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Multiqudit interactions in molecular spins
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We study photon-mediated interactions between molecular spin qudits in the dispersive regime of operation.
We derive from a microscopic model the effective interaction between molecular spins, including their crystal
field anisotropy (i.e., the presence of nonlinear spin terms) and their multilevel structure. Finally, we calculate
the long-time dynamics for a pair of interacting molecular spins using the method of multiple-scale analysis.
This allows us to find a set of two-qudit gates that can be realized for a specific choice of molecular spins and to
determine the time required for their implementation. Our results are relevant for the implementation of logical
gates in general systems of qudits with unequally spaced levels or to determine an adequate computational
subspace to encode and process the information.
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I. INTRODUCTION

Quantum technologies have become one of the corner-
stones in modern science and engineering. Initially boosted
by the prospects created by quantum computers, their range of
application has continued to widen over the years, with influ-
ence in the future of communications [1], drugs development
[2], or novel materials with spectacular properties [3], to name
just a few examples.

Although a fully programmable universal quantum com-
puter is still out of reach, we are now entering the era of noisy
intermediate-size quantum devices [4]. These devices are de-
signed to perform specific tasks more efficiently than classical
computers [5], and for this reason, they can be fabricated using
completely different architectures [6–11].

One of these architectures is based on magnetic molecules
[12–18]. Molecular spins have been studied for some time due
to their attractive coherence time and their chemical synthesis
control, which allows one to design molecules with specific
features. Recently, molecular spins made of lanthanide ions
have attracted a great deal of attention [19,20], and their inte-
gration in hybrid structures offers many possibilities [21–27].
A fundamental one is to consider molecular spins as the
building blocks of these hybrid architectures. Although this
goal requires the coupling of single spins and light [28–30] for
the manipulation of isolated qudits and their communication,
recent advances seem to indicate that achieving this goal is
within experimental reach [31–33].

Crucially, molecular spins are far more complex than the
idealized qubits typically considered in quantum computation
studies. For example, their number of energy levels can be
large or their ligand crystal field can introduce nonlinear terms
that destroy level degeneracies. Although these additional
features complicate the description of computational tasks,
they are not always a detriment to their use as the building
blocks of quantum computers [29,34]. For example, their rich
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level structure can be used to implement local error-correction
codes in each molecule [35–38], to define more robust logical
qubits [39,40], or to use each molecular spin as a local pro-
cessor to perform fast logical operations, in addition to the
typically slower ones proposed for interacting distant spins.
Also, it has been shown that the use of qudits offers certain
computational advantages [41,42]. In this work we derive,
from a microscopic model for molecular spins, the effective
interaction between qudits in the dispersive regime, mediated
by cavity photons. Our results include a complete description
of the molecular spins in terms of Stevens operators and take

FIG. 1. Schematic of two molecular spins of GdW30 controlled
by local fields Bz

j and interacting through the cavity photons γ .
Shown below is the multilevel structure of each qudit and a pair
of levels tuned to resonance, which lead to an iSWAP gate between
states |1, 4〉 ↔ |4, 1〉. Shown at the bottom is a circuit that would
implement the analogous operation.
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into account their multilevel structure. We find that tuning the
level splitting in each molecule with local fields allows one to
control the resonant transitions between spins, via the cavity
photons, and therefore to select the two-qudit operations being
implemented (see Fig. 1 for a schematic comparison of the
physics of interacting molecular spins with a particular circuit
implementation of logical operations in a quantum computer).
Furthermore, we estimate the time required to implement each
gate in order to determine the most accessible set of operations
for a particular molecular spin. We illustrate these results with
the analysis of two examples: a pair of nitrogen-vacancy (NV)
centers (S = 1) and a pair of GdW30 molecules (S = 7

2 ) [43].
From a fundamental perspective, this work generalizes

previous approaches to effective interactions [44], by incor-
porating the role of nonlinear terms in the Hamiltonian. This
is also incorporated in the treatment of the Schrieffer-Wolff
transformation. Finally, the time evolution is also studied with
the method of multiple-scale analysis. Although this tech-
nique is not widely used in the quantum physics community,
here it allows us to simultaneously deal with all the different
resonant transitions and explore all the two-qudit gates that
can be implemented. This would be far more tedious using
perturbative methods only.

II. EFFECTIVE HAMILTONIAN

We consider a set of qudits interacting with a quan-
tized bosonic field. In our case, the qudits correspond to
molecular spins, which represent effective descriptions of
molecular magnets and can be accurately described by giant
spins �Si [45,46]. As the molecules display crystal anisotropy
and a multilevel structure, it is useful to describe them in terms
of Stevens operators

HS (i) =
∑

k=2,4,6

k∑
q=−k

Bq
kÔq

k (�Si ) + μB �Bi · ĝ · �Si, (1)

where �Si is the spin of the ith molecule, μB is the Bohr
magneton, �Bi is the local external magnetic field, ĝ is the
gyromagnetic tensor, Ôq

k are the extended Stevens operators,
which are polynomials of the spin operators, and Bq

k are the
corresponding coefficients. Equation (1) describes our set of
qudits, each with 2Si + 1 unequally spaced energy levels.

The spins are coupled to a quantized bosonic field, which
in our case is produced by a superconducting cavity or LC
resonator with Hamiltonian Hc = �a†a, with � the resonator
frequency and a the photon destruction operator. The inter-
action between the spins and the photons is of Zeeman type
and can be described by a generalized Dicke model [14,47],
where the local quantized magnetic field generated by the su-
percurrents can be written as �Bmw(�r) = �Brms(�r)(a + a†), with
�Brms(�r) its zero-point fluctuations. The interaction Hamilto-
nian reads

HI (i) = (a† + a)
�λi√
N

· ĝ · �Si, (2)

where �λi/
√

N = μB �Brms(�ri ).
In order to study the effective interactions between distant

spins, mediated by the photons, we follow Ref. [48] and write

the total Hamiltonian

H = Hc +
N∑

i=1

[HS (i) + HI (i)], (3)

in the basis of Hubbard operators X �α
i = |i, α1〉〈i, α2|, where

|i, α〉 is an eigenstate with energy Ei,α for the isolated ith spin.
In this basis it is possible to derive an effective Hamiltonian
using a Schrieffer-Wolff transformation [49] H̃ = eSHe−S ,
which is valid in the dispersive regime and encodes the spin-
photon interaction up to second order.

In contrast with the effective Hamiltonian from Ref. [48],
here we include the presence of multiple spins and retain
off-diagonal contributions as well. The former give rise to
their effective interaction mediated by the photons and the
latter allow us to calculate the dynamics for long time, which
is when the off-diagonal terms become relevant.

