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Quantum battery with ultracold atoms: Bosons versus fermions
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We design a quantum battery made up of bosons or fermions in an ultracold-atom setup, described by
Fermi-Hubbard and Bose-Hubbard models, respectively. We compare the performance of bosons and fermions
to determine which can function as a quantum battery more effectively given a particular on-site interaction and
initial state temperature. The performance of a quantum battery is quantified by the maximum energy stored
per unit time over the evolution under an on-site charging Hamiltonian. We report that when the initial battery
state is in the ground state, fermions outperform bosons in a certain configuration over a large range of on-site
interactions which are shown analytically for a smaller number of lattice sites and numerically for a considerable
number of sites. Bosons take the lead when the temperature is comparatively high in the initial state for a longer
range of on-site interaction. We study a number of up and down fermions as well as the number of bosons per
site to find the optimal filling factor for maximizing the average power of the battery. We also introduce disorder
in both on-site and hopping parameters and demonstrate that the maximum average power is robust against
impurities. Moreover, we identify a range of tuning parameters in the fermionic and bosonic systems where the
disorder-enhanced power is observed.
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I. INTRODUCTION

In recent years, tremendous efforts have been devoted to
developing the avenue of quantum technologies, which in-
cludes the advancement of miniaturized quantum devices [1],
that are indispensable for various practical purposes. Such
quantum gadgets have been shown to outperform the existing
classical ones in different sectors ranging from metrology [2],
cryptography [3], and cybersecurity to data analysis and com-
puting [4]. The development of smaller, and more effective
devices naturally leads to the realm of quantum mechan-
ics. In this respect, microscopic thermodynamic devices have
also been shown to provide remarkable precision in ther-
mometry [5], thereby contributing to the field of quantum
thermodynamics [6,7]. To explore and model quantum ther-
mal machines such as quantum refrigerators [1,8–12] and
quantum batteries [13–23], modified definitions of work, heat,
and entropy are introduced that can take into account the
effects of quantumness in the system.

The behavior of traditional chemical batteries that can store
energy is purely classical in nature and hence cannot be used
in quantum-mechanical apparatuses. With this requirement,
Alicki and Fannes first proposed the concept of a quantum
battery (QB) [13], a d-dimensional quantum-mechanical sys-
tem composed of N noninteracting subsystems which are
able to store energy for future use and can efficiently be
charged by global entangling operations. After the initial pro-
posal, several interesting works were reported [23], which
include quantum batteries with the Dicke state [24,25], the
role of entanglement production in the process of work extrac-
tion [16,26], nonlocal charging with an extensive advantage
in power storage [27], and the effects of decoherence on

quantum batteries [22,28–32]. Specifically, it was reported
that when the battery is in contact with the environment, in the
presence of both Markovian and non-Markovian noises, non-
Markovian noise can sometimes help to extract a high amount
of work depending upon the system parameters [22,30]. On
the other hand, interacting spin systems composed of spin-s
particles can also be used to design QBs which can be charged
via a local magnetic field [18,33,34]. In a similar spirit, the
nearest-neighbor hopping interaction of a spin chain acts as a
battery and, coupled with a cavity mode, has been shown to
enhance the capability of storing energy in the system [15].
More importantly, quantum batteries have been realized on
different platforms like solid-state systems, where either each
of the two-level systems is enclosed in a single cavity or the
ensembles of two-level systems are in a single cavity [24,35],
and superconducting circuits, which can be charged by using
an external magnetic field [36].

In this work, we propose to design a quantum battery with
a one-dimensional Hubbard model, which is realizable via
cold atoms in an optical lattice, where the lattice is filled up
with either fermions or bosons and is well described by the
Fermi-Hubbard (FH) and Bose-Hubbard (BH) [37–40] mod-
els, respectively (see Fig. 1). Specifically, the initial state of
the battery is prepared as the ground or canonical equilibrium
states of the FH and BH models, while the charging of the
battery can take place by tuning the strength of the on-site
intra-atomic interactions. It is important to stress here that
in all the aforementioned proposals of QBs, the subsystems
are distinguishable because their positions are fixed in space,
while in the current proposal, the particles can hop from
one lattice site to another and, as a consequence, become
indistinguishable within the lattice system. We also know
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FIG. 1. Schematic representation of a quantum battery based on
a one-dimensional Fermi-Hubbard Hamiltonian with and without
disorder with L lattice sites. H f

c in Eq. (3) is used to charge the
battery. As shown in the text, similar modeling of QB is also possible
with the Bose-Hubbard system. Notice that the charging part solely
depends on the on-site interaction term U μ

i (μ = b, f ), which is
nonvanishing for a particular lattice site only when at least two
particles are present at each lattice. However, there are hopping terms
for any two sites which we have not shown for all sites to make the
schematics less cumbersome. We also report the robustness observed
in the performance of the QB against different kinds of disorder
present in the on-site and hopping strengths.

that both models possess rich phase diagrams with phases
like Mott-insulator, superfluid, superconducting, Fermi-liquid
[37,41,42], and density-wave, Haldane-insulator phases in the
extended BH model [43,44], and hence such a study may con-
nect physical properties of the bosonic and fermionic systems
with quantum thermodynamics.

A comparative study carried out between the FH and the
BH models reveals that fermionic batteries with more than
two lattice sites can store a higher amount of extractable
power output than those of bosonic systems, provided the
repulsive or attractive on-site interactions are suitably tuned
by varying the scattering lengths and the initial state of the
battery is at the zero temperature with half filling. The hier-
archy is reversed, i.e., the batteries made up of BH models
demonstrate an advantage over the FH ones, when the initial
state is prepared at a finite and high temperature. We also
illustrate that apart from the ratio between the intra-atomic
on-site and interatomic hopping interactions, the patterns of
the power output also depend on the even and odd lattice
sites in both models. For a fixed lattice site, we optimize the
maximum average power output over configurations allowed
for fermions and bosons, where in the latter case, we also fix
the particles per site and observe that the optimized power
decreases (increases) with the increase of lattice sites (the
increase of the particles per site) for fermions (bosons).

