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In situ equalization of single-atom loading in large-scale optical tweezer arrays
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We report on the realization of large assembled arrays of more than 300 single 87Rb atoms trapped in optical
tweezers in a cryogenic environment at ∼4 K. For arrays with Na = 324 atoms, the assembly process results
in defect-free arrays in ∼37% of the realizations. To achieve this high assembling efficiency, we equalize the
loading probability of the traps within the array using a closed-loop optimization of the power of each optical
tweezer, based on the analysis of the fluorescence time traces of atoms loaded in the traps.
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Over the last few years, Rydberg atom arrays have emerged
as a powerful platform for quantum technologies, with appli-
cations ranging from quantum sensing to quantum computing
and simulation [1–8]. The loading of single atoms in optical
tweezers is stochastic, with a probability η for a trap to be
loaded at any given time. For the usual loading of single
alkali atoms from a magneto-optical trap, relying on colli-
sional blockade [9], one has η ∼ 0.5. Recently, by using more
elaborate cooling schemes or alkaline-earth metal species,
higher loading probabilities, ranging from 0.8 to 0.96, have
been demonstrated [10–16]. However, so far, the realization
of large, defect-free arrays has to rely on an atom-by-atom
assembly procedure, initially demonstrated for a few tens of
atoms [17–19] and recently extended to the range of 200–300
atoms [20–22].

Many applications call for scaling the assembly technique
to even higher numbers, and significant steps have been made
in this direction, with more efficient sorting algorithms [23]
and much longer trapping lifetimes using a cryogenic setup
[24]. However, at the scale of several hundreds of trapped
atoms, it becomes increasingly difficult for all optical tweez-
ers in an array to load single atoms efficiently, mostly because
the range in trap power over which efficient loading is ob-
served in a trap is quite small (see Fig. 1). As holographic trap
arrays realized with spatial light modulators (SLMs) naturally
show a dispersion in the trap intensities, it is necessary to
equalize the trap depths in order to achieve an efficient loading
throughout the whole array. In large arrays, the difficulty in
achieving this is further enhanced by the optical aberrations
that appear at the periphery of the field of view of the focusing
optics.

In previous work different methods for trap depth equal-
ization have been used. A first approach, used, e.g., in [25],
consists in imaging the trap array on a diagnostic CCD cam-
era, thus inferring the intensity of each trap and using this
information as the starting point for the calculation of a new

hologram with refined target intensities for the traps. How-
ever, in large arrays we observe that this method does not
give a sufficient trap-loading performance. Other approaches
replace the measurement of the trap intensity using a diag-
nostic camera by an in situ measurement of the light shifts
experienced by a trapped atom [16,18,26]. Nevertheless, such
an approach can only be applied when the atom loading over
the array is already relatively efficient.

In this work we report on a simple in situ trap-loading
equalization technique, based on the analysis of the evolution
of single-atom fluorescence traces of all traps of the array
as a function of the overall trap power Ptot . In our setup it
drastically improved the assembly efficiency for large arrays
and allowed us to assemble arrays of more than 300 atoms
with an unprecedented probability of ∼37% to get defect-free
arrays. This article is organized as follows. We first briefly
recall the essential characteristics of our experimental setup
and then describe the procedure used for equalizing the load-
ing probability of optical tweezers in large arrays. We finally
demonstrate efficient assembly of arrays up to an unprece-
dented size of more than 300 atoms, mainly limited by the
small field of view (±25 μm) of our aspheric lenses.

Our cryogenic experimental setup has been described in
detail in [24] and is sketched in Fig. 2. In brief, we use
a closed-cycle, UHV-compatible cryostat at 4 K to achieve
extremely high vacuum levels in our apparatus, reaching
∼6000 s lifetimes for 87Rb atoms trapped in optical tweezers.
The science chamber contains two aspheric lenses (numerical
aperture NA = 0.5, focal length 10 mm, working distance
7 mm), allowing us to focus down the trapping beam to a 1/e2

radius of about 1 μm.
The trapping light is generated by a titanium-sapphire laser

operating at 815 nm. A single mode fiber is used for light
delivery on the setup, and, after diffraction on the SLM, up
to Ptot = 1.8 W can be sent into the cryostat (whose base
temperature then increases from 4.2 to 5.8 K). For the SLM
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FIG. 1. Effect of the trap depth on single-atom loading. (a) Time-
dependent fluorescence traces of a single atom for increasing trap
powers. The curves have been shifted vertically for clarity. (b) Evo-
lution of the loading probability η of a trap as a function of the
trap power. (c) Evolution of the amplitude of the fluorescence signal
(“fluorescence step” in the following) of a single atom as a function
of the trap power. Ideally, all traps should operate in regime 3© to
optimize the loading of large arrays.

