourier expansion for the mean square position is given by

〈x2〉 = 2D/m

Q0 + 2Re(Q+
0 S+

0 )
≈ kBT

mω2
, (13)

and the velocity and cross-correlation contributions are given
by

vn = (in� + γ ′)cn + �2a

4
xn + �2q

4
(xn−1 + xn+1),

cn = in�xn

2
.
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TABLE I. Leading contributions of the Fourier expansion of the
square position and velocity in the pseudopotential regime.

n xn vn

0 kBT
mω2

kBT
m

1 ( q
2 + qγ ′

2�
i)x0

−qγ ′2
4 x0

2 ( 3
32 q2 + 3

64
γ ′
�

q2i)x0 ( − 25
184 q2�2 + 113

368 γ ′�q2i)x0

3 ( 5
414 q3 − 181

13248
γ ′
�

q3i)x0 ( − 1
64 q3�2 + 3

64 γ ′�q3i)x0

In the adiabatic limit c0 = 〈xv〉 = 0 and hence we find

〈v2〉 ≈ 2kBT

m
, (14)

leading to 〈Ek〉 = 1
2 m〈v2〉 ≈ kBT for the spatial degrees of

freedom with an rf field, which is a well-known result. The
results from Eqs. (13) and (14) are shown as dashed lines in
Fig. 1, where it is noticed that they can only properly describe
the ion dynamics for q � 0.1.

Here, we go beyond previous studies by including higher-
order contributions up to the third harmonic, i.e., n = 3,
and the results are shown in Table I. We find the following
time-averaged expressions for the mean square position and
velocity:

〈x2〉 ≈ kBT

mω2

[
1 + 27

50 q2

1 − 1
5 q2

]
,

〈v2〉 ≈ kBT

mω2

[
a�2

4

(
1 + 14

25 q2

1 − 24
31 q2

)
+ q2�2

4

(
1 + 20

25 q2

1 − 7
50 q2

)]
,

(15)

which are displayed as the solid line in Fig. 1. As a result,
the average position of the ion depends quadratically on q,
whereas its kinetic energy shows a more involved behavior.
The approximation given by Eq. (15) adequately describes the
ion dynamics for q � 0.3.

In the case of a constant excess micromotion, Eq. (9) is
solved numerically via a fourth-order Runge-Kutta method
and the results are shown in Fig. 2, which depicts 〈v2〉 as a
function of qi, keeping a and � fixed. This figure indicates
that a constant excess micromotion distorts the ion’s dynamics
at small values of q. On the contrary, an excess of micromo-
tion does not alter the ion’s dynamics for large values of q.
Therefore, a coupling must exist between q and the excess
micromotion. In particular, Eqs. (13) and (14) transform into

〈x2〉 = 2|Q1|2
(

D
m + 2 Ẽ2

x
ω2 γ

′) − Ẽ2
x q

ω2 Re[Q+
0 Q−1(1 + i)]

Q0|Q1|2 − Re(Q+
0 Q−

1 Q−1)

≈ kBT

mω2
+ Ẽ2

x

ω4
, (16)

〈v2〉 ≈ 2kBT

m
+ Ẽ2

x

ω2
,

establishing a quadratic dependence of the mean square veloc-
ity of the ion on the applied electric field, as it is corroborated
in Fig. 3. This figure displays the dependence of 〈v2〉 concern-
ing the constant external field, comparing numerical results

FIG. 3. 〈v2〉 vs E . Panel (a) shows the dependence for two dif-
ferent values of the q parameter; the points are the numerical results
while the solid lines correspond to approximate solutions of Eq. (16).
Panel (b) focuses on the q = 0.25 case; the solid lines are the fits
using Eq. (16) (blue) and Eq. (17) (orange). The rest of the trap
parameters are the same as those in Fig. 2 for both panels.

versus the approximation in Eq. (16). As a result, and as
expected, we notice that Eq. (16) fails to describe the average
square velocity for q = 0.25 adequately. Therefore, for a more
accurate description of the ion’s dynamics, it is necessary to
go to the next level of approximation, yielding

