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Continuous-variable quantum key distribution (CVQKD) has been proven to be secure theoretically. However,
the practical CVQKD system may still be subject to various quantum attacks due to the imperfections of
devices. In this paper, we suggest a general machine learning-based defense strategy against practical quantum
attacks by taking advantage of density-based spatial clustering of applications with noise (DBSCAN), which
we called DBSCAN-based attack detection scheme (DADS). Specifically, we first construct a set of features
that can well reflect the behaviors of different attacks, then DBSCAN is applied to obtain several clusters. This
clustering result can explicitly indicate whether the CVQKD system is being eavesdropped or not. Simulation
experiments show that the proposed DADS cannot only detect most of known attacks, but also has ability to
identify various unknown attacks, thereby improving practical security of the CVQKD system. We also show
that the overestimated secret key rate caused by ignoring practical quantum attacks can be amended by DADS
so that a reasonable tighter secure bound of the practical CVQKD system can be obtained.
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I. INTRODUCTION

Continuous-variable quantum key distribution (CVQKD)
[1] is a research hot spot in the field of quantum cryptography,
which allows two distant legitimate partners, Alice and Bob,
to share secret keys after exchanging quantum signals through
an untrusted channel. According to different modulation ap-
proaches, CVQKD can be divided into Gaussian-modulated
CVQKD [2–6] and discretely modulated CVQKD [7–13]. In
the former protocol, secret keys are usually encoded on the
quadratures of coherent states, which can carry multiple bits in
one pulse thereby obtaining higher secret key rate in middle-
or short-distance transmission. In the latter protocol, the
senders prepare a certain number of nonorthogonal coherent
states (for binary, ternary, four-state, and eight-state modu-
lation schemes, the numbers are 2–4, and 8, respectively),
and exploit the sign of measured quadratures of each state to
encode the bits of secret key rate [14]. At present, CVQKD
with Gaussian-modulated coherent states (GMCS) is the most
widely used CVQKD protocol, which has been proven to be
theoretically secure in both the asymptotic limit [15–17] and
the finite-size regime [18,19]. However, the practical GMCS
CVQKD system may still be subject to various practical at-
tacks due to the imperfections of devices. For example, the
eavesdropper, i.e., Eve, may launch wavelength attacks by
exploiting imperfect beam splitters [20–22], she may launch
saturation attacks [23] or homodyne-detector-blinding attacks
[24] by exploiting the finite linearity domain of homodyne
detectors, and she may launch local oscillator (LO) inten-
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sity attacks [25] or calibration attacks [26] by exploiting the
transmitted LO. The current existing countermeasures against
these attacks are to deploy specific monitoring devices for
different attack strategies, which can only be carried out af-
ter knowing the type of the attacks. However, it is hard for
legitimate parties to know in advance what kind of attack Eve
will launch in a real communication scenario. Therefore, how
to establish a universal attack defense model that can resist
most quantum attacks is the focus of current attack defense
research for the practical CVQKD system.

In recent years, machine learning has experienced rapid
development and is gradually being used to solve problems
in CVQKD systems [27–31], especially in attack defense.
In 2018, a support vector regression model-based parameter
prediction method was proposed to predict the time-along
evolution of the LO intensity [32], so as to optimize the perfor-
mance and practical security of CVQKD systems. Whereafter,
Mao et al. proposed a hidden-Markov-model-based calibra-
tion attack recognition method to identify calibration attack by
monitoring the real-time quadrature values measured by Bob
[33]. Nevertheless, these methods can only defend against
specific attacks, they cannot simultaneously resist multiple at-
tack strategies. Recently, an efficient artificial-neural-network
(ANN)-based attack detection method for most of the known
attack strategies was proposed [34]. However, as a classifi-
cation algorithm for supervised learning, ANN takes a long
time for data training, which has a poor real-time performance
when the data volume is huge. Besides, this method requires
precollection of various attacked data, otherwise attacks can-
not be correctly classified.

