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Gaussian theory for estimating fluctuating perturbations
with backaction-evading oscillator variables
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We apply a Gaussian state formalism to track fluctuating perturbations that act on the position and mo-
mentum quadrature variables of a harmonic oscillator. Following a seminal proposal by Tsang and Caves
[Phys. Rev. Lett. 105, 123601 (2010)], Einstein-Podolsky-Rosen correlations with the quadrature variables of an
ancillary harmonic oscillator are leveraged to significantly improve the estimates as relevant sensor variables can
be arbitrarily squeezed while evading adverse effects from the conjugate, antisqueezed variables. Our real-time
analysis of the continuous monitoring of the system employs a hybrid quantum-classical description of the
quantum probe and the unknown classical perturbations, and it provides a general formalism to establish the
achievements of the sensing scheme and how they depend on different parameters.
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I. INTRODUCTION

The probabilistic nature of measurements on a quantum
system and the disturbance of the system by measurement
backaction puts intriguing limits on the sensitivity of measure-
ment schemes. For measurements aiming to resolve candidate
values of a classical perturbation that influences a quantum
system, measurements of the same observable at different
times thus face a conundrum: overly precise measurements at
early times cause radical changes in the state of the quantum
system and may hence hinder or seriously disrupt later preci-
sion measurements. Pioneering works by Braginsky, Thorne,
Caves, and others [1–4] identified so-called quantum non-
demolition (QND) measurement schemes, where the same
observable can be repeatedly or continuously measured over
time in a manner that accumulates sensitivity and gradually
projects the system on an eigenstate. For canonical position
and momentum variables, this is intimately connected with
the concept of squeezing, which may be both a property of
the initially prepared quantum probe system and an emergent
property due to the measurement process itself. Notably, in
the advanced Laser Interferometer Gravitational-Wave Obser-
vatory (LIGO) for gravitational wave detection one may use
squeezed input states of light to enhance the interferometric
sensing of the motion of test mass mirrors [5]. The test mass
position and momentum variables, however, must obey the
Heisenberg uncertainty relation, and strong position squeez-
ing implies strong antisqueezing of the momentum observable
and, hence, antisqueezing of later values of the position.
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Replacing continuous probing by brief measurements ev-
ery half-oscillation period presents a way to persistently
squeeze a definite, rotating quadrature component of the
oscillator [6]. Another elegant proposal employs an ancil-
lary oscillator to form commuting pairs of observables x̂− =
(x̂1 − x̂2)/

√
2 and p̂+ = ( p̂1 + p̂2)/

√
2 which may be mea-

sured with arbitrary precision and which are not coupled
to their conjugate observables if the two oscillators have
opposite oscillator frequencies [7,8]. The ancillary system
is then referred to as a negative-mass oscillator (its posi-
tion changes according to the value of the negative of the
momentum), and the observables x̂−, p̂+ are referred to as
quantum-free or backaction-free. Following Refs. [7,8], and
in independent work, use of this concept has been suggested
for various scenarios [9–12]. The commuting collective ob-
servables at the heart of the backaction evasion mechanism
are exactly those proposed in the famous foundational EPR
paradox by Einstein, Podolsky, and Rosen [13], and previous
proposals [14] and experiments [15] employing these states
are, indeed, closely related to the proposal in Refs. [7,8].
For a pedagogical introduction and recent experiments, see
Refs. [16,17].

The use of the backaction evasion mechanism is illustrated
in Fig. 1. We imagine that the oscillator on the left is sub-
ject to perturbations that affect its position and momentum
observables. By monitoring the collective EPR observables
including the position and momentum of the ancillary oscil-
lator, which is not affected by the perturbation, we squeeze
both of these observables and we may infer the value of the
perturbations with high precision. We sketch the probing by
two light beams that undergo sequential coherent displace-
ments proportional to the oscillator observables, and which
are subsequently detected in a homodyne manner. As laid out
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FIG. 1. Real-time tracking of two classical perturbations fx (t )
and fp(t ) acting on a single oscillator S1. Collective EPR variables
x̂− ∝ (x̂1 − x̂2) and p̂+ ∝ ( p̂1 + p̂2) of S1 and an ancillary oscil-
lator S2 are probed with two cw light beams L1 and L2. These
variables commute and can be squeezed with no limits. Crucially,
choosing opposite oscillator frequencies ω1 = −ω2 decouples x̂−
and p̂+ from the antisqueezed EPR variables p̂− and x̂+. The
time-evolved state has the initial oscillator ground-state correlations,
�x̂2

1 = � p̂2
1 = �x̂2

2 = � p̂2
2 = 1/2 and the gradual squeezing of the

EPR observables due to the measurements benefit the estimation of
the perturbations fx (t ) and fp(t ). The noisy data displayed in the
panels come from an actual numerical simulation.

in more detail in the following sections, the setup is described
by the Hamiltonian

Ĥ

h̄
= 1

h̄

(
Ĥω1,ω2 + Ĥκ + Ĥcx,cp

)

≡ ω1

2

(
x̂2

S1
+ p̂2

S1

) + ω2

2

(
x̂2

S2
+ p̂2

S2

)

+ (
κ1,1 p̂S1 + κ2,1 p̂S2

)
p̂L1

+ (
κ1,2x̂S1 + κ2,2x̂S2

)
x̂L2

− cx fxx̂S1 + cp fp p̂S1 , (1)

where ωi are oscillator frequencies, κi, j are light coupling
strengths, and cq are perturbation coupling strengths (for
i, j = 1, 2 and q = x, p). The setup is generic for a range
of physical systems including mechanical and collective spin
oscillators, probed by optical phase shifts or Faraday rotation
angles, but we assume Gaussian states (Sec. II), including co-
herent, squeezed, and thermal states [18], and we also assume
that the perturbing forces or fields are governed by Gaussian
statistics (Sec. III).

The purpose of this article is twofold. On the one hand
we present an analysis and we provide tools to model the
specific backaction-evading probe scheme depicted in Fig. 1
(Sec. IV). On the other hand we introduce and demonstrate the
application of the Gaussian state formalism in full generality

to describe both unitary interactions and homodyne detection
and to model the estimation of constant or fluctuating clas-
sical perturbations. We “quantize” the values of the classical
perturbations, i.e., we associate them with QND degrees of
freedom of fictitious ancillary quantum systems.

Both for the specific scheme of interest and for a variety of
other sensing models, our hybrid quantum-classical descrip-
tion makes the Bayesian update of the classical likelihood
distribution equivalent to the quantum backaction on the com-
bined quantum state. This approach thus permits inclusion of
Gaussian classical parameters in the Gaussian quantum state
formalism on equal footing with the sensor quantum observ-
ables. In particular, we characterize the entire set of quantum
and classical variables by mean values and a covariance ma-
trix, which explicitly includes estimators of the perturbations
and their corresponding Gaussian variances.

To make our presentation self-contained, we present, de-
rive, and explain several elements of the physical modeling
of the continuous interrogation of the oscillator systems. In
this way we show how the formalism readily permits the
gradual inclusion of the more specific elements of the scheme
illustrated in Fig. 1, and how it may be readily applied to a
variety of other oscillator systems and observables. In a series
of articles [19–21], Tsang derived equivalent equations, and
we refer, in particular, to Table 1 of Ref. [20] for a summary
of the connections between the theory of classical estimation
theory by Kalman filters [22] and smoothers [23,24] and the
formal elements of the quantum theory with Gaussian states
and operations. See also Ref. [25] which elaborates on the
connection to measurement effect operators for continuous
probing as promoted in Ref. [26].

The article is structured as follows: In Sec. II we introduce
the Gaussian state formalism and derive equations of evolu-
tion for the first and second moments of Gaussian distributions
due to interactions and continuous probe measurements. In
Sec. III we represent classical perturbations as eigenvalues
of observables for which the system is in a purely diagonal,
mixed state, and we derive a quantum-classical hybrid formal-
ism for the joint, conditional probability of all variables. The
methods and results of Secs. II and III are general and apply
to a host of systems and measurement scenarios. This includes
the extension to smoothed estimates which generalize classi-
cal smoothing filters to application with quantum probes. In
Sec. IV we discuss a number of numerical examples of our
formalism, and we arrive at quantitative evidence for the ad-
vantages of backaction-evading probing schemes. Section V
concludes the article and provides a summary and an outlook
with emphasis on the challenges posed by systems that are not
described by Gaussian variables.

II. GAUSSIAN STATE FORMALISM

Parameter estimation by continuous probing of a quantum
probe system is described by the Belavkin filter [27]. This
theory applies quantum trajectory theory and generic con-
ditional density matrices [19,28,29], while the restriction to
Gaussian states and operations implies a significant reduction
in numerical complexity. The Gaussian description applies to
the harmonic-oscillator variables of the scheme presented in
Fig. 1.