With the significant advancement in experiments having
different physical substrates, the disordered quantum systems
[45–49] are of great interest to study since it is almost im-
possible to prepare a system while avoiding impurities in
laboratories. In particular, although a high level of control to
generate and manipulate ultracold bosonic or fermionic gases
or their mixtures has been achieved experimentally, there is
always a possibility of including disorder during the transfer
of the samples to optical lattices. Disorder in the hopping

parameter of the Hubbard Hamiltonian can also be realized
by modulating the applied electric field of the laser or by
doping impurities in the system. Impurities can also appear
by aid of additional lattices or by modulating magnetic fields
in the system [37,50]. Interestingly, cold atomic systems turn
out to be one of the experimentally friendly platforms where
disordered systems can be realized and engineered.

Although, intuitively, disorder detrimentally affects the
characteristics of quantum systems and hence their perfor-
mance, this was shown to be not true [18,34,51–58]; that
is, certain features of the quantum system are found to get
enhanced even in the presence of impurities. Moreover, dis-
ordered systems show a lot of counterintuitive phenomena,
which include Anderson localization [59], many-body local-
ization which pinpoints the distinction between thermalization
and the localized phase [60–63], and high-temperature super-
conductivity [64], to name a few. In this respect, we show that
the quenched averaged power outputs are robust against ran-
dom hopping and random on-site interactions in both FH and
BH models. In the case of disorder introduced in hopping, we
report that there is a regime of the hopping strength in which
both bosonic and fermionic disordered systems can produce
higher maximal power than that of the ordered ones, which we
refer to as the disorder-enhanced power. Such an increment
in power can be seen due to the monotonically increasing
nature of power in batteries with an ordered Hamiltonian. The
randomness in hopping and on-site interactions are chosen
from Gaussian and uniform distributions with a fixed mean
and standard deviations, and both types of randomness can be
realized in the cold atomic setup.

This paper is organized in the following manner. The de-
sign of quantum batteries based on Hubbard models and their
charging processes are introduced in Sec. II. In Sec. III, the
performance of the QB is studied, and comparative studies
between bosonic and fermionic systems are carried out. In
Sec. IV, the effects of the filling factor and the temperature
of the initial state are investigated, while the disordered BH
and FH models are considered as batteries in Sec. V. Finally,
concluding remarks are given in Sec. VI.

II. MODELING A QUANTUM BATTERY
USING HUBBARD HAMILTONIANS

We model a quantum battery as a one-dimensional Hub-
bard Hamiltonian (see Fig. 1 for a schematic representation)
with L lattice sites filled with fermions or bosons, known as
the Fermi-Hubbard and Bose-Hubbard models, respectively,
which can be engineered in the laboratory with cold atoms in
optical lattices [37,38]. Such a study also identifies the regime
where fermionic systems show better performance as a QB
than that of the bosonic ones and vice versa.

Model of the battery. The initial state of a quantum
battery [13,18,33] is taken as the ground state or the canon-

ical equilibrium state, i.e., ρth = e−β′Hμ
B

Z (μ = f , b), of the
Fermi-Hubbard or Bose-Hubbard Hamiltonian Hμ

B , where the
superscript represents fermionic or bosonic systems. Here
β ′ = 1

kBT , with kB being the Boltzmann constant, T being
the absolute temperature, and the partition function Z =
Tr(e−β ′Hμ

B ). When the lattice sites are occupied with fermions,
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the Fermi-Hubbard Hamiltonian can be represented as

H f
B = −

∑
〈i j〉,σ

J f
i jc

†
iσ c jσ + H.c. +

∑
i

U f
i ni↑ni↓. (1)

Here J f
i j is the hopping strength between sites i and j, where

〈i j〉 indicates that only the nearest-neighbor hopping is al-
lowed, and U f

i denotes the on-site interaction at the site i
of the lattice, occupied by fermions, which can be repulsive
as well as attractive. ciσ (c†

iσ ) is the fermionic annihilation
(creation) operator obeying the canonical anticommutation re-
lations, {ciσ , c†

jσ ′ } = δi jδσσ ′ , {ciσ , c jσ ′ } = 0, and {c†
iσ , c†

jσ ′ } =
0, and niσ = c†

iσ ciσ is the number operator on site i with spin
σ .

Instead of fermions, when the lattice sites are filled with
bosons, the Bose-Hubbard Hamiltonian reads

Hb
B = −

∑
〈i j〉

Jb
i jb

†
i b j + H.c. +

∑
i

U b
i

2
ni(ni − 1), (2)

where Jb
i j and U b

i are the hopping strength from site i to j and
the on-site interaction strength at the ith site, respectively, and
bi (b†

i ) is the bosonic annihilation (creation) operator follow-
ing the standard canonical commutation relations for bosons.
For both models, we consider the open boundary condition.
Moreover, from now on, site-independent parameters will be
denoted without the subscripts i and j, thereby representing
the ordered models.