To solve the above-mentioned issues, in this paper, we
suggest a general machine learning-based defense scheme
against practical quantum attacks by taking advantage of
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density-based spatial clustering of applications with noise
(DBSCAN), which we called DBSCAN-based attack detec-
tion scheme (DADS). DBSCAN is a kind of unsupervised
learning clustering algorithm, it does not require time-
consuming data collection and training processes in advance,
and it is not sensitive to outliers [35], which are beneficial for
efficiently processing the abnormal data in untrusted quantum
channel. In particular, we first construct a set of features by
analyzing the behaviors of several typical practical quantum
attacks, then the measurement results are transformed to fea-
ture vectors as the input of DBSCAN. Subsequently, several
clusters can be obtained and the pulses that are subjected to
quantum attacks can be recognized by comparing the cluster-
ing results. The performance of DADS is detailed in terms
of machine learning metrics, and its security is also analyzed
in both the asymptotic limit and the finite-size regime. Sim-
ulation experiments show that the proposed DADS not only
has the ability to detect most of known attacks, but also can
identify various unknown attacks, thereby improving practical
security of the CVQKD system. Moreover, the overestimated
secret key rate caused by ignoring practical quantum attacks
can be amended with the help of DADS, thereby a reason-
able tighter secure bound of practical CVQKD system can be
finally obtained.

This paper is organized as follows: In Sec. II, we give a
briefly introduction of DBSCAN and detail the main process
of DADS. In Sec. III, the performance of DADS in terms of
machine learning metrics is analyzed. In Sec. IV, we discuss
the security of DADS in both the asymptotic limit and the
finite-size regime. Finally, the conclusion is drawn in Sec. V.

II. DBSCAN-BASED ATTACK DETECTION SCHEME

In this section, we first briefly introduce the principle of
DBSCAN. Then the proposed DADS is described in detail.

A. DBSCAN

DBSCAN is a well-known density-based clustering algo-
rithm that can discover arbitrarily shaped clusters without
specifying the number of clusters in the input [36]. It has
excellent potential to segment complex and irregularly shaped
objects, and it is widely used in spatial data mining. As
known, the practical CVQKD system may subject to various
quantum attacks, resulting in several outliers during measure-
ment, these abnormal data can be efficiently recognized by
DBSCAN. To make the derivation self-contained, we briefly
describe the principle of DBSCAN, and details can be found
in Ref. [37].

In DBSCAN, ε and Pmin are two key parameters that deter-
mine the effect of clustering [35]. Therein, ε is the radius of
each point, and Pmin is the threshold number of points in the
ε neighborhood required for a point to become a core point.
Several relevant definitions are introduced as follows.

Definition 1. ε neighborhood.
For each point f j in dataset F , the neighborhood of a point

fi within a given radius ε is called the ε neighborhood of fi,
denoted as

Fε( fi ) = { f j ∈ F |dist( fi, f j ) � ε}, (1)

TABLE I. Steps of the DBSCAN algorithm.

Step 1 Visit an unvisited point fi in F and find out Fε ( fi ).

Step 2 If |Fε ( fi )| < Pmin, fi is temporarily marked

as a boundary point. If |Fε ( fi )| � Pmin, construct
a collection G, put Fε ( fi ) into G, and mark

fi as visited.
Step 3 Process all the unvisited points in G using Step 1

and Step 2. If all the points in G are marked as
visited, then G is a cluster obtained by DBSCAN clustering.

Step 4 Check all the points in F . If there are unvisited

points, turn to Step 1.
Step 5 Traverse all the boundary points, if any boundary

point does not belong to any cluster, mark it as noise.

where dist( fi, f j ) is the Euclidean distance between fi and f j ,
which can be expressed as

dist( fi, f j ) =
√√√√dim( fi )∑

l=0

[ fi(l ) − f j (l )]2. (2)

Definition 2. Core point and boundary point.
If the number of the data points within the ε neighborhood

of fi is no less than Pmin, that is |Fε( fi )| � Pmin, fi can be
called a core point. If a point f j is in the ε neighborhood of

FIG. 1. An example for illustrating DBSCAN algorithm.
(a) Scattered points are randomly distributed in feature space.
(b) Cluster result of DBSCAN with Pmin = 4 and a suitable ε. The
blue dots are boundary points, the red dots are core points, and the
green dots are noise.
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FIG. 2. Process of DADS.

a core point fi and f j is not a core point, it can be called a
boundary point.

