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Picosecond ion-qubit manipulation and spin-phonon entanglement with resonant laser pulses
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Ultrafast spin-phonon entanglement based on spin-dependent momentum kicks (SDKs) provides an approach
to realize fast entangling gates with intrinsic robustness and scalability for trapped ion quantum computing. Such
SDKs so far have been implemented on a nanosecond timescale by off-resonant Raman transitions where each
laser pulse is split into a sequence of perturbation pulses with carefully designed temporal patterns. Here we
report an experimental realization of ultrafast qubit manipulation and spin-phonon entanglement in picoseconds
using SDKs from single resonant laser pulses on the magnetic-field-insensitive hyperfine qubit states. This
experiment demonstrates a convenient approach to ultrafast SDKs on noise-insensitive ion-spin qubits, with
improvement in its speed by more than an order of magnitude. It removes the need to engineer the pattern
of a sequence of perturbation pulses and is less vulnerable to noise, simplifying the approach to large-scale
trapped-ion quantum computing based on fast quantum gates with SDKs.
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I. INTRODUCTION

As one of the leading platforms for quantum information
processing, ion traps have demonstrated high-fidelity single-
qubit and two-qubit gates for up to tens of ions [1–6]. While
single-qubit gates are fast and are mainly limited by the avail-
able intensity of the control laser or microwave fields [2,7],
the two-qubit entangling gates are typically much slower [8]
on the order of tens to hundreds of microseconds [2–6]. This
is because the commonly used Mølmer-Sørensen gate scheme
[9,10] and its variants are restricted to the Lamb-Dicke pa-
rameter regime [11], which limits the driving strength that can
be applied [8,12]. For larger ion numbers, more complicated
pulse sequences are needed to disentangle all the collective
phonon modes [13–15], which further increases the gate time.
Apart from an undesired overhead for quantum computing, a
longer gate time also increases the sensitivity to the environ-
mental noise, constrains the gate performance, and thus causes
challenges for fault tolerance [16–18].

To overcome this difficulty, gate schemes based on spin-
dependent momentum kicks (SDKs) have been proposed
[19–25]. In such schemes, ultrafast laser pulses are applied
to the ions to entangle their qubit states with the motional
modes beyond the Lamb-Dicke regime; several SDKs arriving
in suitable time sequences then disentangle the motional states
to obtain qubit-qubit entanglement. Furthermore, when the
gate speed is sufficiently faster than the sound speed on the
ion array, we further get the advantages that the gate design is
independent of the qubit number and can be applied in parallel
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for distant ions [26]. At the core of such gate schemes is a
high-fidelity SDK for the spin-phonon entanglement opera-
tion. Pioneering works have achieved SDKs in nanoseconds
[27] for 171Yb+ ions and have further demonstrated two-qubit
gates with a fidelity of 76% [28]. In these works, because the
level splitting of the hyperfine qubit is smaller than the band-
width of the laser, an ultrafast laser pulse needs to be split into
a sequence of perturbation pulses with carefully designed time
intervals to achieve the desired spin dependence. Besides, to
realize an entangling gate, the SDKs obtained in this way need
to be switched in two opposite directions for efficient accu-
mulation of the displacement. All these requirements increase
the experimental complexity and thus reduce the fidelity of the
operation.

In this work, we demonstrate spin-phonon entanglement
with SDKs on 171Yb+ hyperfine qubits using resonant laser
pulses. In our scheme, complicated pulse shaping and splitting
are avoided. Compared with the earlier proposal for resonant
pulses on optical qubits [29], our scheme uses hyperfine qubits
and thus has advantages on qubit coherence time [30]. Pre-
viously, ultrafast population transfer from S to P levels has
also been achieved in 111Cd+ [31], 40Ca+ [32], and 171Yb+

ions [33], with limited fidelity and without demonstrating the
spin-phonon entanglement. Here, by adjusting the intensity of
a single laser pulse, we first achieve ultrafast single-qubit π

rotation in 2 ps for the hyperfine qubit. Then by applying two
pulses from opposite directions, each with half the pulse area,
we obtain the desired SDK in 80 ps, which is faster than the
previous results by more than an order of magnitude [27]. We
further demonstrate the quantum coherence and spin-phonon
entanglement under the SDKs by comparing the experimen-
tal results with theoretical predictions and by measuring the
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FIG. 1. Experimental scheme. (a) Relevant energy levels of a
171Yb+ ion. The two hyperfine qubit states |0〉 and |1〉 are coupled
with equal amplitude to an excited state |e〉 by a resonant ultra-
fast laser pulse, whose bandwidth is much broader than the qubit
frequency ω01. (b) A single laser pulse (indicated by the arrow)
drives the Rabi oscillation between the superposition state |+〉 ≡
(|0〉 + |1〉)/

