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Eight-port homodyne detector: The effect of imperfections on quantum random-number
generation and on detection of quadratures
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The eight-port homodyne detector is an optical circuit designed to perform the monitoring of two quadratures
of an optical field: the signal. By using quantum Bose fields and quantum stochastic calculus, we give a complete
quantum description of this apparatus, when used as quadrature detector in continuous time. We can treat either
the traveling waves in the optical circuit or the observables involved in the detection part: two couples of
photodiodes, postprocessing of the output currents …. The analysis includes imperfections, such as not perfectly
balanced beam splitters, detector efficiency, electronic noise, phase and intensity noise in the laser acting as local
oscillator; this last noise is modeled by using mixtures of field coherent states as statistical operator of the laser
component. Due to the monitoring in continuous time, the output is a stochastic process and its full probability
distribution is obtained. When the output process is sampled at discrete times, the quantum description can be
reduced to discrete mode operators, but at the price of having random operators, which contain also the noise of
the local oscillator. Consequently, the local oscillator noise has a very different effect on the detection results with
respect to an additive noise, such as the noise in the electronic components. As an application, the problem of
secure random-number generation is considered, based on the local oscillator shot noise. The rate of random bits
that can be generated is quantified by the min-entropy; the possibility of classical and quantum side information
is taken into account by suitable conditional min-entropies. The final rate depends on which parts of the apparatus
are considered to be secure and on which ones are considered to be exposed to the intervention of an intruder.
In some experimentally realistic situations, the entropy losses are computed, depending on the values of the
parameters quantifying the imperfections.
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I. INTRODUCTION

Sources of true random numbers, those that are not gen-
erated from algorithms but from stochastic processes, are of
great interest especially in areas such as cryptography, sim-
ulation, and secure communication. Particularly interesting
are those random-number generators which rely on stochastic
processes of quantum origin; these are fundamentally un-
predictable due to the aleatory nature of the measurement
outcome of quantum states. A single photon traveling through
a balanced beam splitter and detected at the two outputs
with single-photon detectors [1] is a paradigmatic example of
quantum random-number generator (QRNG); the randomness
is quantified by the entropy of the superposition of being in
one output or the other. The entropy in this case is maximal
for a perfectly balanced beam splitter since the probability
distribution of the two outcomes is a uniform distribution of
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the two values (say 0 and 1). Quite recently, QRNGs that do
not require single photons, but based on continuous variable
(CV) measurements, have been proved to be very efficient and
technologically less demanding [2–10]; these devices perform
homodyne detection and exploit the entropy of the stochastic
process underpinning the shot noise generated from balanced
receivers when the signal input is the vacuum state. Improve-
ments of this approach have also been demonstrated [11]; the
simultaneous measurement of complementary quadratures of
the vacuum state with double homodyne detection generates
not only genuine but also secure random numbers. In fact, fol-
lowing this technique it is possible to counteract the influence
of an adversary that is trying to exploit untrusted elements
of the system to steer the statistics of the random numbers
towards his own benefits.

The eight-port homodyne detector [12–16] is a combi-
nation of an optical circuit and photodetectors, devised to
“measure” two quadratures of a quantum “signal,” possibly
two complementary quadratures. The quantum treatment of
both single- and double-homodyne detection is usually done
by using discrete bosonic modes [4,11–15,17,18]; thanks to
the use of continuous Bose fields we allow for a more general
description in terms of traveling waves and of detection in
continuous time [19–23]. In this work we want to focus our
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FIG. 1. The eight-port optical circuit for a double-homodyne detection. Input fields: Aj (t ). Transformed fields: stage 1 Bj (t ), stage 2 Cj (t ).
Detected fields: Dj (t ). Detector outputs: Mj (t ). Balanced outputs: Xj (t ).

attention on the detailed analysis of the eight-port apparatus,
described in Fig. 1: it is composed by four beam splitters and
four photodiodes, one at each output of the beam splitters
3 and 4. The inputs are the signal (port 1) and the local
oscillator (LO, port 3); the beam splitter 1 mixes the signal
with a vacuum input, while beam splitter 2 mixes the LO with
another vacuum input. We include imperfections and noises in
the analysis of this circuit and we show that it is still possible
to use it as a detector apparatus. We also produce formulas
useful to calibrate nonideal experimental implementations of
QRNG modules.

The purpose of the device is to measure two field quadra-
tures of the input signal and this is realized when the LO
power is much larger than the signal power (i.e., in the
limit of infinitely strong local oscillator). We are interested
in the distribution of the two output currents generated by
the difference of the pairs of photocurrents produced by each
couple of photodiodes. In the limit of strong LO, as we shall
see, it is possible to demonstrate that the apparatus is in-
deed monitoring in continuous time two quadratures; when
the signal is in the vacuum state, the variance of the each
quadrature is reduced to pure shot noise (up to imperfections
to be discussed), which is an ideal source of entropy. This
noise is the source of randomness that is used to produce
random bits. The distribution of the measured photocurrent
is approximately Gaussian centered around a zero mean with

a variance dependent on the power of the local oscillator.
Continuous time observations of real signals are involved
in the description; however, when this apparatus is used for
QRNG, the signals are sampled at discrete times and the CV
outputs are discretized in their turn. This is due to the natural
discrete sampling that an oscilloscope or an ADC (analog to
digital converter) operates on the input signals. The discrete
distribution obtained this way can be used to produce the
actual uniform distribution of independent samples needed for
true random-number generators. The transformation from the
output statistics (which is close to a Gaussian distribution) to a
uniform distribution can be done using established techniques
described, for example, in [2].

Independently from the application as detector or as
random-number generator, the system we are considering con-
sists of linear optical elements with traveling light waves,
constantly monitored by the four photodiodes. To give a full
quantum description of this system we shall use quantum Bose
fields and quantum stochastic calculus (QSC) [24–26]. An
important aim of this work is also to use this concrete applica-
tion to show how to construct a consistent quantum theory of
optical circuits [27,28] and photodetection in continuous time
[22,29,30], even when imbalanced beam splitters, detector re-
sponse functions, laser, and electronic noises have to be taken
into account. Here, quantum and classical noises find a con-
sistent description, based on general quantum measurement
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theory [17,20,31–34]. The whole approach presented here can
be generalized also to other optical circuits, such as those pre-
sented in [12,35], or to problems of quantum communication,
such as quantum key distribution (QKD) [8,36,37].

Plan of the paper

In Sec. II we discuss the quantum treatment of the eight-
port detector. We introduce the necessary quantum fields and
the unitary operators representing the beam splitters and other
linear components in the circuit. The measurement stage, the
photodetectors, is represented by projection-valued measures
(pvm) and positive operator-valued measures (POVM) in con-
tinuous time. We allow for not balanced beam splitters. The
circuits also include a variable phase shifter between the beam
splitters 2 and 3 and another one between the beam splitters
2 and 4. At one input of beam splitter 2 there is a laser (the
local oscillator, LO) which we consider of very strong power
with respect to a possible signal in the other inputs. The laser
state is a mixture of field coherent states; phase fluctuations
and intensity noise are included in the formulation of such a
state. The action of the photodetectors is described by the pvm
associated with the photocounting operators; this counting
process is smoothed in time by the photodiodes and the re-
sulting photocurrents are subtracted in order to implement the
balanced homodyne detection. More precisely we work with
the characteristic operators (Fourier transform) [20–22] of the
counting pvm in continuous time and of the POVM describing
the subtracted photocurrents. The theoretical results are rooted
in QSC, which is essential in the whole construction. In the
main text we present the relevant results and give a physical
interpretation of the formulas, while some mathematical de-
tails are left to the Appendixes A, B 1, and B 2.

The limit of strong LO is done in Sec. III. Here we have
to prove the existence of this limit for the full probability dis-
tribution of the scaled photocurrents; again the mathematical
proofs are left to Appendix B 3. For a suitable choice of the
two phases ψ j , the two subtracted currents become propor-
tional to two complementary quadrature operators, meaning
that the circuit considered in the strong intensity limit is in-
deed measuring simultaneously the two quadratures. In the
ideal case, this result shows that this circuit is a physical
implementation of the theoretical POVM introduced in [20]
for time continuous measurements; however, now we take
into account also the effects of imbalanced beam splitters,
inefficiencies of the photodiodes, and LO noises. We also
discuss how the increase of phase noises can degrade the
homodyne detection into heterodyne detection in a continuous
way.

The outputs of the apparatus of Fig. 1 are often sampled
at discrete times, either when it is used for QRNG or as a
detection apparatus for the signal quadratures. The previous
general results are particularized to this situation in Sec. IV.
Moments and probability distributions of the involved observ-
ables are obtained; again mathematical computations are left
to Appendixes B 4 and C. In this situation it is possible to
express the various physical quantities through discrete mode
operators, but, thanks to our general approach in continuous
time, one sees that these mode operators are random because
their structure is based on the function describing the coherent

state of the LO and this function is random due to the intensity
noise and phase fluctuations.

In Sec. V we apply the previous results to the problem of
QRNG. Now the signal is in the vacuum state and the outputs
are sampled at discrete times; moreover, the CV outputs are
naturally discretized by the ADC apparatus. Following a com-
mon approach presented in other works, we use the classical
min-entropy and the conditional min-entropy [2,5,11,38] to
evaluate the rate of secure bits that can be extracted from
the system under practical and nonideal situations (not per-
fect balancing of the beam splitters, some inefficiency of
the detectors, presence of laser intensity and phase noises).
Our work generalizes and enlarges the analysis presented in
[8] and [11] since we allow for an imperfect realization of
the double-homodyne detection scheme, not only for additive
electronic noise. By choosing some realistic values for the
free parameters we give also examples where the number
of secure bits per sample can be computed. The problem
of QRNG is not only that the extracted bits must be truly
random, but also that they must be unknown to a possible
adversary. There are subtleties to be taken into consideration
depending on what it is assumed to be “secure” and “trusted,”
with respect to what is “untrusted,” due to the possibility that
an eavesdropper takes advantage of this untrusted part of the
system to gain knowledge on the generated data or to simply
corrupt the generation process [6,7,36]. In a first approach we
consider untrusted only the classical noise: the laser noise and
the the electronic noise due to the amplification chain after
the photodiodes; the apparatus and, in particular, the input
ports are trusted. Then, we consider also the case in which
the signal port is not secure and the so-called quantum side
information has to be taken into account. Via the introduction
of a conditional min-entropy, this classification influences the
quantification of the secure rate of random bits that can be
extracted from the system. In the examples we show also
how the generation rate of “secure bits” is influenced by the
imperfections in the circuit, as imbalance of the beam splitters
and not unit efficiency of the photodiodes. In this section we
discuss also the different roles of the LO fluctuations and of
the electronic noise, which is a purely additive noise.

As a particular case, the circuit of Fig. 1 includes also the
case of single homodyning. In Sec. VI we explain how to
obtain this case and we discuss its application to the QRNG
problem; again quantitative examples are given. Some final
comments are in Sec. VII.

II. OPTICAL CIRCUIT AND PHOTON DETECTION

To give a quantum description of optical circuits, such as
the one of Fig. 1, and of the photon detection scheme, we need
to introduce suitable quantum fields representing the traveling
waves inside the circuit and some notions of QSC, needed to
handle the equations used in the description of the detection
stage [20–23,26]. Let us stress that the original motivation for
the introduction of QSC was related to quantum open system
theory [21,24–26].

We introduce d Bose fields a j (t ) satisfying the canonical
commutation rules (CCRs)

[ai(s), a j (t )] = 0, [ai(s), a†
j (t )] = δi jδ(t − s). (1)
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In quantum field theory, the CCRs admit inequivalent repre-
sentations. In order to have the existence of the vacuum and of
the coherent states we fix the Fock representation and denote
by � = �1 ⊗ �2 ⊗ · · · the symmetric Fock space [see (A1) in
Appendix A], the Hilbert space where the fields aj (t ) act. The
coherent vectors e j ( f ) ∈ � j , with f ∈ L2(R), are defined by
(A2) and satisfy

a j (t )e j ( f ) = f (t )e j ( f ); (2)

this equation shows that e j ( f ) is indeed a coherent vector
for the annihilation operators. Note that e j (0) represents the
vacuum state for the field component a j (t ).

To develop the theory of quantum stochastic differential
equations, the integral version of the aj fields is needed, to-
gether with the integral of quadratic expressions preserving
the number of quanta:

Aj (t ) =
∫ t

0
a j (s)ds, �A

i j (t ) =
∫ t

0
a†

i (s)a j (s)ds. (3)

The operators �A
i j (t ) were named gauge process [24]; note

that �A
j j (t ) is the number process for the field j (indeed

it has the integer numbers as eigenvalues). By (2) we get
〈e j ( f )|�A

j j (t )|e j ( f )〉 = ∫ t
0 | f (s)|2dt and this quantity repre-

sents the mean number of photons in the time interval (0, t );
then, | f (t )|2 is the instantaneous mean number of photons per
unit of time.

The approximations involved in the use of these fields
to represent the electromagnetic field are justified when the
interactions and the refraction indices are little dependent on
frequency in a large band around a principal frequency ω0; this
is the so-called “broadband, quasimonochromatic approxima-
tion.” Moreover, to use these fields in an optical circuit means
to use a “quantum traveling wave formulation,” an approxima-
tion which is in some way opposed to the use a single mode or
a few discrete modes. By using these fields and QSC it is also
possible to develop a theory of direct, homodyne, heterodyne
detection in continuous time [21,22,27–30,32,37,39,40].

By suitable unitary transformations, which preserve the
canonical commutation relations, it is possible to represent
the optical linear devices which compose an optical circuit
[27,28]. In particular, we shall need the transformation gener-
ated by a beam splitter of transmissivity η ∈ [0, 1]: two input
fields A1(t ) and A2(t ) are mixed together and transformed in
the fields B1(t ) and B2(t ), given by

B1(t ) = √
η A1(t ) + i

√
1 − η A2(t ),

B2(t ) = i
√

1 − η A1(t ) + √
η A2(t ). (4)

In the optical circuit that we shall analyze, the polarization
does not play any role; when it is not so, polarization can
be taken into account by doubling the fields and also linear
devices depending on the polarization can be introduced [27].

A. Optical circuit

The circuit under study is drawn in Fig. 1. It presents four
input ports, into which the input fields Aj (t ) enter, and four
output ports, from which the four output fields Dj (t ) leave the
circuit; the output fields are detected by four photodiodes.

The field A1(t ) carries the input signal, and it is split in
two fields by mixing it at the beam splitter BS1 with the field
A2(t ) in the vacuum state. The field A3(t ) carries the laser light
playing the role of local oscillator (LO), and it is split in two
fields by mixing it at the beam splitter BS2 with the field A4(t )
in the vacuum state. As discussed in Sec. II A 2, to model the
light losses in the circuit and the efficiency of the detectors we
add before the output ports four fictitious beam splitters and
four auxiliary input fields Aj+(t ) in the vacuum state. So, to
analyze the circuit of Fig. 1 we use d = 8 field components.

This circuit is suggested as a realization of a double-
homodyne detection in [12, Sec. 5.6.1], [32, Sec. 4.5.1],
[18, Fig. 5], for instance. Here we want to perform a fully
quantum analysis of this circuit, taking into account noise
sources and imperfections (e.g., laser noise and unbalancing
of the beam splitters), as suggested in [8] for the case of a
single-homodyne apparatus.

1. Beam splitters and phase shifters

The circuit is composed by four beam splitters BSj of
transmissivity η j , j = 1, . . . , 4, and by two tunable phase
shifters. All the optical paths from the inputs to the outputs
are assumed to be equal; this allows to neglect the delays in
passing from a beam splitter to the other. By suitable chosen
phase shifts in the fields, also imperfections in the optical
paths could be taken into account in our formalism.

At the beam splitter BS1 the signal field A1(t ) is mixed
with the vacuum field A2(t ) and produces the output fields
B1(t ) and B2(t ), which turn out to be given by

B1(t ) = √
η1 A1(t ) + i

√
1 − η1 A2(t ),

B2(t ) = i
√

1 − η1 A1(t ) + √
η1 A2(t ). (5a)

At the beam splitter BS2 the LO field A3(t ) is mixed with the
vacuum field A4(t ) and, after the two tunable phase shifts ψ j ,
it gives rise to the output fields B3(t ) and B4(t ), given by

B3(t ) = eiψ1 [
√

η2 A3(t ) + i
√

1 − η2 A4(t )],

B4(t ) = eiψ2 [i
√

1 − η2 A3(t ) + √
η2 A4(t )]. (5b)

It will be useful to have a notation for the difference of the
tunable phases:

φ = ψ2 − ψ1. (6)

Then, the fields B1(t ) and B3(t ) are mixed together at the
beam splitter BS3, giving rise to the fields C1(t ) and C3(t ),
while the fields B2(t ) and B4(t ) are mixed at BS4 and give
rise to C2(t ) and C4(t ). The output fields turn out to be given
by

C1(t ) = √
η3 B1(t ) + i

√
1 − η3 B3(t ), (7a)

C3(t ) = i
√

1 − η3 B1(t ) + √
η3 B3(t ), (7b)

C2(t ) = √
η4 B2(t ) + i

√
1 − η4 B4(t ), (7c)

C4(t ) = i
√

1 − η4 B2 + √
η4 B4(t ). (7d)

2. Losses and efficiency of the detectors

To model the field losses in an optical path and/or in a
photodetector and to maintain the CCRs (1) for the fields,
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it is usual to insert a virtual beam splitter of transmissivity
less than one [8]. The beam enters a first input port, while
the vacuum enters the second input port. The attenuated beam
comes out from the transmission output port, while the lost
light comes out from the other port.

