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Quantum annealing with pairs of 2� molecules as qubits
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The rotational and fine structure of open-shell molecules in a � electronic state gives rise to crossings between
Zeeman states of different parity. These crossings become avoided in the presence of an electric field. We propose
an algorithm that encodes Ising models into qubits defined by pairs of 2� molecules sharing an excitation near
these avoided crossings. This can be used to realize a transverse field Ising model tunable by an external electric
or magnetic field, suitable for quantum annealing applications. We perform dynamical calculations for several
examples with one- and two-dimensional connectivities. Our results demonstrate that the probability of obtaining
valid annealing solutions is high and can be optimized by varying the annealing times.
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I. INTRODUCTION

Quantum annealing (QA) has been considered as a quan-
tum algorithm for NP-hard optimization problems [1–4]. A
QA algorithm encodes an optimization problem in the ground-
state configuration of an Ising model. Finding the ground state
of two-dimensional (2D) and three-dimensional (3D) Ising
models has been proven to be NP-hard [5] and universal,
meaning such problems can be used to simulate any classical
and quantum spin model with the overhead in the number of
spins and interactions being at most polynomial [6]. Many
different hard problems in apparently unrelated fields can be
encoded in the ground state of an Ising model [3,7–23]. While
it has not been proven that QA can reduce these problems
to polynomial complexity [24], it can significantly speed up
certain NP optimization problems [25]. This continues to
stimulate the search for scalable and robust QA architectures
with flexible qubit connectivity. Most of the QA devices
demonstrated to date are based on superconducting qubits
(SQs), as exemplified by the work at D-Wave Systems that
has now achieved QA with >5000 SQs [26]. In the present
paper, we propose an architecture for QA based on open-shell
molecular radicals placed in superimposed electric and mag-
netic fields.

Ultracold molecules trapped in optical lattices have been
considered as a platform for quantum simulation of quantum
magnetism and quantum spin models [27–49]. Quantum spin-
1/2 models can be realized with ultracold polar molecules by
encoding spins in rotational states. The dipole-dipole interac-
tions lead to a general XXZ Hamiltonian with the effective
coupling constants depending on the molecules, choice of
states, lattice parameters, and the magnitude of applied elec-
tric, magnetic, and microwave (MW) fields [27–36]. Since the
XXZ model can be reduced to the Ising, XY , and Heisen-
berg models, all three cases can possibly be simulated using
polar molecules. Ultracold molecules have also been consid-
ered for quantum information processing [49–59], mainly in
the context of gate-based models. Robust entangling gates

(controlled-NOT and Toffoli) have been implemented using
polar 1� [50–54] and 2� [58,59] molecules as qubits. These
schemes allow for a large number of qubits with coherence
times of up to 5 s [50].

Here, we aim to extend this paper to demonstrate the pos-
sibility of QA based on open-shell molecules by tuning an
external dc electric or magnetic field. To implement QA, it
is necessary to realize a many-body quantum system with a
transverse field Ising model (TFIM) that can be tuned, ideally
by varying a single experimental parameter. Although this
has, to our knowledge, not been shown explicitly, transverse
field Ising models can potentially be realized with ultracold
molecules in combined dc electric and microwave fields with
different polarizations and frequencies [27]. However, tuning
such systems from a purely transverse field model to an Ising
model requires careful and simultaneous adjustment of both
the microwave fields and the dc electric field. Encoding opti-
mization problems into lattice systems for QA requires access
to individual qubit-qubit interactions and qubit biases, po-
tentially increasing the number of required microwave fields.
With each microwave field affecting all molecules in the en-
semble, tuning these interactions and biases as required for
QA by simultaneously tuning multiple microwave fields is
expected to be a very complex task.

In the present paper, we propose a many-body architecture
with pairs of molecules in adjacent sites of an optical lattice
as qubits that does not require microwave fields to realize
a transverse field Ising model. This can be experimentally
realized by placing molecules either in a 2D or 3D optical lat-
tice with different lattice spacing along different dimensions.
We demonstrate that the XXZ spin model based on qubits
encoded in individual molecules translates into a transverse
field Ising model with qubits encoded into pairs of molecules.

In order to enhance the magnitudes of the transverse field
couplings, we exploit the sensitivity of open-shell molecules
to particular combinations of dc electric and magnetic fields.
Specifically, we consider molecular radicals in a 2� electronic
state. Several experiments have recently demonstrated laser
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cooling of 2� radicals to ultracold temperatures [60–70]. As
shown previously [71], 2� molecules exhibit avoided cross-
ings between Zeeman states of different rotational manifolds,
when placed in superimposed electric and magnetic fields.
These avoided crossings are sensitive to electromagnetic fields
as well as intermolecular interactions, which has been pre-
viously exploited to suggest applications of 2� molecules
to study controlled bimolecular collisions [72,73] and con-
trolled Frenkel exciton dynamics [74] or for imaging weak
rf fields [75]. We show how the same avoided crossings can
be used to tune a many-body molecular Hamiltonian with
qubit encoding proposed here from a purely transverse field
model to an Ising model by varying an external dc electric or
magnetic field.