√
2 and the excited state |e〉. In particular, when the area

of the pulse is set to θ = 2π , we get a σx gate or a π pulse on the
hyperfine qubit. (c) If we apply two ultrafast pulses, each with an
area of π , from opposite directions (indicated by the two vertical
arrows), we get a spin-dependent momentum kick (SDK). By setting
the separation ts between the two pulses to be a multiple of 2π/ω01,
while |−〉 is still unchanged, |+〉 now acquires a minus sign together
with a momentum kick from the wave-vector difference between
the counterpropagating laser beams. In addition, there is an optical
phase, ei�φ , from the path difference of the two beams, which needs
to be canceled in the experimental sequence.

Ramsey fringes. Our work largely simplifies the experimental
approach to fast entangling gates using SDKs, thus making an
important step toward large-scale trapped-ion quantum com-
puting based on fast gates [20,26].

II. SCHEME

Our experimental scheme is sketched in Fig. 1. The qubit
states |0〉 ≡ | 2S1/2, F = 0, mF = 0〉 and |1〉 ≡ | 2S1/2, F =
1, mF = 0〉 are encoded in the two hyperfine ground states
of 171Yb+ ions. These two levels are coupled with equal
strength to an excited state, |e〉 ≡ | 2P1/2, F = 1, mF = 1〉, by
a circularly polarized resonant 369-nm laser. The laser has
a pulse width of 2 ps and a repetition rate of 2π × 76 MHz
which is locked to a half-integer fraction (1/166.5) of the
qubit frequency ω01 for reasons that are explained later. The
Hamiltonian of the system is given by

H = ω01

2
(|1〉〈1| − |0〉〈0|) + ωma†a

+ �(t )

2
|e〉 〈0| + 〈1|√

2
ei[η(a+a† )+φ] + H.c., (1)

where a and a† are the annihilation and the creation operators
of the motional state, η ≈ 0.083 is the Lamb-Dicke parameter,
and φ is the optical phase of the laser. Since the pulse dura-
tion of �t = 2 ps is much shorter than the timescale for the
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FIG. 2. Ultrafast single-qubit operation in 2 ps. By adjusting the
intensity I of a single laser pulse, we get Rabi oscillation between
|+〉 and |e〉 versus the pulse area θ ∝ √

I . When θ = 2π , we get
U = −|+〉〈+| + |−〉〈−| = −σx as a single-qubit π pulse. (a) By
initializing the qubit in |0〉 (a dark state under the detection laser),
we scan the bright-state population versus the pulse area as the
blue dots. Each data point is averaged over 100 samples with error
bars representing one standard deviation. The green dashed line, the
red dotted line, and the purple dash-dotted line are the theoretical
evolutions for populations in |0〉, |1〉, and |e〉, respectively. Together,
we compute the theoretical evolution of the bright state population as
the blue solid curve, which agrees well with the experimental result.
(b) By tuning the laser intensity to the fitted peak in panel (a), we
obtain the desired ultrafast single-qubit π pulse. Starting from |0〉,
we further measure the population in the bright state versus the pulse
number: ideally, after an even number of pulses the qubit shall remain
in the dark state, while an odd number of pulses flip the qubit into the
bright state. Experimentally, we fit the slope of the two sets of data as
(1.46 ± 0.05)% and −(0.72 ± 0.03)%, which gives an average gate
error of 1.1%. The asymmetry between these two errors can come
from the leakage to the other S or P levels due to, e.g., the imperfect
laser polarization or pulse length, which are more likely to result in
a bright state.

qubit frequency ω01 = 2π × 12.6 GHz or the trap frequency
ωm = 2π × 1.25 MHz (ω01�t � 1 and ωm�t � 1), �(t ) can
be regarded as a delta function �(t ) = θδ(t − t0), where θ is
the pulse area and t0 is the arriving time. Then the unitary
evolution of the system can be divided into two parts: around
a laser pulse, we have

Up = |−〉〈−| + (|+〉〈+| + |e〉〈e|) cos
θ

2

− i
{|e〉〈+|ei[η(a+a† )+φ] + H.c.