Definition 3. Noise.
If a point fi is neither a core point nor a boundary point,

it can be called noise. Note that the data points fi and f j in
Definitions 1–3 do not represent the specific data in our exper-
imental dataset. Specifically, input data are five-dimensional
feature vectors in our experiment, which are discussed in
Sec. II B. After presenting above definitions, the specific steps
of DBSCAN can be seen in Table I. As shown in Fig. 1(a),
some scattered points are randomly distributed in feature
space. Setting Pmin = 4 with a suitable ε, the clustering result
of DBSCAN is shown in Fig. 1(b) where core points and
their ε neighborhoods are recursively added until there is no
new core point can be found in their ε neighborhoods. These
points are therefore divided into two clusters. Note that the
selection of ε is empirical, to simply clarify the principle of
DBSCAN, here we determine the value of ε by drawing a
k-distance graph, which can be used to sort out more accurate
collections [38].

B. Process of DADS

The process of the proposed DADS is shown in Fig. 2, and
it includes four parts as follows.

1. State preparation

Alice prepares a train of coherent states |Xa + iPa〉 where
the quadrature values Xa and Pa obey a bivariate Gaussian
distribution with variance VaN0. N0 is the shot-noise variance
which corresponds to the variance of the homodyne detector
output when the input signals are vacuum states. Then the
prepared states are sent to Bob with classical LO pulses using
time and polarization multiplexing.

2. Measurement

This part is detailed depicted in Fig. 3. The pulses sent
by Alice are first demultiplexed into signal pulses and LO
pulses with a PBS. Then an AM is set on the signal path to
randomly perform the maximum attenuation (r = 0.01) with
a probability of 10% for real-time measurement of shot-noise
N0. A 10:90 beam splitter divides LO pulses into two parts,
one part of LO pulses are interfered with the signal pulses
after passing a PM to obtain the quadrature values of the signal
states. Another part of LO pulses are fed in a PIN photodiode
to transform the light signal into electric signal so that we
can measure the average power P of LO pulses, generate
the clock for homodyne detection, and count the number of
pulses per unit time np. Note that np needs to be measured
by oversampling as the number of peaks that occur per unit
time can be determined when the sampling frequency is much
higher than the pulse repetition frequency [39].

3. Attack detection

This part includes two phases, namely, feature extrac-
tion and DBSCAN clustering. After measurement, Alice and
Bob obtain two strings of correlated data X = {x1, x2, . . . , xn}
and Y = {y1, y2, . . . , yn}, where X represents the quadrature
values modulated by Alice and Y represents the quadrature
values measured by Bob. The mean values x̄, ȳ, and variances
Vx,Vy of X and Y can be described as

x̄ = 0, Vx = VaN0, (3)

ȳ = 0, Vy = ηTVaN0 + N0 + ηT ξ + Vel, (4)

where T and η represent the transmittance of the quan-
tum channel and the efficiency of the homodyne detec-
tor, respectively. Vel = velN0 is the electronic noise of

FIG. 3. Schematic of DADS’s measurement. PBS: Polarization beam splitter. AM: Amplitude modulator. PM: Phase modulator. PIN: PIN
photodiode. P meter: Power meter. Clock: Clock circuit used to generate the clock signal. DPC: Data processing center used for analog signal
sampling, attack detection, and raw key distillation.
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TABLE II. Impacts of different quantum attacks on measurable
features. The symbol (

√
) under the features indicates that the corre-

sponding feature will be changed by the corresponding attack.

Features ȳ Vy P N0 np

LO intensity attack [25]
√ √ √

Calibration attack [26]
√ √

Saturation attack [23]
√ √

Hybrid attack 1 [22]
√ √ √

Hybrid attack 2 [24]
√ √

detector, and ξ = εN0 is the excess noise. Supposing that
Alice sends N pulses to Bob in total, and these pulses are
divided into d = N/S blocks. We can extract a feature vector
fi = {ȳ,Vy, P, N0, np} for each block so that a feature vector
group F = { f1, f2, . . . , fd} can be obtained. The above fea-
tures may largely be affected by different types of quantum
attacks shown in Table II, hence, DBSCAN can be, subse-
quently, applied to generate several different clusters. The
attacked clusters can be easily recognized by comparing with
the normal cluster obtained from unattacked data, and they
should be discarded. Note that this comparison differs from
general classification algorithms; the normal cluster for com-
parison does not need to be generated in real time in our
scheme.