The details of the lengthy although straightforward deriva-
tion of the effective Hamiltonian using the Schrieffer-Wolff
transformation are left for Appendix A. The final expression
for the effective Hamiltonian can be written as

H̃ � �a†a +
N∑

i=1

2S+1∑
α=1

Ei,αX α,α
i +

N∑
i=1

2S+1∑
�α=1

δEi,�αX �α
i

+ a†a
N∑

i=1

2S+1∑
�α=1

δ�i,�αX �α
i +

N∑
i, j �=i

2S+1∑
�α,�β=1

J̃ �α,�β
i, j X

�β
i X �α

j

+
N∑

i=1

2S+1∑
�α=1

(
T̃ �α

i,+a†a† + T̃ �α
i,−aa

)
X �α

i . (4)

Equation (4) is a generalization of the effective Hamiltonian
derived in Ref. [48], now including off-diagonal corrections
and the presence of several spins. It must be mentioned that,
for simplicity of the notation, the calculation of H̃ assumes
that all magnetic molecules have the same spin S, although
their local environment can still be different. In contrast, if
one is interested in the case of molecules with different spins,
the limits in the sums just need to be changed to 2Si + 1.

The first line in Eq. (4) contains all the free Hamiltonian
terms, with the last one the shift in the unperturbed spin
energy levels Ei,α , produced by the virtual cavity photons
(note that it contains off-diagonal corrections that rotate the
unperturbed eigenstates). The second line contains the cavity-
frequency shift produced by the state of the spins and the
effective spin-spin interaction. The former term is crucial for
the measurement of the state of the qudits using the cavity
transmission, while the latter is critical to implement multi-
qudit gates in hybrid cavity QED architectures. Finally, the
last line encodes the role of two-photon processes, which can
typically be neglected if the cavity occupation is small.

For the present purposes, only the explicit form of the ef-
fective spin-spin interaction (Ej,�α ≡ Ej,α1 − Ej,α2 ) is relevant,

J̃ �α,�β
i, j = ��

�β
i ��α

j

E2
j,�α − �2

, (5)

with �
�β
i the spin-photon interaction projected onto the basis

of Hubbard operators. Concretely, its relation to the original
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parameters, in terms of Sz
i eigenstates, is given in Eq. (A4).

As we are mainly interested in the effective interaction term,
the explicit form of the other terms is provided in Appendix A.

We now introduce notation to simplify the study of the
dynamics. As we are interested in the dynamics of interact-
ing spins, we rewrite the effective Hamiltonian in Eq. (4) as
H̃ = H̃0 + εṼ . Here H̃0 contains all the single spin terms,
while Ṽ contains the effective spin-spin interaction (ε is just
a free parameter that will help organize the perturbative series
and will be taken to 1 at the end of the calculations). This
practical form can be easily obtained by tracing out the photon
sector in Eq. (4) and expressing the Hamiltonian in the basis
of photon-dressed spin states, which include the energy shifts
produced by the cavity photons, δEj,�α . Nevertheless, these
shifts are not too relevant and tend to be small in the dispersive
regime.

III. MULTIPLE-SCALE ANALYSIS FOR INTERACTING
QUDITS

Multiple-scale analysis is a technique to study dynamical
systems, which includes the renormalization of resonances
[50,51]. Its name comes from the fact that different orders
in the expansion parameter correspond to different timescales
(ordered from the fastest to the slowest one). Importantly, the
method of multiple-scale analysis can be applied to nonlinear
models as well [52].

Here we are interested in the calculation of the time-
evolution operator U (t ) under the effective Hamiltonian H̃.
Applying multiple-scale analysis, we assume that for a small
parameter ε and a Hamiltonian H̃ = H̃0 + εṼ , we can define
a set of timescales τn = εnt and expand the time-evolution
operator in powers of the small parameter1

U (t ) =
∞∑

n=0

εnUn(�τ ). (6)

Inserting this expansion in the Schrödinger equation for
the time-evolution operator i∂tU (t ) = H̃U (t ) and using the
chain rule for the time derivative, one finds the differential
equation for the time-evolution operator at each order in ε.
Since for our purposes it will be enough to consider linear
corrections in ε, we can easily check that the lowest- and
first-order differential equations are

i∂τ0U0(�τ ) = H̃0U0(�τ ), (7)

i∂τ1U0(�τ ) + i∂τ0U1(�τ ) = H̃0U1(�τ ) + ṼU0(�τ ), (8)

with �τ = (τ0, τ1). The calculation of the time-evolution op-
erator requires us to solve these differential equations and in
the presence of secular terms (i.e., terms that grow unbounded
with time) apply a renormalization procedure to encode their
nonperturbative effect.

The solution to the unperturbed time-evolution operator
U0(�τ ) is given by

U0(�τ ) = e−iH̃0τ0 u0(τ1). (9)

1Notice that the physically small parameter when ε → 1

will be J̃ �α,�β
i, j .

The exponential describes the free evolution of each isolated
spin, while the matrix u0(τ1) encodes the time evolution due
to the slower timescale τ1. This last term will be determined
below from the renormalization procedure.

The first-order correction is crucial to describe the im-
plementation of multiqudit gates. Its general expression is
obtained from Eq. (8), by defining U1(�τ ) = e−iτ0H̃0 u1(�τ ) (this
is a well-known trick to find the solution to inhomogeneous
differential equations). The resulting differential equation for
u1(�τ ) is

∂τ0 u1(�τ ) = −ieiH̃0τ0 Ṽe−iH̃0τ0 u0(τ1) − ∂τ1 u0(τ1), (10)

where the matrix product eiH̃0τ0 Ṽe−iH̃0τ0 can be interpreted
as a transformation to a rotating frame. Importantly, if some
matrix elements are independent of τ0, the solution for u1(�τ )
will display secular terms that grow unbounded with τ0. This
indicates that some transitions produced by the interaction
are resonant and cannot be described perturbatively. That
is the reason why the slower timescale τ1 is introduced in
multiple-scale analysis, to encode the nonperturbative effect
of resonances in the long-time dynamics. This can be easily
seen in Eq. (10) from the fact that the last term produces a sec-
ular term of the form τ0∂τ1 u0(τ1). Hence, if we choose u0(τ1)
such that it cancels the secular terms from eiH̃0τ0 Ṽe−iH̃0τ0 , we
can eliminate them from U1(�τ ) by transferring their effect
onto the unperturbed contribution U0(�τ ), via u0(τ1). Crucially,
as the contribution u0(τ1) is nondivergent, this allows us to ex-
tend the regime of validity of the solution to longer timescales.