In our case we add four input fields Aj+(t ) in the vacuum
state and four beam splitters of transmissivity ε j ∈ (0, 1]; at
the eight outputs we have the observed field Dj (t ), which
reach the photodetectors, and the lost fields Dj+(t ), j =
1, . . . , 4. The transformation of the field operators is

Dj (t ) = √
ε j Cj (t ) + i

√
1 − ε j A j+(t ),

Dj+(t ) = i
√

1 − ε j Cj (t ) + √
ε j A j+(t ). (8)

Let us stress that preserving the CCRs (1) is needed to have
a consistent quantum description; this means that the attenua-
tion of the optical signal goes together an increase of the noise
due to the new vacuum inputs.

Remark 1. As suggested in [8], the efficiency coefficients
ε j can be considered partially tunable; indeed, by inserting a
variable optical attenuator in series before each output port we
can diminish the efficiency coefficient. So, if εmax

j ∈ (0, 1] is
the coefficient value due to light losses and inefficiency of the
detector, the effective coefficient ε j is (roughly) tunable in the
interval (0, εmax

j ].
By combining Eqs. (5), (7), and (8) we can express the

output fields Dj (t ) in terms of the input fields Aj (t ) and of
the auxiliary fields Aj+(t ); the total transformation for the
field densities is given in Eqs. (A4). From these densities one
can also express, in terms of the input fields aj (t ), a j+(t ), the
components �D

i j (t ) = ∫ t
0 d†

i (s)d j (s) ds of the gauge process;
the number operators �D

j j (t ) will be used in Sec. II C in
modeling the photodetectors.

B. Field state

As already noticed, the fields A2(t ), A4(t ), Aj+(t ) are in
the vacuum state. Then, if we denote by ρT

13 the reduced state
of signal and LO [in the time interval (0, T )], the total state of
the field is

ρT = ρT
13 ⊗ ρ⊥,

ρ⊥ = |e2(0)〉〈e2(0)| ⊗ |e4(0)〉〈e4(0)|

⊗
4∏

j=1

⊗

|e j+(0)〉〈e j+(0)|. (9)

To represent the laser light of the LO we use the mixture of
coherent states

ρT
3 = E f [|e3( fT )〉〈e3( fT )|], fT (t ) = f (t )1(0,T )(t ), (10)

where f (t ) is a complex stochastic process; by the comments
after Eq. (3), | f (t )|2 is the instantaneous laser intensity. As
for a monochromatic wave, a typical trajectory of this process
is not in L2(R), as required to define a field coherent vector.
However, it can be assumed to be locally square integrable
and by multiplying it by the indicator function 1(0,T )(t ) we
get fT ∈ L2(R). The time T is taken to be large and sent to
+∞ in the final physical formulas.

Remark 2. For the means and other moments done under
the law Pf of the process f and of the other correlated pro-
cesses we use the notation E f , Var f , Cov f . . .. On the other
side, for means and moments with respect to the probability
law P obtained from the total field state and the various
positive operator-valued measures (POVM) representing the
quantum observables we shall use the notation EP, VarP,
CovP . . ..

Remark 3. In some applications of homodyne detection,
when squeezing can be relevant, a good phase coherence
between signal and LO must be maintained in time, the LO
must be phase locked to the signal [19]. To guarantee this,
the same laser is used to produce the LO and to stimulate
the quantum system of interest (an atom [33,34], a quantum
oscillator [28], a nonlinear medium [41], ...). This means that
signal and LO can be correlated; to model this situation, we
take as signal-LO state

ρT
13 = E f

[
ρ

f ,T
13

]
, ρ

f ,T
13 = ρ

f ,T
1 ⊗ |e3( fT )〉〈e3( fT )|, (11)

where ρ
f ,T
1 is a random statistical operator for the signal field,

depending on the process f or correlated in some way with it.
We already introduced the reduced random signal-LO state

ρ
f ,T
13 ; it is useful to introduce also the random total state and

some simplified notations

ρT
f = ρ

f ,T
13 ⊗ ρ⊥, 〈·〉 f

T = Tr
{·ρT

f

}
,

〈·〉T = Tr{·ρT } = E f
[〈·〉 f

T

]
. (12)

Laser models

The process f (t ) plays the role of reference wave when the
whole apparatus is used as a detector for the signal light. To
represent a laser of nominal frequency ω0 we can take f (t ) =
λe−iω0t × · · · , where the ellipsis stands for other contributions
representing the main noises affecting the laser light. The
first important noise is the phase noise and a good model for
this is the phase-diffusion model of a laser [42, Sec. 11.4.1],
[43, Sec. 2.7.3]: a term proportional to a Wiener process is
added to the phase ω0t , whose effect is to give a finite coher-
ence length. Another important noise is the one generated by
the fluctuations of the laser intensity, often represented by the
relative intensity noise (RIN) [8,43,44]:

nRIN(t ) = | f (t )|2 − E f [| f (t )|2]

E f [| f (t )|2]
. (13)

As explained in [43, Sec. 2.8], lasers are constructed in such
a way that they do not have other peaks in a large frequency
band around their carrier frequency and the proposed noise
models should be compliant with these requirements.

We collect all these features in a single model for the laser,
a modification of the phase-diffusion model:

f (t ) = λe−iω0t−i
√

2γ0 W (t ) u(t ), λ = |λ|eiθ ,

θ ∈ R, ω0 > 0, γ0 > 0, (14)

where W (t ) is a standard Wiener process. Moreover, we take
u(t ) to be a real Gaussian process, independent of W (t ), such
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that

E f [u(t )] = w, Cov f [u(t ), u(s)] = v(t − s),

E f [u(t )2] ≡ w2 + v(0) = 1. (15)

The processes W (t ), u(t ) and the random variable θ are taken
to be independent. Computations of some moments of f (t ) are
given in Appendix A 2. By the comments below Eq. (3), f (t )
has the dimensions of a time to − 1

2 . By the last requirement
in (15), w and u(t ) are taken to be pure numbers, so that λ has
the dimensions of a time to − 1

2 .
By (14) and (15), the mean intensity of the laser is constant

in time:

E f [| f (t )|2] = |λ|2; (16)

|λ|2 is the mean number of photons per unit of time. By (A5d),
the RIN correlations turn out to have the expression

Cov f [nRIN(t ), nRIN(s)] = E f [nRIN(t )nRIN(s)]

= 2v(t − s)2 + 4w2v(t − s). (17)

The correlation function v(t ), defined in (15), turns out to
be even, v(−t ) = v(t ) ∈ R, and positive definite; so, we have
v(0) � 0 and

v(t ) = 1

2π

∫ +∞

−∞
eiνt ṽ(ν) dν, ṽ(ν) = ṽ(−ν) � 0; (18)

we assume also ṽ(ν) ∈ L1(R).
An important feature of the laser model is the intensity

spectrum of the process f (t ), defined by

� f (μ) = lim
T →+∞

E f

[∣∣∣∣ 1√
T

∫ T

0
eiμt f (t )dt

∣∣∣∣
2
]

; (19)

note that � f (μ) turns out to be a pure number. By using (14),
(18), and (A5a), we get

� f (μ) = 2|λ|2w2γ0

γ 2
0 + (μ − ω0)2 +

∫
R

dν
|λ|2ṽ(ν)γ0/π

γ 2
0 + (μ − ω0 − ν)2 .

(20)

If needed, the laser parameters γ0, ω0, ṽ(ν) could be estimated
in a calibration stage, for instance by measuring the intensity
spectrum.

Similarly, we can introduce the spectrum of the intensity
fluctuations; from (17) and (18), by straightforward computa-
tions we get

�RIN(μ) = lim
T →+∞

1

T

∫ T

0
dt

∫ T

0
ds eiμ(t−s)

× E f [nRIN(t )nRIN(s)]

= 4w2ṽ(μ) +
∫
R

ṽ(ν)ṽ(μ − ν)

π
dν.

To agree with the request that the intensity fluctuations do not
introduce new peaks in the laser spectrum we need ṽ(ν) to be
sufficiently flat.

C. Photodetectors

Let us consider now the monitoring of the photon flux
intensity at the four output ports; we start by consider-

ing direct detection (in continuous time) of the photons
[21,22,30,32,39,40].

When the detectors at the output ports are perfect pho-
tocounters, we can say that we are measuring the quantum
observables represented by the number operators

N̂ j (t ) = �D
j j (t ) =

∫ t

0
d†

j (s)d j (s) ds,

0 � t � T, j = 1, . . . , 4. (21)

Remark 4. The essential point is that, by the CCRs sat-
isfied by the fields d j (t ), these are compatible observables:
the set {N̂j (t ), 0 � t � T, j = 1, 2, 3, 4} is a family of com-
muting self-adjoint operators to which a projection-valued
measure (pvm) is associated. The commutativity also for
different times is the key point which allows for a quan-
tum theory of measurements in continuous time [20,22]. All
the observables we shall introduce in the following will be
functions of the number operators, and, so, also these other
observables will be represented by commuting operators.

The family of number operators is a continuity of operators
(with respect to the index “time”); so, the associated pvm is a
measure on an infinite-dimensional value space. Apart from
this, by the usual rules of a quantum theory, this measure
and the system state (introduced in Sec. II B) give rise to
a probability measure P for the observed counts Nj (t ). To
handle this implicitly defined pvm, it is useful to introduce its
Fourier transform, the characteristic operator [20–22], which
we discuss in Appendix B 1. In any case, as the probabilities
are given by the pvm of the commuting number operators,
all the moments of the observed counts can be expressed by
means the usual quantum expectations; by using the notations
introduced in Remark 2 and in Eq. (12), we have

EP[Nj1 (t1)Nj2 (t2) . . . ] = 〈N̂ j1 (t1)N̂j2 (t2) . . . 〉T . (22)

Remark 5. In the case of vanishing signal, as shown in
Appendix B 1 a, the counting processes Nj (t ) are a mixture
of Poisson processes with random intensities

J f
1 (t ) = η2(1 − η3)ε1| f (t )|2,

J f
2 (t ) = (1 − η2)(1 − η4)ε2| f (t )|2. (23)

In Appendix B 1 a, it is also shown that we get a mixture of
Poisson processes also when the signal is in a coherent state.

Photodiodes

In the following we shall be interested in a generic signal
and a strong LO; so we expect an intense flux of photons at
the output ports and we cannot rely on single-photon counters.
We consider as detectors general photodiodes, whose output
is some kind of time average of the photon arrivals in a time
interval. The output photocurrent of a photodiode can be seen
as a smoothed version of the rate of arrival of the photons; this
signal and its associated operator can be represented by

Mj (t ) =
∫ t

0
Fj (t, s)dNj (s),

M̂ j (t ) =
∫ t

0
Fj (t, s)dN̂j (s), (24)
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where Fj (t, s) is the response function of the jth detector.
The response functions contain an unavoidable smoothing

on time; a good and general choice is to take

Fj (t, s) = ξ jh(t − s), ξ j > 0, h(t ) � 0,∫ +∞

0
h(t )dt = 1. (25)

The function h(t ) represents the impulse response of the pho-
todiode; it decays as time grows and it is taken to be the
inverse of a time and normalized as indicated in (25). More-
over, the conversion factors ξ j are dimensional coefficients,
containing possible amplification contributions. The four de-
tectors cannot be exactly equal; however, for simplicity, we
took the same time behavior of the four response functions,
while we left the freedom of having different conversion fac-
tors ξ j .

Again, the output signals Mj (t ) are represented by the com-
muting self-adjoint operators M̂ j (t ), t ∈ (0, T ), j = 1, . . . , 4,
and their probability law and moments are obtained by the
usual rules of quantum mechanics. The characteristic op-
erator of the family of the M̂ operators is presented in
Appendix B 1 b, while the moments can be obtained directly
from (22) and (24). By using the field densities and putting
them in normal order, we get

EP[Mj (t )] = 〈M̂ j (t )〉T =
∫ t

0
Fj (t, r)〈dN̂j (r)〉T

= ξ j

∫ t

0
dr h(t − r)〈d†

j (r)d j (r)〉T , (26)

EP[Mj (t )Mi(s)] = 〈M̂ j (t )M̂i(s)〉T

= δi jξ
2

j

∫ t∧s

0
dr h(t − r)h(s − r)

× 〈d†
j (r)d j (r)〉T

+ ξ jξi

∫ t

0
dr

∫ s

0
dr′ h(t − r)h(s − r′)

× 〈d†
j (r)d†

i (r′)di(r
′)d j (r)〉T ; (27)

we are using the notation t ∧ s ≡ min{t, s}. Some more ex-
plicit expressions of means and correlations are given in
Appendix A 3.

D. Postprocessing of the outputs

To realize the balanced homodyne detection scheme
[21,22,30,32,39,40] we need to subtract the two output pho-
tocurrents from each couple of photodiodes (1, 3 and 2, 4);
then, the limit of strong LO will be considered (after a possible
scaling of the output signals). So, we end with the two output
signals

Xj (t ) = Mj (t ) − Mj+2(t ) = ξ j

∫ t

0
h(t − s)dNj (s)

− ξ j+2

∫ t

0
h(t − s)dNj+2(s), j = 1, 2. (28)

By (24) we see that the two stochastic processes Xj (·) are
linear combinations of the counting processes Ni(·); again

they represent the observed values of the compatible quantum
observables

X̂ j (t ) =
∫ t

0
Fj (t, s)dN̂j (s) −

∫ t

0
Fj+2(t, s)dN̂j+2(s). (29)

Remark 6. The usual scheme is to amplify the two differ-
ence currents, for instance, by a transimpedance amplifier,
and to apply some suitable frequency filter [8,37]. This means
that the processes Xj (t ) are modified by a second convolution;
however, this procedure is equivalent to a single convolution
with a modified response function and its effects are included
in the structure (28). This electronic postprocessing gives the
dimensions of a voltage to the observed processes; so, the
physical dimension of the parameters ξ j is that of a time
multiplied by a voltage. The second amplification or deampli-
fication stage can be used also to scale the total output signal.
If some amplification is introduced also before the difference
is taken, we can partially tune the coefficients ξ j , in order to
get a better balancing in the final output.

A typical choice is to include in h(t ) a Butterworth filter
[8]; as a simple example we shall use an exponential response
function

h(t ) = κe−κt . (30)

As discussed again in [8], the amplification process inside
the photodiodes produces some extra additive noise. Being
additive and dependent only on the response function, we do
not consider the electronic noise in the following, but we add
it only in Sec. V A.

Again, the probability law of the stochastic processes
is uniquely determined by their characteristic functional
(Appendix B 2); here below we give means and correlations.

1. Means and correlations of the observed processes

The first moments can be obtained directly from the defi-
nition (28) and the moments of the photocurrents (A13) and
(A14). First, we define the following coefficients:

κ11 = η1
[
η3ε1ξ

2
1 + (1 − η3)ε3ξ

2
3

]
, (31a)

κ21 = (1 − η1)
[
η4ε2ξ

2
2 + (1 − η4)ε4ξ

2
4

]
, (31b)

κ12 = η2
[
(1 − η3)ε1ξ

2
1 + η3ε3ξ

2
3

]
, (31c)

κ22 = (1 − η2)
[
(1 − η4)ε2ξ

2
2 + η4ε4ξ

2
4

]
, (31d)

κ13 =
√

η1η2η3(1 − η3)(ε1ξ1 + ε3ξ3), (31e)

κ23 =
√

(1 − η1)(1 − η2)η4(1 − η4)(ε2ξ2 + ε4ξ4), (31f)

�11 = η1[η3ε1ξ1 − (1 − η3)ε3ξ3], (32a)

�21 = (1 − η1)[η4ε2ξ2 − (1 − η4)ε4ξ4], (32b)

�12 = η2[(1 − η3)ε1ξ1 − η3ε3ξ3], (32c)

�22 = (1 − η2)[(1 − η4)ε2ξ2 − η4ε4ξ4], (32d)

�13 =
√

η1η2η3(1 − η3)
(
ε1ξ

2
1 − ε3ξ

2
3

)
, (32e)

�23 =
√

(1 − η1)(1 − η2)η4(1 − η4)
(
ε2ξ

2
2 − ε4ξ

2
4

)
. (32f)

Then, by using the field state introduced in Sec. II B, the
definitions (A11), and the notation : · : for normal order, we
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get easily, for i, j = 1, 2,

EP[Xj (t )] =
∫ t

0
dr h(t − r)

{
κ j3(ieiψ jE f

[
f (r)〈a†

1(r)〉 f
T

] + c.c.) + � j1〈a†
1(r)a1(r)〉T + � j2E f [| f (r)|2]

}
, (33)

EP[Xj (t )Xi(s)] = δi j

∫ t∧s

0
dr h(t − r)h(s − r)

{
κ j1〈a†

1(r)a1(r)〉T + κ j2E f [| f (r)|2] + � j3(ieiψ jE f
[

f (r)〈a†
1(r)〉 f

T

] + c.c.)
}

+
∫ t

0
dr

∫ s

0
dr′ h(t − r)h(s − r′)E f

[〈: {� j1a†
1(r)a1(r) + � j2| f (r)|2 + κ j3(ieiψ j f (r)a†

1(r) + H.c.)}

× {�i1a†
1(r′)a1(r′) + �i2| f (r′)|2 + κi3(ieiψi f (r′)a†

1(r′) + H.c.)} :〉 f
T

]
. (34)

By these two equations one can write also the expression of CovP[Xj (t ), Xi(s)].