4. Post processing

This part is similar to the postprocessing of conventional
CVQKD [1,2]. After discarding the attacked data detected by
executing the attack detection part, Alice discloses a part of
her data to Bob, who compares them with his data so as to
estimate the channel parameters T and ε. Subsequently, an
error correction algorithm is applied to the remaining data
to convert the correlated Gaussian-distributed continuous data
into identical discrete data, but these data are only partially
secret. Finally, a privacy amplification algorithm is performed
based on the hash function, so as to extract the final keys that
are entirely unknown to Eve.

III. PERFORMANCE ANALYSIS FOR DADS

In this section, several machine learning metrics are first in-
troduced, then the two key parameters ε and Pmin of DBSCAN
are discussed and determined. The exhaustive performance
analysis of DADS against both known and unknown quantum
attacks is, subsequently, presented.

In order to effectively evaluate the performance
of the proposed DADS, a test dataset Ytest =
{ynormal, yloia, ycal, ysat, yhyb1, yhyb2} is prepared, details
concerning this dataset can be found in Appendix A.
Then, the feature vector group Ftest = { f1, f2, . . . , fd} is
obtained by feature extraction from the original test dataset
Ytest. After performing DBSCAN clustering, a set of clusters
C = {C1,C2, . . . ,CN1} can be obtained. For comparison,
another dataset of normal data y′

normal and its corresponding
feature vector group Fnormal is also prepared. As a result, the
attacked clusters can be determined by comparing the clusters
of test data Ftest with the clusters of normal data Fnormal.

A. Machine learning metrics

DADS takes advantage of DBSCAN to recognize prac-
tical quantum attacks so that the traditional information
theory-based metrics used in GG02 [1] are not enough to
comprehensively estimate its performance. Hence, several
machine learning metrics need to be introduced. In general,
the metrics of clustering can be divided into external met-
rics and internal metrics. External metrics usually evaluate
the similarity between clustering results and ground truth,
which refers to the labels indicating the type of quantum
attacks. Different from external metrics, internal metrics are
used to directly evaluate the clustering results without ground
truth. Here we select two external metrics i.e., the Jaccard
coefficient (MJC) and the Folkes and Mallows index (MFMI),
and one internal metric, i.e., silhouette coefficient (MSC) to
evaluate the performance of DADS in terms of clustering [40].
Specifically, MJC and MFMI are used to evaluate the similarity
between the clustering results and the ground truth [41,42],
MSC is used to evaluate the compactness within a cluster and
the separation between clusters [43]. Details concerning these
metrics are presented below.

For clusters C = {C1,C2, . . . ,CN1} generated by DBSCAN
and clusters C∗ = {C∗

1 ,C∗
2 , . . . ,C∗

N2
} given by the ground

truth, we define λ and λ∗ as the labels of C and C∗ that mark
the clusters to which each feature vector belongs to. Based on
these labels, MJC and MFMI can be calculated by

MJC = a

a + b + c
, (5)

MFMI =
√

a

a + b

a

a + c
, (6)

where

a = |SS|, SS = {( fi, f j )|λi = λ j, λ
∗
i = λ∗

j , i < j}, (7)

b = |SD|, SD = {( fi, f j )|λi = λ j, λ
∗
i �= λ∗

j , i < j}, (8)

c = |DS|, DS = {( fi, f j )|λi �= λ j, λ
∗
i = λ∗

j , i < j}, (9)

where a denotes the number of the sample pairs that belong to
the same cluster in ground truth and in the clustering results, b
denotes the number of the sample pairs that belong to different
clusters in the ground truth and belong to the same cluster
in the clustering results, and c denotes the number of the
sample pairs that belong to the same cluster in ground truth
and belong to different clusters in the clustering results. In
general, the values of MJC and MFMI close to 1 indicate high
similarity between the clustering results and the ground truth.

For the N1 clusters generated by DBSCAN, we can cal-
culate the average distance between each point fi and other
points in cluster Cm as

a( fi) =

|Cm|∑
j=0

dist( fi, f j )

|Cm| − 1
, (10)

where |Cm| represents the number of the points in Cm and
dim( fi) represents the dimension of vector fi, which equals
5 in this paper. Similarly, the average distance between fi and
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TABLE III. Confusion matrix.