II. THEORY

A. Quantum annealing

QA is an optimization algorithm based on the adiabatic
theorem of quantum mechanics. The adiabatic theorem en-
sures that one can prepare a quantum system in the ground
state of a desired Hamiltonian (Ĥp) from the ground state of
a simpler Hamiltonian (Ĥi) by a transformation of Ĥi to Ĥp.
This is possible if the ground state is separated from excited
states by a finite energy gap throughout the transformation.
In most current implementations of QA [25,26], a discrete
optimization problem is encoded into a graph G = (V, E ) with
spin-1/2 vertices V and edges E representing an Ising model
Hamiltonian:

ĤIM =
∑
i∈V

hiσ
z
i +

∑
(i, j)∈E

Ji jσ
z
i σ z

j (1)

where hi is the bias applied to spin i, Ji j is the Ising coupling
between spins i and j, and σ z

i is the Pauli Z matrix applied to
the ith spin. Encoding an optimization problem into an Ising
model involves determining a suitable graph of spins, which
is, in itself, an NP-hard problem [25].

Given this encoding (Ĥp = ĤIM), the spin system is initial-
ized in the ground state of the following Hamiltonian Ĥi:

Ĥi =
n∑

i∈V

σ x
i (2)

where σ x
i is the Pauli X matrix applied to the ith spin. The

ground state of Hamiltonian (2) is an equal superposition of
all possible spin states. To allow adiabatic transformation of
the ground state of Ĥi into the ground state of Ĥp, a physical
system must realize a TFIM with tunable parameters:

ĤTFIM(s) =
∑
i∈V

hi(s)σ z
i + �i(s)σ x

i +
∑

(i, j)∈E

Ji j (s)σ z
i σ z

j (3)

where s is the annealing parameter varying from 0 to 1 dur-
ing the annealing and �i is the transverse field strength for
spin i. The Hamiltonian parameters must be functions of the
annealing parameter with the following limits:

s : 0 → 1 :

⎧⎨
⎩

hi(s) : 0 → hi

Ji j (s) : 0 → Ji j

�i(s) : 1 → 0
. (4)

FIG. 1. Energy levels of a SrF(X 2�+) molecule with Be =
0.251 cm−1, γSR = 2.49 × 10−3 cm−1, d = 3.47 D at B = 538 mT
as functions of the strength of a dc electric field. The avoided
crossing between β and γ is indicated by the vertical dashed line
at E = 1.18 kV/cm.

Hamiltonian (1) is diagonal in the σ z basis so the ground state
of Ĥp can be determined by measuring the spin configuration
at s = 1, which gives the solution to the optimization problem
at hand.

B. 2� molecules in superimposed electric and magnetic fields

The Hamiltonian for a 2� radical in the vibrational ground
state placed in a superposition of dc electric E and magnetic
B fields can be written as

Ĥ = BeN2 + γSRN · S − E · d + μBgSB · S (5)

where Be is the rotational constant, γSR is the spin-rotational
interaction constant, N and S are the rotational and spin an-
gular momenta of the molecule, d is the dipole moment of
the molecule, μB is the Bohr magneton, and gS is the electron
spin g factor. For simplicity, we assume that the magnetic- and
electric-field vectors are coaligned. Figure 1 shows the lowest
five energy levels of SrF(X 2�+) corresponding to N = 0 and
1. The state labeled α is predominantly |N = 0, MS = −1/2〉,
whereas the states labeled β and γ exhibit an avoided cross-
ing, with β changing from |N = 1, MN = 1, MS = −1/2〉 to
|N = 0, MS = 1/2〉 and γ undergoing the reverse change, as
the field magnitude is increased.

Encoding a spin-1/2 system into two isolated eigen-
states of a single molecule and allowing for dipole-dipole
interactions [76] leads to the following many-body Hamilto-
nian [77] (assuming the energy difference between the two
spin-rotational states is much larger in magnitude than the
intermolecular interactions):

Ĥ =
∑

i

hiŜ
z
i + 1

2

∑
i �= j

[
J⊥i j

2
(Ŝ+

i Ŝ−
j + H.c.) + Jzi j Ŝ

z
i Ŝz

j

]
. (6)

Appendix A outlines the derivation of Eq. (6). With |↑〉 =
|β〉 and |↓〉 = |γ 〉, the dependence of J⊥ and Jz on the
electric-field magnitude produces three regimes of spin mod-
els illustrated in Fig. 2 for two molecules (SrF and SrI) in
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FIG. 2. Coupling constants J⊥ and Jz in Eq. (6) for two SrF (top)
and SrI (bottom) molecules separated by 500 nm with the inter-
molecular axis perpendicular to E and B with B = 600 mT (top) and
B = 100 mT (bottom). The avoided crossing between β and γ is at
E = 6.69 kV/cm (top) and E = 0.99 kV/cm (bottom). The shaded
areas indicate the range of the parameters for the corresponding spin
model, with IM denoting the Ising model.

the X 2�+ state. Near the avoided crossing, the spin-exchange
interaction dominates as J⊥ 	 Jz, yielding a quantum XY spin
model (XXZ model with Jz = 0). At electric fields far detuned
from the avoided crossing, the Ising coupling dominates as
Jz 	 J⊥, reducing the Hamiltonian to a quantum Ising model.
At electric fields between these two extremes, both couplings
are similar in value. We define E⊥(B) to be the electric-field
magnitude at which J⊥ is maximized and Ez(B) can be as-
signed to be any electric-field magnitude at which Jz 	 J⊥.