Remark 7. Let us stress that the term starting by δi j in (34)
comes out from the reordering of the creation and annihilation
operators and, so, it represents the shot noise. Moreover, note
that the phases ψ j appear only in the terms containing the
interference between signal and LO; so, they disappear when
the signal vanishes.

In the expression of the means (33), the last two terms are
due to some imbalance in the circuit, while the first term is an
indication that the whole detection apparatus is a way to “mea-
sure” two quadratures of the signal field operator a1(t ), even
complementary quadratures (when φ ≡ ψ2 − ψ1 = ±π/2).

The fact that these two observables do not commute implies
the presence of some extra noise.

2. Balanced case

To gain some insight on the effects of imperfections it is
useful to fix the perfectly balanced case:

η j = 1/2, ε j = ε, ξ j = ξ . (35)

This gives

κ j1 = κ j2 = εξ 2/2, κ j3 = εξ/2, �i j = 0. (36)

As an example, Eqs. (33) and (34) become

EP[Xj (t )] = εξ

2
ieiψ j

∫ t

0
dr h(t − r)E f

[
f (r)〈a†

1(r)〉 f
T

] + c.c., (37)

EP[Xj (t )Xi(s)] = δi j
εξ 2

2

∫ t∧s

0
dr h(t − r)h(s − r){〈a†

1(r)a1(r)〉T + E f [| f (r)|2]}

+ ε2ξ 2

4

∫ t

0
dr

∫ s

0
dr′ h(t − r)h(s − r′)E f [〈: (ieiψ j f (r)a†

1(r) + H.c.)(ieiψi f (r′)a†
1(r′) + H.c.) :〉 f

T ]. (38)

Remark 8 (Rebalancing). An intermediate case, suggested
in [8], is when we are able to fine tune the efficiencies ε j

and/or the coefficients ξ j (see Remarks 1 and 6), and we get
� j2 = 0. In this way we would eliminate the problem of a
mean growing with the LO intensity [the last term in (33)].
At the same time the contribution of the laser intensity noise
Cov f [| f (r)|2, | f (r′)|2] would disappear from the fluctuations
of the observed processes.

III. STRONG LO AND DOUBLE-HOMODYNE DETECTION

When the interest is in the measurement of the two signal
quadratures or in the secure QRNG protocol introduced in
[11], we need to have a strong LO and to scale the observed
processes.

Assumption 1. We assume the LO laser to have a constant
mean intensity, as it holds for the model of Sec. II B,

E f
[| f (t )|2] = |λ|2, (39)

and we set

f̃ (t ) = f (t )
/|λ|. (40)

Then, we scale the outputs with respect to this mean inten-
sity:

Yj (t ) = Xj (t )

|λ| =
∫ t

0

h(t − s)

|λ| [ξ jdNj (s) − ξ j+2dNj+2(s)].

(41)

Recall that also the probability law P of the counting pro-
cesses Nj (t ) depends on λ because the field state depends on
f (see Sec. II B).

From (33) we get

EP[Yj (t )] =
∫ t

0
dr h(t − r)

{
κ j3

(
ieiψ jE f

[
f̃ (r)〈a†

1(r)〉 f
T

]

+ c.c.
) + � j1

|λ| 〈a†
1(r)a1(r)〉T + � j2|λ|

}
. (42)

If � j2 = 0, the last term explodes when the laser intensity
grows. We do not assume to be able to get a perfect rebal-
ancing as in Remark 8, but only to limit the growth with the
laser intensity of the terms containing the expression � j2,
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so to have a moderate effect of the laser fluctuations at the
working intensity of LO. By working at vanishing signal, we
manage to tune the efficiency and transmissivity coefficients
so to maintain a small mean up to the maximal LO power; this
means to have � j2 ∝ 1/|λ|max.

Assumption 2. In mathematical terms, we set

Gj2 = � j2|λ|/κ j3 (43)

and we assume Gj2 to be independent of λ. We also take η j

different from 0 and 1.

Now, we can take the limit |λ| → +∞ and the mean (42) becomes

EP[Yj (t )] = κ j3

∫ t

0
dr h(t − r)

{(
ieiψ jE f

[
f̃ (r)〈a†

1(r)〉 f
T

] + c.c.
) + Gj2

}
, (44)

while (34), (41), and (43) give, by direct calculations,

CovP [Yj (t ), Yi(s)] = δi jκ j2

∫ t∧s

0
h(t − r)h(s − r) dr + κ j3κi3

∫ t

0
dr

∫ s

0
dr′ h(t − r)h(s − r′)[Cf ( j, r; i, r′) + C( j, r; i, r′)],

(45)

where the first term is the shot-noise contribution and the two matrices in the double integral have the expressions

Cf ( j, r; i, r′) = Cov f
[
Gj2| f̃ (r)|2 + (

ieiψ j f̃ (r)〈a†
1(r)〉 f

T + c.c.
)
, Gi2| f̃ (r′)|2 + (

ieiψi f̃ (r′)〈a†
1(r′)〉 f

T + c.c.
)]

, (46)

C( j, r; i, r′) =E f
[
ei(ψ j−ψi ) f̃ (r) f̃ (r′)

(〈a†
1(r)a1(r′)〉 f

T − 〈a†
1(r)〉 f

T 〈a1(r′)〉 f
T

)
− ei(ψi+ψ j ) f̃ (r) f̃ (r′)

(〈a†
1(r)a†

1(r′)〉 f
T − 〈a†

1(r)〉 f
T 〈a†

1(r′)〉 f
T

) + c.c.
]
. (47)

The matrix (47) vanishes when the signal is in a coherent
state, and it can be not positive definite when the signal is
in a squeezed state. It is important to stress that only the sum
of the shot noise plus the contribution of (47) is guaranteed to
be a positive-definite matrix.

A. Reduced description and the probability law
in the limit of strong LO

Up to now we have considered only observables repre-
sented by commuting self-adjoint operators and the associated
pvm in the Fock space �, a Hilbert space with the tensor
product structure (A1). Indeed, also to the processes Yj (t ) we
can associate the self-adjoint operators Ŷj (t ) by the opera-
tor version of (41); these are again compatible observables,
as they are linear combinations of the compatible number
operators (see Remark 4). POVMs enter into play when a
reduced description is considered: the characteristic operator
is reduced to the factor �1, where the signal lives, by using
the fact that the state in the complementary factor is fixed. By
this technique we can show that the limit for |λ| → +∞ exists
for the whole law of the processes Yj (·), not only for the first
moments, and that this probability law is linked to a POVM
describing the joint measurement of two quadratures of the
signal field.

To have a clear picture of the underlying POVM, it is
convenient to suitably decompose the coefficients κ j2, which
appear in the shot-noise term in (45). By direct computations
based on (31) and (32), one can check that the following
equality holds:

κ j2 = κ 2
j3

(
Gj3 + V 2

j + σ 2
j + 1

)
, (48)

where

G13 = 1 − η1

η1
, G23 = η1

1 − η1
, (49a)

V 2
1 = � 2

12

η2κ
2

13

= Ṽ 2
1

η1
,

V 2
2 = � 2

22

(1 − η2)κ 2
23

= Ṽ 2
2

1 − η1
, (49b)

Ṽ 2
j = [(1 − η j+2)ε jξ j − η j+2ε j+2ξ j+2]2

η j+2(1 − η j+2)(ε jξ j + ε j+2ξ j+2)2 , (49c)

σ 2
1 = σ̃ 2

1

η1
, σ 2

2 = σ̃ 2
2

1 − η1
,

σ̃ 2
j =

ε j (1−ε j )
η j+2

ξ 2
j + ε j+2(1−ε j+2 )

1−η j+2
ξ 2

j+2

(ε jξ j + ε j+2ξ j+2)2 . (49d)

The contribution σ 2
j represents some extra noise due to the

presence of optical losses, as it vanishes when ε j = ε j+2 = 1;
this noise is of quantum origin because it is due to the need of
preserving CCRs as discussed in Sec. II A 2. The contribution
V 2

j is due to the unbalancing and, by Assumption 2, it is small.
Proposition 1. With the above assumptions, the charac-

teristic functional of the processes Yj (·) admits a limit for
|λ| → +∞; so, we can write

�Y
T [�k] = lim

|λ|→+∞
EP

[
exp

{
i

|λ|
2∑

j=1

∫ T

0
k j (s)Xj (s)ds

}]
.

(50)

The structure of the characteristic functional (50) turns out to
be given by

�Y
T [�k] = E f

[
�Z

T [�kT ; f ]
]
,

kT
j (t ) = κ j3

∫ T

t
h(s − t )k j (s)ds, (51a)

�Z
T [�k; f ] = �

Q
T [�k; f ]�T [�k; f ], (51b)
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�
Q
T [�k; f ] = Tr�1

{
�̂

Q
T [�k; f ]ρ f ,T

1

}
, (51c)

�T [�k; f ] = exp

{∫ T

0
ds
∣∣ f̃ (s)

∣∣2 2∑
j=1

[
ik j (s)Gj2

− σ 2
j + V 2

j

2
k j (s)2

]}
. (51d)

With a fixed f̃ (t ), the quantity �̂
Q
T [�k; f ] is the characteristic

operator of a POVM on the Hilbert space �1, having the
expression

�̂
Q
T [�k; f ] = exp

∫ T

0

{
i

2∑
j=1

k j (t )dQ̂ j (t )

−1

2

2∑
i, j=1

k j (t )� jiki(t )
∣∣ f̃ (t )

∣∣2dt

}
, (52a)

dQ̂ j (t ) = ieiψ j f̃ (t )dA†
1(t ) + H.c.,

� =
(

G13 − cos φ

− cos φ G23

)
. (52b)

In the formulas above, f̃ and Gj2 are introduced in Assump-
tions 1 and 2, the phase φ is defined in (6), the expressions
of κ j3 and σ 2

j are given in (31) and (49d); the matrix � is
non-negative definite.

The proof of the proposition above is given in Ap-
pendix B 3, where also the following corollary is proved.

Corollary 2. Let the signal state be a mixture of coherent
states, given by ρ

f ,T
1 → ρ

fs,T
1 = |e1( fs)〉〈e1( fs)|, where fs(t )

is a stochastic process and Pf is the joint probability distribu-
tion of the processes fs and f̃ , as in Appendix B 1 a. By using
the notations of Proposition 1, we have

�Z
T [�k; f ] = exp

2∑
j=1

∫ T

0
dt

{
ik j (t )[Gj2| f̃ (t )|2

+ (ieiψ j fs(t ) f̃ (t ) + c.c.)] − κ j2

2κ 2
j3

k j (t )2| f̃ (t )|2
}
.

(53)

1. Structure of the observed processes

When | f̃ (s)| is a nonrandom given function, the expression
(51d) is the characteristic functional of the increments of a
bidimensional Gaussian process, which we denote by L f

j (t ),
which can be expressed as

L f
j (t ) = Gj2

∫ t

0
| f̃ (s)|2ds + σ j

∫ t

0
| f̃ (s)|dWj1(s)

+ Vj

∫ t

0
| f̃ (s)|dWj2(s), (54)

where the four processes Wji are independent, standard
Wiener processes (their formal time derivatives are white
noises).

Let us consider now the POVM (in continuous time) deter-
mined by the characteristic operator (52) and let us denote by
Q f

j (t ) the corresponding observables, measured in the signal

state ρ
f ,T
1 . Then, the quantity �

Q
T [�k; f ], given by (51c), is the

characteristic functional of the random processes Q f
j (t ).

As the product of two characteristic functionals is the char-
acteristic functional of the sum process, the quantity �Z

T [�k; f ]
in (51b) is the characteristic functional of the processes

Z f
j (t ) = Q f

j (t ) + L f
j (t ). (55)

Then, �Z
T [�kT ; f ], with �kT defined in (51a), is the characteristic

functional of the processes

Y f
j (t ) = κ j3

∫ t

0
h(t − s)dZ f

j (s). (56)

Let us summarize the physical meaning of these results.
The first equality in (51a) says that the probability law of
the observed processes Yj (t ) is a mixture of the probability
laws of the processes Y f

j (t ) with respect to the law of the
random function f (see Remark 2), i.e., with respect to the LO
fluctuations. Then, by the results (56) and (55), the processes
Y f

j (t ) are a smoothed and noisy versions of the processes

Q f
j (t ), whose characteristic functional is given by (51c) and

the associated characteristic operator by (52a). Finally, by the
structure of this characteristic operator (52a), we can interpret
the associated POVM as a joint measurement of the “dilated
quadratures” (52b). In some sense, the whole apparatus gives
a joint noisy measurement of the field quadratures (52b).

2. Measured quadratures

The measured field quadratures (52b) satisfy the commu-
tation relations[

dQ̂1(t )

dt
,

dQ̂2(s)

ds

]
= 2i sin φ| f̃ (t )|2δ(t − s),

[Q̂ j (t ), Q̂ j (s)] = 0. (57)

Note that these quadratures are not complementary when
| sin φ| = 1 and that they are random operators, as they con-
tain the random process f̃ (t ) [Eqs. (14) and (40)]. For sin φ =
0 the two quadratures do not commute and a joint pvm does
not exist; indeed, the second term in (52a) represents some
noise needed to have a true POVM. However, in general,
this noise is not minimal. For instance, for φ = nπ the two
quadratures (52b) are compatible quantum observables and
the whole noise in (52a) is due to the way the measurement
is realized, but it is not necessary on a pure mathematical
ground.

For φ = nπ + π/2, instead, the quadratures (52b) are or-
thogonal and (52a) can be written as

�̂
Q
T [�k; f ] = exp

∫ T

0

{
i[ f̃ (t )k(t )ieiψ2 dA†

1(t ) + H.c.]

− 1

2
|αk(t ) + α(1 − 2η1)k(t )|2| f̃ (t )|2dt

}
, (58)

k(t ) = k1(t ) + ik2(t ), α = 1√
4η1(1 − η1)

⇒ α � 1, α|1 − 2η1| =
√

α2 − 1.
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The associated POVM was already introduced in [20,
Sec. III]; the case with α = 1, i.e., η1 = 1

2 , it is a general-
ization to fields in continuous time of the POVM constructed
from coherent states of a single mode, having the Husimi
function as probability density.

B. Homodyne and heterodyne detection

As observed in Remark 7, the phases ψ j disappear from
the moments of the observed processes in the case of vanish-
ing signal. Similarly, also the contributions of the LO phase
fluctuations disappear from the distributions of the processes
Xj (·), Yj (·) [see (33), (34), (44)–(47), (B13), (52), and (57)].
This is due to the fact that we are taking equal the optical paths
arriving to the various interference points (the beam splitters).

Things are different when the circuit is used as detection
apparatus and there is interference between LO and signal.
To detect squeezing in homodyne spectra, it is necessary to
maintain phase coherence for a sufficiently long time; the
LO must be phase locked to the signal [19] and this can
be realized by taking as signal the light generated by some
system stimulated by the same laser which produces the LO
(mathematically, both LO and signal depend on f [33], see
Remark 3).

To understand the effect of the phase fluctuations, let us
consider the case of a signal state totally independent of f ;
we take the laser model of Secs. II B and A 2 and we study
means and fluctuations of the processes Yj (·). In Eqs. (44)–
(47) the f dependence in the signal state disappears; then, by
the expressions of the f moments (A5), we get

EP[Yj (t )] = κ j3

∫ t

0
dr h(t − r){we−γ0r (iei(ψ j+θ−ω0r)〈a†

1(r)〉T + c.c.) + Gj2}, (59a)

Cf ( j, r; i, r′) = Gj2Gi2
v(r − r′)

2
[2w2 + v(r − r′)] + 2iG j2v(r − r′)wei(ψi+θ−ω0r′ )−γ0r′ 〈a†

1(r′)〉T

+ 2iGi2v(r − r′)wei(ψ j+θ−ω0r)−γ0r〈a†
1(r)〉T

+ ei(ψi+ψ j+2θ )−(iω0+γ0 )(r+r′ )〈a†
1(r)〉T 〈a†

1(r′)〉T {w2 − [w2 + v(r − r′)]e−2γ0(r∧r′ )}
+ ei(ψ j−ψi )+iω0(r′−r)−γ0|r−r′ |〈a†

1(r)〉T 〈a1(r′)〉T [w2 + v(r − r′) − w2e−2γ0(r∧r′ )] + c.c., (59b)

C( j, r; i, r′) = ei[ψ j−ψi+ω0(r′−r)]−γ0|r−r′|[w2 + v(r − r′)](〈a†
1(r)a1(r′)〉T − 〈a†

1(r)〉T 〈a1(r′)〉T )

− ei[ψi+ψ j+2θ−ω0(r+r′ )]−γ0[4(r∧r′ )+|r−r′ |][w2 + v(r − r′)](〈a†
1(r)a†

1(r′)〉T − 〈a†
1(r)〉T 〈a†

1(r′)〉T ) + c.c. (59c)

Let us consider now the extreme case of an incoherent LO (the coherence time 1/γ0 is small); this means to take the relevant
times to be large: t, s � 1/γ0, t, s � τ , where τ is the decaying time of h(t ). From Eqs. (59) and (45) we get

EP[Yj (t )] = κ j3

∫ t

0
dr h(t − r)Gj2 � κ j3Gj2, (60a)

CovP[Yj (t ),Yi(s)] � δi jκ j2

∫ t∧s

0
h(t − r)h(s − r) dr + κ j3Gj2κi3Gi2Gv (t, s)

+ κ j3κi3

∫ t

0
dr

∫ s

0
dr′ h(t − r)h(s − r′)e−γ0|r−r′ |[ei[ψ j−ψi+ω0(r′−r)]〈a†

1(r)a1(r′)〉T [w2 + v(r − r′)] + c.c.],

(60b)

Gv (t, s) =
∫ t

0
dr

∫ s

0
dr′ h(t − r)h(s − r′)v(r − r′)[2w2 + v(r − r′)]. (60c)

In this limit, the terms with two annihilators or two cre-
ators disappear from the matrix (59c) and each of the three
terms (60b) is a positive-definite matrix for every choice of
the signal state; so, it is not possible to detect squeezing.
We can say that this is the limit of heterodyne detection:
the phase fluctuations in the LO destroy any phase coherence
[32,33]. Let us note that in (45) and (47) the contribution of
〈a†

1(r)a†
1(r′)〉T is cut again when its frequency spectrum is far

from ω0; we can speak of heterodyne detection also in this
case.