Detected as attacked Detected as unattacked

Attacked DTP DFN

Unattacked DFP DTN

points in other clusters is given by

b( fi ) =

|C|−|Cm|∑
j=0

dist( fi, f j )

|C| − |Cm| , (11)

where |C| represents the number of the points in C. Then the
silhouette coefficient of fi can be expressed as

s( fi) = b( fi ) − a( fi )

max[a( fi ), b( fi )]
. (12)

For clustering results C, the total silhouette coefficient is the
average silhouette coefficient of all the points, which is ex-
pressed as

MSC =

|C|∑
i=0

s( fi )

|C| . (13)

The clusters generated by a well-clustering algorithm have
high intracluster similarity and low intercluster similarity. Ac-
cording to the calculation of MSC, the value of MSC close to 1
indicates well-clustering results.

In addition, we also investigate the performance of DADS
in terms of several widely used machine learning metrics, such
as precision (MPrec), recall (MRec), false positive rate (MFPR),
and false negative rate (MFNR), their formulas are given by

MPrec = DTP

DTP + DFP
, (14)

MRec = DTP

DTP + DFN
, (15)

MFPR = DFP

DTN + DFP
, (16)

MFNR = DFN

DTP + DFN
, (17)

where DTP, DFP, DFN and DTN are defined according to the
confusion matrix described in Table III. True positive (DTP)
indicates the counts that attacked data are detected as attacked
data, false positive (DFP) indicates the counts that normal data
are detected as attacked data, false negative (DFN) indicates
the counts that attacked data are detected as normal data, and
true negative (DTN) indicates the counts that normal data are
detected as normal data.

B. Performance of DADS

Before analyzing the performance of DADS in terms of
machine learning metrics, the two key parameters ε and Pmin

have to be determined. In general, the k-distance graph can be
used to determine an optimal value range of ε. The approach
of drawing a k-distance graph is to find the distance between

FIG. 4. A 50-distance graph. The red solid line shows the range
with the fastest slope change.

each point and its kth nearest point, then sort all points based
on this distance, and finally plot sorted points against this
distance. The ordinate value of the point with the fastest slope
change on the curve is a good choice for ε, which can make
the DBSCAN clusters more compact [38]. Figure 4 shows
a 50-distance graph, and we find that the slope of the curve
changes rapidly when ε varies from 0.003 to 0.007, i.e., the red
solid part of the curve. Therefore, the optimal value of ε can
be selected from this range. On the other hand, parameter Pmin

is generally set to twice the dimension of the feature vector,
hence, we set Pmin = 10 in our case.

After determining the values of Pmin and the approximate
range of ε, the performance of DADS in terms of machine
learning metrics can be discussed. As shown in Fig. 5, we
find that both MJC and MFMI are close to 1 when ε ∈
[0.006, 0.007]. It suggests that the clustering results are basi-
cally consistent with the ground truth in this range. We also
note that the values of both metrics decrease significantly
when ε < 0.006 (especially when ε < 0.004), this is because
some data that belong to same class are clustered into different
clusters when ε is too small, reducing the similarity between

FIG. 5. MJC and MFMI of the clusters versus different values of ε.
Both MJC and MFMI are close to 1 when ε ∈ [0.006, 0.007].
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FIG. 6. MSC of the clusters versus different values of ε, MSC is
close to 1 when ε ∈ [0.005, 0.007].

the ground truth and clustering results. Figure 6 shows the
performance of MSC versus different values of ε. We find that
MSC is close to 1 when ε ∈ [0.005, 0.007], which indicates
that the clusters obtained by DBSCAN have high intracluster
similarity and low intercluster similarity. Note that the value
of MSC decreases when ε < 0.005, the reason is that some
data that belong to same class are clustered into different
clusters when ε is too small, leading to the increased inter-
cluster similarity. Figure 7 depicts the performance of DADS
in terms of MPrec, MRec, MFPR and MFNR. We can tell that MPrec

and MRec approach 1 when ε ∈ [0.006, 0.007], and MFPR and
MFNR approach 0 under the same range of ε. It suggests that
both high MPrec and MRec and low MFPR and MFNR can be
achieved with the range of ε ∈ [0.006, 0.007].

