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Refrigeration via purification through repeated measurements
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We design a measurement-based quantum refrigerator with an arbitrary number of qubits situated in a
one-dimensional array that interact through variable-range XY interactions. The method proposed is based on
repeated evolution followed by a measurement on the single accessible qubit, which has the potential to reduce
the temperature in the rest of the subsystems, thereby demonstrating cooling in the device. The performance of
the refrigerator is quantified by the fidelity of each local subsystem with the ground state of the local Hamiltonian
and the corresponding probability of success. We identify system parameters, which include the interaction
strength, range of interactions, initial temperature of each qubit, and the position of the measured qubit, so
that the fidelities of all the unmeasured qubits approach unity with a nonvanishing probability. We observe
that although strong interactions during evolution are required to achieve cooling, the long-range interactions
typically deteriorate the performance of the refrigerator, which indicates that interactions are not ubiquitous.
We report the scalability and the saturation property of the success probability with respect to the system size,
which turns out to be independent of the involved system parameters and the number of repeated measurements.
Furthermore, we show that the number of subsystems which can be cooled changes depending on the odd or even
number of sites in the refrigerator. We argue that the distribution of entanglement between unmeasured qubits
can give a possible explanation of the dependence of cooling process on the measured and unmeasured sites.
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I. INTRODUCTION

In the last few years, the breakneck modernization of tech-
nology has created several essential and pertinent directions
in the field of quantum thermodynamics [1–4]. Rapid develop-
ments also demand designing quantum devices which perform
more efficiently than the existing ones and can be built
by using currently available technologies. In all discovered
thermal machines, such as quantum batteries [5], quantum
transistors [6], diodes [7], and quantum refrigerators [8–11],
significant enhancements can be shown to be achieved in the
quantum domain compared to classically available devices.
Most importantly, these machines designed using the Dicke
system [12], low- and higher-dimensional systems [13–16],
mechanical resonators [17], and quantum spin models [11,18]
have successfully been engineered in physically realizable
substrates like cold atoms [19], nuclear magnetic resonances
[20], trapped ions [21], atom-cavity systems [22], and super-
conducting circuits [23]. In spite of all these advancements, it
has also been realized that there are several avenues through
which the efficiencies of these devices can be improved.

Three interacting quantum systems [8,18,24–26], each
connected to a noninteracting Markovian thermal bath with a
different temperature, are a possible setup for a small quantum
refrigerator. Typically, to lower the temperature of the target
system, the dynamics of the system is controlled in such a
manner that thermal energy is transferred to the hot bath
from a cold one with the help of another heat bath, known
as a work reservoir [27], both in the steady state and in the
transient regimes. Precisely, the main aim of such a function
of a refrigerator is to keep the state of the target system in

the available ground state, so that the local temperature of the
system becomes the minimum, thereby achieving the cooling.
Numerous works were recently carried out in this direction,
concentrating mainly on systems consisting of qubits, qubit-
qutrit systems [8,28,29], and also higher-dimensional spin
systems [16]. In addition, these steady-state cooling proce-
dures can be accomplished with external energy sources or
by disallowing sources of external control, thereby leading to
self-contained heat engines [8,30] or in a periodically driven
system [31] or via repeated collision [32] or with a reverse-
coupling mechanism [33].

All the aforementioned designs of quantum refrigerators
are restricted by the fact that the state of the target system
can attain the corresponding ground state from an arbitrary
thermal state, thereby arriving at a temperature lower than its
initial one by means of the open-system evolution described
by the Gorini-Kossakowski-Sudarshan-Lindblad master equa-
tion [27,34]. In this work, we choose a completely distinct
route: Starting from the local spin Hamiltonian, the phe-
nomenon of cooling, i.e., the refrigeration of several quantum
systems, is achieved via repeated unitary evolution of the
entire system governed by quantum prototypical spin models
followed by a measurement on a single accessible qubit. From
a different perspective, the repeated-measurement scenario
was first considered in the context of purifying a subsystem
from the mixed state by performing frequent measurements
on another subsystem [35,36]. Almost at the same time, a uni-
tary evolution-based cooling protocol of a nearest-neighbor
spin system was proposed [37,38] in which by using a set
of noninteracting qubits (controller system), the sequential
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interactions between one of the controllers and the spin model
lead to cooling by applying a unitary SWAP operator. It was
later used to cool a mechanical resonator by performing
measurements on the flux qubits which are in contact with
the resonator [17,39–41] and also in spin systems [42]. Re-
cent work generalized the situation for double resonators,
thereby achieving simultaneous cooling [43,44]. It was also
shown that in this process of repeated measurements, bipar-
tite as well as multipartite entangled states can be generated
[35,36,45,46].

In this proposal, the state of the measured qubit is initially
taken to be the ground state of the local Hamiltonian, while
unmeasured qubits are prepared in the thermal state of the
same local Hamiltonians. At a later time, the interactions
between measured and unmeasured qubits are turned on ac-
cording to the anisotropic variable-range XY Hamiltonian up
to a certain interval of time to generate the correlation between
the systems. We now address the following question: Is it pos-
sible to refrigerate every individual unmeasured qubit of the
system by measuring only a particular subsystem repeatedly?
We answer it affirmatively. We report that by choosing the sys-
tem parameters, the time of evolution, and the measurement
basis appropriately, it is possible to decrease the temperature
of every individual qubit with a finite probability when the
dynamics is governed by both short- and long-range interac-
tions. In particular, a successful cooling process is measured
by computing the fidelity between the time-evolved reduced
subsystem after measurements and the corresponding ground
state of each local subsystem. Notice that the procedure of
cooling is different from the quantum Zeno effect [47], which
deals with frequent measurement, thereby slowing down the
dynamics of the system.