}
sin

θ

2
, (2)

which is a transition between |+〉 ≡ (|0〉 + |1〉)/
√

2 and |e〉
accompanied by a momentum kick, with the state |−〉 ≡
(|0〉 − |1〉)/

√
2 left unchanged; in the rest of the time, the

system evolves freely with the spin state oscillating between
|±〉 at the frequency ω01 and the motional state rotating at
ωm. More details about the experimental setup can be found
in Appendix A.

III. ULTRAFAST SINGLE-QUBIT π PULSE

First we calibrate the effect of a single pulse. When the
qubit is initialized in |0〉, we can plot the theoretical popu-
lation in |0〉, |1〉, and |e〉 versus the pulse area θ as shown
in Fig. 2(a). Experimentally, we can measure the bright state

022608-2



PICOSECOND ION-QUBIT MANIPULATION AND … PHYSICAL REVIEW A 106, 022608 (2022)

population after the laser pulse, which contains the population
in |1〉 together with 2/3 of the population in |e〉 (during the
detection cycle, |e〉 has 1/3 probability to decay to the dark
state |0〉, and 2/3 probability to decay to the Zeeman levels of
the 2S1/2, F = 1 manifold which are bright states [34]), versus
the square root of the laser intensity. Fitted by the blue solid
curve, we can thus calibrate the pulse area θ for different laser
intensities. In particular, in Fig. 2(b) we set θ = 2π for an
ultrafast single-qubit π pulse. By repeatedly applying this π

pulse, we observe alternating oscillation between |0〉 and |1〉
for even and odd numbers of pulses, and we fit an average
gate error of 1.1%. This gate of 2 ps is faster than that of
the previous work on the hyperfine qubit using off-resonant
Raman transitions [35] and is comparable to those coherent
excitations to P levels achieved using resonant pulses which
have lower fidelities [31–33].

IV. ULTRAFAST SDK

An SDK can be constructed using two laser pulses with
θ = π from opposite directions with an interval of ts, as
shown in Fig. 1(c). The first pulse transfers |+〉 to |e〉 with
a momentum kick while leaving |−〉 unchanged, and then the
second pulse brings |e〉 back to |+〉 with a further momen-
tum kick and still keeps |−〉 untouched. Together, the two
pulses constitute an SDK in the form of USDK = |−〉〈−| −
|+〉〈+|ei[2η(a+a† )+�φ] where we restrict ourselves to the qubit
subspace (below we say this SDK is active on |+〉 since the
momentum kick is only applied to the |+〉 state). To achieve
high fidelity, we want �ts � 1 where � = 2π × 20 MHz is
the natural linewidth of the excited state |e〉. Also note that
the qubit states are oscillating between |±〉 during the free
evolution, so we set ts = 2π/ω01 = 79.4 ps such that the two
counterpropagating pulses are in phase on the ion. Note that
this SDK is faster than those in previous works by an order
of magnitude [27,28], which gives us stronger insensitivity to
the secular motion or micromotion. Although this choice of ts
gives us a spontaneous emission error of about �ts ≈ 1% for
this experiment, we should mention that this is not a funda-
mental limit for this scheme: if faster pulses on the order of
100 fs are used, we can set ts to be on the same order to avoid
overlap between the two pulses, but this time the spontaneous
emission will be much smaller and the error will be limited by
the qubit state rotation during ts as (ω01ts)2 ∼ 10−4; besides,
this will give us even faster SDKs.

The above SDK contains a phase difference of �φ between
the optical paths of the two counterpropagating laser pulses.
While this phase is stable in a single experimental trial, there
can be slow drifts on the timescale of seconds and thus this
can influence the experimental result when we average over
a large number of trials. Therefore, this optical phase needs
to be canceled in the design of the entangling gate. A simple
scheme is to have equal numbers of SDKs that are active on
the two spin-dependent phase-space trajectories. In this way,
the optical phase becomes an irrelevant global phase.