〈x2〉 ≈
(

kBT

mω2
+ Ẽ2

x

ω4

)[
1 + 27

50 q2

1 − 1
5 q2

]
,

〈v2〉 ≈ �2

4

(
kBT

mω2
+ Ẽ2

x

ω4

)[
a

(
1 + 14

25 q2

1 − 24
31 q2

)
+ q2

(
1 + 20

25 q2

1 − 7
50 q2

)]

− Ẽ2
x

ω2

(
1 + q2

2

)
, (17)

which show a q dependence similar to that in Eq. (16), al-
though a new field-dependent term appears. Equation (17)
describes accurately the mean square velocity of the ion for
q values as large as 0.25, as it is shown in Fig. 3(b).
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Moreover, we notice that higher-order terms of the Fourier
expansion for the time-averaged mean square distance with
and without excess micromotion are related (see Table I) as

xn+1,Emm ≈ xn+1 + xn+1

x0

Ẽ2
x

ω4
+ S+

n

(
1 + 2γ ′

�
i

)
Ẽ2

x q

�2ω2
,

where xn+1 and xn+1,Emm denote the Fourier coefficients in the
absence and presence of Emm, respectively, and S+ is given by
Eq. (12). Therefore, the contribution of the nth harmonic of
the trap frequency depends not only on the q parameter but
also on the magnitude of the stray field causing the constant
excess micromotion.

Finally, we study a more general scenario including
a time-dependent excess micromotion: Fmme,x = e[Edc,x +
Eac,xsin(�t )], where Edc is a stray field, as previously con-
sidered, and Eacsin(�t) stands for the new time-dependent
component, where the amplitude Eac depends on the trap
parameters. The mean position of the ion is found by solving
Eq. (8), which leads to

〈x〉 ≈
(

Ẽx

ω2
− Ẽx

ω2
e

−γ ′t
2 cos(ωdt )

)(
1 + qx

2
cos(�t )

)

+ Ẽac

�2
sin(�t ), (18)

where Ẽac = eEac/m, and the mean velocity is obtained upon
derivation of Eq. (18) as a function of time. Consequently, the
time-averaged values of 〈x2〉 and 〈v2〉 read as

〈x2〉 ≈ kBT

mω2
+ Ẽ2

dc

ω4
+ Ẽ2

ac

2�2ω2
− ẼdcẼacq�

16ω4γ ′ ,

〈v2〉 ≈ 2kBT

m
+ Ẽ2

dc

ω2
+ Ẽ2

ac

�2
− ẼdcẼacq�

8ω2γ ′ , (19)

which are different from the case of a constant electric field.
In Eq. (19), it is worth emphasizing that the last term coupling
the time-dependent component with the time-independent one
of stray fields with the Paul trap fields is usually ignored in
other derivations [17].

B. Distributions

As a consequence of the time-dependent trapping potential
on the ion, the system reaches a quasistationary state rather
than a stationary state, in which the trap frequency drives the
time evolution. The phase-space distribution for each compo-
nent in the long-time limit is given by

P(x, v, t ) = 1√
(2πσxx )(2πσvv )

(
1 − ρ2

12

)
× exp

[
− 1

1 − ρ2
12

(
δx2

2σxx
− ρ12δxδv√

σxxσvv

+ δv2

2σvv

)]
,

where σxx (σvv) represents the variance of the position (ve-
locity), δx (δv) is the displacement from the mean value 〈x〉
(〈v〉), and ρ12 is the normalized correlation σxv√

σxxσvv
; all of these

parameters are time dependent. Therefore, the time-averaged

position distribution reads as

P(x) = �

2π

∫ 2π
�

0

∫ ∞

−∞
P(x, v, t )dvdt

= �

2π

∫ 2π
�

0

dt√
2πσxx

exp

[
− δx2

2
(
1 − ρ2

12

)
σxx

(
1 − σ 2

xv

σvv

)]
,

(20)

which, unfortunately, cannot be solved analytically. However,
an approximate time-averaged distribution can be derived
using the average mean square position and velocity from
Eqs. (16) and (19) for the cases of time-independent and
time-dependent excess of micromotion, respectively. Then,
the approximate time-averaged distribution for x is