FIG. 2. Sketch of the experimental setup. The insets show, from
bottom to top, the phase pattern used to produce a 23 × 23 square
array with a spacing of 5 μm, an atomic fluorescence image of atoms
loaded in the array, and an image of the trap intensities obtained on
the diagnostics CCD camera.

hologram calculation, we use the weighted Gerchberg-Saxton
(WGS) algorithm [27,28] and create arrays containing Nt

traps, whose individual intensity is controlled by adjustable
weights wi (initially taken all equal).

The quality of the trap arrays can be assessed using a
diagnostics CCD camera onto which the array is imaged using
the second aspheric lens. We note, however, that some of the
optical aberrations introduced by the focusing lens, such as
coma, can be compensated for by the second one and thus do
not appear on the diagnostics CCD image. Still, in a first step
towards obtaining homogeneous loading throughout the array,
we run an “intensity equalization” iterative procedure [25]
using the intensities measured on the diagnostics CCD camera
to calculate new holograms that improve the homogeneity
of the array. For the arrays used here, the relative standard
deviation of the trap intensities as measured on the diagnostics
CCD camera is <5% after two iterations and ∼2% after five
iterations [29].

The atomic fluorescence is collected through the first as-
phere (used to focus down the tweezers), separated from the
trap light with a dichroic mirror, and imaged onto an electron-
multiplication (EMCCD) camera. For a single tweezer, the
quality of single-atom trapping depends strongly on the power
of the trap, as can be seen in Fig. 1(a). When the trap power
is too small (regime 1©), one cannot trap any atom. Then, for
a slightly higher power, some single atoms are occasionally
trapped, but they spend little time in the tweezers, yield-
ing a very low occupancy η of the trap (regime 2©). For a
higher power in the tweezers (typically around 1.5 mW for
our trap parameters, corresponding to a trap depth of about
kB × 1 mK), one achieves at the same time a high loading
probability, η � 55%, and a high value of the fluorescence
signal that makes it easy to discriminate between the presence
and the absence of an atom (regime 3©). For even higher
powers, while the loading efficiency η remains roughly con-
stant, the increased light-shift experienced by the atoms in
the tweezers reduces the fluorescence step size (regime 4©).
Finally, at very large powers (not shown) the tweezers start
to accommodate several atoms as light-assisted collisions be-
come inefficient. We ideally want to work in regime 3©, which
corresponds to the minimal power for reaching a high η, thus
allowing the realization of the largest number of traps Nt for a
given trap laser power Ptot.

Despite having performed the intensity equalization proce-
dure described above, we observe on large arrays that even
for an empirically optimized value of Ptot, some traps are still
in regime 1© while others may already be in regime 4©. To
quantitatively study this variation of the loading efficiency, we
fix Ptot and record, for a duration of typically 30 s in order
to have enough statistics, the fluorescence time traces of all
traps. We then extract for each trap i its loading probability ηi

(measured as the fraction of time when an atom resides in the
trap). Figure 3(a) shows the resulting curves ηi(Ptot/Nt ), which
all exhibit the same global shape seen in Fig. 1(b) but with
an overall scaling along the x axis. We make this statement
more quantitative by fitting each individual curve by an error
function,

ηi = ηmax
i

2

{
erf

[
α
(Ptot

Nt
− phalf,i

)]
+ 1

}
, (1)
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FIG. 3. Inhomogeneity of the trap intensities in large square ar-
ray. (a) Loading efficiency η as a function of the average power per
trap Ptot/Nt , showing a large dispersion in a 15 × 15 array. (b) The
same data collapse on a universal curve when the x axis is rescaled
by phalf,i obtained from a fit by Eq. (1) of all individual curves of
panel (a). (c) Spatial distribution of the fitted values of phalf,i for the
case of a 25 × 25 array, showing that, due to optical aberrations, traps
in the periphery require more power to efficiently load single atoms.

where the parameter phalf,i allows us to locate the average
power per trap at which trap i reaches half its asymptotic
value ηmax

i ; the parameter α accounts for the width of the
transition region. Then, when plotting the loading curves as a
function of the power per trap rescaled by phalf,i, we observe
a collapse of all the data points on a universal curve, as can
be seen in Fig. 3(b). Achieving a power of about 1.5phalf

on each trap would result in an optimal loading. A similar
universal behavior is observed, after rescaling, for the size of
the fluorescence steps.