Note that the transformation to the interaction picture in
Eq. (10), as well as the following separation between secular
and nonsecular terms, indicates that the rotating-wave approx-
imation is contained within this method and that it naturally
arises to first order. In addition, this method includes the role
of counterrotating terms in U1(�τ ) and allows us to system-
atically include higher-order corrections, which can include
additional resonances.

Let us now particularize this method to the type of
Hamiltonian under consideration. Starting from the effective
Hamiltonian in Eq. (4), we can trace out the photon sector with
a density matrix ρp (typically a combination of the ground
and the first excited state in experimental setups). Note that
the single-spin contributions are cavity dependent, because
the splitting depends on its occupation, while the effective
interaction does not. Then we can identify the unperturbed
part of the effective Hamiltonian H̃0 with the isolated spin
terms

H̃0 =
N∑

i=1

2S+1∑
α=1

Ẽi,αX̃ α,α
i , (11)

where Ẽi,α is the energy for the ith photon-dressed spin and
X̃ α,α

i the corresponding Hubbard operator. Note that this new
Hubbard operator will be slightly rotated with respect to the
initial one X α,α

i due to the presence of off-diagonal terms in
Eq. (4).
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Finally, we can identify the effective interaction part of the
Hamiltonian with the perturbation

Ṽ =
N∑

i, j �=i

2S+1∑
�α,�β=1

J̃ �α,�β
i, j X

�β
i X �α

j =
N∑

i, j �=i

2S+1∑
�α,�β=1

Ṽ �α,�β
i, j X̃ �α

i X̃
�β
j , (12)

where in the second equality we have expressed the interaction
in the photon-dressed spin basis. With this identification, we
can particularize the previous solutions to the system under
discussion. The unperturbed time-evolution operator U0(�τ )
results in

U0(�τ ) =
N∏

i=1

2S+1∑
α=1

e−iẼi,ατ0 X̃ α,α
i u0(τ1). (13)

As expected, the unperturbed solution describes the free
evolution of each spin with phase factor Ẽi,α . To write the
first-order solution U1(�τ ), we start by calculating the product
(Ej,�α ≡ Ej,α1 − Ej,α2 )

eiH̃0τ0 Ṽe−iH̃0τ0 =
N∑

i,i �= j

2S+1∑
�μ,�ν=1

Ṽ �μ,�ν
i, j ei(Ẽi,�μ+Ẽ j,�ν )τ0 X̃ �μ

i X̃ �ν
j (14)

and determine the condition for the presence of secular terms.
They will appear in Eq. (10) when the phase factor in Eq. (14)
cancels, which requires

Ẽi,�μ + Ẽ j,�ν = 0. (15)

This is the resonance condition for transitions between two-
qudit states. Therefore, if a set of states fulfills the condition
from Eq. (15), one needs to renormalize their contribution.
This can be done by imposing the flow equation for the
matrix u0(τ1),

u̇0(τ1) = −i
N∑

i, j �=i

2S+1∑
〈�μ,�ν〉=1

Ṽ �μ,�ν
i, j X̃ �μ

i X̃ �ν
j u0(τ1), (16)

where the summation over 〈�μ, �ν〉 indicates that is restricted
to states that fulfill Eq. (15). Therefore, the lowest-order
time-evolution operator, including the renormalization of res-
onances, reads

U0(�τ ) = e−iτ0H̃0 exp

⎛
⎝−iτ1

N∑
i, j �=i

2S+1∑
〈�μ,�ν〉=1

Ṽ �μ,�ν
i, j X̃ �μ

i X̃ �ν
j

⎞
⎠. (17)

In addition, the first-order correction is given by

U1(�τ ) =
N∑

i, j �=i

2S+1∑
〈〈�α,�β〉〉=1

Ṽ �α,�β
i, j (τ0)X̃ �α

i X̃
�β
j u0(τ1), (18)

where we have defined the time-dependent nonsecular contri-
bution as

Ṽ �α,�β
i, j (τ0) ≡ Ṽ �α,�β

i, j

e−i(Ẽi,α1 +Ẽ j,β1 )τ0 − ei(Ẽi,α2 +Ẽ j,β2 )τ0

Ẽi,�α + Ẽ j,�β
(19)

and the sum over 〈〈�α, �β〉〉 is restricted to all the states that do
not fulfill the resonance condition in Eq. (15).

We can see that the free evolution for each spin qudit is
renormalized by u0(τ1), which introduces a slower timescale
that completely dominates the dynamics at long times. The

exponential form of this correction indicates that it is non-

perturbative, while in contrast, as U1(�τ ) is linear in Ṽ �α,�β
i, j ,

its correction remains always small for arbitrary time. For
practical purposes this means that unwanted transitions will be
kept under control over time, as long as they are not resonant.

This implies that, in order to capture the main features of
the short-time and long-time dynamics, it is enough to use
U0(�τ ), because the short-time dynamics is dominated by the
unperturbed part, while the long-time dynamics is controlled
by the subset of states that are resonant. Also, it demonstrates
that in general for qudits, tuning in and out of resonance
allows the different qudit energy levels to switch on and off
the multiqudit gates.

In contrast with the qubit case, the multilevel structure of
qudits also allows us to control the available set of gates by
just tuning the transitions that are in resonance. For molecular
spins this can be done by applying static or dynamic local
magnetic fields or by changing the orientation of the spin easy
axis with respect to the photon field. In addition, the variety of
magnetic molecules with different crystal fields also provides
additional freedom to the set of gates that can be implemented.

Finally, note that this approach also allows us to perform
reverse engineering. It would be possible to choose a particu-
lar multiqudit gate and then find the most adequate alignment
of the resonator with the easy axis of the molecule to im-
plement the gate, or impose restrictions to its crystal field
anisotropy, helping to select better molecules for quantum
computation.

In the following, we discuss two examples that illustrate
our results. Also, to compare with the standard result for
qubits, we analyze their cases in detail in the Appendixes.
Appendix B shows the derivation of their effective interaction
and Appendix C characterizes their dynamics using multiple-
scale analysis.

IV. TWO-QUTRIT QUANTUM GATE

We consider a toy model of molecular spins with S = 1
(qutrits), quadratic longitudinal anisotropy, and a transverse
interaction with the photon field. The Hamiltonian reads

H = �a†a +
N∑

j=1

[
D

(
Sz

j

)2 + � jS
z
j + ξ j (a

† + a)Sx
j

]
, (20)

where � j ≡ μBgzB
z
j , ξ j = λx

jgx, and Ej,Mj = DM2
j + � jMj ,

with Mj = {±1, 0}. This situation is similar to the one en-
countered when NV centers interact with cavity photons. In
that case, the quadratic longitudinal Stevens operator D �
2.87 GHz splits, in the ground-state multiplet (3A2 state), the
m = ±1 states from the m = 0 one [53].