P(x) ≈
√

mω2

2πkBT
exp

[
−mω2

(
x − Ẽx

ω2

)2

2kBT

]
, (21)

whereas the approximate velocity distribution becomes

P(v) ≈
√

1

2π
( 2kBT

m + Ẽx
2

ω2

) exp

[
−1

2

v2
x( 2kBT

m + Ẽx
2

ω2

)
]
. (22)

Since we have used the approximated mean values in Eq. (16),
this time-averaged distribution works in the pseudopotential
regime. The accuracy of Eqs. (20) and (22) is contrasted
in Fig. 4, in which the numerical results for the probability
distribution for the ion’s position and velocity are shown.
As a result, it is observed that the derived approximated ex-
pressions perform exceptionally well compared to numerical
results.

IV. COLORED NOISE BATH

In the case of a bath with a memory effect, the ion’s
dynamics is described by the GLE [Eq. (2)]. Hence, the prob-
ability distribution P(x, v, t ) is no longer Markovian, and its
statistical properties depend on the type of noise chosen to
characterize the bath. In particular, we consider a Gaussian
noise with an exponentially decaying correlation function of
the form

〈ζc(t )ζc(s)〉 = D

τc
exp

(
− |t − s|

τc

)
, (23)

where the strength D and the correlation time (τc) depend on
the atom-ion scattering properties. This noise is described as
an Ornstein-Uhlebeck (OU) process as

ζ̇c = − 1

τc
ζc +

√
D

τc
ζ , (24)

where ζ represents a white noise. Then, to elucidate the
ion’s dynamics, one needs to solve a set of integrodifferential
stochastic equations constituted by Eq. (2), including the noise
effects through Eq. (24).

A. Correlation time

The correlation time is estimated as the atom-ion colli-
sional time τc = 1

�L
, in which

�L = ρkL,
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FIG. 4. Probability density function for the ion’s position and velocity after solving the Langevin equation. The fitting distributions are the
approximate time-averaged distributions previously derived in Eqs. (21) and (22). Panels (a) and (b) present the x-position distribution without
a stray field and with a stray field of 0.01 V/m, respectively. Panels (c) and (d) present the v distribution for the same stray field conditions as
in panels (a) and (b), respectively. For all the simulations we use the trap parameters a = −8 × 10−6, q = 0.1, and � = 2π × 106 Hz. A total
of 1 × 106 points were used for the distributions. Again, a 171Yb+-6Li mixture was considered in the calculations.

is the Langevin rate for atom-ion collisions, ρ is the density
of the bath, and kL is the Langevin reaction rate given by [4]

kL = 2π

√
C4

μ
,

where μ is the atom-ion reduced mass and C4 = α/2 (in
atomic units), with α being the polarizability of the atoms
from the bath. It is worth noticing that even though the
Langevin model for charged-neutral collisions is based on
a classical framework, it applies to temperatures as low as
100 μK (depending on the mass of the colliding partners)
[23].

B. Ion dynamics

The mean position and the mean velocity are determined
in a two-step approach: first Eq. (24) is solved using the
stochastic method explained in Appendix B, generating a
colored noise vector ( �ζc). Second, the noise vector is used
in the GLE, which is solved using a finite difference method
(see Appendix B). In particular, in each run we generate 106

realizations to generate average evaluations for any dynamical
observable.

Figure 5 displays the evolution of the ion’s mean posi-
tion considering white and colored noises (with two different
correlation times). The addition of a new timescale associ-
ated with τc introduces a delay in the relaxation time of the
processes, hindering the evolution into a quasisteady state.
Similarly, the colored noise results slightly increase the sec-
ular frequency, which can be seen as a retarded effect due
to the memory kernel. Moreover, the colored noise induces
oscillations in the observables’ evolution, even in the case of
a simple free Brownian particle [24]: memory oscillations are
coupled to the secular ones, resulting in a modified secular
displacement.