We demonstrate this idea in Fig. 3 by applying two SDKs
(each consists of two ultrafast pulses separated by ts) with a
time interval τ on a qubit initialized in |0〉. First let us ignore
the optical phase for a moment. If we select τ = 2πk/ω01

between the two SDKs where k is an integer, the |±〉 states
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FIG. 3. Ultrafast spin-phonon entanglement by SDK. (a) The
qubit and the phonon states are initialized by Doppler cooling fol-
lowed by optical pumping [11]. Then we apply two SDKs with a
separation of τ and finally we measure the qubit state. (b) Schematic
evolution in the phase space of the phonon mode. The qubit is ini-
tialized in |0〉 (purple or light gray circles), which is a superposition
of |+〉 (red, outer trajectories) and |−〉 (blue, inner trajectories). An
SDK leads to a displacement for |+〉 while keeping |−〉 unchanged
and thus creates spin-phonon entanglement. Then the phonon state
rotates at the angular frequency ωm (arcs in the clockwise direc-
tion) and in the meantime the spin states |+〉 and |−〉 evolve into
each other at the qubit frequency ω01 (not shown). The two left
subplots: If we apply the second SDK at τ = 2πk/ω01, the two
momentum kicks will act on the same trajectory. When τ is around
half a trap period, the two trajectories meet again and hence the
spin and the phonon states disentangle; while if τ is around a full
trap period, the two trajectories are further separated to give stronger
entanglement. The two right subplots: If we apply the second SDK
at τ = 2π (k + 1/2)/ω01, the two momentum kicks will act on the
two trajectories separately. This time, we get the largest spin-phonon
entanglement when τ is around half a trap period, and zero for a full
trap period. (c) Measured evolution of the bright state population.
When τ = 2π (k + 1/2)/ω01 (blue squares), we get oscillation vs τ

as the spin and photon states entangle and disentangle. On the other
hand, if we choose τ = 2πk/ω01 (red dots), the uncontrolled optical
phase accumulates, and thus the average value over 100 samples
stays around 0.5 independent of the separation time τ .

evolve back to themselves during the interval such that both
SDKs are active on the same path in the phase space as shown
in the left panels of Fig. 3(b). In such cases, when τ is close to
half a period of the phonon mode, the two spin-dependent tra-
jectories recombine after the two SDKs so that the spin and the
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phonon states disentangle; on the other hand, when τ is close
to a full motional period, the two trajectories are further split
apart to give larger spin-phonon entanglement. If, instead, we
set τ = 2π (k + 1/2)/ω01 between the two SDKs, the original
|+〉 (|−〉) state at the first SDK will evolve into |−〉 (|+〉) at
the second SDK, so that the two SDKs will be active on the
two trajectories individually. Then the above statements are
reversed [right panels of Fig. 3(b)]: when τ is close to half a
trap period, we get large spin-phonon entanglement, and when
τ is around a full trap period, the spin and the phonon state
disentangle.

From the above arguments, one would expect there to
be oscillatory behavior in the measured population in |1〉:
without spin-phonon entanglement, we expect the qubit state
to be close to the initial one and thus there would be low
population in |1〉; at large spin-phonon entanglement, since
the displacement of 4η in the phase space is large compared
with the wave packet of the ion at the Doppler temperature
(see Appendix B), we get roughly an equal mixture of |+〉
and |−〉 and thus a population of about 50% in |1〉. Now we
include the effect of the uncontrolled optical phase. When
τ = 2πk/ω01, since the two SDKs are active for the same tra-
jectory, the optical phases accumulate and thus the spin states
average to (|+〉〈+| + |−〉〈−|)/2 independent of τ , as shown
by the red curve in Fig. 3(c). When τ = 2π (k + 1/2)/ω01, the
two optical phases cancel, and therefore, we get the expected
oscillation as shown by the blue curve.

To further demonstrate the quantum coherence in this
scheme, we perform a Ramsey experiment: We initialize the
qubit state in |+〉 by a microwave field π/2 pulse with de-
tuning δω to the qubit frequency ω01, wait for time T = 50
μs, and then apply a second microwave π/2 pulse and mea-
sure the qubit state. During the idling time, we insert two
SDKs separated by τ = 2π (k + 1/2)/ω01 with k = 10 156
such that τ = 0.803 μs is close to a full period of the
phonon mode. Ideally, this amounts to a global optical phase
and a global momentum kick independent of the spin state;
thus, we expect high Ramsey fringe contrast close to 1.
In the experiment we measure a contrast of about 0.78 as
shown in Fig. 4, or about 11% deviation in the measured
population. This can be explained by 4.4% error from the
four pulses (slope of Fig. 2), 4% spontaneous emission, and
3% state preparation and measurement error (intercept of
Fig. 2).