When a refrigerator consists of three spin- 1
2 particles, we

derive analytical forms of fidelity after arbitrary rounds of
evolution and measurements. Numerical simulations reveal
that when a one-dimensional (1D) array of spins composed
of at most eight spin- 1

2 particles represents a refrigerator, the
fidelity depends crucially on the range of interactions, system
parameters, and position of the measured qubits in the array.
Although the protocol is probabilistic, we find that the prob-
ability of successfully achieving cooling saturates to a finite
nonvanishing value with the number of measurements, and
we also report its scaling with the system size when cooling
occurs for all the unmeasured qubits which are independent of
the system parameters.

Some previous works [35,36] showed that one can gen-
erate a multiparty entangled state by measuring on a single
qubit repeatedly. We show here that the cooling procedure
can be connected to the distribution of entanglement [48,49]
among unmeasured qubits. In particular, a decrease in the
sum of entanglement between the unmeasured qubits imme-
diately implies that the refrigerator works. This is due to
the fact that quantum correlation created in the initial steps
induces cooling in the system, although the procedure be-
comes successful only when the final state produced between
unmeasured qubits is a fully separable state.

This paper is organized as follows: In Sec. II, we introduce
the model of refrigeration for an arbitrary number of qubits
interacting through the variable-range interaction and define
the figure of merit. In Sec. III, we derive a compact analytical
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FIG. 1. Steps of a measurement-based refrigerator. An arbitrary
qubit (blue) which is initially prepared as the ground state of the local
Hamiltonian is chosen for the measurement, while the rest of the
qubits (red) are initially in the thermal state of a local Hamiltonian
with finite temperature. The system evolves according to the unitary
operator U (t ) followed by a measurement on a single qubit which is
in the ground state. By properly choosing the desired output state of
the measured qubit, we again let the whole system evolve according
to the same unitary. The aim of such repeated evolutions followed
by measurements is to project all (some) of the qubits to the ground
state of the local Hamiltonian, thereby achieving cooling. We show
that it is indeed possible to achieve.

form of fidelity for a three-qubit refrigerator and compare
the performance depending on the position of the measured
qubits. Proceeding further in Sec. IV, we examine the effects
of measurements and coupling strength when the initial states
of the subsystems are maximally mixed for a refrigerator built
with more than three spin- 1

2 particles. Section IV B reports the
efficiencies of the refrigerator when the unmeasured qubits
are prepared in the thermal state with moderate temperature.
In Sec. V, we present the consequences of measurements
performed on different spatial positions on cooling, and we
finally conclude in Sec. VI.

II. REPEATED MEASUREMENT-BASED REFRIGERATOR
MODEL

Let us first introduce the setup of a refrigerator based
on repetitive quantum measurements (Fig. 1). The model
consists of L spin- 1

2 particles, denoted as A1, A2, . . . , AL,
governed by the local Hamiltonian HAi (i = 1, 2, . . . , L) in a
one-dimensional array, as depicted in Fig. 2. The measure-
ment is performed on a single accessible qubit placed in any
arbitrary position of the array, referred to as AM

j ( j �= i), which
is prepared in the ground state |GAM

j
〉 of its local Hamilto-

nian HAM
j
. The rest of the unmeasured qubits are prepared in

the thermal states of their respective local Hamiltonians HAi

(i = 1, 2, . . . , L, i �= j). Hence, the initial state of the total
L-party system reads

ρ(0) = ∣∣GAM
j

〉〈
GAM

j

∣∣ ⊗ ρL−1
in , (1)

where ρin = ⊗L
i �= j,i=1 ρAi is the initial state of the unmea-

sured qubits. Notice that the initial state is fully separable,
having vanishing multiparticle as well as bipartite entangle-
ment [50–52]. When t > 0, the system evolves according to
the Hamiltonian Hev, consisting of

∑
i HAi + HAM

j
+ Hint for a

certain interval of time t , where Hint represents the interaction
term between L spin- 1

2 particles (see Fig. 2). In this situation,
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FIG. 2. Schematic diagram of the spin-chain where during
dynamics, the system evolves according to Hev, containing the
variable-range interacting Hamiltonian Hint , which scales as J

|i− j|α ,
with i and j being the sites of the spins. An accessible qubit is
chosen for the measurement and is initially prepared as the ground
state of the local Hamiltonian, while the rest of the inaccessible
qubits (shaded region) are initially in the thermal state with finite
temperature.

it is reasonable to expect that the corresponding global uni-
tary operator, U (t ) = exp(−iHevt ), is responsible for creating
quantum correlation between L subsystems. The evolution is
followed by an arbitrary projective measurement at site AM

j

with the set of projection operators {�M
k }2

k=1, whose elements
are the ground and excited states of HAM

j
. Postselection of the

output state is performed to ensure that the measured qubit
AM

j is projected to the ground state, i.e., �M
1 = |GAM

j
〉〈GAM

j
|,

and we discard the process if the excited state clicks and start
the protocol from the beginning. In the case of the desired out-
come, �M