Charging. In order to charge the system, we construct the
charging Hamiltonian for fermions and bosons, respectively,
as

H f
c = U f

c

∑
i

ni↑ni↓, Hb
c = U b

c

2

∑
i

ni(ni − 1). (3)

Here U μ
c is the charging strength, and in general, U μ

c �= U μ.
The reason for choosing such a form of the charging Hamil-
tonian is threefold. First, we choose the charging Hamiltonian
in such a way that the evolution is nontrivial. Precisely, the
charging Hamiltonian should not commute with the battery
Hamiltonian; otherwise, the system cannot evolve. To ensure
this, we put Jμ = 0 in the original Hamiltonian and construct
the charging Hamiltonian with a different charging strength,
denoted by U μ

c , which is, in general, not equal to U μ (μ = f or
b) of the battery Hamiltonian Hμ

B . Second, a charging Hamil-
tonian with J �= 0 and U = 0 represents a global charging
which we do not wish to analyze since the extra increment
in power can happen due to the global charging in the sys-
tem. Finally, from an experimental point of view, adjusting
U is much easier than controlling the other parameters of the
system. In an ultracold-atom setup, the intensity can be tuned
just by a “control knob,” as demonstrated in Refs. [65–67].
For example, the ratio U/J can be tuned by the laser intensity
which regulates the lattice potential depth s. Tuning the corre-
sponding s is the way to traverse the quantum phase transition,
i.e., between Mott and superfluid phases. In the design dis-
cussed above, the battery should be charged with the Bose-
(Fermi-) Hubbard model with J = 0, i.e., quenched in the
Mott-insulator phase. Specifically, when s > 13Er [66], the
system is in the Mott-insulator phase, where Er = h/8md2,
with m being the atomic mass, d = 406 nm being the lattice
spacing, and h being Planck’s constant. The value of s can be

dynamically modulated to perform the quench without having
any restriction on the timescale for the quench, and hence, one
can expect that the charging of the battery can be achieved in
a similar experiment.

Quantifying performance. By employing unitary opera-
tions, Uc = exp(−iHμ

c t ), such that ρ(t ) = Ucρ(0)U†
c , with

ρ(0) being the initial state of the QB, the total amount of
energy that can be stored and extracted from the QB (the work
output) at time t reads

W μ(t ) = Tr
[
Hμ

B ρ(t )
] − Tr

[
Hμ

B ρ(0)
]
, (4)

where the first and second terms in Eq. (4) are the final and
initial energies of the system, respectively. Notice that the
maximum amount of extractable work from the quantum bat-
tery in terms of ergotropy coincides with the above equation
in the case of a reversible unitary process. This is due to
the fact that for entropy-preserving unitary operations, the
maximum amount of extractable work is equal to ergotropy
[68,69]. Note, moreover, that the stored energy, in general,
does not coincide with the extractable work (ergotropy) when
the battery Hamiltonian is in contact with the environment
[28–32,34].

The maximum average power output from the battery at
time t is quantified as

Pμ
max = max

t

W μ(t )

t
. (5)

Throughout the paper, we will use Pμ
max as the figure of merit

for determining the performance of the QB. Notice also that
Pμ

max = 0 when the hopping term of the QB vanishes. It is
important to note that the charging Hamiltonian is turned on
when t > 0, and hence, the energy cost of turning the charging
Hamiltonian on and off is typically not considered during the
computation of power.

Scaling. By increasing the values of U μ
i and Jμ

i (μ = f , b)
of Hμ

B , it is possible to store more and more extractable power
output from the quantum battery, which makes the analysis
trivial. To avoid such an undesirable situation, we normalize
the Hamiltonian in such a way that its spectrum is bounded by
[−1, 1], irrespective of any system parameters, including the
system size. In addition, since we compare two different mod-
els, namely, FH and BH, it is necessary to consider them on
equal footing from the perspective of energies, which can also
be taken care of by the normalization. Hence, the normalized
Hamiltonians reads

1

Emax − Emin

[
2Hμ

B − (Emax + Emin)I
] → Hμ

B , (6)

where Emax and Emin are the maximum and minimum eigen-
values of Hμ

B . Here since the evolution is unitary, the
excitation spectrum is also conserved in both cases, which also
ensures that the comparison is fair.

III. PERFORMANCE OF A QB FOR AN ARBITRARY
NUMBER OF LATTICE SITES: COMPARING BOSONS

WITH FERMIONS

Let us now concentrate on a hierarchy among QBs based
on BH and FH models according to their performance. We
start with two lattice sites and then investigate the trends of
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the power output for arbitrary lattice sites. In this section, the
number of particles is the same as the number of lattice sites.

A. Two lattice sites: Equivalence between bosonic
and fermionic systems

First, consider a scenario in which two particles occupy a
lattice with two sites. In this situation, the work output can
be found analytically for both bosons and fermions, and their
relation is as follows.

Proposition 1. The average work outputs for BH and FH
models coincide for a lattice with two sites occupied by two
particles if the values of on-site interactions, hopping, and
charging strengths are identical and the initial state of the
battery is prepared as the ground state of the Hamiltonian.

Proof. The two-site Fermi-Hubbard model occupied by
two fermions has four basis states. Generically, the Fock-state
bases are defined as |x1y2〉↑|z1w2〉↓. Here {x1, y2, z1,w2} ∈
(0, 1), where 0 denotes the situation when the lattice site is
not occupied by fermions, while 1 indicates when the fermion
occupies the lattice site and subscripts denote the lattice sites,
which we drop from now on; we will use only the binary
method to indicate the entire configuration. In this basis, the
normalized Hamiltonian reads

H f
B = 1√

16J f 2 + U f 2

⎡
⎢⎢⎣

U f −2J f −2J f 0
−2J f −U f 0 −2J f

−2J f 0 −U f −2J f

0 −2J f −2J f U f

⎤
⎥⎥⎦,

while the ground state H f
B as the initial state of the battery is

given by

ρ(0) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
4 (1 − a) b b 1

4 (1 − a)

b 1
4 (1 + a) 1

4 (1 + a) b

b 1
4 (1 + a) 1

4 (1 + a) b

1
4 (1 − a) b b 1

4 (1 − a)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(7)

where a = U f√
16J f 2+U f 2

and b = J f√
16J f 2+U f 2

. The charging

Hamiltonian in the Fock basis reduces to

H f
c = U f

c (|1010〉〈1010| + |0101〉〈0101|), (8)

which is used up to a certain time t to charge the battery,
resulting in an evolved state,