V. DISCUSSION

Our scheme of generating SDKs using resonant pulses
does not require splitting each pulse into multiple seg-
ments with carefully controlled temporal patterns. Besides,
the SDKs we obtain are in the form of USDK = |−〉〈−| −
|+〉〈+|ei[2η(a+a† )+�φ]. By suitably locking the repetition rate
of the pulsed laser as shown above, such SDKs can directly
accumulate so that high gate speed can be achieved without
the need to switch pulse directions [28,36]. Therefore, it shall
be more convenient for experiments and less vulnerable to
noise. To cancel the uncontrolled optical phase which may
have long-term drift, we require an equal number of SDKs
that are active on |+〉 and |−〉. Although this seems to put
some restriction on the available gate schemes, we would
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FIG. 4. We initialize the qubit in |+〉 by a π/2 microwave pulse,
wait for time T where we insert two SDKs separated by ts = 2π (k +
1/2)/ω01, and then apply another π/2 microwave pulse and measure
the final qubit state. For a fixed T = 50 μs and τ = 0.803 μs, we
scan the detuning δω between the frequency of the microwave and
the qubit. A contrast of 0.78 is extracted from the Ramsey fringes.

like to mention that it still covers many of the previous gate
schemes based on SDKs. As a special example, if we al-
ways apply paired SDKs on |+〉 and |−〉 with τ ≈ π/ωm,
we get a combined SDK in the form of U = e2iη(a+a† )σx . This
unitary operation, up to an exchange of σz and σx bases, is
equivalent to the SDKs considered in Refs. [27,28] and thus
can be used to further construct various ultrafast two-qubit
entangling gates [19–25]. Besides, now we have the additional
degrees of freedom for asymmetric paths for |±〉; hence, more
general gate schemes may be achieved.

Also note that, in this work we only implement an ul-
trafast single-qubit σx operation, which is not universal for
quantum computing [17]. On the one hand, such a universal
gate set for single-qubit rotations using a pulsed laser may
not be necessary because it is not difficult to achieve high-
fidelity single-qubit gates on a microsecond timescale and
below using continuous-wave lasers or microwaves [2,3,7].
On the other hand, for certain tasks such as preparing the
initial state |+〉 from |0〉 in this experiment, we could also
use the ultrafast pulsed laser together with the free evolution:
Specifically, a first pulse with area θ = π can transform |0〉
into (|−〉 + |e〉)/

√
2; a free evolution time of π/ω01 then

rotates |−〉 into |+〉; and finally a second pulse with area
θ = π/2 can bring (|+〉 + |e〉)/

√
2 into |+〉. Note that these

two pulses should come from the same direction to avoid any
entanglement to the phonon state.
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FIG. 5. Experimental setup. The mode-locked 739-nm pulsed
laser first goes through our pulse selection system which consists
of two Glan-Taylor polarizers (GTP) and an electro-optic modulator
(EOM). The EOM is driven by an amplifier which can convert the
TTL signal to a 175-V Vpp pulse signal. A second harmonic gener-
ator system (SHGS) then converts the laser wavelength to 369.5 nm.
An acousto-optic modulator (AOM) is used to further suppress the
stray light, whose zeroth-order light is blocked by a beam dump (BD)
while the first-order light is coupled to a hollow fiber and is split into
two beams by a polarization beam splitter (PBS). A right-angle prism
(RAP) serves as a delay stage to adjust the relative distance of the two
beams. The quantization axis of the ion is set along the laser beams
by a magnetic field so that we can get a pure circular polarization.

APPENDIX A: EXPERIMENTAL SETUP

The detailed experimental setup is shown in Fig. 5. We use
Coherent Mira 900 to generate the pulsed laser, with a 2-ps
pulse width, a 76-MHz repetition rate, and a typical power of
2.4 W. The wavelength is tuned to 739 nm so that it can be
resonant with the S1/2 → P1/2 transition frequency after the
second harmonic generator system (SHGS). The pulse pick-
ing system consists of a Conoptics M350-160 electro-optic
modulator (EOM), whose half-wave voltage is about 192 V,
and two Glan-Taylor polarizers. A field-programmable gate
array (FPGA) locked to the repetition rate is used to trigger
a Conoptics 25D amplifier so that the amplifier can output a
175-V signal in 8 ns to drive the EOM and to select the desired
pulse to go through the polarizer.

Although we only achieve a 50:1 extinction ratio by the
EOM, the SHGS can raise the extinction ratio to about
40 000:1 owing to its nonlinear effect (see Fig. 6). Given that
each experimental trial may take milliseconds, such a weak
stray light may still not be negligible, so we further add an
acousto-optic modulator (AOM) to restrict the pass window
of the pulsed laser to 3 μs.