Although Eqs. (4) and (17) are completely general for an
arbitrary ensemble of qudits, for practical applications, one
is mainly interested in quantum gates between specific pairs.
This requires one to switch off the interactions with all the
other spins in the resonator while simultaneously controlling
the interaction for the pair of interest. To decouple all the spins
one just needs to take advantage of the result from Eq. (17)
and set all the spins out of resonance using local magnetic
fields.
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FIG. 2. Components of the effective spin-spin interaction tensor
J̃μ,ν

L,R in kHz. The effective Ising type of interaction makes it that
only transitions that change their spin by 1 can be coupled [that
is why a, b = ±1 in Eq. (25)]. Blue circles indicate the transitions
that fulfill the resonance condition and have nonzero coupling, while
green circles indicate the ones that are resonant but not allowed by
the symmetry of the effective spin interaction.

Now we focus on two particular spins that we label as left
(L) or right (R). Their effective interaction takes the form [cf.
Eq. (5)]

Ṽ =
∑

μ,ν=±
J̃μ,ν

L,R

(
X 0,μ

L + X μ,0
L

)(
X 0,ν

R + X ν,0
R

)
, (21)

with the coupling constant tensor given by (see Fig. 2)

J̃μ,ν
L,R = ξLξR

4

(
�

E2
L,μ − �2

+ �

E2
R,ν − �2

)
. (22)

Although this interaction changes strength depending on the
qudit levels being involved, one can assume that for � �
|Ej,α|, it approximately reduces to a transverse Ising interac-
tion J � −ξLξR/�. If in addition the energy shift produced by
the cavity in each spin is negligible, the effective Hamiltonian
from Eq. (4) becomes

H̃ �
∑

i=L,R

D
(
Sz

i

)2 +
∑

i=L,R

�iS
z
i + JSx

LSx
R. (23)

This is a good approximation in the dispersive regime, where
the original Hubbard operators for the spins used in Eq. (4)
and the ones used in Eq. (11) for the photon-dressed spins are
almost identical. The full calculation can still be done for the
exact interaction J±,±

L,R and eigenstates, but this is unnecessary
for the present analysis.

From Eq. (13) we can write the lowest-order time-
evolution operator as

U0(�τ ) =
∏

i=L,R

S∑
Mi=−S

e−iτ0(DM2
i +�iMi )X Mi,Mi

i u0(τ1). (24)

The factor describes isolated spins oscillating with a phase
that depends nonlinearly on the quantum number Mi, while
the second factor u0(τ1) corresponds to the nonperturbative
correction, yet to be determined.

The calculation of the first-order correction is straightfor-
ward and all its contributions are proportional to (a, b = ±1)

eiH0τ0 Ṽe−iH0τ0 ∝ X ML,ML+a
L X MR,MR+b

R ei�τ0 . (25)

The set of available transition operators for this model is a
direct consequence of the transverse Ising-like interaction in
H̃ and can be modified by controlling the original spin-photon
interaction.

We now focus on the phase factor multiplying each inter-
action term, which is given by

� = EL(ML ) + ER(MR) − EL(ML + a) − ER(MR + b) (26)

and, as previously discussed in Eq. (15), controls the appear-
ance of secular terms. In this particular case, the condition for
a resonance becomes

(2DML + �L )a + (2DMR + �R)b + 2D = 0. (27)

The presence of the quantum numbers Mj in this condition
indicates that the spectrum is unequally spaced and that the
resonance condition is different for each pair of levels. In
particular, in this case we have the following types of oper-
ators that can produce resonant interactions (we use below
that because b = ±1, we can write b = 1/b): For a = b,
X ML,ML+b

L X MR,MR+b
R with the resonance condition ML + MR =

−�L+�R
2D − b, and for a = −b, X ML,ML−b

L X MR,MR+b
R with the

resonance condition ML − MR = −�L−�R
2D + b. As b = ±1

and the quantum numbers Mj can only take discrete val-
ues, the resonances will only happen at specific values of
�L ± �R which are multiples of the longitudinal anisotropy
2D. Furthermore, this value will also determine the relation
between ML and MR and control the final form of the resonant
interaction operators.

Note that this is unimportant for the qubits case, or more
generally for multilevel systems with equally spaced levels.
To see this, notice that for D = 0 the resonance condition
reduces to �La = −�Rb, which does not involve Mj and
therefore leads to many simultaneous resonant transitions
of the form X ML,ML+a

L X MR,MR+b
R , with arbitrary values of Mj .

This is not very advantageous for practical applications, as
typically one is interested in addressing specific transitions.
In contrast, one advantage of molecular spins with crystal
field anisotropy is that their nonlinear terms impose additional
constraints between ML and MR, reducing the set of levels
that fulfill the resonance condition. This allows us to address
specific transitions by tuning the energy levels with local
fields. In addition, Eq. (25) can be used to identify the full
set of gates that can be implemented between pairs of qudits
for a given effective interaction and crystal field anisotropy.
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FIG. 3. Probability for an iSWAP operation |↓, 0〉 → |0, ↓〉 be-
tween a pair of NV centers with � j = 0.007 T, ξ j = 0.01 GHz, and
� = 5 GHz. The solid line corresponds to the exact calculation using
Eq. (20). The dot-dashed line corresponds to the exact time evolution
using Eq. (23), which completely agrees with the nonperturbative
solution U0(t ) from Eq. (24). The vertical dashed line shows the
estimated τgate = π/J .

Now we explicitly calculate the nonperturbative correction
due to the secular terms u0(τ1) and determine the time re-
quired for the implementation of the corresponding two-qudit
gate. We focus on the symmetric field configuration � j = �,
which leads to a SWAP type of interaction X M±1,M

L X M,M±1
R for

the terms with a = −b. In contrast, the terms with a = b addi-
tionally require r = �/D to be an integer, in which case they
take the form X −MR−r∓1,−MR−r

L X MR,MR±1
R . Therefore, if we take

�/D /∈ Z, we can make a SWAP type of interaction, and the
nonperturbative correction to the unperturbed time-evolution
operator is given by Eq. (24) with

u0(τ1) = exp

(
−iτ1

J

2

∑
ν=±

(
X 0,ν

L X ν,0
R + X ν,0

L X 0,ν
R

))
. (28)

Rewriting Eq. (28) in the basis |ML, MR〉, it can be seen that
the following gate is implemented in both the subspace of
Mj = {0,↑} and the subspace of Mj = {0,↓}:⎛