1 , the entire process is repeated an arbitrary number
of times, say, N times, until the individual L − 1 qubits reach
their respective ground states of the initial Hamiltonian |GAi〉.
Starting from a thermal state with an arbitrary high tempera-
ture, the above process demonstrates that repeated evolution
for a short period of time and projective measurements can
drive all (some of) the unmeasured subsystems to reach the
ground states, thereby lowering the temperature (energy) of
the individual subsystem as well as the entire system. We call
this procedure refrigeration. In other words, cooling occurs
successfully when purification of thermal states takes place,
thereby reaching pure states with minimum energy. Note that
in contrast to the well-known Zeno measurement, we consider
the time of the dynamics t to be nonvanishing and finite and
the repetition of measurements N to be large but finite. As
argued in Ref. [35], purification of the unmeasured part of
the system occurs due to the projection into the eigenstate
corresponding to the maximum eigenvalue of the nonunitary
evolution operator. With an increasing number of measure-
ments, such an eigenstate dominates depending on the choice
of parameter, and hence, we can project an unmeasured state
to a different purified state by tuning system parameters suit-
ably. This picture is similar to the above-proposed protocol
in which changing the spatial position of the measurement
can lead to different eigenstates of the nonunitary evolution,
thereby leading to distinct fidelities of the unmeasured qubits.
We will also show that successful implementation of the cool-
ing process can be explained via the entanglement properties
of the unmeasured qubits.

After the completion of the whole process of repeated
evolution and measurements for a particular interval of time
t , the resultant state in the case of the desired outcome from
the measurement can be represented as

ρ(t ) = 1

pN

(
�M

1 U
)N

ρ(0)
(
�M

1 U†
)N

. (2)

Here pN is the probability of a successful implementation of
cooling at each step, which can be calculated as

pN = Tr
[(

�M
1 U

)N
ρ(0)

(
�M

1 U†)N]
(3)

when the measurement outcome at each step is �M
1 at site AM

j .
We calculate the reduced state of each unmeasured subsystem
by tracing out the other L − 1 qubits, given by

ρAi (t ) = Tr Āi
[ρ(t )], (4)

where Ai represents all the qubits except Ai. As mentioned
before, the main focus in building a refrigerator is to arrive at
the ground state of as many unmeasured qubits as possible. To
measure the performance of the refrigeration, we compute the
fidelity of each qubit after an arbitrary step N in the ground
state of the local Hamiltonian HAi , which mathematically
reads

F ≡ FAi (N ) = 〈
GAi

∣∣ρAi (t )
∣∣GAi

〉
, (5)

where |GAi〉 is the ground state of qubit Ai, corresponding to
the initial Hamiltonian HAi . Note that F also depends on the
tuning parameter of the system, which can be a function of
different parameters involved in the system like the interaction
strength, the range of interactions, the strength of the magnetic
field, and the initial temperature of the unmeasured qubits.
Since our aim is to build a proper refrigerator, we continue
the process until the fidelities for all (some) of the qubits ap-
proach unity. Hence, during investigations, we have to choose
suitable (optimized) system parameters as well as projection
operators so that the cooling is achieved. Moreover, each
step consists of measurements, and the performance of the
refrigerator can be ensured only if one obtains a nonvanishing
probability pN after N steps for some subsystems.

Realizing refrigeration with quantum spin models

The refrigerator discussed above has three important com-
ponents: (1) the initial state of the individual qubit governed
by a local Hamiltonian; (2) the evolution operator, especially
the interaction part, which is responsible for nontrivial dy-
namics; and (3) the projective measurement. Let us illustrate
each ingredient of a refrigerator for a specific implementation
considered in this paper.

Initial states. The initial state of L − 1 unmeasured qubits
is considered to be the thermal state of their local Hamiltonian,

HAi = ωAi

2
σ z

i , (6)

where σ
μ
i (μ = x, y, z) is the Pauli matrices acting on the

subsystem i while the measured one is initially prepared as the
ground state of the same Hamiltonian. Here ωAi is the strength
of the external magnetic field on qubit Ai. Therefore, the initial
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state reads

ρin =
⊗
i �= j

1

Zi
exp

( − βHAi

) ⊗ ∣∣GAM
j

〉〈
GAM

j

∣∣, (7)

where β = 1
kBT is the inverse temperature corresponding to

the absolute temperature T , with kB being the Boltzmann con-
stant, and Zi = Tr [exp(−βHAi )]. We assume β is the same
for all the unmeasured spins.

Evolution operator. The integral part of a refrigerator is
the unitary evolution of the whole system for establishing
the quantum correlation between the qubits, which plays an
important role in achieving cooling. The unitary dynamics is
dictated by the local Hamiltonian HAi (i = 1, 2, . . . , L) along
with the interacting variable-range XY Hamiltonian,

Hint =
L∑

i< j

Ji j

4

[
(1 + γ ) σ x

i σ x
j + (1 − γ )σ y

i σ
y
j

]
, (8)

where γ is the anisotropy parameter in the xy plane; Ji j is
the interaction strength between qubits i and j, which varies
according to the variable-range interaction, Ji j ∼ J

|i− j|α , with
α being the falloff rate of the interaction strengths between
different subsystems; and J is a coupling constant which
dictates a ferromagnetic (J < 0) or antiferromagnetic (J > 0)
type interaction between the qubits. Note that a large value of
α, i.e., α > 2, actually mimics the nearest-neighbor Hamilto-
nian, while α � 1 mimics the long-range behavior. Therefore,
the Hamiltonian which dictates the evolution can be written as
Hev = ∑

i HAi + Hint.
Measurements. Let us consider a linear array of spins in

which projective measurements {�M
k = |GAM

j
〉 , |EAM

j
〉} is per-

formed on the qubit AM
j . In this scenario, {�M

k } reduces to
a measurement in the computational basis, i.e., {|0〉 , |1〉} at
each step. We continue the process only when the outcome |1〉
which is the ground state of the local Hamiltonian in Eq. (6)
clicks.