Figure 6 presents the relaxation process of the kinetic
energy for white and colored noises. As a result, it can
be noticed that the quasistationary behaviors of the two
formulations coincide. Thus, the average mean values for
colored and white noises are equivalent. Similarly, since
the GLE is linear in x, v, and the noise, the phase-space
distribution P(x, v, t ) will show a shape similar to the one
described for the white noise case in Fig. 4. On the other hand,
the timescales associated with the friction coefficient and the
bath correlations depend on the atomic density. Therefore,
by varying the density of the atomic gas, it is possible to
tailor the role of memory effects. In particular, for a given
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FIG. 5. Expected position for the 171Yb+ ion in the 6Li cloud
using white noise (blue lines) and colored noise with correlation
times equal to τ = 1.04 × 10−6 s (red lines) and τ = 1.54 × 10−6 s
(yellow lines). All the trap parameters are equal for each simula-
tion: q = 0.1, a = −8 × 10−6, � = 2π × 10−6 Hz, and Emm = 0.01
V/m. The panels depict the expected position at different time in-
tervals. Panel (a) represents the evolution from 0 to 300 μs, panel
(b) represents the evolution from 400 to 700 μs, and panel (c) shows
the behavior between 2.97 and 30.0 ms.

ion, correlation effects increase with the mass-to-polarization
ratio of the atom. The simulation in Fig. 4 considers the ion
at rest in the center of the trap initially and then goes through
a thermalization process with the atomic bath. As shown
above, the final time-averaged kinetic energy depends only
on the bath temperature, so if the initial condition represents

FIG. 6. Energy relaxation for two different noise models in a 6Li-
171Yb+ system. The agreement of both descriptions, for a given atom-
ion mixture, depends of the atomic density. The ion was initially at
rest in the center of the trap. However, a different initial condition
will converge to the same final energy.

FIG. 7. Average x-contribution kinetic energy as a function of
time of a single 171Yb+ ion immersed in an atomic bath based on
MC simulations and on solving the LE with white noise: (a) 6Li and
(b) 87Rb.

an excited ion, it will go through a buffer gas cooling process
until the same final thermalization state is reached.

V. MONTE CARLO SIMULATIONS

In addition to the Langevin equation formulation, we have
also implemented a Monte Carlo simulation of the ion-atom
dynamics following Ref. [12]. This simulation works only in
the regimen of pseudopotential approximation and assumes
that atom-ion collisional cross sections are well described by
the Langevin one. We compare the results obtained with this
formulation and the stochastic dynamics.

The time evolution of the x-component contribution to the
kinetic energy for both white noise Langevin (LE) and Monte
Carlo (MC) simulations for two different atomic baths are
displayed in Fig. 7. As a result, we notice that the LE sim-
ulations show the oscillatory behavior in the energy evolution
due to the trapping potential, which has to do with the intrinsic
continuous-time nature of the Langevin equation. Neverthe-
less, the average value of Langevin predictions agrees with
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FIG. 8. Kinetic energy distribution of the 171Yb+ ion in an atomic
cloud of (a) 6Li and (b) 87Rb, both at T = 10−4 K.

MC simulations in the case of an atomic bath of 6Li. However,
there is a discrepancy in the case of 87Rb. Indeed, Langevin’s
model predictions look almost the same independently of the
mass of the atoms in the bath since only the ion mass explicitly
appears in the Langevin equation. On the contrary, in MC
simulations, the relevant parameter is the atom-ion reduced
mass. We extract the relaxation times by fitting the MC results
to a time-dependent decaying exponential for a more exhaus-
tive comparison between both simulation approaches. For the
6Li atomic bath, we obtained relaxations times of 23.00 and
22.79 μs for the Langevin and Monte Carlo simulations,
respectively, resulting in a relative error of 9.36% between
the two schemes. In contrast, the error associated with the
average kinetic value for long times is just 0.3%. However,
for a 87Rb atomic bath, the relaxation times and the average
kinetic energy become very different between both formula-
tions; the associated error for the mean kinetic energy is more
significant than 50% and even more prominent for the relax-
ation times, resulting in a value of 8.16 μs for the Langevin
simulation and less than 4 μs for the Monte Carlo scheme.