⎜⎜⎜⎜⎝
1 0 0 0

0 cos( Jτ1
2 ) −i sin( Jτ1

2 ) 0

0 −i sin( Jτ1
2 ) cos( Jτ1

2 ) 0

0 0 0 1

⎞
⎟⎟⎟⎟⎠. (29)

Therefore, if the condition for the resonance �L = �R is
kept during a time τgate ∼ π/J , it applies an iSWAP gate to
a subset of levels of the pair of qudits (while this subset is
selected by fixing the static field correctly). This can be seen in
Fig. 3, where we have calculated the probability to perform an
iSWAP operation |↓, 0〉 → |0,↓〉. The nonperturbative result
from multiple-scale analysis (dashed line) provides excellent
agreement with the exact result (solid line). During this time,
the states |↑,↓〉 and |↓,↑〉 remain invariant because they are
not coupled by the effective interaction tensor. Importantly,
the time required to perform the operation scales inversely
with the square of the original spin-photon interaction λx

j . As
this interaction is typically small (of the order of a few hertz),

1
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FIG. 4. Level structure of GdW30 vs Bz. The 2S + 1 levels are
labeled in order from the ground (1) to the highest excited state
(8). The vertical red dashed line indicates the field chosen below
to perform the two-qudit operations. The arrows indicate some of
the resonant transitions between pairs of qudits at Bz = 0.4 T. The
red and blue arrows indicate the two-qudit transitions chosen to
simulate the dynamics in Fig. 6 (|1, 4〉 ↔ |4, 1〉 and |1, 2〉 ↔ |2, 1〉,
respectively).

that is why decoherence must be largely suppressed in order to
implement the gates in experimental setups. In summary, for
this simple example we have shown that in qutrits it is possible
to implement several gates. In particular, we have analyzed
the case with symmetrical splitting � j , which is important
for experimental setups, because it can produce an iSWAP

gate. It shows that three requirements must be simultaneously
accounted for.

(i) The states of interest must fulfill the resonance condition
from Eq. (15).

(ii) The alignment of the easy axis of the molecule and
the photon field must produce nonvanishing coupling J̃μ,ν

L,R �= 0
between the resonant states.

(iii) The time required for the relevant resonance must be
shorter than T2.

In addition, note that with qutrits it is possible to consider
a resonance condition other than �L = �R and obtain a dif-
ferent two-qudit gate.

V. LOGICAL GATES IN GdW30

We now consider the experimentally motivated case of
two lanthanide single-ion magnets of GdW30 [43] polyox-
ometalate clusters coupled to the same photonic cavity. These
molecules have S = 7

2 and both in-plane and longitudinal
anisotropy described by the Stevens operators O0

2 = 3(Sz )2 −
S(S + 1) and O2

2 = (Sx )2 − (Sy)2. The Hamiltonian for an
isolated molecular spin reads

HS = D1

3
O0

2 + E2O2
2 − gμB �B · �S. (30)

The values of the different parameters have been experi-
mentally determined to D1 = 1.281 GHz, E2 = 0.294 GHz,
and g = 2. The energy-level structure of an isolated GdW30

molecular spin is shown in Fig. 4 as a function of the
longitudinal field. It can be seen how the crystal field
makes the energy levels unequally spaced and their nonlinear
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FIG. 5. Tensor components of the effective interaction J �α,�β
L,R

(10−4 GHz) for Bz = 0.4 T, � = 3 GHz, and �λi = (10−2, 0, 0) GHz.
The basis is such that the first column elements vary α1 and β1 from 1
to 8 while keeping the others fixed, and the first row elements vary α2

and β2 from 1 to 8. Circles in red and blue correspond to the selected
transitions |1, 4〉 ↔ |4, 1〉 and |1, 2〉 ↔ |2, 1〉, respectively.

dependence on Bz. This allows one to tune the energy levels
of each molecule,and in consequence the implementation of
different operations between the qudits, with the distinctive
feature that the nonlinear dependence can highly modify their
properties.

In this case, when the two molecules are coupled through
the resonator, the effective interaction from Eq. (5) is charac-
terized by the spin-photon interaction tensor ��α

i and the cavity
frequency �. We consider a frequency of � = 3 GHz, which
is smaller than all the available transitions at Bz = 0.4 T and
makes our description in the dispersive regime correct. The re-
sulting effective interaction tensor is shown in Fig. 5. It shows
that the effective interaction connects many levels, although
their coupling strength is generally small. This is because their
interaction is proportional to |�λi|2. Also, certain transitions
remain decoupled due to the particular form of the crystal field
anisotropy and the transverse spin-photon coupling.

Presently, the spin-photon coupling for a single molecu-
lar spin is in the range between hertz and kilohertz [13,14].

Although this results in values of J �α,�β
L,R smaller than the pho-

ton cavity loss (which is of the order of kilohertz), future
prospects indicate that it will be possible to reach larger values
to operate in the dispersive regime, for example, by combining
electronic and nuclear spins, and nanoconstrictions [31,54]. In
particular, if �λi is pushed to the megahertz range, the interac-

tion will be of the order of J �α,�β
L,R ∼ 102 kHz, which is larger

than the typical photon loss and provides a time window to
act on the qudits. This is the value that we considered in Fig. 5
and that will be used from now on.

Once the system has entered the dispersive regime, the
small value of the couplings in Fig. 5 is not critical. As shown
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FIG. 6. Resonant transitions between the two GdW30 molecules
for Hz = 0.4 T, � = 3 GHz, and λx

i = 10−2 GHz. We choose the
transitions |1, 4〉 ↔ |4, 1〉 and |1, 2〉 ↔ |2, 1〉 (surrounded by red
and blue circles, respectively) to study their time dependence. Other
choices of Bz would lead to different resonant transitions and then to
different quantum gates.

above, only resonant interactions can produce two-qudit gates
and their coupling strength just affects the time required for
their implementation. Hence, from Fig. 5 one needs to isolate
the resonant interactions [i.e., the ones that fulfill Eq. (15)]
and solve the flow equation to obtain the nonperturbative
correction u0(τ1) from Eq. (16).

For our choice with an identical longitudinal field of Bz =
0.4 T in both molecules, as indicated by the vertical dashed
line in Fig. 4, we find that 11 transitions are resonant. Note
that even in this highly symmetric condition with two identical
molecules, not all transitions fulfilling the resonance condition
from Eq. (15) contribute, due to the interplay between the
crystal field anisotropy and the alignment with the photon
field. This is shown in Fig. 6, where the black squares cor-
respond to the resonant terms extracted from Fig. 5. These
resonant interactions are of SWAP type and some of them are
illustrated with arrows in Fig. 4.