III. THREE-QUBIT MEASUREMENT-BASED
REFRIGERATOR

Let us first illustrate the performance of a measurement-
based refrigerator consisting of three spin- 1

2 particles. Refrig-
erators built with a higher number of qubits will be dealt in
the following section.

First qubit as the accessible one. Let us consider the sce-
nario where the qubits are placed in a 1D array (as in Fig. 2)
and the measured one is the first qubit AM

1 , while the rest of
the qubits are denoted by A2 and A3. The initial state in this
case is taken to be

ρ(0) = ∣∣GAm
1

〉〈
GAm

1

∣∣ 3⊗
i=2

1

Zi

[
exp

( − βHAi

)]
, (9)

where the unmeasured qubits are the thermal states of the
local Hamiltonian in Eq. (6) and the measured qubit is the
ground state of the same Hamiltonian. We will argue later
that the spatial position of the measured qubit also affects the
cooling mechanism. Notice that when the temperatures of the
unmeasured initial states are below some critical temperature,

the local states are close to the ground state of the local Hamil-
tonian HAi , thereby leading to a trivial situation. On the other
hand, an interesting scenario emerges when the temperature
of the initial state is high enough.

Let us start with an extreme case, i.e., when the unmea-
sured qubits are initially prepared as maximally mixed, i.e.,
the thermal states with β = 0. The system evolves accord-
ing to the nearest-neighbor XX Hamiltonian in the presence
of a magnetic field, given in Eqs. (8) and (6) with γ = 0,
α > 2, and ωAi = 1, while the measurement on the qubit
AM

1 is performed in the basis of the local Hamiltonian, i.e.,
{|GAM

1
〉, |EAM

1
〉}. All the qubits evolve for a short period of time

t which is followed by a measurement. After N steps of the
evolution and measurement, the resulting tripartite state can
be found to be

ρ(t ) = x|100〉〈100| + yP[a|110〉 + b|101〉]
+ (1 − y − x)|111〉〈111|, (10)

where |1〉 and |0〉 represent the ground and excited states of
HAi , respectively; x, y, a, and b depend on the system param-
eters as well as repetition of the process N ; and P is the
projector. When the outcome of the measurement is |GAM

1
〉, the

output state at each subsystem ρ
f
Ai

turns out to be diagonal in
the computational basis, given by

ρ
f
Ai

= 1

N

(
ηAi

∣∣GAi

〉〈
GAi

∣∣ + η′
Ai

∣∣EAi

〉〈
EAi

∣∣). (11)

Here |EAi〉 denotes the excited state of the local
Hamiltonian, the coefficients ηAi and η′

Ai
are func-

tions of
∑2N−1

r=1,3,... Ar cos( Jtr√
2

) with only odd r and∑N
r=1 Br cos(

√
2Jtr) up to some constant factor, and N

is the normalization constant. To quantify the performance
of the refrigerator, the corresponding fidelity of qubit Ai

(i = 2, 3) can be represented as

FAi (N ) = 〈
GAi

∣∣ρ f
Ai

∣∣GAi

〉
, (12)

which takes the following form, after N rounds:

FAi (N ) = 1

N

[
CN

Ai
+

2N−1∑
r=1,3,...

C′r
Ai

cos

(
Jrt√

2

)

+
N∑

r=1

C′′r
Ai

cos(
√

2Jtr)

]
, i = 2, 3. (13)

The coefficients CN
Ai

, C′r
Ai

, and C′′r
Ai

depend on the number
of times evolution and measurement operators N act on the
system and other system parameters. After a few such steps,
the fidelity gets close to unity, provided Jt is chosen appro-
priately. To visualize the dependence on parameters, we plot
FA2 and FA3 by varying J for N = 10 and t = 1 in Fig. 3.
Notice that the two-party reduced density matrix between the
inaccessible qubits which is obtained after measuring on the
first qubit is again a function of x, y, a, and b and the second
term is responsible for generating entanglement in the system.
We find that by increasing the number of measurements N the
cross term vanishes, which leads to a fully separable state for
their corresponding ground states (i.e., FAi = 1), describing
the phenomenon of cooling. Due to symmetry, a similar cool-
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FIG. 3. Variation of the fidelity as a function of the interaction
strength J . The refrigerator consists of three qubits which interact
with each other via the nearest-neighbor XX Hamiltonian in the
presence of magnetic field in Eq. (8) with α > 2.5. The initial state is
a fully separable state, given in Eq. (9) with β = 0. Dashed and solid
lines represent the fidelities of the second and third qubits (ordinate)
with respect to J (abscissa) when the measurement is performed in
the first qubit. The dash-dotted line corresponds to F for the first and
third qubits due to the symmetry with the measurement being done
on the second qubit. Here t = 1, and ω

Ai
i = 1 ∀ i ∈ {1, 2, 3}. Both

axes are dimensionless.

ing phenomenon occurs when the measurement is performed
on the third qubit.