The other extreme case is pure homodyning. Without cor-
relations between signal and LO to attenuate the coherence
losses, we need to have a highly coherent LO (1/γ0 is very
large), say γ0 = 0 or t, s � 1/γ0. Now, the terms with two

annihilators or two creators survive and the possible presence
of negative eigenvalues of the matrix C( j, r; i, r′) can allow to
detect squeezing [28,34].

Let us stress that we are speaking of homodyne detec-
tion when the measurement is phase sensitive, independently
from the fact that a single quadrature or two orthogonal ones
are monitored; essentially this terminology is used also in
[12,18,32], while in [11] they use the term “heterodyne de-
tection” for the case of monitoring of two complementary
quadratures.

An application of detection in continuous time is to con-
struct a consistent quantum theory of the various types of
spectra for the signal. In the heterodyne regime, by varying
the frequency of the LO, the power spectrum of the signal
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can be studied [34,45,46], while in the homodyne regime we
have the homodyne spectrum and the spectrum of squeezing
[28,34,45,46]. By using the eight-port circuit we get in the
same run the spectra of two complementary quadratures.

IV. DISCRETE SAMPLING

The output of the apparatus of Fig. 1 is in continuous time,
but in many experimental situations it is sampled at discrete
times. This can happen both when it is used for QRNG [5,11],
and when it is used as a detection apparatus for the signal
quadratures, as it is done for the outputs of various optical
circuits [43]. Sometimes a pulsed laser can be used as LO
[6,8,19,37]; in this situation, even a single detection per pulse
is considered.

For instance, in the case of QRNG, the output of the differ-
ence photocurrents [the couple of processes Xj (t )] is sampled
by an oscilloscope; the laser can be either CW or pulsed.
The sampling rate will determine the maximum generation
rate of the random numbers, while the ADC that digitizes
the signal determines the number of bits per sample and also
limits the maximum level of output photocurrents that can be
used without saturating the instrument.

In QRNG we need the samples at different times to
be independent; eventually, this result can be obtained by
undersampling when some correlation is detected in the ex-
perimental data. In view of this, we take the sampling times
such that correlations for observations at different times can

be due only to the signal. This choice is not necessary when
the apparatus is used for signal detection, but even in this case
it simplifies some mathematical expressions.

Assumption 3. We assume that the sampling process is
done at m times t1, t2, . . . , tm with t1 > t0 � 0 and with an
intertime tl − tl−1 � τ , where τ is such that the response
function and the intensity correlations are nearly completely
decayed:

h(t ) � 0, t � τ,

Cov f [| f (t )|2, | f (s)|2] � 0, |t − s| � τ. (61)

For the laser model of Sec. II B, by Eq. (A5d), the decaying
of the correlations is equivalent to v(t ) � 0 for |t | � τ .

A. Observed processes

We start by considering the sampling of the observed pro-
cesses Xj (·), introduced in Sec. II D. Means and correlations
of the observed samples can be obtained by Eqs. (33) and
(34). By Assumption 3, the covariance of two observations
at different times can be different from zero only due to corre-
lations introduced by the signal state. In particular, when the
signal state is a coherent one, the covariance of observations
at different times vanishes.

For QRNG it is of main interest the case of pure noise;
when the signal is in the vacuum state, from (33), (34), (39),
(40), and (13) we get

EP[Xj (tl )] � � j2|λ|2
∫ tl

tl −τ

dr h(tl − r) � � j2|λ|2, (62a)

CovP[Xj (tl ), Xi(tl ′ )] � δll ′ (δi jκ j2|λ|2S0 + � j2�i2|λ|4C0), (62b)

S0 =
∫ tl

tl −τ

dr h(tl − r)2 �
∫ +∞

0
dr h(r)2, (62c)

C0 =
∫ tl

tl −τ

dr
∫ tl

tl −τ

dr′ h(tl − r)h(tl − r′)E f [nRIN(r)nRIN(r′)]. (62d)

If the intensity fluctuations vanish, X1(tl ) and X2(tl ) become uncorrelated. In the case of the laser model of Sec. II B, the RIN
contribution C0 becomes

C0 = 2
∫ tl

tl −τ

dr
∫ tl

tl −τ

dr′ h(tl − r)h(tl − r′)v(r − r′)[2w2 + v(r − r′)]

� 2
∫ +∞

0
ds

∫ +∞

0
ds′ h(s)h(s′)v(s − s′)[2w2 + v(s − s′)]. (63)

As an example, we can consider the case of an exponen-
tial response function (30) and exponential correlations (A6);
then, we have

S0 = κ

2
, C0 = 2κ(1 − w2)

κ + 2γ1

(
1 + w2 + 2γ1w

2

κ + γ1

)
, (64)

where w2 � 1. Independently of the laser model, S0 and C0

are two parameters to be estimated from the data. As noted in
Remark 7, phases no longer play any role. So, if we are only
interested in the shot noise for random-number generation, the

relative phases do not have any effect on the statistics of the
generated numbers.

In the case of signal in the vacuum state, the observ-
ables Xj (tl ) come from a mixture of distributions of linear
combinations of Poisson processes [Remark 5, Eq. (28)].
However, by the effect of an LO intensity |λ|2 not too small
and of the smoothing on time due to the detector response
function, we can rely on a normal approximation of the distri-
bution of the observed processes. Therefore, the observations
(X1(tl ), X2(tl )) can be considered a random sample from an
(approximately) bi-variate normal distribution with means and
covariances given by (62).
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B. Scaled processes

We consider now the discrete sampling of the scaled pro-
cesses Yj (t ) in the case of strong LO; this is the situation
considered, for instance, in [8,11]. Means and covariances
of the random variables Yj (tl ) are obtained immediately by
particularizing Eqs. (44)–(47) and by taking into account As-
sumption 3. In the case of vanishing signal as above, we get
means and covariances simply by applying the scaling (41) to
Eqs. (62):

EP[Yj (tl )] � κ j3Gj2,

CovP[Yj (tl ), Yi(t
′
l )] � δll ′ (δi jκ j2S0 + κ j3Gj2κi3Gi2C0). (65)

The coefficients κ j2, κ j3, Gj2 are defined in (31) and (43).
In the case of the observables Yj (tl ), by the results of

Sec. III A, we can obtain their characteristic function and, so,
their full probability distribution.

1. Discrete mode operators

To get explicitly the characteristic function of the observ-
ables Yj (tl ) and the associated POVM, it is convenient to
introduce suitable bosonic mode operators. Moreover, this
construction gives a link between the quantum field approach
to optical circuits and the more usual discrete mode approach.

We define the operators

al = −i

Rl ( f )

∫ tl

tl −τ

h(tl − s) f̃ (s) e−iψ1 dA1(s), (66a)

q̂l
1 = q̂l

1(φ) = 1√
2

(a†
l + al ), (66b)

q̂l
2(φ) = 1√

2
(eiφa†

l + e−iφal ), (66c)

Rl ( f ) =
(∫ τ

0
dr h(r)2

∣∣ f̃ (tl − r)
∣∣2)1/2

. (66d)

Let us note that the normalization constant (66d) is a random
quantity and that, by (62c), (66d), and (16), we have

E f [Rl ( f )2] = S0. (67)

Remark 9. The operators al and a†
l are discrete mode op-

erators, satisfying the CCRs, while q̂l
1 and q̂l

2(φ) are two
quadratures, not complementary in general:

[al ′ , a†
l ] = δll ′ , [al ′ , al ] = 0, [q̂l

1, q̂l
2(φ)] = i sin φ.

(68)

All these operators contain f̃ : they are random operators.
The operators q̂l

j (φ) can be expressed in terms of the quan-
tum observables (52b), introduced in Sec. III; indeed, we have

q̂l
j (φ) = 1√

2Rl ( f )

∫ tl

tl −τ

h(tl − s)dQ̂ j (s).

To give the structure of our POVM, we shall need also
squeezed coherent states; here we introduce some notation.

First, we decompose the Hilbert space �1 and the vacuum
state into the tensor product forms

�1 = �⊥
1 ⊗

∏
l

⊗
�l

1, e1(0) = e⊥
1 (0) ⊗

∏
l

⊗
el

1(0).

The component �l
1 is such that {al , a†

l , �l
1} gives an irre-

ducible representation of the CCRs for a single mode. Then,
we introduce the displacement operator and the squeezing
operator

Dl (z) = exp
{
za†

l − z al
}
,

Sl
α,β = exp

{
ξ

2
a†

l
2 − ξ

2
a 2

l

}
, ξ = β

|β| cosh−1 α; (69a)

to have a well-defined squeezing operator the coefficients
α, β must satisfy

α ∈ R, β ∈ C, α2 − |β|2 = 1. (69b)

By introducing also the unitary operator

Ul (φ) = exp

{
i

(
φ − π

2

)
a†

l al

}
,

we define the squeezed mode operator

bl = Sl
α,βUl (φ)alUl (φ)†Sl †

α,β = ie−iφ
(
αal + βa†

l

)
. (70)

Finally, we introduce the coherent states for the mode bl :

ψl (z; α, β ) = Sl
α,βUl (φ)Dl (z)el

1(0),

blψl (z; α, β ) = zψl (z; α, β ), ψl (0; 1, 0) = el
1(0). (71)

2. Probability distribution in case of strong LO

The characteristic function of the 2m random variables
Yj (tl ),

�
�Y (�k) = EP

[
exp

{
i
∑

jl

kl
jYj (tl )

}]
, (72)

is directly obtained from the characteristic functional �Y
T [�k]

[Eq. (50)] of the stochastic process Yj (·) by taking k j (s) =∑m
l=1 kl

jδ(s − tl ). To understand the structure of these random
variables, we elaborate this characteristic function.

Proposition 3. Under Assumption 3, the characteristic
function (72) of the random variables Yj (tl ) is given by

�
�Y (�k) = E f [�L(�k; f )�Q(�k; f )],

�Q(�k; f ) = Tr�1

{
�̂q(�k; f )ρ f ,T

1

}
, (73)

�L(�k; f ) =
m∏

l=1

�L
l (�kl ; f ),

�̂q(�k; f ) =
m∏

l=1

�̂
q
l (�kl ; f ), (74)

�L
l (�kl ; f ) = exp

{
2∑

j=1

[
ikl

j μ
jl
L ( f ) − kl

j
2

2
σ

jl
L ( f )2

]}
, (75a)
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μ
jl
L ( f ) = Gj2κ j3

∫ τ

0
ds| f̃ (tl − s)|2h(s), (75b)

σ
jl
L ( f )2 = (

σ 2
j + V 2

j

)
κ 2

j3

∫ τ

0
ds| f̃ (tl − s)|2h(s)2 = (

σ 2
j + V 2

j

)
κ 2

j3Rl ( f )2, (75c)

�̂
q
l (�kl ; f ) = exp

{
i
√

2 Rl ( f )
[
κ13kl

1q̂l
1 + κ23kl

2q̂l
2(φ)

] − Rl ( f )2

2

∣∣∣∣
√

1 − η1

η1
κ13kl

1 − e−iφ
√

η1

1 − η1
κ23kl

2

∣∣∣∣
2
}

. (76)

For fixed f̃ , the operator �̂
q
l (�kl ; f ) is the characteristic oper-

ator of a POVM on the Hilbert space �1; the same statement
holds for the product �̂q(�k; f ).

The proof of Proposition 3 is given in Appendix B 4.
When sin φ = 0, i.e., φ = nπ , one has q̂l

2(2nπ ) = q̂l
1,

q̂l
2(2nπ + π ) = −q̂l

1. In this case, a measurement of the two
quadratures is trivially represented by a pvm; the part with the
squared modulus in (76) is some additive noise.

In the case sin φ = 0 instead, we shall see that the char-
acteristic operator �̂

q
l (�kl ; f ) can be expressed through the

Fourier transform of a POVM density based on squeezed
coherent states; this measure is in a class which generalizes
the POVM constructed starting from the Husimi transform
[20, Eqs. (3.4)–(3.10)], [31, Chap. 4].

Proposition 4. Let us take the case sin φ = 0 and fix the
squeezing parameters (69b) by

α = 1

2
√

η1(1 − η1) sin φ
,

β = e2iφ (1 − η1) + η1

2
√

η1(1 − η1) sin φ
. (77)

Then, the characteristic operator (76) can be written as

�̂
q
l (�kl ; f ) = exp

{
i(ulb

†
l + ul bl ) − 1

2 |ul |2
}
, (78a)

where bl is defined in (70) and

ul = Rl ( f )

[√
1 − η1

η1
κ13kl

1 − e−iφ
√

η1

1 − η1
κ23kl

2

]
. (78b)

Moreover, we have

�̂
q
l (�kl ; f ) =

∫
C

d2z ei(ul z+ul z)ĝl
α,β (z),

ĝl
α,β (z) = 1

π
|ψl (z; α, β )〉〈ψl (z; α, β )|; (79)

ĝl
α,β (z) is a POVM density on C with respect to the Lebesgue

measure d2z.
The proof of Proposition 4 is given in Appendix B 4.
Remark 10. Let us note that, when η1 = 1

2 and φ = π/2
we get (α, β ) = (1, 0) and bl = al ; then, the POVM (79)
reduces to the usual measure based on the coherent states of
the “random” modes al (cf. Remark 9). So, squeezed states
appear in the measurement operators when | sin φ| = 1, which
means that two not exactly complementary quadratures are in-
volved, and/or that η1 = 1

2 , which means an imbalance in the
beam splitter which divides the signal into the two measured
components.

C. Probability density

By the results of Sec. IV B 2, we can write explicitly
the POVM density and the probability distribution of the
observables (Y1(tl ),Y2(tl )), when sin φ = 0, η1 = 0, 1. From
Eqs. (73) and (74) we get the characteristic operator

�̂Y
l (�kl ; f ) = �L

l (�kl ; f )�̂q
l (�kl ; f ), (80)

where the two factors are given in (75) and (79). We assume also σ
jl
L ( f )2 > 0; let us note that the electronic noise can be taken

into account by increasing the variances (75c).
As proved in Appendix B 4, the POVM density associated with the characteristic operator (80) has the expression

ĝl
Y (y1, y2; f ) = 1

2πσ 1l
L ( f )σ 2l

L ( f )

∫
C

d2z ĝl
α,β (z)

× exp

{
−
[
μ2l
L ( f ) + 2Kl

2( f )(z2 sin φ − z1 cos φ) − y2
]2

2σ 2l
L ( f )2

}

× exp

{
−
[
μ1l
L ( f ) + 2Kl

1( f )z1 − y1
]2

2σ 1l
L ( f )2

}
, (81)

where μ
jl
L ( f ) and σ

jl
L ( f ) are given in (75), z = z1 + iz2, and

Kl
1( f ) = Rl ( f )κ13

√
1 − η1

η1
, Kl

2( f ) = Rl ( f )κ23

√
η1

1 − η1
. (82)
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As expected, the density (81) is a convolution of a Gaussian with the POVM introduced in Proposition 4. Then, the probability
density of the observables Yj (tl ), j = 1, 2, l = 1, . . . , m, is given by

g �Y (�y) = E f

[
Tr�1

{
ρ

f ,T
1

∏
l

ĝl
Y

(
yl

1, yl
2; f

)}]
. (83)

Signal in the vacuum state. An explicit expression of this density can be given when the signal is in a mixture of coherent
states as in Corollary 2 (see Appendix C 1). When the signal is in the vacuum state the density (83) and (C1) take the form

g �Y (�y) =
m∏

l=1

gl
Y

(
yl

1, yl
2

)
, (84a)

gl
Y (yl

1, yl
2) = E f

[
gl

Y

(
yl

1, yl
2; f

)]
, (84b)

gl
Y (yl

1, yl
2; f ) =

2∏
j=1

exp

{
− (yl

j−μ
jl
L( f ))

2

2κ j2Rl ( f )2

}
√

2πκ j2Rl ( f )2
, (84c)

where μ
jl
L ( f ) is given in (75b). In getting the product struc-

ture, Assumption 3 is involved.