By comprehensively investigating the optimal ranges of
ε in terms of above all machine learning metrics, we find
that the optimal range of ε ∈ [0.006, 0.007] is overlapped. It
suggests that the clustering results are highly similar to the
ground truth with this range of ε so that the clusters formed by
normal data and the clusters formed by attacked data can be
highly differentiated, which are beneficial for distinguishing
the attacked signal and the normal signal. Therefore, we can

FIG. 7. MPrec, MRec, MFPR and MFNR of DADS against known
attacks as a function of ε.

FIG. 8. Three-dimensional spatial distribution of Ftest before or
after DBSCAN clustering

select an identical value, e.g., ε = 0.007, of ε that belongs to
this range for the follow-up simulation experiment.

To intuitively interpret the effect of DBSCAN clustering,
we map the testing data Ftest to a three-dimensional space us-
ing principal component analysis technique [44], though this
mapping operation is actually not a necessary step for DADS.
As can be seen in Fig. 8(a), the data points of Ftest are spatially
distributed without labels (uncolored) so that normal data and
attacked data can hardly be distinguished. Figure 8(b) shows
the clustering result of Ftest after DBSCAN in which each
cluster is labeled with color. Attacked data, therefore, can be
detected by comparing the obtained clusters with the cluster
of Fnormal. Note that DADS does not need to know the specific
types of quantum attacks as the abnormal data will be directly
discarded once the clustering result is different to the cluster
of Fnormal. Obviously, both time and space complexities of
the proposed DADS are lower than the existing classification
algorithm-based attack detection schemes, thereby saving lots
of computational resources.
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TABLE IV. Impacts of unknown quantum attacks on measurable
features. The symbol (

√
) under the features indicates that the corre-

sponding feature will be modified by the corresponding attack.

Features ȳ Vy P N0 np

Unknown attack 1
√ √

Unknown attack 2
√ √ √

Unknown attack 3
√ √ √

Unknown attack 4
√ √

Unknown attack 5
√ √ √

C. DADS against unknown quantum attacks

Until now, we have investigated the performance of DADS
against known quantum attacks. However, it is impossible
for the legitimate parties to foreknow all potential quantum
attacks especially in the practical CVQKD system. To guar-
antee the practical security of CVQKD, the performance of
DADS against unknown quantum attacks also has to be taken
into account. Table IV shows five types of unknown quantum
attacks, each of them randomly affects several features of the
normal data. For example, features ȳ and np will be modified
by unknown attack 1, whereas features ȳ and N0 will be
modified by unknown attack 4. Note that all unknown attacks
listed in this table are randomly generated without considering
their detailed implementations, this does make sense as they
cannot be called unknown attacks if we explicitly understand
their principles of attack.

Similarly, we also simulate 103 feature vectors for each
unknown quantum attack. The total number of unknown at-
tacks’ feature vectors is, therefore, 5000. Figure 9 shows the
performance of DADS against unknown quantum attacks in
terms of MPrec, MRec, MFPR and MFNR. We find that both Prec
and Rec are close to 1 and both FPR and FNR are close
to 0 when ε > 0.006, which is similar to the trends of the
performance of DADS against known quantum attacks shown
in Fig. 7. It suggests that our proposed DADS not only has the
ability to detect most of known attacks, but also can identify
various unknown attacks, thereby improving practical security
of the CVQKD system.

FIG. 9. MPrec, MRec, MFPR and MFNR of DADS against unknown
attacks as a function of ε.

IV. SECURITY ANALYSIS FOR DADS

In this section, we detail the security analysis for DADS in
both the asymptotic limit and the finite-size regime.