022613-2



GAUSSIAN THEORY FOR ESTIMATING FLUCTUATING … PHYSICAL REVIEW A 106, 022613 (2022)

A. Gaussian states

Consider a collection of n canonical degrees of freedom
represented by the vector of operators,

ŷ = (x̂1, p̂1, . . . , x̂n, p̂n)T , (2)

where [x̂i, p̂ j] = ih̄δi j . Any operator Â defined on this con-
tinuous variable system space, and in particular the density
operator Â = ρ̂ describing the quantum state, can be repre-
sented, e.g., in the position eigenbasis 〈x|ρ̂|x′〉, and it has an
equivalent representation in terms of its Wigner function,

Wρ̂ (y) = 1

(h̄π )n

∫
〈x + q | ρ̂ | x − q〉e2ip·q/h̄ dq, (3)

where x = (x1, . . . , xn)T and p = (p1, . . . , pn)T , and dq =
dq1 · · · dqn denotes integration over all position variable
arguments q. The Wigner function is a normalized quasiproba-
bility distribution, whose value at a single point entails definite
values of noncommuting variables and is hence not directly
meaningful. Still the Wigner function permits calculation of
expectation values as weighted “phase space” integrals,

〈Â〉ρ̂ = tr[Âρ̂] = (h̄π )n
∫

WÂWρ̂ dy, (4)

and the special case of a projection on a definite quadrature
eigenstate Â = |y j〉〈y j | yields the marginal density for mea-
surements of y j by integrating all coordinates except y j ,

P(y j ) = tr[|y j〉〈y j |ρ̂] =
∫

Wρ̂ dyi �= j . (5)

The Wigner function for the reduced density matrix after the
partial trace over the nth mode, trnρ, is similarly given by an
integral, e.g., for two modes,

Wtr2ρ̂ (x1, p1) =
∫

Wρ̂ (x1, p1, x2, p2) dx2d p2. (6)

The Wigner function of an arbitrary quantum state is gen-
erally a complex object, but Gaussian states, i.e., states with
Gaussian Wigner functions,

Wm,�
ρ̂ (y) = 1

(h̄π )n

e−(y−m)T �−1(y−m)

√
det�

, (7)

are fully characterized by their first and second moments, i.e.,
by a vector of mean values and a covariance matrix,

m = 〈ŷ〉, (8)

�i, j = 2Re(〈ŷiŷ j〉 − 〈ŷi〉〈ŷ j〉), i, j = 1, . . . , 2n. (9)

The variance of a quantum variable is �ŷ2
j ≡ �(ŷ j, ŷ j ) =

1
2� j, j , and we shall refer to covariance matrix elements ei-
ther by their vector indices or variable names, for example
m2 = mp1 and �1,4 = �x1,p2 .

The partial trace over some modes is effectively achieved
by simply removing their corresponding entries in the covari-
ance matrix � and mean vector m, and, e.g., the marginal
density of any single quadrature observable is a univariate
Gaussian,

P(y j ) =
∫

Wm,�
ρ̂ (y) dyi �= j = N

(
mj,

� j, j

2

)
, (10)

FIG. 2. Illustration of a Gaussian state with a joint marginal
probability density of two observables yi, y j . The density is

parametrized by m = (−0.95
−1.65) and � = ( 1.75 −0.43

−0.43 1.24 ), and the con-

tour line at half maximum (ellipses) and mean (dots) are depicted in
two dimensions in the inset. The marginal densities of yk are centered
on mk with variances �k,k (for k = i, j).

where N ∝ exp[−(y j − mj )2/� j, j]. An illustration of how
marginal densities are related to joint densities is depicted for
two variables in Fig. 2.

Operations that preserve the Gaussian form of the Wigner
function are fully represented by their transformation of the
first and second moments. Knowledge of these transforma-
tions are sufficient to describe the detection scheme in Fig. 1
as detailed below.

B. Time evolution

Heisenberg’s equation of motion applies for all quadrature
observables and for a small time step δt ,

ŷ j (t + δt ) ≈ ŷ j (t ) + ˙̂y j (t )δt = ŷ j (t ) + i

h̄
[Ĥ (t ), ŷ j (t )]δt .

(11)

If the Hamiltonian Ĥ is at most quadratic in the quadrature
operators ŷ, as is the case in (1), the unitary time evolution
results in an affine transformation of the observables in the
Heisenberg picture,

ŷ(t + δt ) = Sδt ŷ(t ) + Fδt , (12)

and to first order in δt the corresponding evolution of the first
and second moments yields

m(t + δt ) = Sδt m(t ) + Fδt , (13a)

�(t + δt ) = Sδt�(t )ST
δt . (13b)

We note that Sδt and Fδt may be time-dependent matri-
ces if the Hamiltonian contains time-dependent driving or
coupling terms. In addition to the Hamiltonian interaction,
the system may be subject to dissipation and fluctuations,
imposing damping rates for the mean values and covariance
matrix elements and diffusive spreading for the variances. For
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our application, these effects can be described by a diagonal
damping matrix Dδt and a diagonal diffusion matrix Lδt , such
that Sδt → Dδt Sδt in Eqs. (13a) and (13b), and Lδt , is added
on the right-hand side in the update of � in (13b). We refer to
Sec. IV A for the specific expression for Dδt and Lδt pertaining
to the setup in Fig. 1.

C. Measurement of some quadratures observables

Suppose the system is divided into subsystems A and B
with nA and nB oscillator modes, such that we may write

ŷ =
(

ŷA
ŷB

)
,

where ŷA = (x̂1, p̂1, . . . , x̂nA , p̂nA )T is of length 2nA and ŷB =
(x̂nA+1, p̂nA+1, . . . , x̂n, p̂n)T is of length 2nB. The Gaussian
moments may then be similarly divided,

m =
(

a
b

)
, � =

(
A C

CT B

)
. (14)

A is the 2nA × 2nA covariance matrix for the variables ŷA,
B is the 2nB × 2nB covariance matrix for the variables ŷB,
while C is the 2nA × 2nB covariance matrix describing the
correlations, or entanglement, between the two subsystems A
and B.

We already discussed how the reduced density matrix and
Wigner function of one subsystem is obtained by retaining
only the relevant mean values and covariance elements, say,
a and A, when B is traced out. Consider now instead the
state of the same subsystem, but conditioned on a projective
quadrature measurement of all nB oscillator modes in subsys-
tem B. If the two sets of subsystems are correlated, i.e., C is
nonzero, the outcome of this measurement will influence the
resulting state of subsystem A through measurement backac-
tion. This can be understood from the inset in Fig. 2 where
a measurement of the variable y j causes the yi distribution to
have equal values at the intersection of the contour ellipse and
a horizontal line at the random outcome y j = ymeas

j .
Assuming classical (commuting) variables, for the mea-

surement of yB, the restriction of the corresponding arguments
in (7) to their measured values is a Gaussian function of the
remaining variables yA with the coefficients of the appropriate
block submatrix of �−1. The corresponding reduced covari-
ance matrix, in turn, is the inverse of that submatrix. By linear
algebra, the inversion of the block matrix � (14), thus yields
the conditional covariance matrix, Acond = A − CB−1CT and
vector of mean value, acond = a + CB−1(ymeas − b) [30].

In the quantum setting, we cannot simultaneously measure
both but only one of the x or p quadratures of the ŷB vari-
ables while the canonically conjugate, unmeasured quadrature
variables become completely uncertain due to the Heisenberg
uncertainty relation. In this case we have recourse to an appro-
priately modified transformation of the conditional moments
for subsystem A,

Acond = A − C(�B�)−CT , (15a)

acond = a + C(�B�)−�meas
B , (15b)

where (·)− denotes the Moore-Penrose pseudoinverse of its
matrix argument (see Ref. [31] for a general discussion of the
backaction of quadrature measurements on Gaussian states).

The projection matrix � is a block matrix formed by subpro-
jectors

πi ∈ {πx,πp} ≡
{(

1 0
0 0

)
,

(
0 0
0 1

)}
, (15c)

assuming the measured quadrature for each mode i =
1, . . . , nB in ŷB is either the position or momentum. The mea-
surement outcomes qmeas

i = (q1, . . . , qnB ) form a vector that
can be written as the diagonal elements of a block matrix
diag(⊕iqmeas

i πi ), where q ∈ {x, p} is the quadrature desig-
nated by πi. Defining a similar vector of the expectation values
〈q̂i〉 of the same quantities (given by the corresponding entries
of b), we define their difference

�meas
B = diag

[ ⊕i
(
qmeas

i − 〈q̂i〉
)
πi

]
. (15d)

See Sec. IV A for the application to the setup in Fig. 1.

D. Continuous monitoring

We are interested in the case where the subsystem B, used
to probe subsystem A, forms a continuous-wave (cw) light
beam in a coherent state, consistent with a Gaussian state
description. To encompass both the continuous unitary evolu-
tion and evolution due to the interaction and the measurement
backaction we represent a continuous probe beam as a “train”
of very short segments of duration δt , each treated as a single
mode, and interacting sequentially with system A [32]. Simi-
lar steps are followed in the derivation presented in Ref. [26].
Each field segment is initially in the same (trivial) coherent
field state and is not correlated with system A prior to their
interaction. The assumption of coherent states implies that
there are no correlations between the incident light segments.

Once a light segment arrives, it takes the role as subsystem
B in Eqs. (14) with covariance matrices and mean values,

B → 12nB×2nB , (16a)

C → O2nA×2nB , (16b)

b → O2nB×1, (16c)

where 1 and O are the identity and zero matrices of the indi-
cated dimensions. The system and the light segment interact
briefly by Eqs. (13), and the latter is subsequently subject
to a homodyne measurement with an associated backaction
on system A given by Eqs. (15),1 whence the projected field
quadrature eigenstate factors and disappears from the descrip-
tion. The effective t → t + δt evolution of system A can
hence be summarized as

a(t )
(13)→ a(t + δt )

(15)→ acond(t + δt ) ≡ a(t + δt ), (16d)

A(t ) → A(t + δt ) → Acond(t + δt ) ≡ A(t + δt ). (16e)

This process is then repeated with the next “fresh” inci-
dent light segments, and application of Eqs. (16) yields the
continued evolution of subsystem A due to the interactions
and accumulation of probe measurement data.

1The pseudoinverse of B is approximated to lowest order by
(�B�)− ≈ � with corrections O(δt ) due to the interaction.
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The continuous detection record that conditions the dy-
namics,

qmeas
B (t ) = (

q1, . . . , qnB

)
, (17a)

may be extracted from an actual experiment or, in the event
of a purely numerical simulation, be sampled from a normal
distribution

qi ∼ N
(〈q̂i〉, �q̂2

i

) ≈ N (〈q̂i〉, 1/2). (17b)

The expectation value 〈q̂i〉 and variance �q̂2
i are elements of

b and B after the interaction, respectively, and the approxi-
mation �q̂2

i = 1/2 holds for the infinitesimal interaction with
light segments of short duration.

We note that the covariance matrix update (15a) does not
depend on the actual measurement outcome, and in the limit
of infinitesimally small time steps, A it becomes the solution
of a Riccati matrix differential equation [32],

Ȧ = lim
δt→0+

A(t + δt ) − A(t )

δt
(18)

≡ G − DA − AE − AFA, (19)

where the matrices G, D, E, F are determined from the physi-
cal interactions leading to the dynamics. The nonlinear matrix
Riccati equation can be decomposed into A = WU−1 where
W and U are solutions to two linear matrix equations Ẇ =
−DW + GU and U̇ = FW + EU . Expressions for the matri-
ces G, D, E, F for our specific system are presented in the
Appendix.