V. MIN-ENTROPY AND RANDOM-NUMBER
GENERATION

In this section we discuss a specific application of the full
quantum theory of an eight-port homodyne detection scheme
presented in this work: random-number generation. As we
stated in Sec. IV A, for QRNG applications we are interested
in pure noise (shot noise); in particular, we want to show
the effects of unbalancing and LO fluctuations with respect
to the perfect case discussed in [11]. To capture the char-
acteristic features of a good random-number generator we
extract the random bits from the sampled joint distribution
of (X1(tl ), X2(tl )), l = 1, . . . , m; when the signal is in the
vacuum state, they are independent and identically distributed
(i.i.d.) by Assumption 3. If some dependence would be left,
we can generate the random numbers after a suitable under-
sampling.

We want the generated bits to be truly random and known
only to the users of the QRNG. The requirement of true
randomness can be synthesized by the leftover Hash lemma,
which relates the maximum number of extractable i.i.d. bits
from a given string to an entropic quantity called min-entropy
Hmin. Instead, to have secure and private random bits we
have to rely on the quantum-classical conditional min-entropy,
which takes into account possible side information held by
an eavesdropper [11,38,47]. On the basis of the computed
value of the min-entropy the truly random and secure bits are
obtained from the raw data by employing a suitable algorithm,
a randomness extractor [2,10,11].

Given a discrete probability distribution P = {p j, j ∈ I}
the (classical) min-entropy is

Hmin(P) = − log2 max
j∈I

p j � 0; (85)

the quantity Pguess = max j∈I p j is known as guessing prob-
ability. Obviously 0 < Pguess � 1 and the inequality in (85)
follows. Then, the maximal number of i.i.d. bits extractable
per measurement is given by Hmin(P) [3,6,11,38,47].

When the sampled quantity is a continuous one, it has to
be discretized; this is automatically done because any real
measuring apparatus has a finite resolution. To state the prob-
lem, let us think to the univariate case and fix one of our
sampled observables, say X1(tl ) ≡ X1, and denote by f1(x) its
probability density. An n-bit ADC as a finite range 2R1 and
a resolution δ1 = 2R1/2n. If possible, the discretization range
has to be placed symmetrically around the mean μ1. We set
x0 � μ1 − R1, and x j = x0 + jδ1 for j = 1, . . . , 2n; so, we get
the discrete distribution

p0 =
∫ x0

−∞
f1(y)dy, p2n+1 =

∫ +∞

x2n

f1(y)dy,

pj =
∫ x j

x j−1

f1(y)dy, 1 � j � 2n.

The length and the position of the discretization interval must
be such that the saturation probabilities p0 and p2n+1 are
negligible (cf. the discussion in [48]). Then, the guessing
probability turns out to be

Pguess(X1, δ1) = sup
j=1,...,2n

∫ x j

x j−1

f1(y)dy � δ1 × sup
x∈R

f1(x), (86)

and for the min-entropy we get

Hmin(X1, δ1) = − log2 Pguess(X1, δ1)

� log2

(
δ1 sup

x∈R
f1(x)

)−1

. (87)

The lower bound above could be also negative; in this case
it gives no information because the min-entropy is always
positive. However, in usual situations δ1 is sufficiently small
in order to have that the lower bound is positive and it is a
good estimation of the min-entropy. In the case of a Gaussian
distribution, Ref. [3] contains also a discussion on how to
optimize the choice of the discretization interval.

A. Total min-entropy

Let us denote by pl
X (x1, x2) the probability density of the

observed sample (X1(tl ), X2(tl )) at time tl ; the signal is in
the vacuum state and we include also the electronic noise.
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We assume this distribution to be approximately Gaussian, as
discussed at the end of Sec. IV A. By (62a) and (62b), the
means are given by μ j = � j2|λ|2 and the covariance matrix
by

C =
(

� 2
1 �12�22|λ|4C0

�12�22|λ|4C0 � 2
2

)
,

� 2
j = κ j2|λ|2S0 + � 2

j2|λ|4C0 + σ el
j

2
. (88)

The quantities S0, C0 are given in (62c) and (62d), and
κ j2, � j2 in (31) and (32). The variances � 2

j are expressed
by the sum of the shot-noise contribution κ j2|λ|2S0, the RIN
contribution � 2

j2|λ|4C0, and the electronic-noise contribution

σ el
j

2. Here and in the following it is useful to have a short
notation for the noise ratios; so, we set

ϒ j = � 2
j2|λ|2C0

κ j2S0
, � j = σ el

j
2

κ j2|λ|2S0
. (89)

Then, we have (X1(tl ), X2(tl )) ∼ N (�μ; C) and

sup
�x∈R2

pl
X (�x) = (2π

√
det C)−1, (90)

det C = � 2
1 � 2

2 − � 2
12�

2
22|λ|8C 2

0

= κ12κ22|λ|4S 2
0 E12, (91)

E12 = det C

κ12κ22|λ|4S 2
0

= (1 + �1)(1 + �2)

+ (1 + �1)ϒ2 + (1 + �2)ϒ1. (92)

As already said in Remark 6, the two signals are suitably
filtered in order to eliminate the nonflat part of the spectrum
and, then, to digitize the two components of each sample, two
n-bits ADCs are employed, with two ranges 2Rj and reso-
lutions δ j = 2Rj/2n. The two ranges are placed around the
means and are such that the saturation probability is negligi-
ble. Possibly, the two ADCs are identical and this would give
δ1 = δ2. Under these hypotheses, the guessing probability for
the single sample is

Pguess(X, δ) � sup
x1,x2

∫ x1+δ1/2

x1−δ1/2
dy1

∫ x2+δ2/2

x2−δ2/2
dy2 pl

X (�y)

� δ1δ2 sup
�x∈R2

pl
X (�x). (93)

We assume also δ1 and δ2 to be small enough to have
Pguess(X, δ) � δ1δ2 sup�x∈R2 pl

X (�x). Then, the min-entropy per
sample is given by

Hmin(X, δ) = − log2 Pguess(X, δ) � log2
2π

√
det C

δ1δ2
. (94)

When the step lengths δ j are not sufficiently small, the final
expression on the right is only a lower bound and the guessing
probability has to be expressed by using the error function
[3,6,10].

Let us stress that the min-entropy (94) is independent of
η1, as one can see from (31) and (32), where the expressions
of the coefficients κ j2 and � j2 are given. This is due to the
fact that the signal is in the vacuum state and that η1 is the
transmissivity of the beam splitter which mixes the signal with

another vacuum. Similarly, there is no dependence on φ be-
cause the probabilities do not depend on the phases when there
is no interference between signal and LO (Remark 7). When
� j2 = 0 as in case of rebalancing (Remark 8), the means and
the terms with the RIN contribution C0 disappear; in this case
the placement of the discretization interval is easier, as it must
be symmetric around zero due to the vanishing of the mean.

1. Entropy losses due to correlations

To put in evidence the entropy losses due to the presence
of correlations in the covariance matrix (88), it is useful to
introduce the reference entropy

Href = log2
2π�1�2

δ1δ2
. (95)

By comparing this formula with (94), we see that we have
replaced the determinant of the covariance matrix with the
product of the variances; so, Href represents the min-entropy
when the correlations are not taken into account.

Then, by Eqs. (88), (89), (92), (94), and (95), we obtain

Href − Hmin(X, δ)

� −1

2
log2

[
1 − ϒ1ϒ2

(1 + �1 + ϒ1)(1 + �2 + ϒ2)

]
. (96)

This difference is positive and represents the entropy loss due
to the correlations introduced by the RIN; this loss vanishes
in the case of rebalancing (see Remark 8). It is important to
note that the difference (96) does not depend on the resolution
parameters δ j .

2. Optimization of the discretization range

From (94) we see that the min-entropy increases when
the discretization steps δ j decrease. On the other side, this
expression of the min-entropy is based on the hypothesis that
the probability of saturation is negligible, but this probability
increases with the decrease of the discretization range. We can
try to quantify this tradeoff by saying that there is saturation
when the signal (X1(tl ), X2(tl )) falls outside the discretization
rectangle; this is a conservative choice, as we do not make a
finer subdivision of the saturation region. Then, the saturation
probability is given by

Psaturation(X, δ) � 1 −
∫ μ1+R1

μ1−R1

dy1

∫ μ2+R2

μ2−R2

dy2 pl
X (�y). (97)

To be negligible, the saturation probability must satisfy

Psaturation(X, δ) < Pguess(X, δ). (98)

By suitably tuning the ADC apparatus and the laser intensity,
we can manage the range Rj to be proportional to the standard
deviation of the observed voltage (at least approximately); so,
by (88), we can write

Rj = x j� j, δ j = 2Rj

2n
= x j� j

2n−1
. (99)

We have considered the same n for both ADCs; eventually,
also the proportionality constants x j could be independent
from the index j. To apply the condition (98) in a simple
way, we consider the Gaussian approximation and we neglect
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TABLE I. The entropy contribution Href [Eq. (102)] as a function
of the proportionality parameter x = x1 = x2 [Eq. (99)] and of the
ADC number of bits n. A blank value means that the condition (101)
is not satisfied.

n\x 3.8 4.0 4.6 5.1 6.0 8.9 9.5

8 12.65 12.25 11.95 11.48 10.34 10.16
10 16.25 15.95 15.48 14.34 14.16
12 19.95 19.48 18.34 18.16
16 27.48 26.34 26.16
32 58.34 58.16

the correlations; we add a tilde to denote the guessing and
saturation probabilities in this approximation:

P̃guess(X, δ) = δ1δ2

2π�1�2
= x1x2

π 22n−1
, (100)

P̃saturation(X, δ) = 1 − P[−R1 < X1(tl ) − μ1 < R1]

× P[−R2 < X2(tl ) − μ2 < R2]

= 1 − 4

(
�(x1) − 1

2

)(
�(x2) − 1

2

)
,

where �(x) is the cumulative distribution function of a
standard Gaussian random variable. Then, condition (98) (ap-
proximately) becomes

1 − 4

(
�(x1) − 1

2

)(
�(x2) − 1

2

)
<

x1x2

π 22n−1
. (101)

Let us note that the quantity Href [Eq. (95)] is just the min-
entropy associated with the approximate guessing probability
(100) and that we have

Href = − log2 P̃guess(X, δ) = 2n − 1 − log2
x1x2

π
. (102)

To have an idea of the values of the min-entropy and of
good choices of x j and n, let us consider the case x1 = x2 = x.
Table I gives the values of Href (the main contribution to the
total min-entropy) as a function of the parameters n and x.

For a given n the best choice for QRNG is to take the
smallest x compatible with condition (101); however, if we
want to use the apparatus also for detection, or if we want to
be more sure to avoid saturation, we need x to be bigger. In
Table II we report the ratio P̃saturation(X, δ)/P̃guess(X, δ). The
good choice for QRNG is to take the parameters which give

this ratio near 1; however, by comparing the two tables, we
see that we can make this ratio very small without a strong
decreasing of Href .

In the computations of Tables I and II we have assumed
that the ranges are centered on the means. When this is not
possible, the saturation probability increases and it is conve-
nient to enlarge the range with respect to the variance and to
chose a value for x giving a ratio well below 1 in Table II.

In [11] the equilibrated case is considered and experi-
mentally implemented; by using a 10-bit ADC, they obtain
a value of about 14 for the min-entropy. So, by looking at
Table I, we can say that values from 14 to 26 for Href are
experimentally reasonable, depending on the characteristics
of the ADC and of the electronic part of the apparatus.
A much higher value can be obtained, if a 32-bit ADC is
available.

As already written, to tune the ADC ranges to the noise
variances one could increase the LO intensity. The shot-noise
intensity can be increased also by using two lasers, one at
the LO port and one at the signal port. To use two similar
lasers is nearly the same as doubling the LO intensity; explicit
computations can be done by starting from the results of
Appendix C 1. In any case, the most important ingredient to
increase the bit generation rate is the ADC resolution.

In the following, we assume that the instrumentation has
been chosen and calibrated; so, n and the ADC ranges are
fixed, which means that also the values of δ1 and δ2 have been
fixed.

B. Side information: Classical noise

When all the noise contributions, classical and quantum,
are trusted, the randomness extractor can be calibrated on
the value of the total min-entropy Hmin(X, δ). Fast random-
number generators based on various types of physical noise
have been proposed and realized (see [48] for an example
based on laser noise). However, doubts have been raised on
some of the noise components involved in homodyne-based
random-number generators (see, for instance, [4,6,9–11]).
The presence of untrusted noise or of possible side informa-
tion forces to calibrate the randomness extractor on suitable
conditional min-entropies, as discussed here and in the next
subsection.

In our formulation of the double-homodyne detector we
have included two sources of classical noise: the electronic
noise and the laser fluctuations. The classical noise can be
considered untrusted because not truly random and not well
modeled, but even because it could be known to some intruder
and it could convey some side information. To get secure

TABLE II. The ratio P̃saturation(X, δ)/P̃guess(X, δ) as a function of the proportionality parameter x = x1 = x2 [Eq. (99)] and of the ADC
number of bits n. A value greater than 1 means that the condition (101) is not satisfied.

n\x 3.8 4.0 4.6 5.1 6.0 8.9 9.5

8 2.1 0.82 4.1×10−2 2.7×10−3 1.1×10−5 1.5×10−15 4.8×10−18

10 33 13 0.66 4.3×10−2 1.8×10−4 2.3×10−14 7.7×10−17

12 5.3×102 2.1×102 11 0.69 2.9×10−3 3.7×10−13 1.2×10−15

16 14t imes104 5.3×104 2.7×103 1.8×102 0.74 9.5×10−11 3.1×10−15

32 5.8×1014 2.3×1014 1.2×1013 7.6×1011 3.2×109 0.41 1.3×10−3
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random bits with respect to not certified noise and to side
information, the average conditional min-entropy [3, Sec. C]
has to be used to calibrate the randomness extractor: the
guessing probability has to be computed with respect to the
probability distribution conditioned on laser fluctuations and
electronic noise; then, the mean is taken.

Let us denote by N j,l
el the contribution of the electronic

noise to the observation at time tl ; we have assumed the elec-
tronic noise to be normal, N j,l

el ∼ N (0; σ el
j

2), and independent
of any other noise contribution. Then, for fixed f , the sampled

observables can be written as

X f
j (tl ) = |λ|Y f

j (tl ) + N j,l
el , (103)

where the Y f
j (t ) are the scaled processes introduced in (41).

We assume the LO intensity to be sufficiently high, so that
the probability density of the random variables Y f

j (tl ) is the
one discussed in Sec. IV C. When the signal is in the vacuum
state and f and N j,l

el are given, we get from (84c) that the
conditional probability density for a single sample is

pl
X (x1, x2; f , Nel ) = 1

|λ|2 gl
Y

((
xl

1 − N1,l
el

)
/|λ|, (xl

2 − N2,l
el

)
/|λ|; f

)
.

In this situation the average guessing probability, conditional on the classical noise, is given by

Pguess(X, δ|Ecl ) =E f , Nel

[
sup
x1,x2

∫ x1+δ1/2

x1−δ1/2
dy1

∫ x2+δ2/2

x2−δ2/2
dy2 pl

X (y1, y2; f , Nel )

]

� δ1δ2

|λ|2 E f

[
sup
y1,y2

gl
Y

(
yl

1/|λ|, yl
2/|λ|; f

)] = E f

[
δ1δ2

2π
√

κ12κ22|λ|2Rl ( f )2

]
. (104)

Accordingly, the average conditional min-entropy per sample is given by

Hmin(X, δ|Ecl ) = − log2 Pguess(X, δ|Ecl ) � log2
2π |λ|2√κ12κ22

δ1δ2E f [Rl ( f )−2]
, (105)

where we have again simplified the computations of the Gaus-
sian integrals by assuming the δ j to be sufficiently small.
From these definitions we have immediately Pguess(X, δ) �
Pguess(X, δ|Ecl ) and Hmin(X, δ) � Hmin(X, δ|Ecl ).

Remark 11. Let us note that the electronic noise disap-
pears from the expression (105) of the classically conditioned
min-entropy, as this noise is purely additive. This is not the
case of the RIN, which contributes through the expression
E f [Rl ( f )−2]. The reason is that the laser fluctuations are
involved in the definition (66a) of the discrete mode operators,
where Rl ( f ) is the (random) normalization constant. More-
over, we have E f [Rl ( f )2] = S0 [see (67)], and

E f
[
Rl ( f )−2] = 1

S0
+ E f

[
[Rl ( f )2 − S0]

2

Rl ( f )2S 2
0

]
� 1

S0
, (106)

which gives S0E f [Rl ( f )−2] � 1. Consistently with the laser
models discussed in Sec. II B, we assume E f [Rl ( f )−2] to be
independent from l and we set

S− = 1
/
E f [Rl ( f )−2] � S0. (107)

Remark 12. By definition (66d), Rl ( f ) turns out to be a
time smoothing of the function f realized through the re-
sponse function h(t ). If the involved integration time interval
is not too short, it is realistic to have Rl ( f )2 � S0, by ergodic
properties of the process f (t ); in this case S− � S0. In any
case their difference should be small. From (64) we see that
to have the decay time of RIN correlations much shorter than
the decay time of h(t ) gives also C0 � 1.