The coupling between molecules also depends on the an-
gle between the intermolecular axis and the field directions
following the anisotropy of dipole-dipole interactions (see
Appendix A). While Fig. 2 displays the couplings for two
molecules with an intermolecular axis perpendicular to the
electric and magnetic fields (θ = π/2), the couplings are
modulated by Eq. (A3) for other values of θ . We define
ferromagnetic and antiferromagnetic interactions between
molecules with negative and positive signs on Jz respectively.

Therefore, at θ = π/2, interactions between molecules are an-
tiferromagnetic (Jz � 0), and when the intermolecular axis is
parallel to the fields (θ = 0) the interactions are ferromagnetic
(Jz � 0) and twice as large in magnitude as the perpendicular
case.

Model (6) is not suitable for QA, as it conserves the number
of spin excitations. The TFIM model of Eq. (3) includes
the transverse field terms σ x

i , which generate spin excitations
during the annealing. It is possible to engineer σ x

i terms by
coupling the |↑〉 and |↓〉 states of the individual molecules
with near-resonant MW fields. However, the biases of the
qubits hi depend on the detuning of the MW field from the
energy differences between the |↑〉 and |↓〉 states of each
molecule. In order to realize an Ising model with arbitrary
biases encoding an optimization problem, it may be necessary
to apply multiple dressing fields for the corresponding biases
on each qubit. The frequencies of these dressing fields must
be tuned simultaneously to achieve transformation (4). Even
in simple cases with homogeneous fields and zero biases, the
|↑〉–|↓〉 energy gaps are modified by the molecular interac-
tions [Eq. (A4)] and the resonant frequencies vary between
the qubits. QA with molecules dressed by MW fields as qubits
thus appears to be a very complex task.

C. Pairs of molecules as qubits

To overcome this problem, we consider pairs of molecules
exchanging an excitation as qubits of a many-body Hamilto-
nian. This encoding scheme does not require any MW fields
and allows tuning of qubit parameters and couplings by vary-
ing a single dc field, electric or magnetic. It may, however,
require complicated geometry of the trapping optical lattice
and precise control of the field gradients.

Within the subspace spanned by the |↑↓〉 and |↓↑〉 states,
the isolated two-molecule system encodes a spin-1/2 qubit
with the following Hamiltonian:

Ĥq = hqŜz
q + �qŜx

q, (7)

where

hq = h1 − h2, �q = J⊥, (8)

Sx
q = 1

2

(
0 1
1 0

)
, Sz

q = 1

2

(
1 0
0 −1

)
(9)

in the basis

|↑↓〉 = |0〉 =
(

1
0

)
, |↓↑〉 = |1〉 =

(
0
1

)
.

The bias of the qubit (hq) is the difference in the energy gap
of the |↑〉 and |↓〉 states of the two molecules, which can be
tuned by applying a gradient to the electric-field magnitude.
The transverse field parameter of the qubit (�q) depends on
the magnitude of the fields and the orientation of the fields.
However, for this parameter to be relevant, one must ensure
that h1 − h2 ≈ �q. We consider the following field configura-
tions for the two molecules of each qubit: B = B1 = B2 and
E1 = E2 − δE with δE � E1, E2. Qubit bias can also be set
using a single molecule locked in one of the two states |↑〉 or
|↓〉 and coupled to the qubit. This makes one of the two states
more favorable energetically and has the added benefits of
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FIG. 3. Parameters of Hamiltonian (11) during QA for two side-
by-side qubits (four molecules) in a rectangular configuration in
the |00〉 state (top panel). Molecules in the |↑〉 state are shown as
shaded circles and molecules in the |↓〉 state are shown as open
circles. Ba = Bb = 600 mT, with intermolecular distances ri j set to
r12 = r34 = 500 nm and r13 = r24 = 1000 nm. The inset shows the
electric-field magnitude at both qubits during the annealing: E (s) =
6.695 + 0.594s kV/cm. ha = hb = 0 in this configuration. The fields
are directed along r12.

being of the same order of magnitude as the interqubit cou-
plings, which can be easily accommodated in the annealing
procedure described below. Hereafter, “qubit” refers to the
two-molecule system with Hamiltonian (7).

The two-qubit Hamiltonian for four molecules in a rect-
angular configuration (Fig. 3 top) with molecules 1 and 2
forming qubit a and molecules 3 and 4 forming qubit b is

Ĥ = Ĥa + Ĥb + Jz13 Sz
1Sz

3 + Jz24 Sz
2Sz

4

+ Jz14 Sz
1Sz

4 + Jz23 Sz
2Sz

3

+ J⊥13

2
(S+

1 S−
3 + H.c.) + J⊥24

2
(S+

2 S−
4 + H.c.)

+ J⊥14

2
(S+

1 S−
4 + H.c.) + J⊥23

2
(S+

2 S−
3 + H.c.) (10)

where Ĥa and Ĥb are given by Eq. (7). The spin-exchange
dynamics induced by J⊥i j will take qubit states outside of the
Hilbert space of the |0〉 and |1〉 states of each qubit (e.g., pairs
of molecules within a qubit may end up in states |↑↑〉 and
|↓↓〉). These interactions can be suppressed by placing the
qubits further apart or detuning the qubits so that |h1 − h3| 	
|J⊥13 | and |h2 − h4| 	 |J⊥24 |. This can be achieved by placing
qubits in different fields by applying a gradient of an electric
or magnetic field along the direction joining the qubits. In this
limit, the Hamiltonian reduces to