FIG. 9. Validity of the stochastic approach. The two parameters
of the Tsallis distribution n and A are represented in the y axis and
the x axis, respectively, whereas the color bar represents the average
distance (d̄) of using the stochastic approach versus the Monte Carlo
method. The plotted curve represents a contour at 25% of error that
we consider the limiting of the stochastic approach.

Figure 8 presents the kinetic energy distribution of a
171Yb+ ion immersed in two different baths. For the 6Li bath
[Fig. 8(a)], both formulations lead to a thermal distribution
characterized for the atomic cloud temperature (Ta), with an
ion kinetic temperature of Tkin ≈ 3Ta/5. On the other hand,
MC simulations for the 87Rb bath [Fig. 8(b)] reveal a differ-
ent behavior: the kinetic energy distribution follows a Tsallis
distribution of the form [25]

P(Ek ) = A
(n − 2)(n − 3)(n − 4)

2(nkBT )3

E1/2
k(

1 + Ek
nkBT

)n , (25)

where A, n, and T are fitting parameters that for the case at
hand are 1.2 × 10−4, 6.0, and 7 × 10−4 K, respectively. The
parameter T represents the physical temperature in the limit of
the thermal distribution (n → ∞). This power-law behavior
is a result of the so-called micromotion heating and depends
strongly on the atom-to-ion mass ratio and the trap parame-
ters [25]. However, the stochastic formulation still leads to a
thermal distribution due to the noise statistics and the additive
nature of the stochastic equation of motion. Therefore, these
results indicate that stochastic formulations for describing the
ion dynamics in a bath are only applicable in the regimen of
a low atom-to-ion mass ratio at which the heating effects are
almost negligible but not null, as observed in Fig. 8.

In order to establish a validity region for the stochastic
formulation, we have performed MC simulations for atom-
ion collisions in a wide range of ion-to-atom mass ratios.
The resulting energy distributions have been fitted with a
Tsallis distribution, keeping T as the physical temperature
for different atoms and the same ion Yb+. Then, considering
that Li behaves thermally, it is possible to analyze different
atoms by looking into the average distance of the (A, n) vector
concerning Li, labeled as d̄ , as shown in Fig. 9. As a result,
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assuming that the stochastic approach is appropriate up to
d̄ � 25%, we can conclude that atoms lighter than Na mass
in the presence of a Yb+ ion are adequately described by the
stochastic approach.

VI. CONCLUSIONS

We have studied the dynamics of a single trapped ion in a
bath of ultracold atoms via the Langevin equation. The bath
induces a stochastic force whose amplitude is controlled by
atom-ion scattering properties. In addition, we have obtained
analytical solutions for the average mean square position and
the kinetic energy of the ion up to values q � 0.3. Similarly,
the present formulation allows us to study the impact of excess
micromotion (time-dependent and time-independent), leading
to analytical expressions for relevant magnitudes. In particu-
lar, we find that the excess micromotion adds energy to the
system because of the time-varying trap potential. Moreover,
we have derived an approximated position and velocity distri-
bution for the ion with excess micromotion within the pseu-
dopotential regimen. As a result, it is possible to estimate any
necessary time-dependent or average property of the system.

The effects of the bath nature on the ion dynamics have
been studied, comparing results from a white noise bath ver-
sus a colored noise bath. In particular, we have noticed that a
colored noise bath requires solving the generalized Langevin
equation. Therefore, it entails more physical information on
the atom-ion few-body physics. In particular, the correla-
tion time of the colored noise plays an essential role in the
relaxation timescale of the ion. Although, those effects are
mitigated by choosing an atomic species with a low mass-to-
polarization ratio.