ρ(t ) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
4 (1 − a) be−itU f

c be−itU f
c 1

4 (1 − a)

beitU f
c 1

4 (1 + a) 1
4 (1 + a) beitU f

c

beitU f
c 1

4 (1 + a) 1
4 (1 + a) beitU f

c

1
4 (1 − a) be−itU f

c be−itU f
c 1

4 (1 − a)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(9)
The work output in this case simplifies to

W f (t ) = J f 2

J f 2 + (U f )2

16

[
1 − cos

(
tU f

c

)]
. (10)

Following the same prescription, we also calculate (for a
detailed calculation, see Appendix A) the total work output
considering the BH model for the same time interval t ,which
is given by

W b(t ) = Jb2

Jb2 + (U b)2

16

[
1 − cos

(
tU b

c

)]
. (11)

Hence, if J f = Jb, U f = U b, and U f
c = U b

c , the average work
outputs in both cases are the same. �

Remark 1. Although different numbers of basis states
appear due to exchange symmetry for different spin statistics
for both fermions and bosons, the design of the charging
Hamiltonian is responsible for the equal work output obtained
in Proposition 1 for two lattice sites. As mentioned before,
the charging Hamiltonian acts on only those lattice sites that
consist of at least two particles and the number of such states
having two particles on a single site occurs an equal number
of times in both bosonic and fermionic batteries, which leads
to the equal work output from the battery. In the succeeding
sections, we report unequal power from bosonic and fermionic
batteries for a large number of lattice sites.

B. Arbitrary number of lattice sites: Bosons vs fermions

Let us now move further and consider a lattice with more
than two sites. First, we consider three sites occupied by three
particles, bosons or fermions. Unlike the previous case, we
establish a hierarchy between the performance of the batteries
with bosons and with fermions.

Proposition 2. The battery composed of three lattice sites
filled with three fermions is better in terms of the work out-
put than that of bosonic systems in the absence of on-site
interaction of the battery Hamiltonian, provided the charging
strengths of the on-site interactions for both fermions and
bosons are the same, i.e., U f

c = U b
c = Uc .

Proof. Following the same procedure (see Appendix B)
as in the previous proof, we calculate W f (t ) and W b(t ) for
a lattice with L = 3, occupied by three fermions and three
bosons, governed by FH and BH, respectively, with U μ = 0,
μ = f , b. If the values of the charging strength for both cases
are identical, the difference in the work output turns out to be

W f (t ) − W b(t ) = 0.13[1 − cos(tUc)], (12)

which is positive and hence the proof. Note here that the
output work is independent of any system parameters since
the Hamiltonian is normalized and the spectrum is bounded
between −1 and 1, which allows us to compare two different
models on the same footing. Since U μ = 0, the expression for
the Hamiltonian involves only Jμ, which gets canceled after
the normalization. Moreover, the normalization is also respon-
sible for the prefactor 0.13 in Eq. (12) [compare Eqs. (B2)
and (B4)]. �

Proposition 2 indicates that the increasing value of the
lattice size and the number of particles can have significant
effects on the power output for these two models. In partic-
ular, identifying the parameter range where the FH battery
outperforms the BH one can be an interesting question to
address with L � 3. Towards that aim, the initial battery state
is considered to be the ground state of the FH lattice filled with
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FIG. 2. (a) Power output P f
max (ordinate) with respect to U f /J f (abscissa) of the battery constructed via the Fermi-Hubbard model. (b) Pb

max

(ordinate) versus U b/Jb (abscissa) for bosonic systems. The system is half filled in both cases, and the initial state of the battery is the ground
state of the system. In the case of the Bose-Hubbard model, at most two bosons per sites are allowed. The charging of the battery is performed
by using on-site interaction, with the strength being U f

c = U b
c = 2. Solid lines correspond to an even number of lattice sites L, while the dashed

lines represent odd L. In both cases, dark to lighter shades indicate the increase of L. Both axes are dimensionless.

N f
↑ = �L/2� + L(mod 2) and N f

↓ = �L/2� fermions, where

the total number of fermions L = N f = N f
↑ + N f

↓ , while the
BH battery is occupied by Nb = L bosons with two particles
per site, i.e., a single site can be occupied by at most two
bosons; the distribution of fermions and bosons in this way
is called half filling. We will lift the restriction of particles per
site in the next section. In the rest of the paper, we carry out
our analysis of Pμ

max by varying U μ/Jμ (μ = f , b) since the
various phases like Mott insulators, superfluids, Fermi liquids,
and quantum phase transitions can successfully be described
by the different limits of this ratio. Moreover, in the entire
calculation, we take the strength of the charging field to be
U f

c = U b
c = 2. Notice, however, that with the increase of the

charging on-site interactions, the power gets enhanced. It can
also be understood from the expressions of work in Eqs. (10),
(11), and (12), which clearly show that the maximum power
is obtained for small time when one increases U μ

c .
Contrasting trends for FH and BH batteries. The patterns

of Pμ
max with U μ/Jμ for a paradigmatic example of half filling

of lattice sites for both fermions and bosons are depicted in
Fig. 2, and we observe that contrasting behaviors emerge for
bosons and fermions. (1) The FH-based battery produces more
power output than that of the BH model in almost the entire
range of U μ/Jμ. We will determine the exact range of the
advantage obtained via fermionic systems in Figs. 3–5, which
we will discuss later. (2) In the case of an even number of
lattice sites with the FH model, P f

max is symmetric about the
U f /J f = 0 line, thereby leading to maximum average power
output with U f = 0, although no such symmetry is observed
in the case of bosons. (3) In the half-filling regime, among all
the lattice sites considered, i.e., when 3 � L � 7, we find that
P f

max reaches its maximal value for L = 4, while Pb
max shows

a maximum with L = 3 and U b/Jb > 0. Although there is, in
general, no visible correlation between lattice size and higher
work output, Pμ

max converges to a certain value for all values
of L in the presence of strong repulsive and attractive interac-
tions, thereby illustrating a site-independent power output.