III. ESTIMATION OF CLASSICAL PERTURBATIONS
WITH CONTINUOUS MONITORING

A perturbation of the oscillator system, caused, e.g., by
classical forces or external fields fi(t ) will result in a pro-
portional displacement of the oscillator quadratures. In this
article, we assume that each of the, say, n f perturbations
are individually characterized by a time-dependent Ornstein-
Uhlenbeck (OU) process,

dfi(t ) = −γi fi(t )dt + √
σidWi(t ), i = 1, . . . , n f . (20)

The OU process is damped with a rate γi and undergoes
diffusion governed by a diffusion constant σi and stochastic
Wiener increments, dWi(t ) ∼ N (0, dt ). We may readily in-
clude the effect on the quantum observables of such a known
time-dependent perturbation through the appropriate entries
in Fδt in Eq. (13a), and Sec. II D provides the quantum dy-
namics (16) conditioned on any specified perturbation and an
observed detection record (17).

However, we wish to estimate an unknown time-dependent
perturbation from the measurements. Hence rather than the
fi’s being known we represent them by probability distri-
butions and infer their evolution due to the acquisition of
measurement data. This is done conveniently by incorporating
the evolution of these distributions into the already established
quantum formalism.

Equation (20) is equivalent to a Fokker-Planck equation
describing the probability density of the value of fi(t ), which
takes a Gaussian form. We shall use this fact to enable a

formal description of the unknown perturbations at the level
of Gaussian Wigner functions and quantum density operators.

A. Filtering

1. Quantum-classical hybrid formalism

It is convenient to introduce for each perturbation fi

an ancillary quantum operator f̂i and specify its eigen-
states, f̂i| fi〉 = fi| fi〉, with eigenvalues for each possible value
of fi. In this way, a classical probability density P( f =
( f1, f2, . . . , fn f )) can be represented as a quantum state in an
incoherent mixture of eigenstates, χ̂ = ∫

d f | f 〉〈 f |P( f ) with
| f 〉 = ⊗n f

i=1| fi〉.
We may then define an augmented density operator [note

the “∼”] on the joint space of ancillary and genuine quantum
variables,

ˆ̃ρ =
∫

d f | f 〉〈 f | ⊗ ρ̂ f , (21)

where ˆ̃ρ(0) = χ̂ ⊗ ρ̂(0) for some initial state ρ̂(0) on the
space of genuine quantum variables.2 In Eq. (21) the proba-
bility density P( f ) is absorbed in the norm of ρ̂ f and can be
retrieved by standard quantum expressions

P( f ) = tr[| f 〉〈 f | ˆ̃ρ ] = tr[ρ̂ f ], (22)

P( f j ) = tr[| f j〉〈 f j | ˆ̃ρ ] =
∫

d f i �= j tr[ρ̂ f ], (23)

where f i �= j denotes all components of f except f j , and “tr”
denotes the trace over all degrees of freedom of its operator ar-
gument, which differ in the second and last terms of Eqs. (22)
and (23). The time evolution of each ρ̂ f is conditioned on the
value of f and on the measurement record q and, hence, the
classical and quantum degrees of freedom become correlated.
While the full state ˆ̃ρ is renormalized after each measurement,
the measurement backaction leads to a formal redistribution of
norm among the individual ρ̂ f and hence the classical proba-
bility densities. This occurs in a manner fully equivalent with
Bayes’ rule, see the Appendix, so that outcomes that occur
with higher (lower) probability for given values of f , cause
an increase (decrease) in the corresponding state components
and hence the inferred likelihood for these values.

2. Gaussian states

While the augmented quantum state description of clas-
sical and quantum variables can in principle be employed
with general interactions by the parallel solution of stochastic
master equations for each hypothetical value of the unknown
classical variable [28,29,33], the Gaussian description of both
the quantum systems and the unknown classical perturba-
tions, permits an almost straightforward application of the
mean value and covariance matrix formalism to the estimation
of f .

2In the continuous variable position representation,

ρ̂ f =
∫

dxdx′ ρxx′
f |x〉〈x′|.
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To admit the unknown classical perturbations into the
quantum Wigner function description we introduce an effec-
tive Gaussian Wigner function in the form of Eq. (7), W m̃,�̃

ˆ̃ρ
(ỹ)

with

ỹ =
(

y
f

)
.

(For a discussion of how this function is consistent with the
full Wigner function representation see the Appendix.) The
probability densities for the classical variables,

P( f j ) =
∫

dxd pd f i �= j W m̃,�̃
ˆ̃ρ

(y, f ), (24)

are fully characterized by the corresponding elements in the
mean vector m̃ and covariance matrix �̃, cf. Eq. (10).

The first and second moments of the ancillary and the
genuine quantum observables are in each time step first prop-
agated similarly to Eqs. (13):

m̃(t + δt ) = D̃δt S̃δt m̃(t ), (25a)

�̃(t + δt ) = D̃δt S̃δt �̃(t )S̃
T
δt D̃

T
δt + L̃δt , (25b)

where the matrix S̃δt incorporates the displacement of the
oscillator observables due to the unknown perturbations. Note
that we now incorporate explicit damping and diffusion terms
via the matrices D̃δt and L̃δt as alluded to after Eqs. (13).
These are introduced, in particular, to represent the OU damp-
ing rates and diffusion constants specified in Eq. (20), see
Sec. IV A for the explicit matrices relevant to the setup in
Fig. 1.

The homodyne measurements with the field probe elimi-
nate the field quantum variables yB and update the state of
the remaining degrees of freedom according to the description
offered in Sec. II D, while using the augmented quantities ã,
Ã, and C̃ in

m̃ =
(

ã
b

)

and

�̃ =
(

Ã C̃
C̃

T
B

)
,

simultaneously represent the variables

ˆ̃yA =
(

ŷA

f̂

)

of the oscillators and the unknown perturbations f̂ . The probe
field variables ŷB retain their properties and dynamics and
can be eliminated, which leads to effective equations of the
form of (15) for the augmented mean vector ã and covariance
matrix Ã. These objects explicitly provide the estimated value
of f̂ and the variance of the estimate around the true value.

Our equations for ã and Ã are equivalent to classical
Kalman filter theory [22], which was applied for magnetic-
field sensing by continuous QND probing of an atomic
collective spin in Ref. [34], see also Refs. [35–37]. Our
derivation of these equations from the “quantized” form of
the unknown classical parameters provides a robust starting
point to explore the sensitivity limits imposed by quantum-
mechanical uncertainty relations and measurement backaction

Algorithm 1. Simulation of perturbations and measurement
data.

1. Numerically generate a particular classical realization of each
perturbation fi(t ) according to Eq. (20).

2. Simulate the conditional dynamics for a(t ) and A(t ) of Sec. II D
using fi(t ) and store the detection record qmeas

B (t ) from the
numerical sampling procedure according to Eqs. (17).

on the quantum meter system in more complex settings, see
also Ref. [38].

Our analysis is developed for application with measure-
ment data obtained in an experiment, but here we synthesize
such data by the Algorithm 1 and subsequently we estimate
the perturbation according to Algorithm 2.

B. Smoothing

Algorithm 2 gives an estimate for the perturbations at time
t conditioned upon all measurements until t . Alternatively one
might attempt to provide an estimate at time t conditioned
upon all measurements until and after t . That is, given the time
horizon H = [0, T ] of the complete experiment, how can we
benefit from all measurements until time T to retrodict the
strength of the perturbations at any intermediate time t ∈ H?

In classical estimation theory this question is answered
by so-called smoothing filters, such as the forward-backward
or α/β filters for estimation of hidden Markov models [39],
and the Mayne-Fraser-Potter two-filter smoother for Gaus-
sian distributions [23,24]. Quantum equivalents of these filters
were first developed by Tsang in Refs. [19–21], and following
the previous sections, we present a self-contained derivation
with reference to quantum measurement theory and the past
quantum state (PQS) retrodiction formalism [40]. We shall ap-
ply smoothing to obtain the maximum achievable information
from the “negative mass” detection scheme in Fig. 1.

1. The past quantum state

The PQS theory is a generalization of the two-state for-
malism by Watanabe [41] and Aharonov et al. [42,43] which
was further developed in Ref. [40] to retrodict the outcome
probabilities for the unknown outcomes of past measurements
on open and monitored quantum systems. Applying the PQS
theory to our “quantized” unknown classical variables f , it
becomes the Bayesian estimate of their values at time t , con-
ditioned on all measurements, prior and posterior to t . We
shall briefly recall the derivation of the past quantum state
at the level of Hilbert-space operators before moving to the

Algorithm 2. Estimation of perturbations (filtering).

1. Acquire a detection record, either from an experiment or from a
simulation by Algorithm 1.

2. Use the acquired detection record to simulate the conditional
dynamics for the augmented mean values ã(t ) and covariance
matrix Ã(t ). Definite elements of these quantities provide the
estimates of fi(t ) and their variances.
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convenient Gaussian Wigner function representation of states
and operators.

The conditional dynamics due to the continuous monitor-
ing of a quantum system up until time t = nδt is described
by the unnormalized density matrix following application of a
sequence of operators

ρ̂(t ) = �̂qn
· · · �̂q1

ρ̂(0)�̂†
q1

· · · �̂†
qn

. (26)

Here, we assume for simplicity of notation that the system is
subject to deterministic, unitary evolution and measurements
with a sequence of outcome values qi (17), so that for each
time interval the evolution is governed by a unitary operator
Û and backaction governed by POVM operators M̂qi

[44],
and �̂qi

= M̂qi
Û . In our setting, the projective measurements

of a quadrature component of the probe field segments are
dominated by their Gaussian fluctuations and cause minute
stochastic changes of the state of the observed oscillators, rep-
resented by the operators M̂qi

= M̂(qnB )i · · · M̂(q1 )i . The POVM
operators are normalized as

∫
M̂†

q M̂q dq = 1̂, and according
to quantum measurement theory, the trace norm of (26) yields
the joint probability of all the specified outcome results.