Finally, the results of the stochastic formulation have been
tested against Monte Carlo simulations. The two formulations
describe similar energy evolutions and distributions in the low
atom-to-ion mass ratio regimen, where the micromotion heat-
ing reduces its contribution. The stochastic formulation turns
out to be computationally cheaper than Monte Carlo simula-
tions. For instance, 105 collision events for 6Li-171Yb+, with
n = 2 × 1020 m−3, takes a CPU time of 461.66 s, whereas it
takes 331.46 s for the Langevin simulation. This difference
increases linearly with the simulation time for the time range
required to have stable averages. Additionally, it offers the
possibility to explore the spectral aspects of the time evo-
lution or the consideration of any bath correlation, which
can be associated with the physical characteristics of the
bath.
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APPENDIX A: ION-ATOM FEW-BODY PHYSICS

The diffusion cross section is given by [26]

σD(Ek ) =
∫

dσel(Ek )

d�
(1 − cos θ )d�, (A1)

where dσel (Ek )
d�

represents the elastic differential cross sec-
tion either classical or quantal, d� = 2π sin θdθ is the solid
angle element, and θ is the scattering angle. Assuming a
quantum mechanical description of the scattering observables,
Eq. (A1) can be written as [26]

σD(Ek ) = 4π

k2

∞∑
l=0

(l + 1) sin2 [δl+1(Ek ) − δl (Ek )], (A2)

where δl (Ek ) is the phase shift for a given partial wave l and
collision energy Ek .

In this work, the phase shifts for 174Yb+-Li and 174Yb+-Rb
collisions from 1 μK to 1 K have been calculated using a
single-channel description of the scattering. In particular, the
Numerov method is employed to propagate the wave function
from a distance between 4.8 a0 and 12 000 a0 with a step
size of 0.006 a0 for 174Yb+-Li, whereas for 174Yb+-Rb the
propagation took place between 5.8 a0 and 15 000 a0 with a
step size of 0.003 a0. The number of partial waves included
varied with the collision energy, but we included as many as
necessary to ensure a convergence better than 1% of the elastic
cross section.

Scattering properties at low collision energies are mainly
dominated by the long-range tail of the atom-ion interaction
potential. Therefore, we employ atom-ion potentials with the
physical long-range part but with an artificial short-range part.
In particular for 174Yb+-Li the potential reads

V (r) = C6

r6
− C4

r4
, (A3)

with C4 = 82 a.u. and C6 = 29284 a.u. The same potential has
been used previously in quasiclassical trajectory calculations
showing that the short-range part of the atom-ion interactions
has a negligible impact on scattering observables in the cold
regime [27,28]. Whereas, for 174Yb+-Rb the potential is taken
as

V (r) = −C4

r4

[
1 − 1

2

(
rm

r

)4]
, (A4)

with C4 = 160 and rm = 10.142 a0 corresponding to the a3�

state.

APPENDIX B: NUMERICAL SOLUTION OF THE
GENERALIZED LANGEVIN EQUATION

The description of the generalized Langevin dynamics of
the ion in a bath requires one to solve a set of stochastic
integrodifferential equations including Eq. (2) and the equa-
tion associated with the generation of the noise. For the OU
noise considered here the equations are

d2x

dt2
+

∫ t

0

�(t − t ′)
m

v(t ′)dt ′

+ �2
RF

4
[a + 2q cos (�RFt )]x = Fx, (B1)

dx

dt
= v, (B2)

dζc

dt
= − 1

τc
ζc +

√
D

τc
ζ , (B3)
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FIG. 10. Colored noise resulting from solving the OU equa-
tion (B3). Panel (a) shows three different realizations of the OU noise
and its distribution, and panel (b) displays the correlation function of
the noise fitting with Eq. (23).

where Fx = Ẽx + ζc(t ). The third equation is the OU process,
ζc(t ) refers to the generated colored noise and ζ (t ) is the driver
white noise. To solve numerically this set of equations, we first

solve the independent OU equation (B3) using a stochastic
finite difference scheme to generate a colored noise vector in
the time grid. This noise vector is implemented in the solution
of the two first coupled equations, Eqs. (B1) and (B2).