Notice that the subset of resonant interactions has a wide
variety of values, indicating the presence of very different
timescales for the resulting quantum gates. To show this, we
choose two cases of resonant interactions with very different

interaction strength J �α,�β
L,R . The blue circles in Fig. 5 indicate a

transition that swaps the states |1〉 and |2〉 of the two spins.
In contrast, the red circles indicate a SWAP transition between
states |1〉 and |4〉 which is also resonant, but has smaller
coupling strength (cf. with the color code in Fig. 5). These
two transitions are also marked in Fig. 6 to show that they are
resonant.

It is important to stress that one could naively think that
the interaction marked with a red circle in Fig. 5 is negligible
due to its small strength, if compared with others with a larger
value. This would be the case for short-time evolution only.
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FIG. 7. Probability to perform the iSWAP operation |1, 2〉 →
|2, 1〉 (blue solid line) from U0(t ). The vertical dashed line indicates
the estimated time from the inverse of the effective interaction. The
inset shows the probability for the iSWAP operation |1, 4〉 → |4, 1〉
(red dash-dotted line), which, due to its smaller coupling strength,
requires a longer time (see Fig. 5). Then it is experimentally more
feasible to implement the iSWAP gate between states |1, 2〉 ↔ |2, 1〉,
but this can be controlled with the local fields �Bi.

Beyond that, the smaller but resonant transition would take
over. That is why it is important to use a nonperturbative
approach to describe the dynamics, such as multiple-scale
analysis.

Concretely, what the strength of the interaction for the reso-
nant terms characterizes is the time required to implement the
corresponding gate. This means that the SWAP gate |1, 4〉 ↔
|4, 1〉 requires longer time than the SWAP gate |1, 2〉 ↔ |2, 1〉,
although both can be implemented.

Obviously it is crucial to compare this gate-implementation
estimated time with the T2 of the spins and the photon losses
of the cavity. For example, it will allow us to decide what gates
are experimentally feasible for a specific molecular spin at a
fixed �Bj configuration.

To confirm our predictions, we calculate the time evolution
for the nonperturbative correction U0(t ) [see Eq. (17)] and
study the two resonant transitions selected in Fig. 6. This
is shown in Fig. 7, where we plot the probability for the
corresponding SWAP operation. We find that in both cases the
correction is nonperturbative, as it oscillates between 0 and 1.
Furthermore, by analyzing its real and complex parts we can
see that it exactly corresponds to an iSWAP operation. The first

maximum indicates the minimum time tiSWAP ∼ π/2J �α,�β
L,R re-

quired to perform the iSWAP operation (indicated by a vertical
dashed line). The operation |1, 2〉 ↔ |2, 1〉 (blue solid line) re-
quires a time of the order of microseconds, while the operation
|1, 4〉 ↔ |4, 1〉 (red dash-dotted line in the inset) requires of
the order of 0.1 s. Therefore, it would only be experimentally
feasible to implement the iSWAP between |1, 2〉 ↔ |2, 1〉 in
the GdW30 for the chosen parameters of cavity frequency and
field configuration.

VI. CONCLUSION

We have obtained a general form for the effective
Hamiltonian describing a set of qudits interacting via a single-

mode cavity in the dispersive regime. We have particularized
our analysis to the case of molecular spins with arbitrary
S, where nonlinear contributions due to crystal anisotropy
are also important. From this result we have determined the
effective qudit-qudit interaction in terms of the microscopic
parameters of the system and studied the implementation of
quantum gates from the time evolution of the system. We
found that qudits largely enhance the computational possi-
bilities of the setup, with respect to the qubit case, and the
nonlinearities from crystal field anisotropy can help to design
quantum gates between specific sets of levels. In addition, our
study of the dynamics in terms of multiple-scale analysis can
be used in a wide number of cases not typically covered by the
literature, such as for asymmetric splitting configurations or
for different molecules. Finally, we have considered in detail
the case of a pair of NV centers and GdW30 molecules, widely
used in quantum technologies for their interesting properties,
and we have shown that by tuning the longitudinal field we
can select various sets of transitions to implement different
gates. Crucially, our analysis allows us to study their quantum
dynamics in detail and extract the time required for the imple-
mentation of the quantum gates in terms of the microscopic
parameters. This will be helpful for an efficient design of the
quantum architectures and the determination of the decoher-
ence threshold required for their practical use. Importantly,
these results are also valid in other architectures comprising
qudits with unequally spaced levels in the dispersive regime.
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APPENDIX A: DERIVATION OF THE EFFECTIVE
HAMILTONIAN

We apply a Schrieffer-Wolff (SW) transformation S to
derive an effective Hamiltonian encoding, up to second order,
the interaction with the cavity photons

H̃ = eSHe−S � H0 + 1
2 [S,V], (A1)

where V = ∑N
i=1 HI (i) corresponds to the interaction term

and H0 = ∑N
i=1 HS (i) + Hc contains the Hamiltonian for the

isolated molecules and the resonator. To obtain Eq. (A1) one
needs to impose the condition [S,H0] = −V and assume
weak spin-photon interaction to truncate the higher-order
terms. This will allow us to fix the free parameters in the
ansatz for S .

As previously mentioned in the main text, in order to sim-
plify the treatment of the nonlinear spin terms produced by the
Steven operators, it is useful to work in the Hubbard operators
basis for the isolated molecules. Hence, the Hamiltonian for
an isolated molecule simply is

HS (i) =
S∑

α=−S

Ei,αX α,α
i , (A2)
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where X �α
i = |i, α1〉〈i, α2| is the transition operator from eigen-

state |α2〉 to |α1〉 in the ith spin. Analogously, we write the
interaction operator in the Hubbard operators basis

HI (i) = (a† + a)
2S+1∑
�α=1

��α
i X �α

i . (A3)

The relation with the original parameters, expressed in terms
of Sz

i eigenstates |Si, Mi〉, is given by

��α
i = λz

i gz√
N

Si∑
Mi=−Si

Micα1,Mi c
∗
α2,Mi

+
Si∑

Mi=−Si

γSi,Mi

λx
i gx − iλy

i gy

2
√

N
cα1,Mi+1c∗

α2,Mi

+
Si∑

Mi=−Si

γSi,Mi

λx
i gx + iλy

i gy

2
√

N
cα1,Mi c

∗
α2,Mi+1, (A4)

with γSi,Mi = √
Si(Si + 1) − Mi(Mi + 1), cα,Mi =

〈i, α|Si, Mi〉, and |Si, Mi〉 the Sz
i eigenstates (do not confuse

γSi,Mi with the cavity losses γ ). It will be shown below that
the Hubbard basis is very useful in describing the dynamics
as well.