In the works on QRNG from homodyne detection it is usual
to express the min-entropy by scaling the involved noise to
the vacuum noise ( 1

2 in standard units) [6,11]. If we have a

good estimate of 2κ j2|λ|2S0 from the calibration stage, we can
introduce the “scaled” resolutions and min-entropy:

δ0
j = δ j

|λ|√2κ j2S0
, H0 = log2

π

δ0
1δ

0
2

. (108)

The scaled resolutions δ0
j turn out to be pure numbers; even

in the case δ1 = δ2, the presence of any imbalance should
give δ0

1 = δ0
2 . From (31) and (108), we can see that when the

ε j decrease (more losses) the parameters δ0
j increase (worst

scaled resolution). Then, by comparing (105) with the refer-
ence min-entropy (108), we get

H0 − Hmin(X, δ|Ecl ) � log2 (S0/S−) � 0. (109)

Under the conditions of Remark 12, this entropy difference is
small. Also, the total min-entropy (94) can be expressed in a
similar way:

Hmin(X, δ) � H0 + 1

2
log2

det C

|λ|4κ12κ22S 2
0

; (110)

only the min-entropy H0 depends on the discretization steps
δ j , not the last term.

The price in considering untrusted the classical noise is a
loss of entropy quantified by

Hmin(X, δ) − Hmin(X, δ|Ecl ) � 1
2 log2 E12 + log2 (S0/S−),

(111)

where E12 is defined in (92) and depends on the noise ra-
tios (89). Note that the entropy loss does not depend on
the resolutions δ j . By increasing the laser intensity |λ|2 and
the coefficients ε j (less optical losses), we can make the
electronic-noise contributions � j to decrease, but one has to
pay attention to the tradeoff with respect to the RIN (the terms
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with ϒ j). Indeed, these contributions increase with |λ|2, while
they can be made to decrease by some rebalancing which can
be obtained by decreasing some of the ε j (see Remark 8). This
tradeoff is more evident if we consider the entropy loss with
respect to Href because, by Eqs. (96) and (111), this loss takes
the simpler expression

Href − Hmin(X, δ|Ecl ) � log2 (S0/S−)

+ log2

√
(1 + �1 + ϒ1)(1 + �2 + ϒ2). (112)

If the laboratory is “secure” and we trust in our detection
apparatus and in the LO laser, we can rely on the conditional
min-entropy Hmin(X, δ|Ecl ) to calibrate the randomness ex-
tractor. To be sure that no intruder can violate the privacy
of the generated random bits, we can physically block the
vacuum input ports, represented in Fig. 1 by the channel 1
(signal) and the channels 2 and 4 (vacuum); to block the
unused ports is suggested also in [3,5].

C. Side information: The signal

In [11] one of the reasons to propose double-homodyne
detection for QRNG was that one can obtain secure random
bits even if an intruder can manipulate the signal (but in
the same paper this possibility is referred to as a “paranoid
scenario”). Indeed, in QRNG the eight-port circuit is not used
to detect a signal coming from the external world, as in QKD,
and it can be blocked to external influences, as noticed above.
Moreover, if the intruder is sending too strong signals, as in
a blinding attack [36], the intrusion is easily detected. On
another side, to conduct a successful eavesdropping attack,
one needs to send a signal phase locked to the LO laser [7]
and this means to have access to the laboratory. In any case,
it is possible to extend the approach of [11] and to take into
account the quantum side information which an intruder could
gain by manipulating the signal.

From (103) and (83), the probability density for the m
sample turns out to be

p �X (�x) = E f ,Nel

[
Tr�1

{
ρ

f ,T
1

m∏
l=1

1

|λ|2 ĝl
Y

((
xl

1 − N1,l
el

)
/|λ|, (xl

2 − N2,l
el

)
/|λ|; f

)}]
, (113)

where ĝl
Y (y1, y2; f ) is given by (81). By setting

P̂l
(
xl

1, xl
2; f , Nel, δ

) = 1

|λ|2
∫ xl

1+δ1/2

xl
1−δ1/2

dx′
1

∫ xl
2+δ1/2

xl
2−δ1/2

dx′
2 ĝl

Y

((
x′

1 − N1,l
el

)
/|λ|, (x′

2 − N2,l
el

)
/|λ|; f

)
,

we can introduce a classical and quantum “worst-case” conditional guessing probability for the full m sample:

Pfull
guess( �X , δ|Ecl&qu) = E f ,Nel

[
sup
ρ1

sup
�x1,�x2

Tr�1

{
ρ1

m∏
l=1

P̂l (x
l
1, xl

2; f , Nel, δ)

}]
(114)

(cf. [3,6,11,38,47]); then, the related min-entropy is

H full
min( �X , δ|Ecl&qu) = − log2 Pfull

guess( �X , δ|Ecl&qu) � 0. (115)

By comparing these definitions with (93), (94), (104), and
(105), we get

mHmin(X, δ) � mHmin(X, δ|Ecl ) � H full
min( �X , δ|Ecl&qu).

Now, let us consider the (normalized) squeezed coherent
states |ψl (z; α, β )〉 [Eq. (71)] and the POVM density ĝl

α,β (z),
which is defined by the second equality in (79) and is involved
in the definition (81) of ĝl

Y (y1, y2; f ). The operator π ĝl
α,β (z) =

|ψl (z; α, β )〉〈ψl (z; α, β )| is a rank-one orthogonal projection
(for every choice of α, β, z) and, so,

ĝl
α,β (z) � 1/π. (116)

The results about secure QRNG developed in [11] are based
on the bound (116) in the particular case α = 1, β = 0. As it
is proved in Appendix C 2, this bound implies

p �X (�x) � 1

(4πκ13κ23|λ|2|sin φ|S−)m
. (117)

By introducing the entropy lower bound per sample

Hlb(X, δ|Ecl&qu) = log2
4πκ13κ23|sin φ||λ|2S−

δ1δ2
, (118)

from (114), (115), and (117), we obtain

H full
min( �X , δ|Ecl&qu) � m Hlb(X, δ|Ecl&qu). (119)

Even in the case of a possible variant of the definition of
conditional min-entropy with respect to the quantum side in-
formation, inequality (119) would be valid because the lower
bound is independent of any kind of signal the intruder could
send. Then, the entropy lower bound per sample (118) can be
safely used to calibrate the randomness extractor; this bound
holds even in the case of a coherent attack. However, let us
note that the quantity (118) is not guaranteed to be positive;
so, to be useful it needs | sin φ| to be not too small.

The dependence on | sin φ| implies a decrease of the min-
entropy bound (118) when the two observed quadratures are
not perfectly complementary. Moreover, with respect to the
transmissivities, the bound (118) is maximum for η j = 1

2 ;
indeed, by (31) we have

4κ13κ23 = 4

√√√√ 4∏
j=1

η j (1 − η j )(ε1ξ1 + ε3ξ3)(ε2ξ2 + ε4ξ4)

� 4κ13κ23

∣∣
η j=1/2 = ε1ξ1 + ε3ξ3

2
× ε2ξ2 + ε4ξ4

2
.

(120)
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With respect to the entropy losses (111), to ask for inde-
pendence from any quantum intrusion gives a further loss of
min-entropy:

Hmin(X, δ|Ecl ) − Hlb(X, δ|Ecl&qu) � log2

√
κ12κ22

2κ13κ23|sin φ|

= log2

√
(1 + Ṽ 2

1 + σ̃ 2
1 )(1 + Ṽ 2

2 + σ̃ 2
2 )

√
4η1(1 − η1)|sin φ| � 0; (121)

here we have used Eqs. (105), (118), (48), and (49). In a more
explicit way we can write

1 + Ṽ 2
j + σ̃ 2

j = (1 − η j+2)ε jξ
2
j + η j+2ε j+2ξ

2
j+2

η j+2(1 − η j+2)(ε jξ j + ε j+2ξ j+2)2 . (122)

In the entropy loss (121) we can identify a first contribution,
log2(

√
4η1(1 − η1)| sin φ|)−1 � 0, due to the fact that the in-

truder is allowed to send any kind of squeezed states, such
as the eigenstates of the squeezed modes bl (70) (see Remark
10). The second contribution is 1

2

∑2
j=1 log2(1 + Ṽ 2

j + σ̃ 2
j ) �

0; note that Ṽ 2
1 and Ṽ 2

2 vanish in the rebalancing case of
Remark 8, while σ̃ 2

1 and σ̃ 2
2 vanish when there are no optical

losses, i.e., ε j = 1. So, by using the entropy lower bound
(118), one gets secure random bits also with respect to pos-
sible intrusions through the optical losses, which is one of the
points raised in [10].

D. Examples

An interesting question is to understand the effects on the
min-entropies of the various imperfections with respect to the
balanced case of Sec. II D 2.

Remark 13. In the case of the perfect balancing (35),
Eqs. (31), (32), (49), (89), and (92) give

Ṽ 2
j = 0, σ̃ 2

j = 1 − ε

ε
, ϒ j = 0,

� j = 2σ el
j

2

εξ 2|λ|2S0
, E12 = (1 + �1)(1 + �2).

Then, (94), (96), (112), and (121) reduce to

Hmin(X, δ) = Href

� log2
πε|λξ |2S0

√
(1 + �1)(1 + �2)

δ1δ2
,

Href − Hmin(X, δ|Ecl ) � log2 (S0/S−)

+ log2

√
(1 + �1)(1 + �2),

Hmin(X, δ|Ecl ) − Hlb(X, δ|Ecl&qu) � − log2 (ε|sin φ|).
If, in addition, we have perfectly complementary quadra-
tures, | sin φ| = 1, and totally efficient detectors, ε = 1, the
conditional min-entropy Hmin(X, δ|Ecl ) and the lower bound
Hlb(X, δ|Ecl&qu) become equal, which is the case of [11].

To have an idea of the effects of unbalancing and losses,
we particularize the choice of the various parameters. First,
we take ε j = ε and ξ j = ξ , which means that the quantum

efficiencies and the conversion factors of the four detectors are
equal. We take also the same unbalancing in the two detection
channels, i.e., η3 = η4 = η, while the first two beam splitters
are taken well balanced, η1 = η2 = 1

2 . We take equal also

the variances of the two electronic noises σ el
j

2 = σel
2. Then,

Eqs. (31), (32), (88), (89), and (122) give

κ j2 = ε

2
ξ 2, � j2 = ε

2
ξ (1 − 2η), ϒ j = εϒ,

� j = �

ε
, ϒ = (1 − 2η)2 |λ|2C0

2S0
,

� = 2σel
2

|ξλ|2S0
, 1 + Ṽ 2

j + σ̃ 2
j = 1

4η(1 − η)ε
,

� 2
j = �2 = |ξλ|2

2
S0
(
� + ε + ε2ϒ

)
. (123)

Finally, Eqs. (95), (96), (112), and (121) reduce to

Href = log2
2π�2

δ1δ2

= log2

[
π |ξλ|2S0

δ1δ2

(
� + ε + ε2ϒ

)]
, (124)

Href − Hmin(X, δ)

= −1

2
log2

[
1 −

(
1 + 1

εϒ
+ �

ε2ϒ

)−2
]
, (125)

Href − Hmin(X, δ|Ecl )

� log2 (S0/S−) + log2 (1 + εϒ + �/ε), (126)

Hmin(X, δ|Ecl ) − Hlb(X, δ|Ecl&qu)

� − log2 [4η(1 − η)ε|sin φ|]. (127)

The reference entropy (124) decreases when ε or |1 − 2η| de-
crease. However, its value can be kept constant by tuning the
instrumentation, as discussed in Sec. V A 2, and reasonable
values for Href go from 14 to 26 bits (see Table I). So, here we
study the behavior of the entropy differences (125)–(127).

We take the parameters ε and η free, and we fix some
reasonable values for the other parameters; let us recall that
|1 − 2η| measures the unbalancing in the detectors, while ε

is the effective quantum efficiency of the photodiodes. The
parameter S0, given in (62c) and (64), is linked to the detection
bandwidth and we can take S0 = 10 GHz = 1010 s−1; we take
also S− � S0 [see Eq. (107) and Remark 12]. With lasers of
a power of 1.25 mW and wavelength around 1550 nm, we
can get the mean number of photons per unit of time |λ|2 =
1016 s−1; higher values are also possible. By assuming the
decay time of the RIN correlations much shorter of the decay
time of the detector response function h(t ), from Eqs. (62d)
and (64) and Remark 12 we see that C0 must be small and
we take C0 = 0.01. Finally, we can take � = 2σ 2

el
|λξ |2S0

= 0.12,
which comes out by taking a variance for the electronic
noise compatible with the values reported in [11]. With these
choices we get also |λ|2C0

2S0
= 0.5×104.

Let us start with the entropy losses (125), due to the corre-
lations introduced by the RIN. We plot this entropy loss with
respect to the “quantum loss percentage = 100(1 − ε)” of
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FIG. 2. Entropy loss Href − Hmin(X, δ) [Eq. (125)] for small un-
balancing |1 − 2η| � 0.008.

the photodiodes for small values of the detector unbalancing
|1 − 2η| in Fig. 2, and for bigger unbalancing in Fig. 3. From
Figs. 2 and 3 we see that the entropy loss (125) can be made
to decrease by increasing the detector losses 1 − ε (apart from
the balanced case η = 1

2 ), a phenomenon which is evident also
from formula (125), but not a priori expected. Note a change
of curvature in going from the cases of Fig. 2 to the cases of
Fig. 3. We see also that the entropy loss decreases with the
decreasing of the distance of η from 1

2 . Moreover, this loss is
acceptably small for small unbalancing as in Fig. 2, while it
can take values of even two bits per sample in the cases of
Fig. 3.

When the contributions of the classical noises (RIN and
electronic noise) are considered not secure, the entropy loss is
given by (126); the behavior is plotted in Figs. 4 and 5 for the
same values of η as before. Now, we have again a decrease
of the entropy loss with the increase of 1 − ε in the case of
large imbalance (see Fig. 5). However, for small imbalance

FIG. 3. Entropy loss Href − Hmin(X, δ) [Eq. (125)] for big unbal-
ancing 0.04 � |1 − 2η| � 0.08.

FIG. 4. Entropy loss Href − Hmin(X, δ|Ecl ) [Eq. (126)] for small
unbalancing |1 − 2η| � 0.008.

(Fig. 4), the behavior is more complex. For η = 0.5 and 0.502,
the entropy loss monotonically grows with 1 − ε, while for
η = 0.503 and 0.504 we have a nonmonotonic behavior, first
a decreasing and then an increasing of the entropy loss.

To avoid losses of some bits in the case of large unbalanc-
ing, as in the case of Figs. 3 and 5, one has to rely on a partial
rebalancing (see Remark 8) or on a change of the detector
response in order to decrease the coefficient C0.

In the extreme case of Sec. V C, when we consider not
secure even the signal port, we have to add a further entropy
loss represented by (127). Now the behavior is very simple:
minus the logarithm of a product. For 4η(1 − η)ε| sin φ| =
0.5 the entropy loss is 1 bit; we can think to arrive to 2 bits
by increasing a little the imperfections (and such a loss is
not small). However, with reasonable values of the involved
parameters, we can remain below 1 bit.

FIG. 5. Entropy loss Href − Hmin(X, δ|Ecl ) [Eq. (126)] for big
unbalancing 0.04 � |1 − 2η| � 0.08.
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VI. QRNG FROM SINGLE HOMODINING

The whole construction of the previous sections can be par-
ticularized to the case of a single homodyning and this allows
to see the effect of imperfections either when the apparatus
works as a detector, as in [21,22,30,32,37], or when it is used
for QRNG, as in [2,3,5–10,36].

One can get single homodyning from the circuit of Fig. 1
by eliminating the beam splitters BS1 and BS2, which means
to take η1 = η2 = 1. Then, no light arrives to the photodiodes
PD2 and PD4 and we can eliminate them; so, we are left with a
single detected process X1(t ) [Eq. (28)] and the scaled process
Y1(t ) [Eq. (41)].

The first two moments of the process X1(t ) are given by
Eqs. (33) and (34), where the coefficients, defined in (31) and
(32), reduce to

κ11 = η3ε1ξ
2

1 + (1 − η3)ε3ξ
2

3 ,

κ12 = (1 − η3)ε1ξ
2

1 + η3ε3ξ
2

3 ,

κ13 =
√

η3(1 − η3)(ε1ξ1 + ε3ξ3),

�11 = η3ε1ξ1 − (1 − η3)ε3ξ3,

�12 = (1 − η3)ε1ξ1 − η3ε3ξ3,

�13 =
√

η3(1 − η3)
(
ε1ξ

2
1 − ε3ξ

2
3

)
. (128)

Moreover, the characteristic functional of the process Y1(t ) in
the limit of strong LO is given by Proposition 1, where one
has to take k2(s) = 0. The various quantities introduced in
Eqs. (49) reduce to

G13 = 0, V 2
1 = Ṽ 2

1 = � 2
12

κ 2
13

,

σ 2
1 = σ̃ 2

1 = (1 − η3)ε1(1 − ε1)ξ 2
1 + η3ε3(1 − ε3)ξ 2

3

η3(1 − η3)(ε1ξ1 + ε3ξ3)2 .

Let us stress that the POVM with characteristic operator (52a)
becomes the pvm associated to the single quadrature Q̂1(t ).