Ĥ = haŜz
a + �aŜx

a + hbŜz
b + �bŜx

b ± JabSz
aSz

b (11)

where Jab = Jz13 + Jz24 − Jz14 − Jz23 , and the sign of the
last term depends on the encoding of the qubits (positive
when |0a〉 = |↑1↓2〉, |1a〉 = |↓1↑2〉 and |0b〉 = |↑3↓4〉, |1b〉 =
|↓3↑4〉 and negative when one of the qubits is inverted as in
|0b〉 = |↓3↑4〉, |1b〉 = |↑3↓4〉). We define ferromagnetic and
antiferromagnetic interactions between molecules as having
negative and positive signs on the Jab couplings respectively.
The setup illustrated in the top panel of Fig. 3 has antifer-
romagnetic couplings between the qubits, while also having
ferromagnetic couplings between the molecules within each
qubit.

Qubits stacked head to head have the same Hamiltonian
with half the interqubit interaction strength. Other stacking
configurations can also lead to interesting coupling interplays.
For example, qubits stacked perpendicularly on top of each
other (in a cross shape with one qubit lying on the symmetry
plane of the other qubit) would be completely decoupled from
each other and configurations with asymmetric interactions on
the molecules of a single qubit can lead to nonzero bias terms.

Couplings between qubits are also dependent on the field
magnitudes, with stronger fields resulting in stronger cou-
plings. For SrF molecules considered here, Ising couplings
between two qubits can be tuned within the range 300–
2500 Hz with magnetic fields of 540–620 mT and dc electric
fields of 1.6–8.5 kV/cm [Ez(B)] on each qubit. Electric-
and magnetic-field gradients and masks could allow for this
wide range of couplings between qubits in a single connected
system. Combined with the anisotropy of the dipole-dipole
interactions and the resulting qubit-qubit couplings, many
different Ising models can be encoded into molecules.

The present method of encoding qubits can be very sen-
sitive to inhomogeneities of external magnetic and electric
fields. Field perturbations may induce significant modifica-
tions of the energy differences between the β and γ states,
given by h1 and h2 in Eq. (8). Therefore, variations in the
field magnitudes applied to a pair of molecules comprising
a qubit could lead to significant changes in the bias of the
qubit. This effect also hinders the spin-exchange interactions
essential to the transverse field simulation of the system so
care must be taken to ensure field homogeneity over length
scales of individual qubits. However, small perturbations of
the fields between the qubits should not be problematic as
these would only slightly modify the couplings and could
even be desirable, as they diminish the effect of unwanted
spin-exchange interactions between qubits.

D. QA with 2� molecules

Hamiltonian (11) is the transverse field Ising model used
in QA applications. In order to use this system as a quantum
annealer, one needs to be able to transform

Ĥi = �aŜx
a + �bŜx

b (12)

to

Ĥf = haŜz
a + hbŜz

b + JzS
z
aSz

b (13)

by tuning a single external field parameter. The sensitivity of
states β and γ to external fields near the avoided crossing
shown in Fig. 2 makes this possible.
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When the qubits are initialized in a superposition of |↑↓〉
and |↓↑〉 states at (E⊥a , Ba, δEa = 0) and (E⊥b , Bb, δEb = 0),
the Hamiltonian of the two-qubit system is given by Eq. (12)
with the values of �a and �b determined by the field magni-
tudes at each qubit. Increasing the electric-field strength to Ezi

decreases the magnitude of �, while increasing |δEi| increases
|hi|. The final Hamiltonian of two qubits at (Eza , Ba, δEa)
and (Ezb , Bb, δEb) becomes (13) where the values of ha and
hb are determined by δE , and Jz is determined by the field
magnitudes at each qubit. For SrF, δE ≈ 10 V/m generates a
bias comparable to the Ising coupling between qubits placed
1000 nm apart. Alternatively, ha and hb can also be modified
by coupling each qubit to a molecule locked in either β or γ

(detuning the fields away from the avoided crossing locks the
molecule in one of these two states). In this case, increasing
the electric-field strength at each qubit from E⊥i to Ezi also
increases the magnitude of ha and hb. The final values of ha

and hb can be calculated considering the couplings between
the biasing molecules and qubits.

Initialization and readout of the system can be done by
resonant microwave excitation in a gradient of an electric
field, as proposed by DeMille [50]. Electric-field gradients
used for this purpose are similar in magnitude to the electric
fields needed to apply a bias on the qubits considered here. In
our examples using SrF, this can be done with field gradients
≈1 kV/cm2.

In the following discussion, we define the valid qubit states
as the collection of states with a single excitation in each
qubit. In the subspace of valid qubit states, any measurement
(in the |↑〉 and |↓〉 basis) leads to a qubit state of |0〉 and |1〉
for all qubits. Conversely, invalid states are measured states of
the system that do not correspond to any 0-1 qubit encoding
described above. These states are a result of the spin-exchange
interactions of molecules in different qubits resulting in pairs
of molecules in |↑↑〉 or |↓↓〉 states. The probability of ob-
taining such states is amplified by favorable ferromagnetic
couplings between molecules in different qubits.