Second qubit as the measured qubit. Suppose the measured
qubit is the second one, i.e., the system is initially prepared as

ρ(0) = 1

Z1
exp

( − βHA1

) ⊗ ∣∣GAM
2

〉〈
GAM

2

∣∣ ⊗ 1

Z3
exp

( − βHA3

)
,

with β = 0. After evolving ρ(0) via the XX Hamiltonian with
a magnetic field Hev and measuring the middle qubit in the
{�M

k } basis, we find that both the first and third qubits reach
the same diagonal states when |1〉 clicks, which is in contrast
to the previous situation. Since both the first and third qubits
are nearest neighbors with the measured qubit, the system
possesses a symmetry which finally leads to the same state
at the first and third subsystems after N steps. In this case,
after N repetitions, the output three-qubit state becomes

ρ(t ) = x′|010〉〈010| + y′P[a′|110〉 + b′|011〉]
+ (1 − y′ − x′)|111〉〈111|, (14)

and the corresponding fidelity in any unmeasured subsystem
is given by

F (N ) = 4N−1

CN + ∑N
r=1 C′r cos(

√
2Jtr)

, (15)

where CN and C′r take values depending on the number
of rounds of evolution and measurements being carried out.
Comparing fidelities in Eqs. (14) and (15), we observe that
fidelities depend on the spatial position of the unmeasured
qubit with respect to the measured one. Unlike in the previous
scenario, the entanglement-generating term in this case does
not vanish with the increase of N . As a result, by measuring
on the second qubit, we cannot achieve refrigeration since the
joint state of the unmeasured qubits always remains entangled.
Later, we will discuss the dependence of the spatial position of
the measured qubit on the refrigeration in detail. Note, how-

ever, that the probability is higher for the case with nonunit
fidelity than the one with unit fidelity.

IV. REFRIGERATION WITH AN ARBITRARY NUMBER
OF SITES

We will now investigate the performance of a refrigerator
which comprises an arbitrary number of qubits. We consider a
setup in which all the unmeasured qubits are initially prepared
at infinite temperature; that is, the states are maximally mixed,
and the measured qubit is in the ground state of the cor-
responding Hamiltonian. Moreover, we ensure here that the
spins are situated in a chain with an open boundary condition
and the first or last qubit is chosen for measurement. Without
loss of generality, the initial fully separable state of the total
system reads

ρ(0) = ∣∣GAM
1

〉〈
GAM

1

∣∣ L⊗
i=2

[
1

2
(|0〉〈0| + |1〉〈1|)

]
. (16)

When t > 0, the interaction between the qubits is turned on,
which allows the evolution of the total system according to
U (t ) = exp(−iHevt ). Our aim is to observe the final states
of the unmeasured qubits after N rounds of projective mea-
surements, where one of the elements can be represented as
�1 = |GAM

1
〉〈GAM

1
| ⊗ IL−1 = |1〉 〈1| ⊗ IL−1, with IL−1 being

the identity operator of the unmeasured Hilbert space. The
phenomenon of refrigeration demands a situation in which the
states of all the unmeasured qubits are in the ground state
of the respective Hamiltonian, i.e., in which the projection
operator |1〉 clicks.

As we have shown in the case of three qubits in Fig. 3, the
system parameters involved in the process play a crucial and
delicate role in this cooling procedure. Let us first explain the
choice of the system parameters which are relevant during the
dynamics for successful implementation of a quantum refrig-
erator with an arbitrary number of sites. Numerical simulation
is performed for a 1D array containing L = 8 sites.

Effect of interaction strength. Let us take the initial state
in Eq. (16) and Hev = HAi (ωAi = 1) + Hint (γ = 0). We also
fix the number of repeated evolutions and measurements to
be N = 500, and the time interval in which the evolution
takes place is chosen to be unity. In this setup, we observe
that the fidelity between the reduced subsystem Ai and the
respective ground state of that particular qubit increases with
the increase of interaction strength J , as depicted in Fig. 4
for different values of α, with L = 8. This implies that a rea-
sonably high interaction strength is required for a successful
implementation of a refrigerator. In addition, we observe that
ferromagnetic or antiferromagnetic interactions do not play a
role in the performance, which we can also understand from
the expressions of fidelities obtained in Eqs. (14) and (15).

Moreover, for the nearest-neighbor Hamiltonian (i.e., when
α = 2.5), all the unmeasured qubits reach their corresponding
ground state for a small value of J compared to the evolution
governed by the long-range quantum spin models (i.e., α <

2). Notice that the moderate values of N � 100, L, and t � 1
do not alter the results qualitatively. However, the presence of
anisotropy in the dynamics typically has a detrimental effect
on fidelity as well as probability, thereby establishing that the
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FIG. 4. Fidelity (ordinate) vs the interaction strength between qubits J (abscissa) for different values of α. Here (a), (b), and (c) correspond
to α = 1.0, 1.5, and 2.5, respectively. The initial state is given in Eq. (16) with β = 0, and the evolution Hamiltonian contains both the
interacting Hamiltonian in Eq. (8) with γ = 0 and the local Hamiltonian HAi in Eq. (6). Ai’s represent the unmeasured qubits while the
measurement is performed on the first (last) qubit of the chain and the outcome of the measurement is the ground state of the local Hamiltonian.
Dashed (solid) lines represent even (odd) positions of the qubits. In both cases, the shade goes from dark to lighter with the increasing value
of the position of the qubits. System size is taken as L = 8. Here N = 500, and ω

Ai
i = 1 ∀ i ∈ {1, . . . , 8}. All the axes are dimensionless.