To compare the batteries constructed with fermionic and
bosonic systems, we introduce a quantity which we call the
performance score,

�
f −b
P = P f

max − Pb
max,

by fixing U f = U b = U and J f = Jb = J . From Fig. 3, we
observe that when −5 � U/J < 0, i.e., with attractive on-site
interactions, FH batteries can always store (extract) more
energy than BH batteries, although the situation changes
when U/J � 3. Specifically, there exists a critical U/J value
(U/J )critical above which bosonic systems can produce more
power than that of fermionic systems, i.e., �

f −b
P < 0 when

U/J > (U/J )critical. We also notice that (U/J )critical depends
on L, as shown in Fig. 4, which indicates that with the increase
of L, a higher on-site interaction is required to achieve a higher
power when using the BH model compared with that of the FH
one.
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 0.2

 0.25

 0.3

-4 -2  0  2  4

Δf-b P

U/J
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L=4

L=5

L=6

L=7

FIG. 3. Bosonic vs fermionic QBs. Performance score �
f −b
P =

P f
max − Pb

max (vertical axis) against U/J = U b/Jb = U f /J f (horizon-
tal axis). All other specifications are the same as in Fig. 2. Both axes
are dimensionless.
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FIG. 4. Scaling of the hierarchy. The critical value of U/J , de-
noted by (U/J )critical (y axis), above which the batteries built with the
BH model can store more energy than those of the FH model with
respect to lattice sites L (x axis). All the axes are dimensionless.

If one increases the value of on-site interaction, the system
undergoes a phase transition from the superfluid phase to the
Mott-insulator one; that is, the probability of hopping between
the lattice sites decreases and becomes vanishingly small at
some point. Moreover, due to the half-filled scenario, all the
lattice sites then contain only one particle effectively, and due
to the design of the charging Hamiltonian, the excitation in
the system becomes minimal, resulting in a very low power
output from the battery. This implies that the difference in the
output power between FH and BH systems also goes to zero
(see Fig. 5) since at a very high value of U/J , the power output
from the individual system also vanishes. In other words, in an
extreme scenario, when both the charging and battery Hamil-
tonian are in the Mott-insulating phase, i.e., when U 
 J , the
battery cannot be charged, while moderate values of U/J are
favorable for storing the power in the battery, as also shown in
Fig. 5.
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FIG. 5. Comparison between fermionic and bosonic QBs with
high U/J values. �

f −b
P = P f

max − Pb
max (ordinate) vs U/J = U b/Jb =

U f /J f (abscissa). All other specifications are the same as in Fig. 2.
Note that for high U/J values, power vanishes in both cases,
thereby leading to the vanishing performance score. Both axes are
dimensionless.

(U/J )critical and the energy distribution. In order to explain
the (U/J )critical value, we check the energy distribution of the
state that produces maximum average power. More precisely,
we calculate the inner product between the evolved state giv-
ing the maximum power and eigenstates of the corresponding
Hamiltonian; that is, if the state that stores the maximum
average power is |ψμ(t )〉 (μ = f , b), we compute the quantity
pμ

i = |〈εμ
i |ψμ(t )〉|2, where |εμ

i 〉 is the eigenstate of the BH
or FH model with energy Ei. To identify the dynamically
preferred state, we compute the energetically preferred dis-
tribution as{

EDμ
i

} = {
pμ

i Eμ
i

} ∀ i = {
1 · · · Nμ

E

}
, (13)

where Nμ
E is the number of eigenvectors

{|Eμ
1 〉, |Eμ

2 〉, . . . , |Eμ
NE

〉} in both the Bose and Fermi cases.
We study {EDμ

i } against the corresponding {Ei} in Fig. 6. It
shows that when U μ/Jμ (μ = f , b) is less than the critical
point where the fermionic battery is better than the bosonic
ones, there is a larger energetic contribution from the excited
state in the Fermi case compared to the bosonic ones. After
the critical point, the situation reverses, and the excited states
in the Bose-Hubbard model contribute more than those in the
Fermi-Hubbard case.

IV. EFFECTS OF THE FILLING FACTOR AND
TEMPERATURE ON THE AVERAGE POWER OUTPUT

Until now, the entire analysis has been carried out by con-
sidering the half filling and the case when the battery is the
ground state of the Hamiltonian. Let us lift both restrictions
and study the consequences for the performance of the QB.

First, we explore the dependence of filling factors on the
power output of the battery. Before going further, let us first
discuss two extreme situations for which the power outputs
vanish when the battery is made of fermions.

Remark 2. For a fixed lattice site, if all the lattice sites are
completely occupied by up or down or both up and down
fermions allowed by the Pauli exclusion principle, no work
can be extracted from the system since no excitation is possi-
ble in this scenario.

Remark 3. Suppose all the lattice sites are filled with
down (up) fermions. If we now increase the number of up
(down) fermions one by one on a lattice, the power output
again vanishes. This is because in this process, the charging
Hamiltonian comes out to be an identity matrix multiplied by
a constant, which is the strength of the charging field, and after
evolving for a time interval t , the evolved state ρ(t ) remains
identical to the initial ground state ρ(0). Hence, to obtain a
nontrivial power output from the QB, the number of up and
down fermions in the system of L lattice sites must be upper
bounded by L − 1.