For QA applications, the goal is to find the minimum-
energy state in the subspace of valid qubit states. In some
configurations (e.g., when the intraqubit molecular interac-
tions are ferromagnetic), the final ground state of the system
(in the subspace of states with n/2 excitations for n molecules)
after annealing is an invalid state. Thus, the annealing
transformation should be quasiadiabatic and annealing times
need to be carefully tuned to balance the adiabaticity of
the evolution, while limiting the undesired spin-exchange
interactions between qubits. Generally, in configurations
where the intraqubit Ising couplings are ferromagnetic, we
expect to have a larger probability of observing invalid
states.

In order to test the annealing procedure with different
configurations of molecular ensembles, we use quantum
dynamics simulations of the corresponding spin-1/2 XXZ
Hamiltonian (6) in a time-dependent electric field with the
QUTIP PYTHON package [78,79]. We assume that the probabil-
ity of populating any state other than |β〉 and |γ 〉 is negligible.
This is a reasonable assumption as these states are separated
from other states by a significant energy gap. For example, in
the case of SrF molecules depicted in Fig. 1, these states are
separated from other states by >0.1 GHz, while the relevant

coupling strengths are <1 MHz and the time scale of QA is
≈10 ms. Each system is initialized in an equal superposition
of valid qubit states. Qubits with ferromagnetic couplings
between molecules within qubits need to be initialized in
the |0〉 + |1〉 state and those with antiferromagnetic couplings
need to be initialized in the |0〉 − |1〉 state. Evolution of this
initial state during annealing is then calculated by numerical
integration of the time-dependent Schrödinger equation us-
ing the Adams-Moulton method (implicit Adams) [80] in a
variable-coefficient ordinary differential equation solver [81]
with a maximum order of 12, using a locally time-independent
Hamiltonian in each time step. For our calculations, we used
200 time steps for the one-dimensional (1D) lattice and 100
time steps for the 2D lattice.

III. RESULTS

Figure 3 displays a two-qubit configuration of four
SrF(2�+) molecules and the parameters of Hamiltonian (11)
during the QA procedure described above with Ba = Bb =
600 mT. For the present calculations, we assume that the
qubits consist of two SrF molecules separated by 500 nm,
while the spacing between the molecules in the direction
joining the qubits is 1000 nm. We use the value 3.47 D
for the dipole moment [82], 2.49 × 10−3 cm−1 for the spin-
rotational coupling constant [83], and 0.251 cm−1 for the
rotational constant [74] of SrF(2�+). The system is ini-
tialized by preparing one molecule in each qubit in the
excited state. The many-body system is then relaxed to the
minimum-energy state at E⊥ = E⊥a = E⊥b = 6.695 kV/cm,
as the electric-field strength is increased to Ez = Eza = Ezb =
7.289 kV/cm, where Jz/J⊥ = 100.

Initially, �a,�b 	 Jab with �a = �b = −1034.3 Hz
and the spin-exchange interactions between qubits
(J⊥13 , J⊥24 , J⊥14 , J⊥23 ) are one order of magnitude weaker
than the spin-exchange interaction between molecules
within qubits (J⊥13 = J⊥24 = 64.6 Hz, while J⊥12 = �a =
−1034.3 Hz). As the electric field is increased linearly
from E⊥ to Ez, Jab increases to its final value of 196.6 Hz
and �a and �b decrease to about −22 Hz. In the limited
subspace of valid qubit states, the lowest-energy states are
|01〉 and |10〉 as induced by the antiferromagnetic coupling
Jab. However, it should be noted that in this configuration the
dominant coupling at the end of annealing is the short-range
ferromagnetic coupling between the molecules in each qubit
(Jz12 = Jz34 = −2.2 kHz) and the ground states of the system
are |↑1↑2↓3↓4〉 and |↓1↓2↑3↑4〉, which lead to invalid states.

This setup can be extended to more complex topologies
with more qubits, leading to more complex Ising models.
Simulating an arbitrary Ising model requires creative ma-
nipulation of qubit connectivity as the connectivities are not
all independent and the signs of the couplings need to be
carefully matched. We propose the following physically re-
alistic setups to demonstrate the ability of the proposed QA to
simulate tunable Ising models with 1D and 2D connectivities,
extendable to a large number of qubits.

First, we consider a chain of six qubits each arranged
along the field direction as displayed in Fig. 4 (top left). This
configuration can optimize the following Ising model with
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FIG. 4. Top panels: Examples of 1D (left) and 2D (right) antiferromagnetic QA setups based on pairs of molecules as qubits displayed with
all qubits in the |0〉 state (antiferromagnetic refers to the sign of the couplings between the qubits). The circles show 2� molecules trapped in
an optical lattice, with shaded circles indicating molecules in the |↑〉 state and open circles indicating molecules in the |↓〉 state, with intraqubit
molecular spacing of r1 = 500 nm and interqubit spacing of r2 = 1000 nm in states |↑〉 = |β〉 and |↓〉 = |γ 〉 depicted in Fig. 1. Middle
panels: Probabilities of measuring the system and observing solution states (solid lines) and invalid states (dashed lines) during annealing with
homogeneous magnetic and electric fields B = 600 mT, E (s) = 6.695 + 0.594s kV/cm using different annealing times. The solution states
for both systems are ordered antiferromagnetic configurations. Bottom panels: Final probabilities of measuring the system after annealing in
15 ms (10 ms) of the 1D (2D) configuration.

long-range interactions:

Ĥf =
∑

i

hiS
z
i +

∑
i, j

Ji jS
z
i Sz

j (14)

where hi = 0, Ji j > 0 with decreasing coupling magnitude as
the distance between i and j increases. Therefore, the final
state is the ground state of an antiferromagnetic chain of
qubits.