Then, one can consider the discrete sampling as in Sec. IV;
if interested in QRNG, we have to consider the case of no
signal as in the double-homodyne setup. From (62) and (88)
we get

EP[X1(tl )] � �12|λ|2, (129a)

CovP[X1(tl ), X1(t ′
l )] � δll ′�

2
1 = δll ′κ12|λ|2S0(1 + ϒ1 + �1),

(129b)

where ϒ1 and �1 are given in (89). However, the coefficients
take the expressions (128), which means that their values are
nearly two times the values in the double-homodyne scheme.

A. Total min-entropy

For a sufficiently intense LO and signal in the vacuum,
X1(tl ) has a distribution which is nearly Gaussian with mean
μ1 = �12|λ|2 and variance � 2

1 , given in (129). Let us denote
by pX1 (x) the density of this Gaussian distribution. Now, the

TABLE III. The min-entropy Hmin(X1, δ1) as a function of the
proportionality parameter x and of the ADC number of bits n. A
blank value means that the inequality in (132) is not satisfied.

n\x 3.0 3.4 4.0 4.6 6.1 8.9 9.5

8 6.74 6.56 6.33 6.12 5.72 5.17 5.08
10 8.56 8.33 8.12 7.72 7.17 7.08
12 10.33 10.12 9.72 9.17 9.08
16 14.12 13.72 13.17 13.08
32 29.72 29.17 29.08

guessing probability and the associated min-entropy per sam-
ple (93) and (94) become

Pguess(X1, δ1) � sup
x

∫ x+δ1/2

x−δ1/2
dy pl

X1
(y) � δ1√

2π �1

, (130)

Hmin(X1, δ1) = − log2 Pguess(X1, δ1) � log2

√
2π �1

δ1
. (131)

In the univariate case correlations are not involved; so, the
analogous of Href [Eq. (95)] coincides with the total min-
entropy [Eq. (131)].

As discussed in Sec. V A 2, we can try to optimize the
discretization range 2R1 by acting on the ADC and on the laser
power. Analogously to (99), we can write R1 = x�1, which
gives

δ1 = x�1

2n−1
, P̃guess(X1, δ1) � x√

π 2n−1/2
,

Hmin(X1, δ1) � n − 1

2
+ log2

√
π

x
;

these expressions are the analog of (100) and (102). Now, the
saturation probability (97) and the condition (98) become

Psaturation(X1, δ1) = 1 − P[−R1 < X1(tl ) − μ1 < R1]

= 2[1 − �(x)] < Pguess(X1, δ1). (132)

As done in Table I for Href , we can give the min-entropy
Hmin(X1, δ1) for some values of x and n.

By comparing Table III with Table I, we see that, for the
same values of x and n, the min-entropy Hmin(X1, δ1) is half
of Href , as expected because in Href the correlations between
the two outputs are not taken into account. Moreover, by the
positions of the blank values we see that the inequality in
(132) is a less stringent condition than (98).

B. Side information

When the classical noise is not trusted, as in Sec. V B, we
have to rely on the conditional min-entropy. The analogs of
(104) and (105) are now

Pguess(X1, δ1|Ecl ) � E f

[
δ1√

2πκ12|λ|Rl ( f )

]
,

Hmin(X1, δ1|Ecl ) � log2
|λ|√2πκ12

δ1E f [Rl ( f )−1]
. (133)
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FIG. 6. Entropy loss Hmin(X1, δ1) − Hmin(X1, δ1|Ecl ) [Eq. (135)].
Small unbalancing |1 − 2η| � 0.008.

As in (111) and (112), by considering unreliable the classical
noise we have the entropy loss

Hmin(X1, δ1) − Hmin(X1, δ1|Ecl )

� 1
2 log2(1 + ϒ1 + �1) + log2(E f [Rl ( f )−1]

√
S0),

(134)

where the expressions of ϒ1 and �1 are given in (89).
To have examples of the effects of the various imperfec-

tions on this entropy loss, we take ε1 = ε3 = ε and ξ1 =
ξ3 = ξ as in Sec. V D and we set also η = η3. By assum-
ing log2(E f [Rl ( f )−1]

√
S0) � 0 and by using the expressions

(128) of the various parameters, we get

Hmin(X1, δ1) − Hmin(X1, δ1|Ecl )

� 1
2 log2 (1 + 2εϒ + �/2ε), (135)

where ϒ and � are defined in (123). With the numerical
choices for the various parameters discussed in Sec. V D we
get 2εϒ = 104ε(1 − 2η)2 and �/2ε = 0.06/ε. The analo-
gous entropy loss for the double-homodyne case is given in
(126), when log2(S0/S−) � 0. Note the different expressions
of the coefficients in front of the RIN contribution ϒ and
the electronic noise contribution �. In Figs. 6 and 7 we
give the plots of the entropy loss (135) with the same choice
for the values of the involved parameters as in the analog
figures 4 and 5. The qualitative behavior is very similar in the
two cases of double- and single-homodyne scheme. By com-
paring Table III with Figs. 6 and 7, again we see that the most
important parameter for the rate of random bit production is
n, giving the ADC resolution.

The single-homodyne scheme is considered experimen-
tally simpler than the double scheme [6,10], but now we have
not some analog of what is done in Sec. V C. However, as
already discussed at the end of Sec. V B, we can rely on
the conditional min-entropy Hmin(X1, δ1|Ecl ) to calibrate the
randomness extractor because we can physically block the
vacuum input port. Even in the case in which an intruder
can send a signal through the signal port we can follow the

FIG. 7. Entropy loss Hmin(X1, δ1) − Hmin(X1, δ1|Ecl ) [Eq. (135)].
Big unbalancing 0.04 � |1 − 2η| � 0.08.

strategy suggested in [6]. By using a pulsed laser we can make
the measured quadrature at time tl to be characterized by a
new random phase [see θ in (14)] not known to the intruder.
This prevents the intruder to be capable of sending eigenstates
of the measured quadrature and to have some knowledge of
the produced random numbers.

An alternative strategy, which can be applied also in our
general case, is the one proposed in [4]: one samples a fixed
quadrature, but, to avoid a possible eavesdropping, the or-
thogonal quadrature is sampled at random times; then, an
entropy lower bound is estimated by an entropic version of the
uncertainty relations. A variant of this strategy is discussed
in [49], where also the detector inefficiency is taken into
account. However, this strategy is not so simpler than the use
of the double homodyning. The eight-port circuit needs two
ADC components and four photodiodes; the random sampling
strategy needs only an ADC and two photodiodes, but a com-
ponent which switches the phases at random times, with its
own source of randomness, has to be added.

VII. DISCUSSION

By using the example of the eight-port optical circuit, we
have shown how to use QSC to give a fully quantum treatment
of traveling waves in the circuit and of direct, homodyne,
heterodyne detection in continuous time. A key point is that
the number operators of the quantum fields used in QSC are
a family of commuting self-adjoint operators and their joint
pvm can be introduced (see Remark 4). Then, the POVMs
related to the field quadratures enter into play when the Hilbert
space component associated with the LO field is traced out
and the system is reduced to the Hilbert component associ-
ated with the signal alone. Moreover, we have shown how
to introduce imperfections such as imbalanced beam splitters,
phase and intensity noise in the LO laser, inefficiency of the
photodetectors, and electronic noise. In this way we have
a complete quantum description of the apparatus of Fig. 1
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monitoring in continuous time the quantum field entering the
signal port.

We consider also the case in which the continuous output is
sampled at discrete times. Now, discrete mode operators can
be introduced, but they result to be random operators because
the LO fluctuations are involved in the definition of such
operators (see Remark 9). So, even in this case, the description
in continuous time is an essential step, as already suggested in
[8].

Finally, we study the case in which the apparatus is used
as QRNG, both in the cases of double- and single-homodyne
detection. Our treatment allows for taking into account the
various imperfections on the detected noise. By the use of
the conditional min-entropy the effect of untrusted parts of
the noise can be eliminated. While the electronic noise is
treated as additive noise as usual, a very peculiar role is
played by the LO intensity noise which is involved in the
construction of the discrete quadrature operators and its effect
is less straightforward (see Remark 11). We show how the
random bit generation rate decreases when we consider that
side information could be gained by an intruder through the

classical noise or when he could have also access to the input
signal port (quantum side information). Some experimentally
reasonable examples are treated and the entropy losses are
numerically computed, depending on some parameters char-
acterizing the imperfections in the circuit and in the detection
part of the apparatus.

Our quantum analysis of the apparatus of Fig. 1 could be
applied when it is employed as a detector, for instance, in
problems of quantum teleportation and quantum dense coding
(see [18]) or of QKD (see [8]). Note that in QKD and QRNG
the security instances are completely different. In QRNG the
unused ports can be physically blocked (see the discussion
at the end of Sec. V B), while QKD is a problem of secure
communication and an intruder could have access to the trans-
mitted signal.

ACKNOWLEDGMENT

The authors acknowledge support from the Italian Space
Agency (ASI) Contract No. 2020-23-HH.

APPENDIX A: PROPERTIES OF THE BOSE FIELDS AND SOME QUANTUM EXPECTATIONS

Let us recall some properties of the Bose fields a j (t ) introduced in Sec. II [26]. We work in the Fock representation, which
means that the CCRs are realized in the Hilbert space

� =
d∏

j=1

⊗

� j, � j = C ⊕
∞∑

n=1

L2(R)⊗sn; (A1)

� j is the symmetric Fock space over the one-particle space L2(R) and the direct sum on the right is its decomposition in the
n-particle spaces. In all developments, a key role is played by the coherent vectors e j ( f ) ∈ � j , or normalized exponential vectors,
which can be introduced by giving their components in the n-particle spaces: for f ∈ L2(R),

e j ( f ) = e− 1
2 ‖ f ‖2

(
1, f ,

f ⊗ f√
2!

, . . . ,
f ⊗n

√
n!

, . . .

)
. (A2)

These vectors are completely analogous to the coherent vectors of the case of discrete modes, as one sees by comparing the
representations in the spaces with fixed number of photons.

Finally, let us recall that QSC [26] is an Itô-type calculus involving the integral form (3) of the quantum fields; by this
calculus a theory of quantum stochastic differential equations has been developed. In handling the “stochastic differentials” a
“promemoria” is given by the Itô table:

dAk (t )dA†
l (t ) = δkldt, dAi(t )d�A

kl (t ) = δikdAl (t ),

d�A
kl (t )dA†

i (t ) = δlidA†
k (t ), d�A

kl (t )d�A
i j (t ) = δlid�A

k j (t ), (A3)

all the other products vanish. This table has the same role as the heuristic rule [dW (t )]2 = dt in classical Itô stochastic calculus.
The rigorous definition of field and gauge operators (3) is through their action on the exponential vectors.

1. Output fields

By combining Eqs. (5), (7), and (8) we express the output fields Dj (t ) in terms of the fields Aj (t ) and Aj+(t ); in terms of field
densities we get

d1(t ) = √
η3ε1[

√
η1 a1(t ) + i

√
1 − η1 a2(t )]

+ eiψ1
√

(1 − η3)ε1[i
√

η2 a3(t ) −
√

1 − η2 a4(t )] + i
√

1 − ε1 a1+(t ), (A4a)

d3(t ) =
√

(1 − η3)ε3[i
√

η1 a1(t ) −
√

1 − η1 a2(t )]

+ eiψ1
√

η3ε3[
√

η2 a3(t ) + i
√

1 − η2 a4(t )] + i
√

1 − ε3 a3+(t ), (A4b)
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d2(t ) = √
η4ε2[i

√
1 − η1 a1(t ) + √

η1 a2(t )]

+ eiψ2
√

(1 − η4)ε2[−
√

1 − η2 a3(t ) + i
√

η2 a4(t )] + i
√

1 − ε2 a2+(t ), (A4c)

d4(t ) =
√

(1 − η4)ε4[−
√

1 − η1 a1(t ) + i
√

η1 a2(t )]

+ eiψ2
√

η4ε4[i
√

1 − η2 a3(t ) + √
η2 a4(t )] + i

√
1 − ε4 a4+(t ). (A4d)

2. Properties of the laser

Let us collect here some features of the laser model of Sec. II B. By the definition of the various processes we have easily
(16) and

E f [ f (t )] = λwe−iω0t−γ0t , E f [ f (s) f (t )] = |λ|2 exp{iω0(s − t ) − γ0|t − s|}[w2 + v(t − s)], (A5a)

E f [ f (s) f (t )] = λ2e−(iω0+γ0 )(t+s)−2γ0(t∧s)[w2 + v(t − s)], (A5b)

E f [| f (t )|2 f (s)] = |λ|2λw[1 + 2v(t − s)]e−(iω0+γ0 )s, (A5c)

Cov f [| f (t )|2, | f (s)|2] = 2|λ|4v(t − s)[2w2 + v(t − s)]. (A5d)

The relative intensity noise (13) reduces to nRIN(t ) = u(t )2 − 1, which has zero mean and covariance (17). The RIN is not
normally distributed, but it is the square of a Gaussian process, due to the u(t )2 contribution. By the choice of the function v(t )
we can make its correlations to decay very fast. As a measure of this noise, an effective RIN coefficient can be introduced by
integrating the correlations (17) over time:

RINeff =
∫
R

dsE f [nRIN(t )nRIN(t − s)] = 4w2ṽ(0) + 1

π

∫
R

ṽ(ν)2 dν,

where we have used (17) and (18).
A simple choice is to take an exponential behavior for the correlations v(t ):

v(t ) = v(0)e−γ1|t |, v(0) � 0, γ1 > 0. (A6)
This gives

E f [nRIN(t )nRIN(s)] = 4w2v(0)e−γ1|t−s| + 2v(0)2e−2γ1|t−s|, (A7)

ṽ(ν) = 2v(0)γ1

γ 2
1 + ν2

, RINeff = 2

γ1
(1 − w2)(1 + 3w2). (A8)

Moreover, the intensity spectrum, introduced in (19), turns out to be

� f (μ) = 2|λ|2w2γ0

γ 2
0 + (μ − ω0)2 + 2|λ|2(1 − w2)(γ0 + γ1)

(γ0 + γ1) 2 + (μ − ω0)2 . (A9)

Finally, the RIN spectrum takes the expression

�RIN(μ) = 8(1 − w2)γ1

[
w2

γ 2
1 + μ2

+ 1 − w2

4γ 2
1 + μ2

]
. (A10)

3. Moments of the photocurrents

Let us introduce the following combinations of transmissivity and efficiency parameters:

g11 = η1η3ε1, g22 = (1 − η2)(1 − η4)ε2, (A11a)

g12 = η2(1 − η3)ε1, g21 = (1 − η1)η4ε2, (A11b)

g31 = η1(1 − η3)ε3, g32 = η2η3ε3, (A11c)

g j3 = √
g j1g j2, g41 = (1 − η1)(1 − η4)ε4, (A11d)

g42 = (1 − η2)η4ε4. (A11e)

By using the input and output expressions of the fields (A4), the state (9), and the notation (A11) we get

d1(r)ρT
f = [

√
g11 a1(r) + ieiψ1

√
g12 f (r)]ρT

f , (A12a)

d3(r)ρT
f = [i

√
g31 a1(r) + eiψ1

√
g32 f (r)]ρT

f , (A12b)

d2(r)ρT
f = [i

√
g21 a1(r) − eiψ2

√
g22 f (r)]ρT

f , (A12c)

d4(r)ρT
f = [−√

g41 a1(r) + ieiψ2
√

g42 f (r)]ρT
f . (A12d)
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From these equations, we can compute the quantum expectation of any normal ordered function of the fields d†
i (·), d j (·).

By using (11), (12), (26), (27), (A5), and (A12) we get easily

EP[Mj (t )] = ξ j

∫ t

0
dr h(t − r)

{
g j1〈a†

1(r)a1(r)〉T + g j2E f [| f (r)|2] + s jg j3
(
ieiψ jE f

[
f (r)〈a†

1(r)〉 f
T

] + c.c.
)}

, (A13)

EP[Mj (t )Mi(s)] = δi jξ
2
j

∫ t∧s

0
dr h(t − r)h(s − r){g j1〈a†

1(r)a1(r)〉T + g j2E f [| f (r)|2]

+ s jg j3
(
ieiψ jE f

[
f (r)〈a1(r)〉 f

T

] + c.c.
)} + ξ jξi

∫ t

0
dr

∫ s

0
dr′ h(t − r)h(s − r′)

× E f [〈: {g j1a†
1(r)a1(r) + g j2| f (r)|2 + s jg j3(ieiψ j f (r)a†

1(r) + H.c.)}
× {gi1a†

1(r′)a1(r′) + gi2| f (r′)|2 + sigi3(ieiψi f (r′)a†
1(r′) + H.c.)} :〉 f

T ]; (A14)

the constants gi j are defined in (A11) and s1 = s2 = +1, s3 = s4 = −1; the notation : · : means normal order.

APPENDIX B: PROBABILITY LAW AND CHARACTERISTIC OPERATOR

For stochastic processes the probability law is uniquely determined by its Fourier transform, the characteristic functional
[50]; the same holds for pvms and POVMs, whose Fourier transform is called characteristic operator [20–22].