Proceeding with a projective measurement �̂y j = �̂†
y j

=
|y j〉〈y j | at t on the observed quantum system, followed by con-
tinued optical probing until T = Nδt yields the conditioned
state

ρ̂(T ) = �̂qN
· · · �̂qn+1

�̂y j ρ̂(t )�̂†
y j
�̂†

qn+1
· · · �̂†

qN
, (27)

and the joint probability density for the full optical detection
record q1, . . . , qN and the projective outcome value y j at time
t is given by

P(q1, . . . , y j, . . . qN ) = tr[ρ̂(T )]

= tr
[
�̂qN

· · · �̂qn+1
�̂y j ρ̂(t )�̂†

y j
�̂†

qn+1
· · · �̂†

qN

]
≡ tr

[
�̂y j ρ̂(t )�̂†

y j
Ê (t )

]
, (28)

where we used the cyclic property of the trace to define the so-
called measurement effect operator on the same Hilbert space
as ρ̂,

Ê (t ) = �̂†
qn+1

· · · �̂†
qN
1̂�̂qN

· · · �̂qn+1
. (29)

The expression for Ê (t ) is similar to the expression for the
time-evolved density matrix, except the operator Ê (t ) is con-
ditioned on the detection record for times after t and is found
by a sequential backward evolution from the final value,
Ê (T ) = 1̂ by the adjoint of the POVM operators. For gen-
eralization to cases including damping and dissipation, see
Ref. [40].

After all the field measurements have been done, the value
of the joint probability distribution (28) evaluated at the fixed
entries of the detection record yields the (conditional) proba-
bility for the still unknown outcome y j . Conditioned on only
measurements until time t , and on measurements before and
after time t , this yields

P(y j |q1 · · · qn) ∝ tr
[
�̂y j ρ̂(t )

]
, (30a)

Ppqs(y j |q1 · · · qN ) ∝ tr
[
�̂y j ρ̂(t )�̂†

y j
Ê (t )

]
, (30b)

respectively, where the probabilities are normalized by the
sum (or integral) of the expressions over the argument y j .

The first expression is the usual Born rule, and it applies
also when �̂y j represents the unknown classical perturbations,
in which case the conditional quantum state ρ̂(t ) acts as a
Bayesian filter. The second expression retrodicts past mea-
surement outcome probabilities [40], and the pair of operators
ρ̂(t ) and Ê (t ) corresponds to a Bayesian two-way smoothing
filter for the past value of the unknown classical perturbations
[19,20].

2. Gaussian states

To apply the Gaussian state formalism, we represent the
augmented operator ˆ̃E (t ) in a manner similar to Eq. (21)
for ˆ̃ρ,3

ˆ̃E =
∫

d f | f 〉〈 f | ⊗ Ê f . (31)

Both ˆ̃ρ and ˆ̃E are operators on the reduced Hilbert space of
the oscillators and perturbations, described by variables

ˆ̃yA =
(

ŷA

f̂

)
,

and they are evolved with Gaussian Wigner representations

W ãρ ,Ãρ

ˆ̃ρ
(ỹA) and W ãE ,ÃE

ˆ̃E
(ỹA) which are fully determined by the

first and second moments Ãρ, ãρ and ÃE , ãE . The moments
Ãρ, ãρ evolve according to the theory presented in the previ-
ous section and are now explicitly labeled with the index ρ

while first and second moments determined by the measure-
ment effect operator follow a backward time evolution. For
the evolution in each time step including the field segments,
we have

m̃E (t − δt ) = D̃
−
δt S̃

−
δt m̃E (t ), (32a)

�̃E (t − δt ) = D̃
−
δt S̃

−
δt �̃E (t )S̃

−T
δt D̃

−T
δt + L̃

−
δt . (32b)

The elements of S̃
−
δt follow from the equation of motion

ŷi(t − δt ) ≈ ŷi(t ) − ˙̂yi(t )δt , while the damping and diffusion
terms in the backwards equations have to be derived by an
analysis of their physical origin. When “played in reverse,”
the classical OU process experiences negative damping but
unchanged stochastic fluctuations. For the specific situation
described by the setup in Fig. 1, we incorporate the parameters
of the OU process in the matrix D̃

−
δt by negating the γi term in

D̃δt while the diffusion rates σi are unchanged and L̃
−
δt = L̃δt

(see details in Sec. IV A).
The monitoring of the field components leads to a stochas-

tic sequence of POVM operators, which shall be applied in
reverse to yield ˆ̃E . The effective measurement updates of

3In the continuous basis,

ˆ̃E =
∫

dxdx′d f Ẽ xx′
f | f 〉〈 f | ⊗ |x〉〈x′|.
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ãE (t ) and ÃE (T ) governed by the detection record qmeas
B (t )

are thus on the same form as Eq. (15). The Wigner function
for Ê (T ) = 1̂ is a uniform Gaussian distribution (the constant
function with infinite variance) on the oscillators and classi-
cally unknown parameters. In practice we assume vanishing
mean values and ÃE (T ) = diag(. . . , v, . . . ) with a suitably
large dimensionless v = 104 at t = T , and we have verified
that the backward-evolved first and second moments quickly
become independent of these values.

Rather than explicitly reconstructing the operators ˆ̃ρ and
ˆ̃E , it is much more convenient for our purpose to refer

to their first and second moments and their corresponding
Gaussian Wigner functions. This is because the trace of a
product of two operators equals the integral of the prod-
uct of their Wigner functions (4), and the PQS expression,
Ppqs( f ′

j ) ∝ tr[(| f ′
j〉〈 f ′

j | ˆ̃ρ)(| f ′
j〉〈 f ′

j | ˆ̃E )] for the variable y j → f ′
j

in Eq. (30b) involves such a product of operators | f ′
j〉〈 f ′

j | ˆ̃X ,
with X = ρ, E .

Multiplication of ˆ̃ρ and ˆ̃E by the projection operator yields
the transformed Wigner function, see the Appendix,

W| f ′
j 〉〈 f ′

j | ˆ̃X (ỹA) = δ( f j − f ′
j )W ˆ̃X

(ỹA), (33)

and the PQS probability density for f ′
j in Eq. (30b) can be

directly written in terms of the Gaussian Wigner functions,

Ppqs( f ′
j ) ∝ tr[(| f ′

j〉〈 f ′
j | ˆ̃ρ)(| f ′

j〉〈 f ′
j | ˆ̃E )]

∝
∫

dxAd pAd f W| f ′
j 〉〈 f ′

j | ˆ̃ρ × W| f ′
j 〉〈 f ′

j | ˆ̃E

=
∫

dxAd pAd f i �= j

(
W ãρ ,Ãρ

ˆ̃ρ
× W ãE ,ÃE

ˆ̃E

)∣∣
f j= f ′

j

=
∫

dxAd pAd f i �= j W
ãρ,E ,Ãρ,E

ˆ̃ρ, ˆ̃E
(yA, f i �= j, f ′

j ). (34)

The integrals in the last two lines are over all variables ỹA
except the desired value of the argument f ′

j . In the last ex-
pression we have used that the product of two multivariate
Gaussian functions is also a multivariate Gaussian function,
with the covariance matrix and mean values given by

Ã
−1
ρ,E = Ã

−1
ρ + Ã

−1
E , (35a)

ãρ,E = Ãρ,E
(
Ã

−1
ρ ãρ + Ã

−1
E ãE

)
. (35b)

These expressions directly yield the retrodicted (smoothed)
estimate of the time-dependent perturbations and their ac-
companying variances based on the entire detection record.
The implementation of the formalism is summarized in
Algorithm 3.

IV. NUMERICAL EXAMPLES

We have presented a general, compact mathematical for-
malism for the Gaussian quantum states and estimates of
classical parameters conditioned on continuous quadrature
(homodyne) measurements on probe fields. We shall now
demonstrate numerical application of the formalism and eval-
uate the assessment of the probing scenario illustrated in

Algorithm 3. Estimation of the perturbations by smoothing.

1. Obtain data record from experiments or by simulation with
Algorithm 1.

2. Apply Algorithm 2 to obtain the conditional dynamics for ãρ (t )
and Ãρ (t ).

3. Use the same measured or simulated detection records to obtain
the backward conditional dynamics for ãE (t ) and ÃE (t ).

4. Calculate the retrodicted PQS moments ãρ,E (t ) and Ãρ,E (t ) in
Eq. (35). Definite elements of these quantities provide the
smoothed, PQS estimates of fi(t ) and their variances.

Fig. 1 and described by Eq. (1). The entanglement and noise
cancellation properties of the scheme have been analyzed and
experimentally demonstrated in the frequency domain [45],
i.e., noise power spectra of the probe signal measurements
have been compared and agree with theory. Here, we shall
address the explicit time domain analysis, and provide the
time-dependent estimator and compare it with its true value
in simulated experiments.

A. Physical parameters

We assume the Hamiltonian in Eq. (1), describing how the
oscillator variables ŷA = (x̂S1 , p̂S1 , x̂S2 , p̂S2 ) interact sequen-
tially with the field variables of the consecutive light segments
ŷB = (x̂L1 , p̂L1 , x̂L2 , p̂L2 ).

By assuming fewer degrees of freedom and vanishing val-
ues of some of the interaction parameters in Eq. (1) we can use
the same theoretical model to study the estimation of single or
multiple perturbations, by a single probe beam or two probe
beams and a single or oscillator mode two oscillator modes.
We can thus directly observe how the backaction-evading
mechanism affects the dynamics of the physical systems and
the estimation of the perturbations.

We henceforth assume for convenience that all physical
parameters are given in units of the values listed in Table I
applicable, e.g., to the probing of ensemble atomic spins,
subject to magnetic-field fluctuations [35,46]. The matrix and
vector quantities applied in our formalism are listed in the
following equations, where the vector and matrix elements
refer to the physical observables and classical noise in the

TABLE I. Parameter values used, if not set to zero, in the numeri-
cal simulations (i, j = 1, 2). These values may for example represent
vector magnetometry with atomic spin ensembles.