For simplicity, we consider qubits to be in a homogeneous
magnetic field and a homogeneous tunable electric field:
E (s) = E⊥ + s(Ez − E⊥). With all the molecules experienc-

ing the same magnetic field we have the same E⊥ and Ez for all
molecules. The value of Ez for each qubit is then determined
by finding the electric-field magnitude, at which all molecules
are detuned from the avoided crossing and �i ≈ 0. With
fixed magnetic fields and electric-field gradient, QA can be
performed by linearly increasing the electric-field magnitude
from E⊥ to Ez. Figure 4 (middle left) shows the probabilities
of measuring the system in one of the solution states or an
invalid state during the annealing process with B = 600 mT,
E⊥ = 6.695 kV/cm, and Ez = 7.289 kV/cm, the intraqubit
distance r1 = 500 nm, and the interqubit distance r2 = 1000
nm using different annealing times. As seen in Fig. 4, longer
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FIG. 5. Probability of obtaining the solution states (solid lines)
and the invalid states (dashed lines) for three configurations of qubits.
One-dimensional antiferromagnetic (blue circles), 1D ferromagnetic
(orange squares), and 2D antiferromagnetic (green triangles), where
ferromagnetic and antiferromagnetic refer to the sign of the cou-
plings between the qubits. For the 2D systems, we use 2 × 2, 2 × 3,
2 × 4, and 3 × 3 configurations for the corresponding number of
qubits.

annealing times lead to higher probability of observing the
system in one of the fully antiferromagnetic states at the cost
of a lower probability of measuring the system in a valid
qubit state. Figure 4 (bottom left) displays the probabilities of
observing each of the qubit states after annealing for 15 ms,
showing a high probability of measuring one of the solution
states.

This configuration can be generalized to an Ising model
with different couplings between lattice sites using inhomo-
geneous fields and extended in one dimension to an arbitrary
number of qubits. This configuration can be also extended into
a 2D lattice of qubits by stacking the 1D chains of Fig. 4 (top
left) in the direction perpendicular to the fields. Figure 4 (top
right) shows one example of such configuration. With homo-
geneous magnetic and electric fields chosen as B = 600 mT
and E (s) = 6.695 + 0.594s kV/cm, this configuration opti-
mizes the Ising model (14) with hi = 0 and Ji j > 0. Figure 4
(middle right) shows the evolution of the probabilities of
measuring the system in solution states and invalid states for
different annealing times. It also demonstrates that a linear
electric-field ramp may not be optimal for the annealing pro-
cedure as the final probabilities can, for some cases, be better
optimized by stopping the annealing at s < 1 (the 10-, 15-,
20-, and 25-ms cases could all benefit from this).

Figure 4 (bottom right) shows the final probabilities of
measuring the system after annealing with 10 ms of annealing
time. This configuration is also extendable in two dimensions
(perpendicular to the fields) to an arbitrary number of qubits.
It should also be noted that while both configurations con-
sidered here as examples have antiferromagnetic couplings
between qubits, they also include ferromagnetic couplings
between molecules within qubits which results in a higher
probability of measuring invalid states following the adiabatic
evolution of the system. In Fig. 5 we show how a configuration

with antiferromagnetic intraqubit couplings has a much lower
probability of yielding invalid states. We also demonstrate the
relationship between solution and invalid state probabilities
and the number of qubits for these sample configurations.

For the scalability of the proposed approach, we examine
the probabilities of obtaining the solution states and the invalid
states for a range of system sizes (Fig. 5). The 1D and 2D an-
tiferromagnetic configurations are depicted in the top panels
of Fig. 4. Ferromagnetic 1D configurations can be considered
as a π/2 rotation of the 1D antiferromagnetic system, with
the intraqubit axes perpendicular to the field vectors leading
to antiferromagnetic intraqubit interactions and the interqubit
axes parallel to the field vectors leading to ferromagnetic
interqubit interactions. As described in Sec. II D, we calculate
the measurement probabilities after the QA procedure with
annealing times of 5, 10, 15, 20, and 25 ms. Probabilities in
Fig. 5 are shown for the annealing time resulting in the highest
probability of measuring the solution states.

Figure 5 shows that the probabilities are highly system
dependent, as the 1D ferromagnetic system has negligible
probability of yielding the invalid states while this probability
becomes comparable to the solution state probabilities for the
other investigated systems. This is not unexpected as the anti-
ferromagnetic intraqubit interactions of the 1D ferromagnetic
system protect the qubit structure throughout the annealing.

Using more complicated optical lattice configurations, one
can also implement 3D Ising lattices, as, for example, illus-
trated in Fig. 6, which stacks 2D lattices of Fig. 4 (top right) in
the field direction. Figure 6 (bottom) shows the parameters of
Hamiltonian (14) during annealing. This configuration leads
to an Ising model with antiferromagnetic couplings inside
each 2D layer perpendicular to the fields and ferromagnetic
couplings between the layers. Additionally, molecules inside
each qubit of the bottom and top layers of this configuration
(e.g., qubits d and g) experience different environments and
will have a nonzero bias (hd and hg, where hd = −hg).