The finite difference scheme for the solution of Eq. (B3) is
based on the method proposed in Ref. [29]. The colored noise
for each iteration is given by

ζc i+1 =
(

1 − �t

τc

)
ζc i +

√
D

τc
w(0, 1)

√
�t,

where �t is the time step and w(0, 1) ∼ N (0, 1) is a Gaussian
random variable with a mean of 0 and a standard deviation
equal to 1. The results are shown in Fig. 10, where different
realizations of the colored noise and its correlation function
are displayed.

Next, the solutions ζci are used in the two coupled differ-
ential equations, Eqs. (B1) and (B2), for ri and vi, which are
solved using the following finite difference representation:

xi+1 =
[

2 − �2

4
[a + 2q cos(�RFt )]�t2

]
xi

− xi−1 +
[

Ẽx + ζc(t )

m
− Si

]
�t2,

where Si = S(ti ) is the integral term in Eq. (2). The correlation
function and the fluctuation-dissipation relation allow us to
express the integral in a recursive form as

Si+1 = Si + 1

2kBT

[
exp

(
�t

τc

)
vi+1 + vi

]
.

Finally, the velocity vector is obtained using central differ-
ences. The procedure is repeated for several realizations Nint

(∼106), and then the statistical average of the quantity (posi-
tion or velocity) is computed to obtain its mean value.

In the case of a white noise, the Langevin dynamics is
obtained after solving only Eq. (7) using a finite difference
scheme, yielding

xi+1 =
(

γ ′�t
2 − 1

)
xi−1 − (

�2

4 [a + 2q cos(�t )]�t2 − 2
)
xi + (

Ẽx +
√

Dw(0,1)
m

)
�t2

1 + γ ′�t
2

,

and the velocity is computed from central differences.
The timescales associated with the Langevin dynamics of

the ion are the Paul trap period (TRF = 2π/�), the relaxation
time regarding the friction (τR = 1/γ ′), and the correlation
time (τc) for the case of colored noise. For the atomic densities
and bath temperatures considered in our calculations, τR and
τc are �2 × 10−6 s. Then the short time involved comes from
the trap period (TRF � 1 × 10−6 s). Then, for the numerical
solution, we fix a time interval of �t = 5 × 10−9 s which
allows us to compute several steps within the same RF os-
cillation.

APPENDIX C: RADIAL DISTRIBUTION FUNCTION

Using the approximate position distribution for the x and y
components we find the radial distribution as

P(r) ∝ 0F̃1

(
; 1;

Ẽ2
x r2

ω4

)
r exp

(−mω2r2

2kBT

)

−−→
Ex=0

≈ mω2

kBT
r exp

(−mω2r2

2kBT

)
, (C1)
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where 0F̃1(; 1; Ẽ2
x r2

ω4 ) is the regularized hypergeometric func-
tion defined as

0F̃1

(
; 1;

Ẽ2
x r2

ω4

)
= 1

2π

∫ 2π

0
exp

(
2Ẽxr

ω2
[cos(θ ) + sin(θ )]

)
dθ.

In addition, the stationary distribution for the harmonic z
component is simply given by

P(z) =
√

mω2
z

2πkBT
exp

[
−mω2

z z2

2kBT

]
, (C2)

where ω2
z = �RF2

4 az.
Finally, P(r) and P(z) give an idea of the averaged

3D ion position distribution in the trap. Figure 11 shows
the performance of the approximate radial distribution versus
the numerical one. In the absence of excess micromotion, the
regularized hypergeometric function equals 1. As a result, the
distribution is identical to the radial distribution for a particle
in the harmonic pseudopotential:[

a�2

4
+ q2�2

4

]
≈ 2ω. (C3)

FIG. 11. Radial distribution of the ion fitting by the approximate
distribution (C1). To achieve an accurate fitting the trap parameters
are the same as those in Fig. 4.
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