XX interacting Hamiltonian leads to the best performance in
cooling.

Interestingly, the fidelity of the subsystem follows a par-
ticular pattern with J in a spin chain of length L. If the
measurement is carried out on the first qubit, the qubits
(k + 1) and (L − k + 1) for a chain with even L [k =
1, 2, 3, . . . ( L

2 − 1)] and [k = 1, 2, . . . , � L
2 ] for odd L reach

the maximum fidelity simultaneously with J for a fixed N .
This is due to the inherent parity symmetry present in the
system even when the open boundary condition is taken. Strik-
ingly, the qubits farthest from and nearest to the measured
one reach unit fidelity with a smaller number of repeated
measurements N compared to all the other qubits located in
the middle of the spin chain, which require high values of N
and interaction strength to achieve the same result.

Dependence on the number of measurements. To investigate
the number of steps required to cool down the subsystem of
a spin chain of length L, we fix the other parameters. It is

important to stress here that although some specific param-
eters are chosen for presenting the results, it is possible to
identify the parameter regime where the cooling phenomenon
can be found (as shown in Fig. 4). We have already real-
ized that successful realization of a refrigerator depends on
a strong interaction strength in the dynamics, and hence for
demonstration, we choose J = 3, ωAi = 1, t = 1, and L = 8.
The results presented here remain unaltered for other system
parameters such as J > 3 and t > 1 starting with the same
initial state in Eq. (16). Moreover, we tune the falloff rate of
interactions between the qubits so that we can generate the
effects of nearest-neighbor as well as long-range interactions
on fidelities. Let us summarize the observations.

(1) After evolution and measurements as per the prescrip-
tion, we find that all the unmeasured qubits can be projected
to their ground state for different values of variable-range
interaction strength (see Fig. 5). Notice that in Fig. 5, the
choice of J turns out to be suitable for α = 1 and α = 2.5,

FIG. 5. Fidelity (vertical axis) with respect to the number of rounds N (horizontal axis). Here the interaction strength J = 3. All other
specifications are the same as in Fig. 4. All axes are dimensionless.
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FIG. 6. Fidelity (ordinate) as a function of the number of measurements N (abscissa) for different system sizes L. We study the dependence
of the fidelity of the unmeasured qubit adjacent to the measured qubit and the qubit situated farthest from the measured one. Solid and dashed
lines represent odd and even lattice sites, respectively. The other parameters of the systems are J = 3 and (a) and (b) α = 1 or (c) and
(d) α = 2.5. (a) and (c) correspond to the fidelity for the qubit adjacent to a measured qubit, i.e., the second qubit since the measurement is
carried out on the first qubit, while (b) and (d) represent the behavior of F for the farthest qubit, i.e., the qubit in the boundary Ai (i = 3, . . . , 6).
All other specifications are the same as in Fig. 4. All the axes are dimensionless.

although it is not appropriate for α = 1.5, and hence, there
are qubits which do not approach the unit fidelity. However,
proper tuning of J can also cause the fidelities of all the qubits
to go to unity even for α = 1.5, as seen in Fig. 4.

(2) An interesting question can be addressed at this point:
Does the distance of a qubit from the measured one matter to
achieve the maximum fidelity of a qubit? More specifically,
we figure out the position of the qubit that reaches the maxi-
mum fidelity with minimum N . We observe that irrespective
of α, the qubit most distant from the measured qubit goes to
the ground state with the minimum number of measurements
compared with other qubits present in the system. However,
N required for other unmeasured qubits do not follow any
hierarchy based on the distance from the measured qubit.

Scalability: Role of system size. Let us address here the
scalability of the machine. In other words, when we increase
the system size and measure only on a single qubit repeatedly,
we investigate the scaling of fidelity with L. Since the number
of subsystems to be cooled increases with L, we notice that the
number of measurements required for cooling also increases
with L, as shown in Fig. 6 for two different values of α.
Moreover, we observe that for a fixed L with high values of
α, i.e., when the interaction strength is confined between the
nearest pair of qubits, it is possible to decrease the temperature
of all the qubits much more efficiently than in the model with
long-range interactions [compare Figs. 6(a) and 6(b) with 6(c)
and 6(d)].

When the number of measurements is low enough, there is
no prominent pattern of fidelity with system size. However,
for moderate values of N , a clear pattern with increasing
system size emerges, as depicted in Fig. 6.

 0.01

 0.1

 1

 0  50  100  150  200

(a)

p
N

N

L=3
L=4
L=5
L=6

 0.01

 0.1

 1

 0  50  100  150  200

(b)

p
N

N

FIG. 7. Probability p in log scale (y axis) vs N (x axis) for
different system sizes. (a) α = 1 and (b) α = 2.5. Here J = 3 in
Hev. All other specifications are the same as in Fig. 4. Irrespective of
system size, we find that the success probability of achieving cooling
saturates to a nonvanishing value, thereby ensuring the usefulness of
this procedure. All the axes are dimensionless.
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L
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α=1.5
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FIG. 8. Probability in log scale (ordinate) vs system size (ab-
scissa). Circles, squares, and crosses represent different variable
ranges of interactions. The plot depicts that p decreases with the
increase of L. However, it is independent of the falloff rate of
interactions α. All other specifications such as initial state and evo-
lution operators are the same as in Figs. 4 and 5. Both axes are
dimensionless.