IV. CONCLUSION

In summary, we have proposed and demonstrated by nu-
merical calculations the possibility of quantum annealing
based on open-shell polar molecules in combined dc electric
and magnetic fields. This paper exploits the unique structure
of 2� molecules exhibiting avoided crossings between states
of different parity and different electron spin orientation. The
structure of molecules and interactions between molecules are
sensitive to external fields near these avoided crossings.

We have shown that the Ising models suitable for annealing
applications can be encoded into a many-body system of 2�

molecules, with qubits defined by pairs of molecules sharing
an excitation. This requires trapping molecules in an optical
lattice with different lattice spacing along different directions.
Because molecules within qubits interact individually with
molecules in different qubits, leaking of populations outside
the Hilbert space of the qubit states is possible. However,
our dynamical calculations have shown that the probability
of obtaining valid annealing solutions is high and can be
optimized by varying the annealing times.

Given the anisotropy of the dipole-dipole interactions and
sensitivity of the coupling values to the field magnitudes, a
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FIG. 6. Top: A configuration of molecules leading to an Ising
model with 3D connectivities. Two-dimensional layers of Fig. 4
(top right) are stacked on top of each other. Bottom: Parameters of
Hamiltonian (14) during QA with intraqubit molecular spacing of
r1 = 500 nm and interqubit spacing of r2 = 1000 nm. B = 600 mT
and E (s) = 6.695 + 0.594s kV/cm.

wide range of discrete optimization problems can be encoded
using pairs of 2� molecules in optical lattices. Here, we
have demonstrated this procedure with two practical exam-
ples (antiferromagnetic 1D chain and 2D lattice) that require
simple optical lattice configurations and homogeneous exter-
nal fields. Both demonstrated examples are extendable to a
large number of qubits. Our dynamics calculations for these
configurations demonstrate a high probability of obtaining the
annealing solution states.

It is important to note that the magnetic- and electric-
field requirements for the proposed QA scheme depend
on the structure of molecular energy levels. For example,
Fig. 2 shows the parameters of Eq. (6) implemented using
SrI, which has a significantly smaller rotational constant of
0.0367 cm−1 [84], a similar spin-rotational constant of 3.29 ×
10−3 cm−1 [84], and a slightly larger dipole moment of 6.00
D [85] compared to SrF. QA with SrI molecules would require
magnetic fields of about 0.1 mT compared to 0.6 mT for SrF.
Molecules in the � electronic state of higher spin multiplic-
ity exhibit similar avoided crossings and can be analogously
used for quantum annealing applications discussed here. Of
particular interest are 3� molecules that can be produced at
ultracold temperatures by photo- or magnetoassociation of
ultracold alkali-metal atoms.

It remains to be seen whether nontrivial Ising models en-
coding useful problems can be simulated with molecule-based

systems. Nontrivial practical applications would require either
a complex optical lattice configuration or complicated field
patterns. Such field patterns can potentially be identified with
machine learning approaches. Similar setups using optical
tweezer arrays offering more control over qubit geometry may
be possible. However, optical tweezer arrays have not yet
been realized with interparticle distances of less than 1 μm.
Finally, we note that the approach proposed in the present
paper can be extended to realize qudits of more than two
states. As pairs of molecules simulate qubits, n molecules
arranged in a symmetrical configuration can realize n-state
qudits. However, interactions between such qudits are more
complex and a more in-depth study is needed to assess their
value as quantum information processing units.
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APPENDIX A: MANY-BODY HAMILTONIAN

The dipole-dipole interactions between two molecules in a
dc electric field can be written as

Vd-d = R−3

[
−3

2
sin2 θ (d−1d−1 + d1d1)

− 3√
2

sin θ cos θ (d−1d0 + d0d−1 − d1d0 + d0d1)

−1

2
(3 cos2 θ − 1)(d1d−1 + 2d0d0 + d−1d1)

]
(A1)

where θ is the angle between the quantization axis (direction
of the electric field) and the intermolecular vector (R̂), and di

are the spherical components of the dipole moment operator.
The matrix elements of the dipole moment components can be
evaluated as

〈NMN MS|di|N ′M ′
N M ′

S〉
= DδMS ,M ′

S
(−1)MN

√
(2N + 1)(2N ′ + 1)

×
(

N 1 N ′
0 0 0

)(
N 1 N ′

−MN i M ′
N

)
(A2)

where D is the permanent dipole moment of the molecule and
the brackets denote 3 j symbols.