Now we can fix the ansatz for the transformation
matrix S to

S =
N∑

i=1

2Si+1∑
�β=1

(
�

�β
i

Ei,�β + �
a† + �

�β
i

Ei,�β − �
a

)
X

�β
i , (A5)

where Ei,�β = Ei;β1,β2 ≡ Ei,β1 − Ei,β2 . The effective
Hamiltonian from Eq. (A1) is valid in the dispersive regime
(i.e., for γ � ��α

i � ||Ei,�α| − �|), with γ the cavity loss, and
takes the form

H̃ � �a†a +
N∑

i=1

2S+1∑
α=1

Ei,αX α,α
i +

N∑
i=1

2S+1∑
�α=1

δEi,�αX �α
i

+ a†a
N∑

i=1

2S+1∑
�α=1

δ�i,�αX �α
i +

N∑
i, j �=i

2S+1∑
�α,�β=1

J̃ �α,�β
i, j X

�β
i X �α

j

+
N∑

i=1

2S+1∑
�α=1

(T̃ �α
i,+a†a† + T̃ �α

i,−aa)X �α
i , (A6)

where we have assumed that all molecules have the same spin
S, to simplify the notation. Otherwise, the upper limits in the
sums must be changed according to 2Si + 1.

Equation (4) is a generalization of the equation derived
in Ref. [48], now including off-diagonal corrections and the
presence of several qudits. It contains a small correction to
the eigenstates given by (notice that it has off-diagonal terms
α1 �= α2 which can rotate the original basis)

δEi,�α = 1

2

2S+1∑
β=1

�
α1,β
i �

β,α2
i

(
1

Ei;α2,β − �
+ 1

Ei;α1,β − �

)
.

(A7)

A state-dependent cavity frequency shift

δ�i,�α =
2S+1∑
β=1

�
α1,β
i �

β,α2
i

(
Ei;α1,β

E2
i;α1,β

− �2
+ Ei;α2,β

E2
i;α2,β

− �2

)
,

(A8)

which is crucial for readout protocols using the cavity trans-
mission. The effective interaction between different qudits is
given by

J̃ �α,�β
i, j = ��

�β
i ��α

j

E2
j;�α − �2

. (A9)

In addition, the last line in Eq. (4) contains a correction due to
two-photon transitions

T̃ �α
i,+ = 1

2

2S+1∑
β=1

�
α1,β
i �

β,α2
i

(
1

Ei;α1,β + �
+ 1

Ei;α2,β − �

)
,

(A10)

T̃ �α
i,− = 1

2

2S+1∑
β=1

�
α1,β
i �

β,α2
i

(
1

Ei;α2,β + �
+ 1

Ei;α1,β − �

)
.

(A11)

These terms can be neglected for the present case, as the
resonator is in its ground state and with a small number of
photons.

APPENDIX B: FULL DERIVATION FOR A PAIR OF
MOLECULES WITH S = 1

2 COUPLED TO A CAVITY

Here we fully derive the effective interaction from the SW
transformation and consider the time-evolution operator in
the basis of Hubbard operators to understand more clearly
the connection between qubits and qudits. We start from the
standard Hamiltonian for two qubits coupled to a common
cavity mode

H =
∑

i=L,R

�i

2
σ z

i + �a†a + (a† + a)
∑

i=L,R

gxλ
x
i σ

x
i , (B1)

which can be rewritten in the basis of Hubbard operators as

HS =
∑

i=L,R

�i

2
(X +,+

i − X −,−
i ) + �a†a + (a† + a)

×
∑

i=L,R

gxλ
x
i

2
(X +,−

i + X −,+
i ). (B2)

By means of the SW transformation, we can write the effective
Hamiltonian from Eq. (A6) as

H̃ � �

2

∑
i=L,R

λx
i gx

�2
i − �2

+ �a†a

+
∑

i=L,R

�i

2

[
1 + 1

2

(
λx

i gx
)2

�2
i − �2

]
(X +,+

i − X −,−
i )

+ a†a
∑

i=L,R

�i

2

(
λx

i gx
)2

�2
i − �2

(X +,+
i − X −,−

i )
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+ (a†a† + aa)
∑

i=L,R

�i

4

(
λx

i gx
)2

�2
i − �2

(X +,+
i − X −,−

i )

+ 1

4

∑
i, j �=i

�g2
xλ

x
i λ

x
j

�2
j − �2

(X +,−
i + X −,+

i )(X +,−
j + X −,+

j ),

(B3)

where the last line contains the effective interaction
N∑

i, j �=i

2S+1∑
�α,�β=1

J̃ �α,�β
i, j X

�β
i X �α

j = �g2
xλ

x
Lλx

R

4

(
1

�2
R − �2

+ 1

�2
L − �2

)

× (X +,−
R + X −,+

R )(X +,−
L + X −,+

L ).

(B4)

This interaction is of Ising type along the transverse direction,
as it will be assumed below for the effective Hamiltonian
to describe the dynamics. To fully identify this Hamiltonian
with the one used in the multiple-scale analysis, which has
spin-spin interactions only, we need to trace out the photon
sector assuming a density matrix ρp = ∑∞

n=0 pnY n,n, with pn

the occupation of the state with n photons. The final effective
Hamiltonian for the two molecules reads (we assume that the
cavity is in a well-defined number of photons state with zero
or one photon)

H̃ � �

2

∑
i=L,R

λx
i gx

�2
i − �2

+ �p1

+
∑

i=L,R

�i

[
1

2
+ 1 + 2p1

4

(
λx

i gx
)2

�2
i − �2

]
(X +,+

i − X −,−
i )

+ 1

4

∑
i, j �=i

�g2
xλ

x
i λ

x
j

�2
j − �2

(X +,−
i + X −,+

i )(X +,−
j + X −,+

j ).

(B5)

We can see that first line can be ignored, because it represents
a global shift in energies. The Zeeman splittings depend on
the presence of a photon p1 in the cavity, while the interaction
does not. Interestingly, notice how one can tune the sign of the
interaction by changing the value of �i relatively to the cavity
frequency �. This expression is the one that can will be used
as the effective Hamiltonian in Appendix C. Furthermore, the
dependence on p1 for the qubits energy shift can be ignored
for being small in the dispersive regime of operation.