1. Characteristic operator for the counts of photons and of the output photocurrents

In the case of the increments of the commuting self-adjoint number operators (21), the characteristic operator in the time
interval (0, t ) and the characteristic functional of the associated counting processes Nj (t ) in the interval (0, T ) are given by

�̂N
t [�k] = exp

{
i

4∑
j=1

∫ t

0
k j (s)dN̂j (s)

}
=

4∏
j=1

exp

{
i
∫ t

0
k j (s)dN̂j (s)

}
, (B1a)

�N
T [�k] = EP

[
exp

{
i

4∑
j=1

∫ T

0
k j (t )dNj (t )

}]
= 〈

�̂N
T [�k]

〉
T ; (B1b)

we have used the notation (12) for the quantum expectations. The functions k j (t ) are called test functions and are the analog of
the variables which are introduced in the definition of an usual Fourier transform. A very important point is that the characteristic
operator �̂N

t [�k] satisfies a closed evolution equation, represented by the quantum stochastic equation

d�̂N
t [�k] = �̂t [�k]

4∑
j=1

(eik j (t ) − 1)dN̂j (t ), (B2)

which can be obtained by using the heuristic rules (A3).

a. Case of a coherent signal

Let us consider the case of a coherent state for the signal or a mixture of coherent states. The system state is given by (9)–(12)
with ρ

f ,T
1 → ρ

fs,T
1 = |e1( fs)〉〈e1( fs)|, where fs(t ) is a stochastic process. Now Pf denotes the joint probability law of the two

processes, so that (11) becomes

ρT
13 = E f

[
ρ

�f ,T
13

]
, ρ

�f ,T
13 = |e1( fs,T )〉〈e1( fs,T )| ⊗ |e3( fT )〉〈e3( fT )|. (B3)

Given f and fs fixed, by the factorization properties of the exponential vectors and of the Fock space [22,26], Eqs. (B1b),
(B2), and (A12) give

d�N
t [�k; �f ]

dt
= �t [�k; �f ]

4∑
j=1

(
eik j (t ) − 1

)
Jj (t ; �f ),

Jj (t ; �f ) = |√g j1 fs(t ) + s j ie
iψ j

√
g j2 f (t )|2, s1 = s2 = +1, s3 = s4 = −1, ψ j+2 = ψ j . (B4)

Then, we have

�N
T [�k; �f ] = exp

{
4∑

j=1

∫ T

0

(
eik j (t ) − 1

)
Jj (t ; �f )dt

}
, (B5)
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which is the characteristic functional of four Poisson processes of intensities Jj (t ; �f ). When f and fs are random, the total
characteristic functional turns out to be

�N
T [�k] = E f

[
�N

T [�k; �f ]
] = E f

[
exp

{
4∑

j=1

∫ T

0

(
eik j (t ) − 1

)
Jj (t ; �f )dt

}]
, (B6)

and we have a mixture of Poisson processes, as reported in Remark 5, where the notation J f
j (t ) = Jj (t ; f , 0) is used.

b. Output currents

In the case of the processes Mj (t ) and of the pvm of the commuting self-adjoint operators {M̂ j (t ), j = 1, . . . , 4, t ∈ (0, T )},
the characteristic operator and the characteristic functional are given by

�̂M
T [�k] = exp

{
i

4∑
j=1

∫ T

0
ds k j (s)M̂ j (s)

}
, (B7a)

�M
T [�k] = EP

[
exp

{
i

4∑
j=1

∫ T

0
ds k j (s)Mj (s)

}]
= 〈

�̂M
T [�k]

〉
T
. (B7b)

By inserting the expressions (24) into (B7) we immediately find

�̂M
T [�k] = �̂N

T [�k], �M
T [�k] = �N

T [�l], (B8a)

l j (r) =
∫ T

r
ds Fj (s, r)k j (s) = ξ j

∫ T

r
ds h(s − r)k j (s), (B8b)

where the characteristic operator of the number operators and the characteristic functional of the counting processes are given
by (B1).

2. Characteristic operator of the observed processes

Similarly, the characteristic functional of the observed processes Xj (t ) [Eq. (28)] is defined by

�X
T [�k] = EP

[
exp

{
i

2∑
j=1

∫ T

0
dt k j (t )Xj (t )

}]
, (B9a)

while the characteristic operator of the compatible operators (29) is

�̂X
T [�k] = exp

{
i

2∑
j=1

∫ T

0
dt k j (t )X̂ j (t )

}
. (B9b)

Then, we get

�X
T [�k] = �N

T [�l], �̂X
T [�k] = �̂N

T [�l], �X
T [�k] = 〈

�̂X
T [�k]

〉
T ; (B10a)

�N
T and �̂N

T are given by Eqs. (B1), while the functions l j (r) are defined by Eqs. (B8) together with

k3(s) = −k1(s), k4(s) = −k2(s). (B10b)

Characteristic functional in the case of signal in a coherent state. In the case of the mixture of coherent states as in
Appendix B 1 a, we get from (B10) the characteristic functional of the observed processes Xj (t ):

�X
T [�k] = E f

[
exp

{
4∑

j=1

∫ T

0
(eil j (t ) − 1)Jj (t ; �f )dt

}]
, (B11)

where l j (t ) is given in (B8) and Jj (t ; �f ) in (B4).

3. Characteristic operator in the limit of strong LO

To analyze the structure of the processes Yj (·) and to get their probability law in the strong LO limit, we introduce the
processes

Zj (t ) = ξ jNj (t ) − ξ j+2Nj+2(t )

|λ|κ j3
, j = 1, 2. (B12)
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By (28) and (41) we have

Yj (t ) = κ j3

∫ t

0
h(t − r)dZj (r). (B13)

By using the processes Zj (·) we can prove Proposition 1 and Corollary 2:
Proof. The probability law of the processes Zj (·) is uniquely determined by the characteristic functional of their increments,

defined by

�Z
t [�k] = EP

[
exp

{
i

2∑
j=1

∫ t

0
k j (s)dZj (s)

}]
. (B14)

By (B12), this functional can be expressed in terms of the characteristic functional and characteristic operator (B1) of the
increments of the four counting processes Nj (·):

�Z
t [�k] = �N

T [��/|λ|] = 〈
�̂N

T [��/|λ|]〉
T
, � j (s) = ξ jk j (s)

κ j3
, � j+2(s) = −ξ j+2k j (s)

κ j3
. (B15)

By using the structures (9)–(12) of the field state, we can introduce the reduced characteristic operator of the Z observables:

�̂Z
t [�k; f ] = Tr�3⊗�⊥

{
�̂N

t [��/|λ|](ρ f ,T
3 ⊗ ρ⊥)}. (B16)

Then, the Z functional (B14) can be written as

�Z
t [�k] = E f

[
Tr�1

{
�̂Z

t [�k; f ]ρ f ,T
1

}]
. (B17)

By construction, �̂Z
t [�k; f ] is the Fourier transform of a POVM on the signal Hilbert space �1.

By using the differential of the characteristic operator of the number operators (B2) and the factorization properties of Fock
spaces and exponential vectors [22,26], we get a quantum stochastic differential equation for the reduced characteristic operator
(B16):

d�̂Z
t [�k; f ] = �̂Z

t [�k; f ]
4∑

j=1

(
ei� j (t )/|λ| − 1

)
Tr�3⊗�⊥

{
dN̂j (t )

(
ρ

f ,T
3 ⊗ ρ⊥)}, (B18)

where the � functions are given in (B15). Then, we can expand the exponential up to the second order in 1/|λ|. By the assumption
of Gj2 [Eq. (43)] independent of λ, we get, in the limit |λ| → +∞,

i� j (t )

|λ| Tr�3⊗�⊥
{
dN̂j (t )

(
ρ

f ,T
3 ⊗ ρ⊥)} + i� j+2(t )

|λ| Tr�3⊗�⊥
{
dN̂j+2(t )

(
ρ

f ,T
3 ⊗ ρ⊥)}

� ik j (t )[Gj2| f̃ (t )|2dt + (ieiψ j f̃ (t )dA†
1(t ) + H.c.)],

−� j (t )2

2|λ|2 Tr�3⊗�⊥
{
dN̂j (t )

(
ρ

f ,T
3 ⊗ ρ⊥)} − � j+2(t )2

2|λ|2 Tr�3⊗�⊥
{
dN̂j+2(t )

(
ρ

f ,T
3 ⊗ ρ⊥)} � −k j (t )2 κ j2

2κ 2
j3

| f̃ (t )|2dt .

By using these expressions, we have that the limit for |λ| → +∞ of Eq. (B18) exists and, by using (52b), it is given by

d�̂Z
t [�k; f ] = �̂Z

t [�k; f ]
2∑

j=1

{
ik j (t )[Gj2| f̃ (t )|2dt + dQ̂ j (t )] − κ j2

2κ 2
j3

| f̃ (t )|2k j (t )2dt

}
. (B19)

By the rules of QSC, this equation can be integrated and we get

�̂Z
t [�k; f ] = exp

∫ t

0

{
2∑

j=1

ik j (s)(Gj2| f̃ (s)|2ds + dQ̂ j (s)) − 1

2

[
2∑

j=1

(
κ j2

κ 2
j3

− 1

)
k j (s)2 − 2k1(s)k2(s) cos φ

]
| f̃ (s)|2ds

}
. (B20)

To check this result one has to differentiate (B20) by using the rules (A3); in this way, (B19) is obtained. These computations
prove also the existence of the limit in (50).

By using (B20), (B13), and (B17), we obtain the expressions (51) and (52). The expression �̂
Q
T [�k; f ] [Eq. (52a)] is the

characteristic operator which we would have obtained in the case of perfect efficiency, ε j = 1, balanced outputs, i.e., Gj2 = 0
and � j2 = 0, and nonrandom laser; as these parameters are arbitrary, also �̂

Q
T [�k; f ] is the characteristic operator of a POVM.

This ends the proof of Proposition 1.
To prove Corollary 2 the easiest way is to take the characteristic functional (B11), (B8), and (B4) and to compute the limit

(50). Then, the characteristic functional of the Y processes turns out to be given by (51a) and (53). �
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4. Characteristic operator and probability density for the case of discrete sampling

In this Appendix we prove Propositions 3 and 4, giving the structure of the characteristic function of the random variables
Yj (tl ).

a. Proof of Proposition 3

Proof. To get the characteristic function �
�Y (�k) [Eq. (72)] we insert k j (s) = ∑

l kl
jδ(s − tl ) into the characteristic functional

�Y
T [�k] [Eq. (50)]. From (51a), (51b), and Assumption 3 we get

�Y
T (�k) = E f

[
�

Q
T [�u; f ]�T [�u; f ]

]
, u j (s) = κ j3

∑
l

kl
jh(tl − s)1(tl −τ,tl )(s).

From (51d) we obtain

�T [�u; f ] = exp

{∑
j,l

∫ tl

tl −τ

ds| f̃ (s)|2
[

ikl
j G j2κ j3h(tl − s) − σ 2

j + V 2
j

2
κ 2

j3kl
j
2
h(tl − s)2

]}
;

this expression gives (74) and (75). Moreover, from (51c) and (52), we get

�
Q
T [�u; f ] = Tr�1

{
�̂

Q
T [�u; f ]ρ f ,T

1

}
,

�̂
Q
T [�u; f ] = exp

∑
l

{
i

2∑
j=1

∫ tl

tl −τ

κ j3kl
jh(tl − s) dQ̂ j (s) − 1

2

∫ tl

tl −τ

h(tl − s)2
∣∣ f̃ (s)

∣∣2ds
2∑

i, j=1

kl
jκ j3� jiκi3kl

i

}
.

By using Eqs. (66) and the fact that the quadrature operators commute for different values of l , we get the product structure and
by expressing the quantity in square brackets as a squared modulus, this equation gives (76).

Once again, the expression �̂q(�k; f ) [Eq. (76)] is the characteristic operator which we would have obtained in the case of
perfect efficiency, ε j = 1, balanced outputs, i.e., Gj2 = 0 and � j2 = 0, and nonrandom laser; as these parameters are arbitrary,
also �̂q(�k; f ) is the characteristic operator of a POVM. By taking a single time tl we have that also each one of the factors is the
characteristic operator of a POVM. �

b. Proof of Proposition 4

Proof. First, we define the parameter

vl = Rl ( f )
[
κ13kl

1 + eiφκ23kl
2

]
.

By using the parameters vl and α, β [Eq. (77)], we can check by direct computations that the characteristic operator (76) can be
written as

�̂
q
l (�kl ; f ) = exp

{
i(vl a

†
l + vl al ) − 1

2 |αvl − βvl |2
}
.

Again by direct computations, by using (70) and (78b), we can verify that

al = −i(eiφαbl + e−iφβb†
l ), ul = ie−iφ (αvl − β vl ).

This gives vl a
†
l + vl al = ulb

†
l + ul bl and |αvl − βvl |2 = |ul |2 and (78a) is proved.

Then, by using CCRs and the overcompleteness property of the coherent states for the mode bl we have

�̂
q
l (�kl ; f ) = ei ul bl eiul b

†
l

= ei ul bl
1

π

∫
C

d2ζ |ψl (ζ ; α, β )〉〈ψl (ζ ; α, β )|eiul b
†
l

= 1

π

∫
C

d2ζ ei ul ζ |ψl (ζ ; α, β )〉〈ψl (ζ ; α, β )|eiul ζ ;

this proves (79). �

c. Proof of Eq. (81)

Proof. First, the parameter (78b), needed in (79), can be written as

ul = Kl
1( f )kl

1 − e−iφKl
2( f )kl

2.
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Then, we can compute the anti-Fourier transform of (80):

ĝl
Y (y1, y2; f ) = 1

4π2

∫
R2

dk1dk2 e−i(y1k1+y2k2 )�̂
�Y

l (k1, k2)

= 1

4π2

∫
C

d2z ĝl
α,β (z)

∫
R2

dk1dk2 exp

{
− i(y1k1 + y2k2) + i(ul z + ul z) +

∑
j

[
ik jμ

jl
L ( f ) − 1

2
σ

jl
L ( f )2 k j

2

]}

= 1

4π2

∫
C

d2z ĝl
α,β (z)

∫
R2

dk1dk2 exp

{
− 1

2

∑
j

σ
jl
L ( f )2 k j

2

}

× exp
{
ik1

[
μ1l
L ( f ) + 2z1xl

1( f ) − y1
] + ik2

[
μ2l
L ( f ) + 2xl

2( f )(z2 sin φ − z1 cos φ) − y2
]}

,

where we have used z = z1 + iz2. By computing the Gaussian integral in dk1dk2, we get the POVM density ĝl
Y (y1, y2; f )

[Eq. (81)]. �

APPENDIX C: THE POVM AND THE PROBABILITY DENSITY OF THE Y OBSERVABLES

1. Signal in a mixture of coherent states

The density (83) can be explicitly computed, for instance, in the case of the signal in a mixture of coherent states as in
Corollary 2. By using (53) and (51) we get the characteristic function, from which we see that the density turns out to be a
mixture of normal distributions. We define

μl
j ( �f ) = μ

jl
L ( f ) + κ j3

∫ τ

0
dt h(t )(ieiψ j fs(tl − t ) f̃ (tl − t ) + c.c.),

where μ
jl
L ( f ) is given in (75b). Then, the probability density can be written as

g �Y (�y) = E f

[
m∏

l=1

2∏
j=1

1√
2πκ j2Rl ( f )2

exp

{
−
(
yl

j − μl
j ( �f )

)2

2κ j2Rl ( f )2

}]
. (C1)

Let us note that (48), (49a), and (75c) give the following decomposition of the variances:

κ j2Rl ( f )2 = σ
jl
L ( f )2 + κ 2

j3(Gj3 + 1)Rl ( f )2, G13 + 1 = 1

η1
, G23 + 1 = 1

1 − η1
. (C2)

2. A density bound

Proposition 5. The POVM density (81) is bounded by

ĝl
Y (y1, y2; f ) � 1

4πRl ( f )2κ13κ23|sin φ| . (C3)

Moreover, the total probability density (83) is bounded by

g �Y (�y) � 1

(4πκ13κ23|sin φ|)m

m∏
l=1

E f [Rl ( f )−2], (C4)

∀ �y ∈ R2m. This bound holds for any choice of the signal state ρ
f
1 in the expression (83).

Proof. By using the bound (116) we have

ĝl
Y (y1, y2; f ) � 1

2π2σ 1l
L ( f )σ 2l

L ( f )

∫
C

d2z exp

{
−
[
μ1l
L ( f ) + 2z1Kl

1( f ) − y1
]2

2σ 1l
L ( f )2

}

× exp

{
−

[
μ2l
L ( f ) + 2Kl

2( f )(z2 sin φ − z1 cos φ) − y2
]2

2σ 2l
L ( f )2

}
1

= 1

2π
√

2π σ 1l
L ( f )

∣∣Kl
2( f ) sin φ

∣∣
∫
R

dz1 exp

{
−
[
μ1l
L ( f ) + 2z1Kl

1( f ) − y1
]2

2σ 1l
L ( f )2

}
1 = 1

4π
∣∣Kl

1( f )Kl
2( f ) sin φ

∣∣ 1.
By inserting the expressions of Kl

j ( f ) [Eq. (82)] we get (C3). As the POVM densities (81) act, for different values of l , on
different factors of the Hilbert space, the analogous bound holds for the total probability density (83), for any choice of the
signal state (even if not factorized), and this proves (C4). �

Let us note that, by inserting the bound (C3) into (113), we get (117).
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