We encode a spin-1/2 system into two eigenstates of the
Hamiltonian given by Eq. (5). We denote these two states as
|↑〉 and |↓〉. As long as the spin-exchange interaction strengths
are much smaller than the energy differences between the
eigenstates, the number of molecules in each of the two states
is conserved and off-resonant matrix elements of Vd-d can
be ignored [86]. Under this condition, only the final three
terms of Eq. (A1), involving did−i terms, are relevant and the
interactions between molecules depend on θ as

Vd-d ∝ 1
2 (3 cos2 θ − 1). (A3)

Dipole-dipole interactions between molecules i and j can
then be calculated in the subspace spanned by {|↑〉, |↓〉}
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FIG. 7. Dependence of the QA field parameters and couplings
on the permanent dipole of molecules. The magnetic field is fixed
at 0.6 mT and other molecular parameters of the system are fixed at
values for SrF.

as [77]

Vd-d = JzŜ
z
i Ŝz

j + J⊥
2

(Ŝ+
i Ŝ−

j + Ŝ−
i Ŝ+

j )

+ W IiŜ
z
j + KŜz

i I j + V IiI j . (A4)

The full Hamiltonian for the two-molecule system becomes

Ĥ = JzŜ
z
i Ŝz

j + J⊥
2

(Ŝ+
i Ŝ−

j + Ŝ−
i Ŝ+

j ) + hiŜ
z
i + h jŜ

z
j (A5)

where hi = εi,↓ − εi,↑ + K and h j = ε j,↓ − ε j,↑ + W . Extend-
ing this two-body Hamiltonian to a many-body system of
molecules yields Eq. (6).

APPENDIX B: DEPENDENCE OF QA PARAMETERS
ON MOLECULAR CONSTANTS

In this section we discuss the relationship between each of
the parameters in the molecular Hamiltonian given by Eq. (5)
and the parameters of QA (i.e., fields and couplings). To
examine the effect of each molecular constant, we vary one
molecular constant starting from the values relevant for the
SrF molecule (Be = 0.251 cm−1, γSR = 2.49 × 10−3 cm−1,

FIG. 8. Dependence of the QA field parameters and couplings on
the rotational constant of molecules (Be). The magnetic field is fixed
at 0.6 mT and other molecular parameters of the system are fixed at
values for SrF.

d = 3.47 D) while keeping all other molecular constants
fixed. We set the magnetic field to 0.6 mT. This limits the
range of some parameters as the |β〉 − |γ 〉 avoided crossing
may not occur for this magnetic field at some electric fields
for a particular set of molecular parameters. Ez is defined
as the smallest electric-field magnitude larger than E⊥ where
Jz = 100J⊥.

Figure 7 shows how E⊥ and Ez (top panel) and J⊥ and Jz

at these electric-field magnitudes (bottom panel) change with
respect to the permanent dipole moment of the molecule. E⊥
and Ez are larger for molecules with a smaller dipole moment
as the Stark effect is weakened. The relevant couplings at
these field magnitudes increase quadratically with the perma-
nent dipole moment magnitude. This shows that the matrix
elements of the dipole moment are larger for molecules with
larger dipole moments, even though the electric field used is
weaker.

The spin-rotational structure of a molecule is very sensitive
to changes in the rotational constant. As a result, there is a very
limited range of Be values permitting the avoided crossing
at 0.6 mT. Above (below) this range, the low-magnetic-field
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FIG. 9. Dependence of the QA field parameters on the spin-
rotational constant of molecules (γSR). The magnetic field is fixed
at 0.6 mT and other molecular parameters of the system are fixed at
SrF values.

seeking rotational state of the N = 0 manifold (yellow and
green lines in Fig. 1) is lower (much higher) in energy than
the high-magnetic-field seeking rotational states (red line in
Fig. 1) of the N = 1 manifold at zero electric field.

Figure 8 shows the variation of E⊥ and Ez (top panel) and
J⊥ and Jz at these electric-field magnitudes (bottom panel)
with the rotational constant (Be) of the molecule. E⊥ and Ez

are larger for molecules with a smaller rotational constant.
This can be explained by observing that the avoided crossing
in Fig. 1 occurs with the state from the N = 0 manifold
approaching the state from the N = 1 manifold from above.
As the rotational constant is increased, the two states become
closer in energy and the electric field required to observe the
crossing is lower. The relevant couplings at these field mag-
nitudes are nearly constant at smaller Be values with a sharp
decrease towards the larger Be values. This happens because
smaller electric fields needed at larger rotational constants
result in smaller dipole matrix elements, while larger electric
fields needed for smaller rotational constants result in larger
dipole matrix elements. At small rotational constants and high
electric fields, the dipole matrix elements are saturated. The
couplings are then derived from the dipole matrix elements
according to Eq. (A1).

The spin-rotational constant (γSR) does not significantly
affect the coupling or the electric fields at E⊥ and Ez. Figure 9
shows the dependence of E⊥ and Ez on γSR with negligi-
ble change in E⊥, but significant increase in Ez as γSR is
increased. This can be explained by observing the couplings

FIG. 10. Coupling constants J⊥ and Jz in Eq. (6) for two
molecules with spin-rotational constants of 0.0001 cm−1 (top) and
0.01 cm−1 (bottom), separated by 500 nm with the intermolecular
axis perpendicular to E and B with B = 600 mT, as functions of the
electric field magnitude.

at and around the avoided crossing for two different γSR val-
ues. Figure 10 shows the dependence of couplings J⊥ and
Jz on the electric field for a molecule with spin-rotational
constant of 0.0001 cm−1 (top) and 0.01 cm−1 (bottom). The
spin-rotational constant is proportional to the matrix elements
of the molecular Hamiltonian (5) which couple the two states
giving rise to the avoided crossing. At lower γSR values, the
crossing is sharper. This explains the significant increase in
Ez for molecules with a larger spin-rotational constant, as the
range of electric fields around the avoided crossing where Jz

is not 	 J⊥ is much larger.
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