In the fermionic system, we also find the following:
Observation 1. The maximum extractable power is the

same under the exchange of the total number of up and down
fermions in the system, i.e., Pmax(N1

↑, N2
↓ ) = Pmax(N1

↓, N2
↑ ),

where Ni, i = 1, 2, is the number of up (down) and
down (up) fermions, respectively. Moreover, we notice that
Pmax(N1

↑, N2
↓ ) = Pmax(L − N1

↑, L − N2
↓ ).

Following all these symmetries, let us first calculate the
number of configurations that give the nontrivial dynamics
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FIG. 6. {EDi} against the corresponding energy eigenvalues of the normalized Hamiltonian {Ei} for two different lattice sites, L = 4 (left)
and L = 5 (right). Here Uc = 2. Solid (dashed) lines correspond to fermions (bosons). With the increase of U μ/Jμ, the shades get lighter. Both
axes are dimensionless.

of a fermionic system with a total number of lattice sites
L. The constraints which dictate the configurations are given
by (1) N1

↑ + N2
↓ � L, (2) N1

↑, N2
↓ � 1, and (3) N1

↑, N2
↓ := L −

N1
↑, L − N2

↓ . Therefore, the total number of configurations S
contributing to the output power is given by

S = (L − 1) + {(L − 2) − 1} + · · ·

+
{(

L −
⌊L

2

⌋)
−

⌊L

2

⌋
+ 1

}
. (14)

It is easy to check that for even L, S = L2

4 , while S = L2−1
4

when L is odd. For example, with L = 2, the total number
of possible configurations is seven. However, incorporating
all the aforementioned symmetries, we observe that only a
particular configuration among all those choices is responsible
for the maximum amount of power from the battery, which
turns out to be N f

↑ = 1 and N f
↓ = 1 for the entire parame-

ter regime of U f /J f as counted in Eq. (14). However, by
increasing the lattice sites, we obtain the maximum power
contribution from different filling factors depending on the
tuning parameter U f /J f . To capture it, we introduce a quan-
tity P̃ f

max = max P f
max (see Fig. 7) where the maximization is

performed over all possible configurations. First of all, P̃ f
max

decreases with the increase of lattice sites, although the rate
of decrease depends on whether L is even or odd. Second, the
average power output is symmetric about U f /J f = 0 (com-
pared with Fig. 3). Third, unlike for an even number of lattice
sites, the value of P̃ f

max is independent of L at U f /J f = 0 for
an odd number of lattice sites, although the maximum occurs
at some point with U f /J f > 0 and U f /J f < 0 symmetrically.

In the case of the BH model, we consider a scenario in
which the number of lattice sites is fixed to L and avail-
able particles per site is at most n. Again, we examine
P̃b

max = max Pb
max, where the maximization is taken over all

the allowed configurations possible under the constraint of n
particles per site, thereby optimizing over nL configurations
(see Fig. 8 for L = 4). For a fixed number of lattice sites, P̃b

max
increases with the increase of n. In contrast to the fermionic
battery, the power output for the bosonic battery is not sym-
metric about the U b/Jb = 0 line.

Role reversal of bosonic and fermionic batteries depending
on temperature. In a more realistic situation, one expects that
the initial state of the quantum battery is the thermal state or
the canonical equilibrium state (ρth) of the Hamiltonian. To
illustrate the effects of temperature on the maximum average
power output of the battery built using the BH and FH models,
we examine the performance score �

f −b
P by varying U/J ,

where U b = U f = U and J f = Jb = J , and we set β = |J|β ′.
With the increase of temperature, we find that Proposition 1
for two lattice sites does not remain valid, i.e., P f

max �= Pb
max

with some moderate temperature. Specifically, we find that
for U/J = 5, �

f −b
P becomes negative when the initial state is

prepared at β � 39.5, thereby showing that bosonic batteries
outperform the fermionic ones. Such an advantageous role of
bosonic systems persists also for a higher number of lattice
sites with a certain β value and a wide range of U/J , as
depicted in Fig. 9. Specifically, if the initial state is prepared at
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FIG. 7. Variation of P̃ f
max (see the text for the definition; ordinate)

vs U f /J f (abscissa). Notice that the symmetry missing around the
U f /J f = 0 line in Fig. 2 for odd lattice sites can be attained by
considering the quantity P̃ f

max obtained after maximizing over con-
figurations. All other specifications are the same as in Fig. 2. Both
axes are dimensionless.
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over all nL configurations. Dark to lighter shade indicates the in-
crease of state per site. All axes are dimensionless.

a very high temperature, the maximum average power output
obtained from the BH model is higher than that of the FH one
for most of the repulsive on-site interactions, i.e., for positive
values of U/J .

V. ROBUSTNESS OF BATTERIES BASED ON HUBBARD
MODELS IN THE PRESENCE OF DISORDER

In an ultracold-atom experiment, disorder can be intro-
duced in the system in a controlled manner [37], leading to
the quenched disordered system. In particular, van der Waals
losses are mitigated by placing atoms at a significant distance
from the atom chip, which results in an adjustment of the
magnetic wire, leading to the uniform disorder in the on-
site intraparticle interactions U μ/Jμ (μ = f , b) [70,71] of the
Hubbard Hamiltonian. The disorder is chosen from a uniform
distribution, U μ

u /Jμ ∈ [a, b], with mean 〈U μ
u 〉/Jμ = a+b

2 and

-0.3
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-0.1

 0

 0.1
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FIG. 9. �
f −b
P (vertical axis) with U/J (horizontal axis). Here

β = 3. All other specifications are the same as in Fig. 2. All axes
are dimensionless.

standard deviation σμ
u =

√
(b−a)2

12 . On the other hand, the local
potential can also be sampled from the Gaussian distribution

[72], U μ
G /J ∈ 1

σ
μ
G

√
2π

e
− 1

2 (
x−〈Uμ

G 〉/Jμ

σ
μ
G

)2

, with mean 〈U μ
G 〉/Jμ and

standard deviation σ
μ
G . Here the subscripts u and G in the

mean and standard deviation represent the uniform and Gaus-
sian distributions, respectively.