Parameter Value

Time step δt = 10−5–10−7 s
Oscillation frequencies |ωi| = 0.1 × 2π/ms ≈ 0.63 kHz
Light couplings |κi, j | = 135 Hz
Classical field couplings cx = cp = 1.5 × 104 Hz
OU damping rate of fx γx = 100 Hz
OU diffusion rate of fx σx = 10 Hz
OU damping rate of fp γp = 10 Hz
OU diffusion rate of fp σp = 1 Hz
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following order (x̂S1 , p̂S1 , x̂S2 , p̂S2 , fx, fp, x̂L1 , p̂L1 , x̂L2 , p̂L2 ):

S̃δt =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

cos ω1δt sin ω1δt 0 0 cxδt 0 0 κ1,1

√
δt 0 0

− sin ω1δt cos ω1δt 0 0 0 cpδt 0 0 −κ1,2

√
δt 0

0 0 cos ω2δt sin ω2δt 0 0 0 κ2,1

√
δt 0 0

0 0 − sin ω2δt cos ω2δt 0 0 0 0 −κ2,2

√
δt 0

0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0

0 κ1,1

√
δt 0 κ2,1

√
δt 0 0 1 0 0 0

0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 1 0

−κ1,2

√
δt 0 −κ2,2

√
δt 0 0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (36)

D̃δt = diag(1, 1, 1, 1, (1 − γxδt ), (1 − γpδt ), 1, 1, 1, 1), (37)

L̃δt = diag(0, 0, 0, 0, 2σxδt, 2σpδt, 0, 0, 0, 0), (38)

Fδt = (cx fxδt, cp fpδt, 0, 0, 0, 0, 0, 0)T , (39)

� = πL1 ⊕ πL2 = πx ⊕ πp = diag(1, 0, 0, 1), (40)

�meas
B = diag

(
�L1 , 0, 0,�L2

) ≡ diag
(
xmeas

L1
− 〈

x̂L1

〉
, 0, 0, pmeas

L2
− 〈

p̂L2

〉)
, (41)

When the classical perturbations have known values, they
displace the quadrature observables

ŷ =
(

ŷA
ŷB

)

by the argument Fδt in Eq. (39), and the interaction matrix Sδt

for the quantum variables is given for small values of δt by
omitting the fx and fp rows and columns (5 and 6) in S̃δt in
Eq. (36). When the perturbing fields are instead represented as
ancillary quantum variables, i.e., fi → f̂i in Ĥ , the augmented
system variables are

ˆ̃y =
(

ˆ̃yA
ŷB

)
where ˆ̃yA =

⎛
⎝ŷA

f̂x

f̂p

⎞
⎠,

and the full S̃δt matrix and OU dissipation D̃δt in Eq. (37), and
OU diffusion L̃δt in Eq. (38) are used.

Rather than extensively scoping out the dependence of the
results on different combinations of physical parameters, we
focus our numerical efforts on highlighting the behavior with
few fixed parameter settings, specified by the values in Table I,
and observing how the switching on and off of different terms
change the sensing mechanisms and hence performance.

B. Monitoring of unperturbed oscillators

In this section we consider scenarios where the classical
perturbations are absent fx(t ) = fp(t ) = 0 or, equivalently,
cx = cp = 0.

1. Probing of a single oscillator

Consider a single mode

ŷ =
(

x̂
p̂

)

with dimensionless canonical variables [x̂, p̂] = i with
�x̂2� p̂2 � 1/4,4 subject to the harmonic-oscillator Hamilto-
nian with corresponding Heisenberg time evolution

Ĥω = h̄ω

2
(x̂2 + p̂2), (42a)

x̂(t ) = x̂(0) cos ωt + p̂(0) sin ωt, (42b)

p̂(t ) = p̂(0) cos ωt − x̂(0) sin ωt . (42c)

In suitable interaction pictures (rotating frames), systems may
be described by positive, negative, and vanishing values of
ω = 0 in (42). The backaction from a precise measurement
of x̂ at t = 0 squeezes the variance �x̂(0)2 → 0 and in-
duces a corresponding antisqueezing � p̂(0)2 → ∞. For ω �=
0, the reduced and increased variances will then oscillate back
and forth between the two operators as their time evolution
amounts to rotation about the origin in phase space with
angular frequency ω, as shown in Fig. 3(a).

Rather than such an abrupt measurement and preparation
of a squeezed state, we consider continuous probing by the
sequential interaction with infinitesimal segments of a laser
probe beam with quantum degrees of freedom ŷB = (x̂L, p̂L )T

subject to a subsequent measurement. Specifically, an interac-

4For a mechanical oscillator Ĥω = p2
mech
2m + 1

2 mω2x2
mech with mass

m the dimensionless variables are given by x̂ = x̂mech/x0 and p̂ =
p̂mechx0/h̄, where x2

0 = h̄/(mω).
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FIG. 3. Evolution of a single oscillator. Numerical examples for different scenarios (columns) with nonzero parameter values from Table I.
(a) Squeezed state oscillating without measurements. (b) Coherent state squeezed by continuous optical measurements sensitive to the oscillator
quadrature p̂. (c) Same as panel (b) but including oscillations. (d) Same as panel (c) but including continuous optical measurements sensitive
to the oscillator quadrature x̂. Variances are shown as function of time in the upper panels. Snapshots of associated Wigner function contour
lines are shown in the lower panels around the time-dependent mean values (translucent gray solid line), as in Fig. 2. The snapshot times are
indicated by vertical lines in the upper panels and their sequence is indicated by increasing linewidth and opacity.

tion with p̂L and measurement of x̂L,

Ĥ p
κ = h̄κ p̂S p̂L, π1 = πx, (43)

results in a small incremental squeezing of p̂S and antisqueez-
ing of x̂S while

Ĥx
κ = h̄κ x̂S x̂L, π1 = πp, (44)

results in a small incremental squeezing of x̂S and anti-
squeezing of p̂S . This leads to the following distinct scenarios
and accumulated effects on the oscillator.

Single probe, ω = 0—squeezing accumulates with a vari-
ance scaling asymptotically as 1/t [Fig. 3(b)]. For an
analytical derivation of this result, see, e.g., Ref. [38].

Single probe, ω �= 0—squeezing is partially counteracted
by the rotation and the variances become asymptotically con-
stant [Fig. 3(c)].

Two probes, ω = 0 or ω �= 0—two light modes ŷB =
(x̂L1 , p̂L1 , x̂L2 , p̂L2 )T interacting with different quadratures

Ĥκ1,κ2
= Ĥ p

κ1
+ Ĥx

κ2
,

π1 = πx

π2 = πp,
(45)

the squeezing effects compete, and for κ1 = κ2 no net squeez-
ing occurs [Fig. 3(d)].

2. Probing of two oscillators—EPR variables

Consider now a two-mode system ŷA =
(x̂S1 , p̂S1 , x̂S2 , p̂S2 )T with [x̂Si , p̂S j ] = iδi, j for i, j = 1, 2
and a separable oscillator Hamiltonian

Ĥω1,ω2 = Ĥω1 + Ĥω2 . (46)

Precise knowledge of both quadratures for the individual os-
cillators is prohibited by the Heisenberg uncertainty relation,
yet we can define four new EPR-type position and momentum
variables [13],

ŷ±
A ≡

⎛
⎜⎝

x̂−
p̂+
x̂+
p̂−

⎞
⎟⎠ ≡ 1√

2

⎛
⎜⎝

x̂S1 − x̂S2

p̂S1 + p̂S2

x̂S1 + x̂S2

p̂S1 − p̂S2

⎞
⎟⎠, (47)

satisfying the commutation relations

[x̂−, p̂+] = [x̂+, p̂−] = 0, (48)

[x̂−, p̂−] = [x̂+, p̂+] = i. (49)

Hence x̂− and p̂+ can both be principally known to arbitrary
precision, �x̂2

−� p̂2
+ � 0, while the values of the adjoint vari-

ables x̂+ and p̂− become correspondingly uncertain. The EPR
variables can be written ŷ±

A = RŷA with the matrix

R = 1√
2

⎛
⎜⎝

1 0 −1 0
0 1 0 1
1 0 1 0
0 1 0 −1

⎞
⎟⎠, (50)

and their first and second moments are given by

a± = Ra, A± = RART . (51)

Two laser probes ŷB = (x̂L1 , p̂L1 , x̂L2 , p̂L2 )T permit simul-
taneous measurements of x̂− and p̂+ if we assume the
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FIG. 4. Evolution of two oscillators. As Fig. 3 but for commuting
EPR variables x̂− and p̂+ continuously measured indirectly starting
from an initial coherent state. The oscillator frequency ω1 is positive
and (a) ω2 is positive or (b) ω2 is negative. The variance reduction in
panel (b) is also attained for ω1 = ω2 = 0.

interactions

Ĥ p
κ1,1,κ2,1

= h̄
(
κ1,1 p̂S1 + κ2,1 p̂S2

)
p̂L1 ,

(assume κ1,1 = κ2,1 ≡ κp/
√

2)

= h̄κp p̂+ p̂L1 ≡ Ĥ p+
κp+

, π1 = πx, (52)

and

Ĥx
κ1,2,κ2,2

= h̄
(
κ1,2x̂S1 + κ2,2x̂S2

)
x̂L2 ,

(assume κ1,2 = −κ2,2 ≡ κx/
√

2)

= h̄κxx̂−x̂L2 ≡ Ĥx−
κx−

, π2 = πp. (53)

In summary, we have

Ĥ p+
κp

+ Ĥx−
κx

≡ h̄κp p̂+ p̂L1 + h̄κxx̂−x̂L2 ,
π1 = πx

π2 = πp,
(54)

which is similar to Eq. (45), but here the operators x̂− and p̂+
commute and can be simultaneously measured and squeezed.
This leads to the following distinct accomplishments.

Same sign, ω = ω1 = ω2—the free evolution of the oscil-
lators yields

(
x̂−(t )

p̂+(t )

)
=

(
x̂−(0) cos ωt + p̂−(0) sin ωt

p̂+(0) cos ωt − x̂+(0) sin ωt

)
, (55)

and the squeezed and antisqueezed uncertainties oscillate pe-
riodically between the x̂− and p̂− variables (respectively, p̂+
and x̂+), while the continuously probed system reaches a finite
steady squeezing of the collective observables, see Fig. 4(a).