In addition, we also examine the success probability of
obtaining the measured qubit in the corresponding ground
state after completion of each round. From Fig. 7, it is clear
that increasing system size decreases the success probability
monotonically for a moderate N . It is also independent of
the range of interactions. Nonetheless, the success probability
saturates with an increasing number of measurements, thereby
establishing the usefulness of this protocol. With L, the suc-
cess probability follows a scaling law which we will discuss
below.

A. Scaling

Intuitively, in a measurement-based protocol, the success
probability of finding the measured qubit in its corresponding
ground state decreases with the increase in the number of
measurements. However, we find that pN first decreases and
finally saturates after a certain value of N , as seen in Fig. 7.
When the fidelities of all the individual unmeasured qubits
approach the maximum fidelity i.e., F = 1, after some steps
N , we observe that the corresponding probability follows a

scaling law with the system size L, given as

p = (
1
2

)L−1
, (17)

which is independent of all the parameter values and the
number of measurements. L is the total number of spin- 1

2
particles in the spin chain. On the other hand, no such general
relationship between the fidelity of the individual qubits and
the system size is observed. Numerically, the scaling law of p
for different values of α is depicted in Fig. 8, which is in good
agreement with the expression in Eq. (17).

B. Dependence of initial temperature

Up to now, we have considered scenarios where the un-
measured qubits are prepared in maximally mixed states, i.e.,
thermal states with β = 0. Let us deal with the situation where
the unmeasured initial states are thermal states with a moder-
ate temperature. Such an analysis can reveal the dependence
of the initial temperatures of unmeasured subsystems on the
phenomenon of refrigeration.

The minimum number of measurements required to attain
the ground state of all the individual qubits decreases with the
increment of inverse temperature of the initial states, i.e., with
the decrease in temperature, provided the involved system
parameters are chosen appropriately. This behavior can be
intuitively explained since the increasing value of β of an
individual qubit makes the subsystem close to its respective
ground state and hence fewer measurements are sufficient to
cool down the system. However, the pattern of reduction of N
with β is not a priori fixed. As observed in Fig. 9, the max-
imum number of measurements among all the unmeasured
qubits is a linear function of β.

Let us define Nαi
β as the number of steps required to reach

the unit fidelity for all the unmeasured qubits. We observe that
for moderate values of α > 1, Nαi

β scales linearly with β, and
it increases monotonically with the system size. On the other
hand, for α � 1 and for a fixed L, Nαi

β is much higher than
the one with α > 1, although the linear behavior of Nαi

β with
inverse temperature still holds. This show that although the
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FIG. 9. Maximum number of measurements Nαi
β required to obtain the unit fidelity in all subsystems (vertical axis) with the initial inverse

temperature β (horizontal axis). Here (a) α1 = 1, (b) α2 = 1.5, and (c) α3 = 2.5. Different lines correspond to different system sizes L. The
initial state is the thermal state with nonvanishing β. Dark to lighter shades occur with the increase of L. All other parameters are the same as
in Fig. 4. All the axes are dimensionless.
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interaction between subsystems which can create the corre-
lation between the measured qubits is required to achieve
cooling, the role of interaction in cooling is not ubiquitous.
Precisely, for a fixed value of β, we find that

Nα1
β < Nα2

β < · · · ,

where α1 > α2 > · · · . This indicates that irrespective of the
temperature of the initial state, the range of interactions and
interaction strength both have important roles to play in re-
frigeration.

V. SPATIAL POSITION OF MEASURED QUBITS VERSUS
THE ENTANGLEMENT DISTRIBUTION OF

UNMEASURED QUBITS

Due to the repeated measurements on the accessible qubit
located on the boundary of the spin chain, by evolving the en-
tire system according to the interacting Hamiltonian, we have
already shown that the local energy of the rest of the system
can be minimized provided suitable parameters are chosen.
Removing the constraint on the position of the measured
qubit, we explore here the situation in which the measurement
can be carried out on any arbitrary qubit placed at an arbitrary
position in a 1D array. Specifically, once the position of the
measured qubit is fixed, in all the rounds of the protocol
that particular qubit acts as the measured qubit. Interestingly,
we find a notable difference between this and the previous
scenario.

A refrigerator is built with L spin- 1
2 particles arranged in a

liner chain with the initial state

ρ(0) = ∣∣GAM
r

〉〈
GAM

r

∣∣⊗ ρL−1
in , (18)

where ρL−1
in is the thermal state of the individual local Hamil-

tonian HAi with ωAi = 1 and β = 0. Here the site on which
the measurement is performed is taken to be AM

r . After the
evolution according to Hev and the outcome |GAM

r
〉, the output

state after N rounds becomes

ρ(t ) = x1|0 · · · 10 · · · 〉〈0 · · · 10 · · · 0|

+ x2P2

[ ∑
a1

rP[0 · · · 11 · · · 0]

]

+ x3P3

[ ∑
a2

rP[0 · · · 111 · · · 0]

]
+ · · ·

+ xL|111 · · · 1〉〈11 · · · 1|, (19)

where P[0 · · · 110 · · · 0] denotes the permutation operator
which permutes (L − 1) number of |1〉 states in all the L
positions, keeping |1〉 fixed to the position AM

r , on which the
measurement is performed. The position of |1〉 in the first term
is at the AM

r position; in other terms, Pi’s denote the projectors,
and subscripts denote the number of |1〉 states present in the
projector. The coefficients xi and ak

r s are functions of the
system parameters.