After a hollow fiber, the pulsed laser is split into two
counterpropagating beams which are finally focused on the
ion by homemade objectives. Given an estimated focal spot
size of about 10 μm2, theoretically we need a pulse energy
of 26.2 pJ (or 2-mW average laser power) to reach a π -
pulse area. In our experiment, we have more than 200-mW
laser power after the SHGS, but only about 20 mW is actu-
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FIG. 6. Experimental calibration of the SHGS under different
input power of the 739-nm laser. (a) The output 370-nm laser power
vs the input laser power. (b) The frequency doubling efficiency. With
the EOM switched on (off), we get about 1.5-W (about 30 mW)
laser power from the pulse selection system in Fig. 5, which in turn
becomes more than 200 mW (about 5 μW) after the SHGS due to
the nonlinear frequency doubling effect. This gives us an extinction
ratio above 40 000:1.

ally applied on the ion due to the insufficient voltage from
the amplifier, the AOM diffraction efficiency, and the fiber
loss.

APPENDIX B: THEORETICAL EVOLUTION UNDER
THERMAL MOTION

Here we consider the theoretical evolution for the blue
curve in Fig. 3(c) of the main text. Since we apply two SDKs
on the two paths, the shared optical phase can be removed.
Working in the interaction picture of H0 = ω01

2 (|1〉〈1| −
|0〉〈0|) + ωma†a, the two SDKs can be expressed as

U1 = |−〉〈−| − |+〉〈+|e2iη(a+a† )

= |−〉〈−| − |+〉〈+|D(2iη) (B1)

and

U2 = |+〉〈+| − |−〉〈−|e2iη(ae−iωmτ +a†eiωmτ )

= |+〉〈+| − |−〉〈−|D(2iηeiωmτ ), (B2)

where we use the fact that ω01τ = 2π (k + 1/2).
An initial state |0〉 ⊗ |α〉 will become U1|0〉 ⊗ |α〉 =
[|−〉|α〉 − eiη(α+α∗ )|+〉|α + 2iη〉]/√2 after the first
SDK, and U2U1|0〉 ⊗ |α〉 = −[eiη(α+α∗ )|+〉|α + 2iη〉 +
eiη(αe−iωmτ +α∗eiωmτ )|−〉|α + 2iηeiωmτ 〉]/√2. Moving
back to the laboratory frame, we have the final
state

1√
2

[eiη(α+α∗ )|−〉|(α + 2iη)e−iωmτ 〉

+ eiη(αe−iωmτ +α∗eiωmτ )|+〉|αe−iωmτ + 2iη〉], (B3)

where we discard a global phase. This expression corresponds
to the right panels of Fig. 3(b) in the main text.

Now we consider an initial thermal motional state, ρm, with
an average phonon number, n̄. Together, the two SDKs map
the initial state |0〉〈0| ⊗ ρm into

ρ(τ ) =U2U1|0〉〈0| ⊗ ρmU †
1 U †

2

= 1
2 |+〉〈+| ⊗ D(2iη)ρmD(−2iη)

+ 1
2 |−〉〈−| ⊗ D(2iηeiωmτ )ρmD(−2iηeiωmτ )
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+ 1
2 |+〉〈−| ⊗ D(2iη)ρmD(−2iηeiωmτ )

+ 1
2 |−〉〈+| ⊗ D(2iηeiωmτ )ρmD(−2iη). (B4)

Finally we trace out the phonon state to get the reduced
density matrix of the spin state:

ρs(τ ) = Trm[ρ(τ )]

= 1
2

[|+〉〈+| + |−〉〈−|
+ (|+〉〈−|e−iθ + |−〉〈+|eiθ )

× e−8η2
(

n̄+ 1
2

)
(1−cos ωmτ )]

, (B5)

where θ = 4η2 sin ωmτ . The population in the bright state |1〉
is thus

P1(τ ) = 1
2

[
1 − cos(4η2 sin ωmτ )e−8η2

(
n̄+ 1

2

)
(1−cos ωmτ )]

.

(B6)
From this expression, we can see that when ωmτ = 2kπ ,

namely, a multiple of a full trap period, P1 returns to its initial
value of zero. On the other hand, when ωmτ = (2k + 1)π ,
namely, an odd multiple of half a trap period, the population
is highest, and when 16η2(n̄ + 1/2) 
 1, it saturates around
50%. We use this expression to fit the experimental data in
Fig. 3(c) of the main text and get an average phonon number
of n̄ ≈ 37.
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