Opposite sign, ω = ω1 = −ω2—the free evolution of the
oscillators yields(

x̂−(t )

p̂+(t )

)
=

(
x̂−(0) cos ωt + p̂+(0) sin ωt

p̂+(0) cos ωt − x̂−(0) sin ωt

)
, (56)

which show that the variables x̂− and p̂+ do not couple to
the antisqueezed observables and are both squeezed with vari-
ances scaling asymptotically as 1/t , as one would conclude
from Ref. [38], see Fig. 4(b).

In conclusion, by choosing appropriate probe strengths and
oscillator frequencies, κ1,1 = κ1,2 = κ2,1 = −κ2,2, ω1 = −ω2,
the EPR variables x̂− and p̂+ in Fig. 1 can both be determined
to arbitrary precision with no adverse measurement backac-
tion or coupling to their conjugate, antisqueezed observables.
As proposed by Tsang and Caves [7,8] this property can be
leveraged for the sensing of perturbations acting on one of the
oscillators.

C. Estimation of constant perturbations

We now consider the estimation of the unknown value
of constant perturbations (γi = σi = 0) on the oscillator sys-
tem. We assume initial oscillator ground states, ai = 0 and
Ai j = δi j , and perturbations governed by an initial Gaussian
distribution with vanishing mean and variance of 0.05 in all
our simulations.

It is possible to asymptotically approach the true values
〈 fi〉 → fi to an arbitrary precision by measuring for longer
and longer times, but the rate at which the variance of our
estimate decreases depends on the measurement scenario, as
shown in Fig. 5. All parameters are given in units of the values
in Table I.

For a single oscillator with ω1 = 0, subject to a single
probe beam, by the analysis in Ref. [38], it is possible to
asymptotically achieve � fp

2 ∝ 1/t3 for the sensing of a sin-
gle unknown perturbation fp, while we have no sensitivity to
the value of fx, see Fig. 5(a). This reflects that the number of
measurements (“samples”) increases linearly with time, while
the measurements are performed with a progressively better
(more squeezed) sensor, cf. Fig. 3(b). The right panel shows
the estimated and true values of fx and fp (assuming very
distinct true values for ease of identification).

By coupling the oscillator quadratures to two different
perturbations and probe beams in Fig. 5(b), the variance
on the estimator of both perturbations approach zero but at
slower asymptotic rates � fx

2, � fp
2 ∝ 1/t . This is because

squeezing of both oscillator quadratures is prohibited by the
uncertainty relation, and hence the sensor does not improve
with time, cf. Fig. 3(d).

We now introduce the second oscillator. Initially assum-
ing ω1 = ω2 = 0 and probing the EPR variables x̂− and p̂+
restores the benefits of squeezing, cf. Fig. 4(b), and results
in an asymptotic � fx

2, � fx
2 ∝ 1/t3 scaling for our estimate

of both perturbations, as shown in Fig. 5(c). The right panel
shows that the correct values of the perturbations are rapidly
identified with high precision.

It is worth commenting that the solution of the nonlinear
matrix Riccati equation for the covariance matrix by the de-
composition as a matrix fraction A = WU−1, in simple cases
leads to variances that can be expressed as a ratio between

022613-11



JENSEN AND MØLMER PHYSICAL REVIEW A 106, 022613 (2022)

FIG. 5. Estimation of constant perturbations (γi = σi = 0).
The left panels show the variance � fi

2 with 1/t and 1/t3 trend
lines. The right panels show the true and estimated perturbation
〈 fi〉 ± � fi (the true values shown by the thin lines are taken to be
large positive and negative to distinguish their estimates clearly in
the panels). The upper panels (a) show the results for probing of
p̂S1 for a single oscillator with ω1 = 0 being sensitive to only the
value of fp. Panels (b) show the results for probing of x̂S1 and p̂S1

of a single oscillator with ω1 = 0, being sensitive to both fx and fp,
but without the benefit of squeezing of the oscillator. Panels (c) are
for the probing and squeezing of EPR variables x̂− and p̂+ of two
oscillators with ω1 = ω2 = 0, and hence the accelerated estimation
of both fx and fp. The lower panels (d) are for the probing of EPR
variables x̂− and p̂+ of two oscillators with opposite, nonvanishing
frequencies. All parameters are given in units of the values in Table I.

polynomials in time [38]. The individual terms in these poly-
nomials reflect how the perturbing force affects the measured
quantum observable to different order in time. The very long
time behavior thus follows from the highest nonvanishing
order present in the solution for W and U , while lower-order
terms with large coefficients may dominate the expressions
for shorter times.

The lower panels in Fig. 5(d) show the results for prob-
ing EPR variables x̂− and p̂+ of two oscillators with finite,
opposite oscillator frequencies, ω2 = −ω1. These variables
are both squeezed, cf., Fig. 4(b), and hence we observe the

accelerated estimation of both fx and fp, by � fi
2 ∝ 1/t3. For

longer times, however, we observe a crossover to a � fi
2 ≈

ω2/(2c2
i κ

2t ) asymptotic dependence, which is analyzed fur-
ther in Appendix E 2.

In practice, the asymptotic behavior shown in Fig. 5 are
subject to further change when damping and decoherence are
taken into account [38]. This typically replaces the polynomial
dependencies on time by exponential convergence to constant
values. In the main example of this article we are striving to
estimate temporally varying fluctuations, and their variances
will typically converge to constant values.

D. Estimation of fluctuating perturbations

When the perturbations are fluctuating in a stochastic man-
ner, early parts of long detection records do not contribute to
the estimator at later times and the variances approach final
steady-state values. The exact values and rates at which the
steady-state variances are approached depend on the measure-
ment scenario as shown in Fig. 6.

In Fig. 6 we assume distinct true initial values for the OU
processes, while the estimate assumes vanishing mean values
and variances for fx and fp, equal to the OU steady-state
variances, σx

2γx
= σp

2γp
= 0.05 in our dimensionless unit.

Figure 6(a) shows results for ω1 = 0 when we probe only
the oscillator quadrature variable affected by fp. The variance
of fx does not change, while the variance of the probed pertur-
bation fp converges to a small steady-state value. In Fig. 6(b),
we show results when both oscillator quadratures are probed
and ω1 = ω2 = 0. Both perturbations are correctly estimated,
but with larger variance than for fp in Fig. 6(a) due to the
absence of squeezing. The range of values explored by fx and
fp are the same, but the faster damping and diffusion of fx

implies that it is more difficult to estimate precisely and hence
it shows a larger variance.

Probing both x̂− and p̂+ for oscillators with ω1 = ω2 = 0
leads to the results shown in Fig. 6(c), where both perturba-
tions have variances that follow a crossover from an initial
1/t3 to a small constant variance like for fp in Fig. 6(a). The
same behavior is seen in Fig. 6(d) for the probing of x̂− and
p̂+ for oscillators with opposite, finite frequencies ω2 = −ω1.
For the chosen parameters, we reach the constant steady-state
values before the crossover between the 1/t3and 1/t behavior
observed in Fig. 5.

The successful demonstration of the efficient real time
tracking of both fields using entangled oscillator variables
with one positive and one negative evolution frequency con-
stitutes a confirmation of the use of the backaction evading
protocol by Tsang and Caves [7,8] and is a main result of this
paper.

E. Smoothing

Finally, we apply the theory of past quantum states (35) to
retrodict the time-dependent values of the perturbations based
on the full measurements records. Such analysis was done for
a single perturbation in Ref. [46], and it also applies to the
negative mass oscillator setting and simultaneous estimation
of two perturbations by two optical probes.
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FIG. 6. Estimation of a fluctuating perturbations with γx,p and
σx,p given in Table I. The left panels show the variance � fi

2 with 1/t
and 1/t3 trend lines. The right panels show the true and estimated
perturbation 〈 fi〉 ± � fi (the true values are taken to be large positive
and negative to distinguish their estimates clearly in the panels). The
upper panels (a) show the results for probing of p̂S1 for a single
oscillator with ω1 = 0 being sensitive to only the value of fp. Panels
(b) show the results for probing of x̂S1 and p̂S1 of a single oscillator
with ω1 = 0, being sensitive to both fx and fp, but without the
benefit of squeezing of the oscillator. Panels (c) are for the probing
and squeezing of EPR variables x̂− and p̂+ of two oscillators with
ω1 = ω2 = 0, and hence the accelerated estimation of both fx and
fp. The lower panels (d) are for the probing of EPR variables x̂−
and p̂+ of two oscillators with opposite, nonvanishing frequencies.
All listed parameters are given in units of the values in Table I. The
higher variance of fx is due to its faster OU damping and fluctuations.

Figure 7 compares the time-dependent fx smoothed esti-
mate with the true (simulated) time-dependent value, shown
as the lighter and darker (most noisy) solid curves. The for-
ward filtering estimate is shown by the dotted data and follows
the true time dependence but with a clearly visible delay,
while the smoothed estimate (light solid curve) is visibly
smoother than the forward filtering estimate, and it does not
lag systematically behind the signal. The corresponding es-
timates match the true perturbation values better which can
be quantified by the mean-square error [ fi(t ) − 〈 fi(t )〉]2. With

FIG. 7. Perturbation estimation using past quantum states. The
mean-square error ex is recorded from t1 = 0.01 s to t2 = T .

the parameters chosen in Table I, the smoothed estimate leads
to a reduction of the mean square error by a factor three to
four compared with the forward filter estimate.