It is instructive to see how the value of phalf,i correlates
with the position of trap i. Figure 3(c) shows the extracted
values of phalf,i as a function of the trap positions in a 25 × 25
array, revealing that traps in the periphery of the optical
system require, on average, twice as much power as those
in the center in order to trap atoms optimally. We attribute
this effect to optical aberrations, the size of the array being
much bigger than the specified field of view (±25 μm) of
the aspheric lenses. In addition to these large-scale varia-
tions, we also observe significant fluctuations from trap to
trap.

We now harness this in situ characterization of the load-
ing efficiency of each trap to calculate improved holograms
that distribute the light unevenly among traps and thus di-
rectly optimize the uniformity of the trap loading over the
entire array.

FIG. 4. (a) The loading equalization procedure on a 25 × 25
array (see text for the definition of the function f ). Starting from
a broad distribution of loading curves ηi (top left, the standard de-
viation of the fitted phalf,i is 17% over the array), we obtain, after
five iterations of the loop, a much narrower distribution (top right,
the standard deviation of the fitted phalf,i is 3%). Distribution of the
loading probabilities ηi over the array before (b) and after (c) the
equalization procedure, for a total power Ptot = Nt × 1.7 mW.

To do so we follow the procedure outlined in Fig. 4. We
analyze the evolution with Ptot of the loading probability ηi of
each trap and extract the values phalf,i: a large value of this
parameter for a given trap means that in the next SLM pattern
calculation, one should target a higher relative intensity for
that trap. This analysis takes a few minutes. We then calculate
a new hologram with updated intensity weights,

wnew,i = f (phalf,i )wold,i. (2)

We normally chose the function f to be proportional to phalf,i

while keeping a constant total power, i.e.,

f (phalf,i ) = Nt phalf,i/Ptot. (3)

However, for our largest arrays, we found that using this
simple functional form can lead to an oscillatory behavior in
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FIG. 5. Efficient assembly of a 324-atom array. (a) Fluorescence
image of the 625-trap array before rearrangement. The lattice spacing
is 5 μm. (b) Fluorescence image of the array after two rearrangement
cycles, showing a defect-free 324-atom array together with remain-
ing reservoir atoms that have not been dumped yet. (c) Probability
distribution of the number of missing atoms in the target array,
showing a large (� 37%) probability of preparing defect-free arrays.

the optimization loop, and thus we use a modified function

f (phalf,i ) = 1

1 − G[1 − Ptot/(Nt phalf,i )]
, (4)

where we adjust the “gain” G slightly below 1 to optimize
convergence [for G = 1 we recover Eq. (3)].

Typically ten iterations of the WGS algorithm are then run,
which takes another few minutes, after which the trap inten-
sities are measured to be within ∼5% of the requested value.
Then a new cycle (fluorescence analysis followed by holo-
gram calculation) can take place. We find that when we start
from an entirely new array of traps, five to eight such cycles
are needed to converge to a situation where the distribution of
phalf,i has become quite narrow and does not evolve anymore,
meaning that the optimization procedure can be completed in
about one hour. Figures 4(b) and 4(c) show the distributions of

loading probabilities ηi in the array, before and after running
the optimization loop, respectively. The improvement in the
loading uniformity is drastic, with all traps showing a loading
probability η > 0.4. We have observed that once performed,
the loading remains optimal over many days in our laboratory
environment.

We finally illustrate the efficiency of the equalization
procedure by studying the rearrangement of large arrays.
Figures 5(a) and 5(b) show the realization of a fully loaded
array with Na = 324 atoms within an array of Nt = 625 traps.
We use the “LSAP-2” atom-sorting algorithm with multiple
rearrangement cycles that we developed in [23]; the typical
number of individual atom moves is ∼300, each lasting about
1 ms. Figure 5(c) shows the probability distribution of the
number of defects in the target array. In about 37% of the
shots, a defect-free array is obtained. For comparison, in our
room-temperature setup and without the in situ equalization
method discussed here, we could only achieve in [21] a 3%
probability of defect-free Na = 196 arrays. Pushing our ex-
perimental setup to its limits in terms of laser power, we
have been able to assemble arrays with up to Na = 361 atoms
(not shown). We believe that this number can be significantly
increased by using an optical system with a larger field of
view, such as a microscope objective.

In conclusion, we have demonstrated a simple procedure
allowing us to optimize the loading of holographic trap arrays
using only a simple analysis of the fluorescence time traces
of single atoms loaded in the tweezers array. Ultimately, the
overall assembly efficiency is limited by two factors. The first
is the losses during the transfer of an atom with the moving
tweezers from a source to a target trap; currently the loss prob-
ability, averaged over all possible moves, is � 1%. The second
limitation arises from losses that occur during the imaging and
are currently at the level of � 0.2%, again averaged over the
entire array. A detailed study of both limitations will be the
subject of future work.
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