By incorporating uniform and Gaussian randomness in the
on-site interactions 〈U μ

u 〉/Jμ and 〈U μ
G 〉/Jμ of the batteries

built using the FH and BH models, we examine the quenched
maximum average power [73] 〈Pμ

max〉. It is obtained by com-
puting Pμ

max for every value of U μ/Jμ chosen randomly from
both uniform and Gaussian distributions with the correspond-
ing means and standard deviations. The number of realizations
considered here for calculations is 2 × 105, leading to a con-
vergence up to two decimal places. In order to maintain a
fair comparison between systems with and without disorder,
we choose L = 4 sites with half filling; the particles per site
for bosons are restricted to two, while the numbers of spin-up
and spin-down fermions are the same. We report that for both
bosons and fermions, 〈Pμ

max〉 does not change substantially
in the presence of impurities in the on-site interactions, as
shown in Fig. 10(a), thereby illustrating robustness in the
performance of the battery against disorder.

On the other hand, disorder in the hopping parameter of
the Hubbard Hamiltonian can be realized by modulating the
applied electric field of the laser or by doping impurities in
the system [72,74]. In this scenario, the quenched disorder
power outputs 〈Pμ

max〉 from the FH and BH models are again
computed by varying 〈Jμ

G(u)〉/U μ for different but fixed stan-
dard deviations. Like randomness in the on-site interactions,
when both uniform and Gaussian disorders are impinged in
the hopping terms of the Bose- and Fermi-Hubbard Hamil-
tonians, thereby changing the initial state of the battery, no
significant consequences for the power of the battery are ob-
served over the ordered case [see Fig. 10(b)]. Interestingly,
however, when we do a close inspection, we notice that for
〈Jμ

G 〉/U μ < 0.15 (〈Jμ
u 〉/U μ < 0.15), the quenched averaged

power output from the disordered battery is higher than that
of the ordered case, thereby showing improvements in the
performance of the battery in the presence of impurities in the
hopping. Such a disorder-enhanced power is discovered for
both fermionic and bosonic systems. In the ordered scenario
with σ = 0 in Figs. 10(c) and 10(d), the output power is a
monotonically increasing function of Jμ, i.e., Jμ(ε) > Jμ(ε′)
where ε > ε′ in some parameter regime. Moreover, it has a
very high slope in the same parameter regime, which im-
plies that 〈Pμ

max〉(〈Jμ〉i+1) − 〈Pμ
max〉(〈Jμ〉i ) 
 〈Jμ〉i+1 − 〈Jμ〉i

around Jμ = ε with ε → 0. By introducing disorder into the
system, we perform averaging over different realizations of
Jμ from a range of η + 3σ to η − 3σ in the parameter space,
where η is the mean value of Jμ and σ is the standard devi-
ation. Since there are parameter values of Jμ where the slope
of the power with σ = 0 is much higher than unity, the power
obtained between [η, η + 3σ ] is much higher than that ob-
tained in the region with [η − 3σ, η], thereby providing higher
power values for the disordered case than for the ordered
ones. Specifically, the advantage in power with impurities is
detected in the regime 0 � 〈Jb

u 〉/U � 0.12 for bosons, while
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FIG. 10. Disorder-enhanced power. (a) and (b) Quenched averaged power 〈Pμ
max〉 by varying 〈U μ〉/J and 〈Jμ〉/U with μ = f , b. Here

L = 4, and the initial state is the ground state of the system. σ
μ
G and σμ

u represent the standard deviations of the Gaussian (solid line) and
uniform (dashed line) distributions, respectively, from which the on-site interactions and the hopping are randomly chosen. Note that σ = 0
represents the ordered systems (dash-dotted line). Higher 〈Pμ

max〉 values correspond to the disordered FH models, while the lower values are for
the bosonic systems. (c) and (d) 〈Pb

max〉 and 〈P f
max〉 are plotted with respect to 〈Jb〉/U and 〈J f 〉/U , respectively. Dark to lighter shade indicates

the decrease of standard deviation, except for the ordered case. In both situations, systems with impurities turn out to be a better storage device
than that of ordered systems, thereby showing disorder-induced power. All axes are dimensionless.

the range of parameters 〈J f
u 〉/U ∈ [0, 0.148] increases in the

case of the FH model [compare Figs. 10(c) and 10(d)]. Note,
interestingly, that the power obtained in the disordered case is
almost equal to the battery with the ordered Hamiltonian in the
entire range of parameters, thereby establishing the robustness
against impurities in such a battery design.

VI. CONCLUSION

Batteries are integral parts of any technology for storing
power and utilizing it as a source of energy at any point in
time. We know that the existing batteries that we termed clas-
sical batteries convert chemical energy to electrical energy and
are quite useful, although current technological developments
demand miniaturization, which inevitably has the possibility
of entering the quantum regime. To fulfill the requirements,
quantum technologies are designed which also necessitate the
modeling of a storage device based on quantum mechanics,
leading to quantum batteries. Recently, several experimental
proposals for QBs using quantum dots coupled to cavities,
superconducting qubits, have been developed and realized.