V. CONCLUSION

In summary, we have presented a real-time analysis of a
backaction evading measurement protocol based on EPR cor-
relations between a probe oscillator and an ancillary negative
mass oscillator [8]. Continuous probing of the EPR variables
enables their simultaneous squeezing and hence enhanced
sensitivity to changes caused by perturbations of the position
and momentum quadrature of the probe oscillator. The degree
of squeezing of the quantum oscillators, the correlations be-
tween the oscillator variables and the perturbations, and the
variance of our resulting estimate of the perturbations are all
governed by a covariance matrix which obeys a deterministic
equation, while their mean values, and hence the estimated
value of the perturbation are continuously updated in accor-
dance with the random measurement record. Finally, Bayesian
estimates for the perturbations were obtained relying at every
instant of time on both earlier and later measurement data. The
procedure to describe these smoothed estimates yielded a fur-
ther reduction in the uncertainty about the actual perturbation.

Our theory builds on the conditional dynamics of a hybrid
quantum classical density matrix subject to continuous mea-
surements, and it is significantly simplified by the restriction
to Gaussian states throughout the process. This restriction ap-
plies well to mechanical and field oscillators, but also to large
polarized spin ensembles, and the assumption of interaction
Hamiltonians with only quadratic terms applies exactly or to
a good approximation for many studies with these systems.
We also note that systems with many degrees of freedom such
as Bose-Einstein condensates and generic many-body systems
may be well described by Bogoliubov theory or second-order
cumulant expansion methods and that our Gaussian covari-
ance matrix method can readily deal with a large number
of degrees of freedom and hence explore the prospects of
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sensing with such complex systems. There is, however, also
a rich potential to explore non-Gaussian states for precision
measurements [47], and, e.g., the assumption that the classical
perturbations obey an Ornstein-Uhlenbeck process may be
challenged in many practical sensing applications and hence
their representation by Gaussian distributions become invalid.
Integration of the hybrid quantum filtering with more prag-
matic signal processing models, along the lines of Ref. [36],
may then be needed for backaction evading measurements to
reach their full potential.
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APPENDIX A: OVERVIEW OF THE APPENDICES

These Appendices present supplementary derivations and
results of the estimation procedures presented in the main
text. Appendix B elaborates on the hybrid quantum-classical
description of the system. In Appendix C it is shown that
the measurement backaction in the augmented quantum state
formalism is fully equivalent to Bayesian inference of the
classical perturbations acting on the genuine quantum system.
In Appendix D we show that the hybrid Wigner function
does not depend on “dummy” quantum conjugate variables to
the unknown classical perturbations (the Wigner function is
independent of, and has infinite variance in those directions).
This allows their exclusion from the formal description of
both our forward filter theory and smoothed estimate based
on the past quantum state moments. In Appendix E we present
some analytical results for the time evolution of quantum state
and classical parameter variance.

APPENDIX B: HYBRID QUANTUM AND CLASSICAL
GAUSSIAN DISTRIBUTIONS

The most general setup in the main text concerns two
oscillators S1 and S2 with respective oscillation frequency
ω1 and ω2 being continuously probed by two light meters
L1 and L2 where the coupling between Si and Lj is κi j for
i, j = 1, 2. The oscillator variables x̂S1 and p̂S1 are coupled
to classical perturbations fx(t ) and fp(t ) with strength ci for
i = x, p, while the perturbations evolve in time according to
stochastic Ornstein-Uhlenbeck (OU) processes with diffusion
σi and decay rates γi.

The relevant collective Einstein-Podolsky-Rosen (EPR)
variables and their variances are related to the individual quan-
tum oscillators S1 and S2 by

x̂− = 1√
2

(
x̂S1 − x̂S2

)
,

�x̂2
− = 1

2

(
�x̂2

S1
+ �x̂2

S2

) − �
(
x̂S1 , x̂S2

)
, (B1)

p̂+ = 1√
2

(
p̂S1 + p̂S2

)
,

� p̂2
+ = 1

2

(
� p̂2

S1
+ � p̂2

S2

) + �
(
p̂S1 , p̂S2

)
. (B2)

These EPR variables commute, [x̂−, p̂+] = 0, and both can be
squeezed indefinitely which can be effected by the backaction
from the continuous coupling and measurement (successive
homodyne detection of temporal segments of the light field).
Probing p̂+ (x̂−) is achieved by choosing κ11 = κ21 ≡ κ1

(κ12 = −κ22 ≡ κ2). The adverse measurement backaction ef-
fects from the antisqueezed conjugate variables p̂−, x̂+ is
evaded by choosing ω1 = −ω2. We assume dimensionless os-
cillator variables [x̂Si , p̂S j ] = iδi, j and units where effectively
h̄ = 1.

All the system components are Gaussian elements, i.e.,
the Wigner function is a multivariate Gaussian, and all the
operations preserve the Gaussianity. This affords a compact
description in terms of the mean vector a and covariance ma-
trix A and their effective evolution (the sequentially incident
light meter subsystems are traced out after each measure-
ment). That is, the elements of a and A are the quantum
expectation values and covariances, respectively, of the oscil-
lator variables at time t .

A hybrid classical-quantum formalism is employed to con-
veniently estimate the classical perturbations. This is achieved
by associating the perturbation fi with eigenstates and eigen-
values of an ancillary quantum operator f̂i, f̂i| fi〉 = fi| fi〉. In
our example we deal with two such perturbations, i = x, p.
The new variables are introduced through an augmented den-
sity matrix, ˆ̃ρ = ∫ | fx, fp〉〈 fx, fp| ⊗ ρ̂ fx, fp dfxdfp, where each
ρ̂ fx, fp is an operator defined on the space of genuine quantum
variables and has a time evolution governed by the application
of the candidate values of the perturbations and conditioned
on the measurement outcomes of the light probes. The joint
probability density for fx and fp being the true values of
the perturbation is given by P( fx, fp) = tr[ρ̂ fx, fp]. Since the
total normalization is given by ˆ̃ρ, each measurement event
redistributes the norm between the individual ρ̂ fx, fp , and hence
the probabilities, in a Bayesian manner.

To recover a Gaussian description we let the ancillary
quantum operators be position operators f̂i = x̂ fi with conju-
gate, uncoupled “dummy” variables p̂ fi . Then there exists a
Wigner function defined on the joint space of all the genuine
and ancillary quantum variables. The OU process is described
statistically by a Fokker-Planck equation and its diffusion and
decay rates can be equivalently imposed on the associated
ancillary quantum variables in a Gaussian manner. This results
in an augmented mean vector ã = ãρ and covariance matrix
Ã = Ãρ , which include the first and second moments of our
classical Gaussian estimator of the perturbations.

The values of the perturbations at time t can also be retro-
dicted based on the entire detection record using the theory
of past quantum states. This introduces a backward evolving
effect matrix ˆ̃E on the same Hilbert space as ˆ̃ρ which also has
a Gaussian Wigner representation with mean vector ãE and
covariance matrix ÃE . Finally, appropriate combination of the
ˆ̃ρ and ˆ̃E moments yields a vector m̃ρ,E and a matrix Ãρ,E . An
element of m̃ρ,E and the corresponding diagonal element of
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Ãρ,E yield the estimated mean and variance of the outcome
of a projective measurement of the corresponding observable.
These form our retrodicted Gaussian Bayesian estimator for
the elements representing the classical perturbations.

APPENDIX C: AUGMENTED DENSITY MATRIX UPDATES
AS BAYESIAN INFERENCE

The classical-quantum hybrid formalism in the main text
includes the perturbation f to be estimated as an ancillary
quantum operator f̂ on equal footing with the genuine quan-
tum operators. This allows a convenient density-matrix ansatz
(we consider here a single perturbation and light meter for
brevity),

ˆ̃ρ =
∫

| f 〉〈 f | ⊗ ρ̂ f df =
∫

| f 〉〈 f | ⊗ tr[ρ̂ f ]ρ̂ (n)
f df , (C1)

where the normalization of ρ̂ f is explicitly factored, ρ̂ f =
tr[ρ̂ f ]ρ̂ (n)

f . tr[ρ̂ (n)
f ] = 1 and tr[ρ̂ f ] is the probability density for

the perturbation to have the classical value f ,

P( f ) = tr[| f 〉〈 f | ˆ̃ρ] = tr
[| f 〉〈 f | ⊗ ρ̂

(n)
f

]
tr[ρ̂ f ]

= tr[| f 〉〈 f |]tr[ρ̂ (n)
f

]
tr[ρ̂ f ] = tr[ρ̂ f ]. (C2)

Note here that tr[| f 〉〈 f |] = ∫
δ( f − f ′)2 df is technically di-

vergent, in the same manner as the trace of the resulting
resolution of the identity operator diverges due to the infinite-
dimensional Hilbert space. This issue may be formally dealt
with by use of regular approximations to the δ functions and
proper truncation of the Hilbert space, and the δ functions and
the | f 〉〈 f | do not pose problems when used in a consistent
manner.

The unitary evolution of each ρ̂ f is described by an op-
erator Ûf where the perturbation takes the definite classical
value f . The total unitary evolution operator for ˆ̃ρ can then be
constructed by

ˆ̃U =
∫

| f 〉〈 f | ⊗ Ûf df . (C3)

A unitary evolution alone,

ˆ̃U ˆ̃ρ ˆ̃U † =
∫

| f 〉〈 f | ⊗ (Ûf ρ̂
(n)Û †

f ) tr[ρ̂ f ] df , (C4)

does not change the probability distribution for f ,

P( f ) = tr[| f 〉〈 f |( ˆ̃U ˆ̃ρ ˆ̃U †)]

= tr[| f 〉〈 f | ⊗ (Ûf ρ̂Û †
f )(n) tr[Uf ρ̂ f U

†
f ]] = tr[ρ̂ f ]. (C5)

Suppose now the unitary evolution is followed by a measure-
ment, �̂q = M̂q

ˆ̃U , where M̂q is the POVM element for the
outcome q, then the conditioned state is

ˆ̃ρq = M̂q
ˆ̃U ˆ̃ρ ˆ̃U †M̂†

q

tr[M̂q
ˆ̃U ˆ̃ρ ˆ̃U †M̂†

q ]
. (C6)

The denominator is the probability for detecting the outcome
q,

tr[M̂qŨ ˆ̃ρŨ †M̂†
q ] =

∫
tr[M̂†

q M̂q(Ûf ρ̂ f Û
†
f )(n)] tr[ρ̂ f ] df

=
∫

P(q| f )P( f ) df = P(q). (C7)

The conditioned state can therefore be written

ˆ̃ρq =
∫

| f 〉〈 f | ⊗ (M̂qÛf ρ̂ f Û
†
f M̂†

q )
1

P(q)
df

=
∫

| f 〉〈 f | ⊗ M̂q(Ûf ρ̂ f Û
†
f )(n)M̂†

q

tr[ρ̂ f ]

P(q)
. (C8)

Finally, the updated probability distribution for f after detect-
ing q is

P( f |q) = tr[| f 〉〈 f | ˆ̃ρq] = tr[M̂†
q M̂q(Ûf ρ̂ f Û

†
f )(n)]

tr[ρ̂ f ]

P(q)

= P(q| f )P( f )

P(q)
, (C9)

which is exactly Bayes rule. This result generalizes straight-
forwardly to an arbitrary number of perturbations and probe
fields and applies successively as the measurement record
accumulates.