Even vs odd. When the total number of qubits in the array
of the spin chain is even, repeated measurements on a single
qubit project all the subsystems into the corresponding ground
state of the individual qubit (in most even cases).

FIG. 10. Distribution of entanglement of unmeasured qubits and
the role of position in a measured qubit. (a) Distribution of entan-
glement 
L defined in Eq. (20) (ordinate) vs N (abscissa). Squares
represent the scenario in which the measurement is performed on
the first qubit of a chain consisting of nine qubits, while circles
correspond to the refrigerator in which the second qubit is measured.
In the former scenario, the nodal site is taken to be the second
qubit, and in the latter case, it is the first qubit. (b) The position
of an unmeasured qubitAi (ordinate) in a spin chain that reaches
unit fidelity vs the position of a qubit on which the measurement is
performed AM

j (abscissa). Here L = 9. The parameters are the same
as in Fig. 4. All the axes are dimensionless.

That is not the case when L is odd. Precisely, it is not
always possible to cool down all the unmeasured qubits by
measuring on an arbitrary qubit for odd values of L, irrespec-
tive of the number of rounds; that is, the maximum fidelity in
this case saturates to a nonunit fidelity after N rounds of the
protocol. The behavior is also independent of the choice of
the involved system parameters. Specifically, we find that for
odd L, if we measure on the qubits which are located in the
odd positions, it is indeed possible to cool down all the qubits
individually, while if we measure on the qubits belonging to
the even sites of the spin chain, only the unmeasured qubits
of the even sites attain their respective ground states (see
Fig. 10). More interestingly, we report that it is impossible
to cool down any qubit of the spin chain if the outcome of
the qubit at position � L

2  + 1 is the ground state of the local
Hamiltonian when L is odd [see Fig. 10(b) for AM

j = 5]. We
will now argue that the odd-even dichotomy can be qualita-
tively explained by the pattern of entanglement established
between the unmeasured qubits after the unitary evolution of
the entire system and each round of measurements.

Distribution of entanglement. Let the number of sites of the
spin chain be L and the measurement be performed on AM

r . We
compute the distribution of entanglement [48,49] as


L =
L∑

i=1
i �=r

E (�Ar−1Ai ), (20)

where E is any entanglement measure. In our case, we
compute logarithmic negativity [51,52] as an entanglement
measure, and the corresponding quantity is denoted by 
L.
Here Ar−1 is the nearest-neighbor site of the measured qubit,
which is taken to be a nodal site. In a similar argument, Ar+1

can also be taken to be the nodal party, which is the case when
the first qubit is measured.
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For odd L, when the measurement is performed on the
odd qubits, 
L decreases with an increasing number of mea-
surements, thereby demonstrating the action of a refrigerator,
while 
L saturates with N when the measurements are per-
formed on the even qubits, implying that not all the qubits
attain their corresponding ground states. When all the subsys-
tems reach their ground states, the final state becomes fully
separable, and hence, 
L = 0 in the former case, which is
not true for the latter case. Figure 10(a) clearly mimics this
behavior of a chain with nine sites.

VI. CONCLUSION

The idea of miniaturization of devices has revolutionized
the field of technology, naturally surpassing classical technol-
ogy based on classical physics. Therefore, it is a great time to
go beyond it and formulate new sketches of old machines on
the breadboard of quantum systems. Due to rapid experimen-
tal advancements in the quantum domain, one can expect to
implement these devices not only in laboratories but also on
an industrial scale.

In summary, we proposed a quantum refrigerator model
based on multiple measurement schemes. Specifically, all
the subsystems are initially prepared in thermal states ex-
cept the one which is to be measured in the ground state
of a local magnetic field after a certain interval of time.
During the dynamics, the system evolves according to an
interacting Hamiltonian, a one-dimensional XY spin chain
with long-range interaction present between the subsystems
in the presence of a transverse magnetic field, and then a
measurement is performed at a fixed site. We analyzed the
final state of the unmeasured qubits as a consequence of these
repeated evolutions and measurements. We observed that the
projection of a prefixed qubit to its ground state can project
other unmeasured qubits to their minimum energy states,

thereby exhibiting the phenomenon of cooling. In contrast to
previous designs of a quantum refrigerator in which a single
system was considered as a target system to cool down, in
the current proposal, we can cool more than one subsystem
by measuring only a single qubit, showing scalability of the
cooling mechanism.

The previous understanding of a quantum refrigerator was
based on a master-equation approach where each qubit or
part of the system is attached to the environment and a target
system is taken to be refrigerated. Our approach differs from
the previous proposals in the sense that part of the spin models
can be thought of as an environment and the rest can act as a
refrigerator in which the accessible qubits are used to perform
repeated measurements. Moreover, we showed that by wisely
choosing system parameters, an efficient quantum refrigerator
can be constructed in which fewer measurements are required
and it can be realized with a nonvanishing success probability.
We also found that the position of a qubit in an array of spin- 1

2
particles chosen for measurement can dictate the amount of
cooling, quantified via the fidelity between the resulting state
and the ground state of the local Hamiltonian and the success
probability. We believe that the design of a refrigerator based
on measurements may provide a different framework to build
quantum thermal machines.
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