APPENDIX C: MULTIPLE-SCALE ANALYSIS FOR A PAIR
OF TWO-LEVEL SYSTEMS

Here we review the result from multiple-scale analysis for
the case of two qubits interacting via an effective transverse

Ising interaction (where Ṽ � �̃i)

H̃ =
∑

i=L,R

�̃i

2
σ z

i + Ṽ σ x
Lσ x

R . (C1)

The different terms can be expressed using the microscopic
parameters by comparison with Eq. (B5). Concretely, we can
identify the effective interaction as

Ṽ = �g2
xλ

x
Lλx

R

(
1

�2
R − �2

+ 1

�2
L − �2

)
(C2)

and the effective energy for each qubit as

�̃i = �i

[
1 + 1 + 2p1

2

(
λx

i gx
)2

�2
i − �2

]
. (C3)

Now we focus on the time-evolution operator. We first find
the unperturbed solution using multiple-scale analysis and it
results in

U0(�τ ) = exp

(
−iτ0

∑
i

�̃i

2
σ z

i

)
u0(τ1), (C4)

where each qubit freely oscillates with frequency �i. The
first-order correction from multiple-scale analysis requires us
to solve

∂τ0 u1(�τ ) = −ieiH̃0τ0 Ṽe−iH̃0τ0 u0(τ1) − ∂τ1 u0(τ1), (C5)

with U1(�τ ) = e−iτ0H̃0 u1(�τ ). The calculation of the first term
results yields

Ṽ exp

(
iτ

∑
i

�̃i

2
σ z

i

)
σ x

Lσ x
R exp

(
−iτ

∑
i

�̃i

2
σ z

i

)

= Ṽ
[
σ x

L cos(�̃Lτ ) + σ
y
L sin(�̃Lτ )

]
× [

σ x
R cos(�̃Rτ ) + σ

y
R sin(�̃Rτ )

]
, (C6)

which determines the condition for the presence of secular
terms (terms that grow linearly with time and diverge in the
asymptotic limit) and must be renormalized if present. One
can see that for �̃i � 0, the condition �̃L = �̃R is the one
producing these terms. Therefore, it is important to distinguish
the two cases, i.e., detuned qubits (�̃L �= �̃R) and resonant
qubits (�̃L = �̃R), which crucially can be controlled exter-
nally by means of the local magnetic fields at each qubit. This
process is what allows us to effectively switch on and off the
interaction between specific pairs of qubits.

If the qubits are detuned, the solution up to first order in
Ṽ does not require renormalization and u0(τ1) can be fixed to
the identity. Then the total solution is just

U (τ0) = exp

(
−iτ0

∑
i

�̃i

2
σ z

i

)(
1 − iṼ

∫ τ0

0
dτ

[
σ x

L cos(�̃Lτ ) + σ
y
L sin(�̃Lτ )

][
σ x

R cos(�̃Rτ ) + σ
y
R sin(�̃Rτ )

])
, (C7)

which indicates that, for Ṽ � �̃i, the dominant corrections are linear in Ṽ and small and that the qubits freely evolve within
their subspace.
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In contrast, if we consider the resonant case (�̃L = �̃R),
the secular term Ṽ

2 (σ x
Lσ x

R + σ
y
Lσ

y
R ) must be separated from the

first-order solution and canceled by requiring

u0(τ1) = exp

(
−i

Ṽ

2
(σ x

Lσ x
R + σ

y
Lσ

y
R )τ1

)

=

⎛
⎜⎜⎝

1 0 0 0
0 cos(Ṽ τ1) −i sin(Ṽ τ1) 0
0 −i sin(Ṽ τ1) cos(Ṽ τ1) 0
0 0 0 1

⎞
⎟⎟⎠. (C8)

Note that this makes the lowest-order solution U0(�τ ) drasti-
cally change, to encode the secular terms in a nonperturbative
way. Furthermore, this correction is not small because it is not
linear in Ṽ , which indicates that in resonance, the two qubits
become highly entangled over a timescale of approximately
Ṽ −1. In addition, the unperturbed solution also contains linear
corrections in Ṽ from the nonsecular terms.

To conclude the analysis, let us compare the expression
from multiple-scale analysis with the exact expression for
the time-evolution operator. In resonance (�̃i = �), we have
obtained that the unperturbed solution is given by

U0(t ) = exp

(
−it

�

2

∑
σ z

i

)
exp

(
it

Ṽ

2

(
σ x

Lσ x
R + σ

y
Lσ

y
R

))
U0(t )

=

⎛
⎜⎜⎝

e−i�t 0 0 0
0 cos(Ṽ t ) −i sin(Ṽ t ) 0
0 −i sin(Ṽ t ) cos(Ṽ t ) 0
0 0 0 ei�t

⎞
⎟⎟⎠. (C9)

Then, from exact diagonalization we obtained the expression
for the time-evolution operator

i∂tU (t ) = HU (t ), (C10)

which is a function of the frequencies ω± = 1
2

√
�2± + 4Ṽ 2

only, with �± = �̃L − �̃R, and is given by the four-
dimensional matrix in the basis |±,±〉,

U (t ) =

⎛
⎜⎜⎜⎜⎝

cos(ω+t ) − i�+ sin(ω+t )
2ω+

0 0 − iṼ sin(ω+t )
ω+

0 cos(ω−t ) − i�− sin(ω−t )
2ω−

− iṼ sin(ω−t )
ω−

0

0 − iṼ sin(ω−t )
ω−

cos(ω−t ) + i�− sin(ω−t )
2ω−

0

− iṼ sin(ω+t )
ω+

0 0 cos(ω+t ) + i�+ sin(ω+t )
2ω+

⎞
⎟⎟⎟⎟⎠. (C11)

As it can be seen, for �̃L �= �̃R, �̃i � 0, and �̃i � Ṽ , the off-diagonal terms in Eq. (C11) proportional to Ṽ are very small,
which indicates that each qubit freely evolves within its own subspace. In contrast, when the qubits are in the resonant condition
�̃i = � the time-evolution operator simplifies to (ω0 =

√
�2 + Ṽ 2)

U (t ) −→
�̃ j=�

⎛
⎜⎜⎜⎝

cos(ω0t ) − i �
ω0

sin(ω0t ) 0 0 −i Ṽ
ω0

sin(ω0t )
0 cos(Ṽ t ) −i sin(Ṽ t ) 0
0 −i sin(Ṽ t ) cos(Ṽ t ) 0

−i Ṽ
ω0

sin(ω0t ) 0 0 cos(ωt ) + i �
ω0

sin(ω0t )

⎞
⎟⎟⎟⎠, (C12)

which agrees with our result from multiple-scale analysis, if
we assume that ω0 ∼ �, which is the case for our setup with
Ṽ � �. The off-diagonal terms missing in Eq. (C9), linear
in Ṽ , are obtained when the first-order corrections in Ṽ from
nonsecular terms are added.

It is important to notice that the time-evolution operator
can be used to produce an iSWAP gate if we allow the qubits
interact for a time t = π/2Ṽ . Engineering other types of gates
would require starting from a different effective interaction
or to apply additional time-dependent protocols Ṽ (t ) which
would allow one to change the secular terms.
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