APPENDIX D: AUGMENTED DENSITY MATRIX
WIGNER FUNCTION

To admit the unknown classical perturbation into the quan-
tum Wigner function description we specify f̂ = x̂ f as the
position operator of an ancillary system with a conjugate
momentum operator p̂ f . Then there exists a Wigner function
Wρ̃ (x, p, x f , p f ) (for simplicity of notation we consider a
single perturbation and oscillator).

The ancillary system has a vanishing Hamiltonian and p̂ f

does not couple to x̂ f or to the genuine quantum oscillators
and will hence play no role in the dynamics. Due to ˆ̃ρ being
diagonal in the continuous x̂ f eigenbasis, the Wigner function
does not depend on the dummy variable,

W ˆ̃ρ (x, p, x f , p f ) = 1

(π h̄)2

∫
〈x + q, x f + q f |

(∫
dx′

f |x′
f 〉〈x′

f | ⊗ ρ̂ f ′

)
|x − q, x f − q f 〉e2ipq/h̄e2ip f q f /h̄dqdq f

= 1

(π h̄)2

∫
〈x + q|ρ̂ f ′ |x − q〉〈x f + q f |x′′

f 〉〈x′
f |x f − q f 〉e2ipq/h̄e2ip f q f /h̄dqdq f dx′

f

= 1

(π h̄)2

∫
〈x + q|ρ̂ f |x − q〉e2ipq/h̄dq × δ((x f − x′

f ) + q f )δ((x f − x′
f ) − q f )e2ip f q f /h̄dq f dx′

f . (D1)

The two δ functions imply that the integral only acquires con-
tributions for x f = x′

f and q f = 0 and hence it is independent
of p f and sifts out the dependence of ρ f on f . For Gaussian
states this implies infinite variance in the p f direction, which
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however, plays no role in the dynamics. Being independent of
p f also implies that we do not need to retain the argument in
the Wigner function and in the mean values and covariances.
Generalizing to multiple perturbations and returning to the f
notation, we hence specify only the effective Wρ̃ (x, p, f ) and
associated joint Gaussian moments ãρ and Ãρ for the ancillary
and genuine quantum oscillators.

In the retrodictive past quantum state theory we had
recourse to the Wigner function for the effect matrix,
WẼ (x, p, f , p f ), parametrized by a covariance matrix ÃE

and mean vector ãE . To calculate the probability distribution
Ppqs( f ) conditioned on the entire detection record, it was nec-

essary to determine Wigner functions for operators | f ′〉〈 f ′| ˆ̃X
with X = ρ, E . Since ˆ̃ρ and ˆ̃E are both diagonal in the | f 〉
basis, the same holds for | f ′〉〈 f ′| ˆ̃X , and their Wigner functions
are both independent of p f and they evaluate readily to

W| f ′〉〈 f ′ |ρ̃ (x, p, f ) = δ( f − f ′)Wρ̃ (x, p, f ′), (D2)

with a similar result for ˆ̃E and straightforward generalization
to more oscillators and perturbations.

APPENDIX E: NUMERICAL AND ANALYTICAL RESULTS

The evolution of the Gaussian covariance matrix and mean
values due to the measurement of the quadrature variables
of the probe field follows from the reduction of their joint
quantum state by the measurement process. The Gaussian
state formalism thus yields discrete analytical update formulas
for the covariance matrix A and mean vector a (the “∼”
notation is omitted for brevity). The covariance matrix evolves
independently of the actual measurement outcomes and in the
limit of frequent probing, it solves a so-called Riccati matrix
differential equation,

Ȧ = lim
δt→0+

A(t + δt ) − A(t )

δt

≡ G − DA − AE − AFA, (E1)

where, for our system, the matrices G, D, E, F follow from
the infinitesimal linear transformation of the Gaussian vari-

ables given in the main text,

G =

⎛
⎜⎜⎜⎜⎜⎝

κ2
11 0 κ11κ21 0 0 0
0 κ2

12 0 κ12κ22 0 0
κ11κ21 0 κ2

21 0 0 0
0 κ12κ22 0 κ2

22 0 0
0 0 0 0 2σx 0
0 0 0 0 0 2σp

⎞
⎟⎟⎟⎟⎟⎠

,

D =

⎛
⎜⎜⎜⎜⎜⎝

0 −ω1 0 0 −cx 0
ω1 0 0 0 0 −cp

0 0 0 −ω2 0 0
0 0 ω2 0 0 0
0 0 0 0 γx 0
0 0 0 0 0 γp

⎞
⎟⎟⎟⎟⎟⎠

, (E2)

E =

⎛
⎜⎜⎜⎜⎜⎝

0 ω1 0 0 0 0
−ω1 0 0 0 0 0

0 0 0 ω2 0 0
0 0 −ω2 0 0 0

−cx 0 0 0 γx 0
0 −cp 0 0 0 γp

⎞
⎟⎟⎟⎟⎟⎠

,

F =

⎛
⎜⎜⎜⎜⎜⎝

κ2
12 0 κ12 κ22 0 0 0
0 κ2

11 0 κ11 κ21 0 0
κ12 κ22 0 κ2

22 0 0 0
0 κ11 κ21 0 κ2

21 0 0
0 0 0 0 0 0
0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎠

. (E3)

This is a nonlinear matrix equation for A, but by writing
A = WU−1 it can be decomposed into two linear matrix equa-
tions Ẇ = −DW + GU and U̇ = FW + EU . It is generally
quite challenging to find closed-form solutions for A, but we
shall consider a few interesting limiting cases that illuminate
our numerical findings.

1. Squeezing by probing

When there are no perturbations present, the last two rows
and columns can be removed from the Riccati matrices. We
assume that the oscillator variables are initially uncorrelated
with ground-state variances, [A(0)]i, j = δi, j , and we assume
ω1 = ω = −ω2, κ11 = κ21 ≡ κ1, and κ12 = −κ22 ≡ κ2.

Defining K2
± = κ2

2 ± κ2
1 , the time-dependent EPR vari-

ances can be found and read

�x̂2
−(t ) = �x̂2

− + (�p̂2
+ − �x̂2

−) sin2 ωt + 2�x̂2
−� p̂2

+
[
K2

+t − sin 2ωt
2ω

K2
−
]

[1 + 2�x̂2−K2+t][1 + 2�p̂2+K2+t] + sin ωt
ω

K−
[
cos ωt (�x̂2− − � p̂2+) − sin ωt

ω
K−�x̂2−� p̂2+

] , (E4)

�p̂2
+(t ) = �p̂2

+ + (�x̂2
− − � p̂2

+) sin2 ωt + 2�x̂2
−� p̂2

+
[
K2

+t + sin 2ωt
2ω

K2
−
]

[1 + 2�x̂2−K2+t][1 + 2�p̂2+K2+t] + sin ωt
ω

K−
[
cos ωt (�x̂2− − � p̂2+) − sin ωt

ω
K−�x̂2−� p̂2+

] , (E5)

where �x̂2
− and �p̂2

+ on the right-hand side are evaluated
at t = 0, and may be set to 1/2 by assuming initial os-
cillator ground states. For nonvanishing ω, the asymptotic
behavior is the same for the two variables, �x̂2

−(t ), �p̂2
+(t ) ∝

(2K2
+t )−1. The equations apply for all values of ω, while

limω→0 sin(ωt )/ω=t must be applied and yields different
asymptotic variances if different probing strengths are applied
to the case of ω = 0.
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FIG. 8. This figure shows the asymptotic behavior of � f 2
p (t ) in the upper parts of the panels. Each point in the lower panels is extracted

from one of the curve fits for late times in the upper panels. The lower part of panel (a) shows, for ω = 0, the variation with the perturbation
parameter cp of the fit of the asymptotic (rightmost) results to 1/(bt3). The lower panel (b) shows the variation of the same fit as function of
the probing strength parameter κ . Panel (c) shows the variation of the fit of the upper panel results with b/t as function of ω.

2. Estimation of a constant perturbation

The case of separately probing two constant perturbations
by the EPR variables is equivalent to the probing of a sin-
gle constant perturbation and we get a similar result as in
Ref. [35] if we assume that the quantum oscillator variables
have variances of 1/2, [A(0)]i, j = δi, j , and that ω1 = ω2 = 0,
while κ11 = κ21 ≡ κ1 and κ12 = −κ22 ≡ κ2,

� f 2
p (t ) =

(
1 + 2κ2

1 t
)
� f 2

p

1 + 2κ2
1 t + 2

3κ2
1 c2

p� f 2
p t3 + 1

3κ4
1 c2

p� f 2
p t4

t→∞≈ 6

c2k2
1

1

t3
, (E6)

where � f 2
p on the right-hand side is evaluated at t = 0, and

an equivalent expression applies for � f 2
x (t ).

We are not able to solve the case of ω1 = −ω2 �= 0 analyti-
cally. However, for large enough t a crossover from 1/t3 to 1/t
is observed in our numerical calculations in the main text. This
suggests the presence of an additional ω-dependent t3 term
in the numerator of Eq. (E6), and, by fitting the asymptotic
behavior for different parameter values, Fig. 8 indicates that

this ω dependence is quadratic, and for ω �= 0, � f 2
p (t )

t→∞≈
ω2/(2c2

pκ
2
1 t ).
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