In this work, we designed a quantum battery in the pres-
ence and absence of impurities using ultracold atoms in

optical lattices which can be implemented via currently avail-
able technologies. In particular, we prepared the initial state
of the quantum battery as the ground or thermal state of
the Fermi-Hubbard and Bose-Hubbard models. The charging
process of the battery was carried out by tuning the on-site
interactions. We showed that in the case of more than two
lattice sites and with half filling, the QB based on the Fermi-
Hubbard model can store a larger amount of energy compared
to the battery based on the Bose-Hubbard model provided
the on-site interactions are attractive or repulsive with mod-
erate values. The situation is reversed if the temperature
in the initial state is reasonably high. Moreover, we noticed
that the filling factors in both bosonic and fermionic models
play a crucial role in the power output of the battery. Specif-
ically, the maximum average power after optimizing over all
the configurations increases with the increase of particles per
site in the case of bosons.

One of the success stories in ultracold atomic systems is
the realization of disorder in a controlled manner. We found
that the randomness in the uniform and Gaussian distributions
in the hopping and in the on-site interactions does not affect
the performance of the QB significantly, thereby demon-
strating the advantage of preparing these batteries based on
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ultracold atoms. We also identified a region of mean hop-
ping strength below which the quenched averaged power is
higher for the disordered system than for the ordered ones:
disorder-enhanced power. The engineering of QBs proposed
via bosonic and fermionic systems opens up the possibility to
design thermal machines based on Hubbard models that are
realizable in laboratories, and at the same time, it can pinpoint
the regime in which machinery based on bosons is better than
that based on fermions and vice versa.
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APPENDIX A: TWO-SITE TWO-PARTICLE SYSTEM

Let us consider the scenario in which the lattice has
two sites occupied by two bosonic particles. The normalized
Hamiltonian in the Fock-state basis looks like

Hb
B = 1√

16Jb2 + U b2

⎡
⎢⎢⎢⎢⎢⎢⎣

U b −2
√

2Jb 0

−2
√

2Jb −U b −2
√

2Jb

0 −2
√

2Jb U b

⎤
⎥⎥⎥⎥⎥⎥⎦

.

(A1)

The initial state ρ(0) of the system is the ground state of this
Hamiltonian Hb

B , given by

ρ(0) =

⎡
⎢⎢⎢⎢⎢⎢⎣

1
4 (1 − a)

√
2b′ 1

4 (1 − a)

√
2b′ 1

2 (1 + a)
√

2b′

1
4 (1 − a)

√
2b′ 1

4 (1 − a)

⎤
⎥⎥⎥⎥⎥⎥⎦

, (A2)

where a = U b√
16Jb2+U b2

and b′ = Jb√
16Jb2+U b2

. We construct the

charging Hamiltonian by setting Jb = 0, which reads

Hb
c =

⎡
⎣U b

c 0 0
0 0 0
0 0 U b

c

⎤
⎦. (A3)

After evolving the state ρ(0) by the unitary operator Uc =
exp(−iHb

c t ) for a time interval t , the resultant state ρ(t ) be-
comes ⎡

⎢⎢⎢⎢⎢⎢⎣

1
4 (1 − a)

√
2b′e−itU b

c 1
4 (1 − a)

√
2b′eitU b

c 1
2 (1 + a)

√
2b′eitU b

c

1
4 (1 − a)

√
2b′e−itU b

c 1
4 (1 − a)

⎤
⎥⎥⎥⎥⎥⎥⎦

. (A4)

The average work output can then be computed as

W b(t ) = Jb2

Jb2 + (0.25U b)2

[
1 − cos

(
tU b

c

)]
. (A5)

APPENDIX B: THREE-SITE AND THREE-PARTICLE SCENARIO IN THE ABSENCE OF ON-SITE INTERACTION

Let us consider a lattice with three sites; for the FH model, it has N f
↑ = 2 and N f

↓ = 1. In the absence of U f , the three-particle
Hamiltonian reads

H f
B = 1

4
√

2J f

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 −2J f 0 −2J f 0 0 0 0 0
−2J f 0 −2J f 0 −2J f 0 0 0 0

0 −2J f 0 0 0 −2J f 0 0 0
−2J f 0 0 0 −2J f 0 −2J f 0 0

0 −2J f 0 −2J f 0 −2J f 0 −2J f 0
0 0 −2J f 0 −2J f 0 0 0 −2J f

0 0 0 −2J f 0 0 0 −2J f 0
0 0 0 0 −2J f 0 −2J f 0 −2J f

0 0 0 0 0 −2J f 0 −2J f 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (B1)

Following the same construction procedure as for two lattice sites, the charging Hamiltonian takes the form

H f
c = diag

{
U f

c ,U f
c , 0,U f

c , 0,U f
c , 0,U f

c ,U f
c

}
,

which leads to the average work for a system composed of fermions as

W f (t ) = 0.75
[
1 − cos

(
tU f

c

)]
. (B2)

022618-10



QUANTUM BATTERY WITH ULTRACOLD ATOMS: BOSONS … PHYSICAL REVIEW A 106, 022618 (2022)

On the other hand, for the BH system with L = 3 and Nb = 3 with a maximum of two particles per site, the Hamiltonian
becomes

Hb
B = 1

(3 + √
17)Jb

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 −2Jb −4Jb 0 0 0 0
−2Jb 0 0 −2

√
2Jb 0 0 0

−4Jb 0 0 −2
√

2Jb 0 0 0
0 −2

√
2Jb −2

√
2Jb 0 −2

√
2Jb −2

√
2Jb 0

0 0 0 −2
√

2Jb 0 0 −2Jb

0 0 0 −2
√

2Jb 0 0 −4Jb

0 0 0 0 −2Jb −4Jb 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (B3)

In this case, the charging Hamiltonian reads

Hb
c = diag

{
U b

c ,U b
c ,U b

c , 0, 0,U b
c ,U b

c ,U b
c

}
,

and the average work turns out to be

W b(t ) = 0.621
[
1 − cos

(
tU b

c

)]
. (B4)
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