In the case of the asymptotic limit, the secret key rate
without any defense strategy can be expressed as

Kasym = βI (A:B) − χBE , (18)

where β is the reverse reconciliation efficiency, I (A:B) is
Shannon mutual information between Alice and Bob, and
χBE is the Holevo quantity for Eve’s maximum accessible
information. Detailed derivation of I (A:B) and χBE can be
seen in Appendix B. However, Eq. (18) does not consider
the practical quantum attacks and the accuracy of DADS, it,
therefore, has to be amended. After considering the above
factors, the revised asymptotic secret key rate can be written
as

K rev
asym = (R − κ )[βI (A:B) − χBE ]

+ κ (1 − MRec)[βI (A:B) − χBE ]

= (R − κ MRec)[βI (A:B) − χBE ], (19)

where R represents the proportion of data that are used for
final key distillation and κ represents the proportion of pulses
under practical quantum attacks. Here we set R = 0.9 be-
cause 10% of the pulses are used for measuring shot noise
as described in Sec. II. κ is set to 0.1, which indicates that
another 10% of the pulses are under practical quantum attacks.
MRec is defined in Eq. (15), which indicates the proportion
of successfully detected as attacked data in all attacked data.
As the revised secret key rate is obtained by discarding the
detected attacked data, the pulses with MRec proportion of
the attacked pulses can be detected so that the secret keys
generated from this part of pulses have to be discarded. How-
ever, the pulses with 1-MRec proportion of the attacked pulses
can not be detected due to the imperfection of algorithm, the
secret keys generated from them are incorrectly considered to
be secure, therefore, they will be calculated into the revised
secret key rate. Obviously, all attacked data can be detected
when MRec = 1. That is to say, the secret keys generated from
all attacked pulses can be totally discarded. Therefore, the real
secret key rate, which excludes all practical quantum attacks,
can be written as

K real
asym = (R − κ )[βI (A:B) − χBE ]. (20)

Figure 10 shows revised and real secret key rates as a
function of MRec. It can be found that the asymptotic secret
key rate is largely overestimated when MRec is close to 0, this
is because conventional CVQKD system cannot be aware of
the existence of practical quantum attacks without adopting
attack detection strategy. The leaked information caused by
practical quantum attacks is, therefore, incorrectly deemed
to be normal. It also reveals that this overestimation can be
gradually eliminated by improving the value of MRec, which
indicates that our proposed DADS has the ability to amend
the overestimated secret key rate due to its high MRec perfor-
mance.

To figure out how the parameters ε and Pmin determine the
security parameters of DADS, we further plot the asymptotic
secret key rate as a function of ε and Pmin. As shown in Fig. 11,

022607-7



LIAO, WANG, LIU, MAO, AND FU PHYSICAL REVIEW A 106, 022607 (2022)

FIG. 10. Asymptotic secret key rate as a function of MRec. Solid
lines denote K rev

asym, and dashed lines denote K real
asym. From top to bot-

tom, different colors represent transmission distances 5 km (black),
10 km (red), 20 km (blue), and 30 km (green), respectively.

we find that the secret key rate increases as ε decreases, and
Pmin increases. This is because some original core points no
longer belong to core point as their numbers of points within
ε neighborhood become less than Pmin, resulting in less core
points. In this trend, more attacked points will be marked as
noise so that they no longer belong to the attacked clusters,
decreasing the value of MRec. Therefore, the secret key rate
will be overestimated according to Eq. (19).

In addition, the performance of practical CVQKD system
will be jeopardized due to the finite length of data exchanged
by legitimate users. Therefore, the finite-size effect has to be
taken into account. In this case, the revised secret key rate can
be expressed as

K rev
fini =

(
nrev

N rev
− κ MRec

)
[βI (A:B) − S(B:E )rPE − �(n)].

(21)

See Appendix C for detailed derivation about this equation.

FIG. 11. Asymptotic secret key rate of DADS as a function of
ε ∈ [0.003, 0.007] and Pmin ∈ [2, 50].

FIG. 12. Secret key rates as a function of transmission distance.
Orange dotted line denotes the Piradola-Laurenza-Ottaviani-Banchi
(PLOB) bound [45], dashed lines denote the performance of conven-
tional CVQKD without any attack detection strategy, and solid lines
denote the performance of the proposed DADS. From top to bottom,
different colors (except for orange) represent data block lengths:
asymptotic (black), 1012 (red), 1010 (blue), and 108 (green).

Figure 12 shows the performance comparison between the
conventional CVQKD and the proposed DADS. Black lines
denote asymptotic secret key rates, red, blue, and green lines
denote finite-size secret key rates with data block lengths is
1012, 1010 and 108. It can be found that the performance of
conventional CVQKD superficially outperforms our proposed
DADS in the cases of both asymptotic limit and finite-size
regime. In fact, there are several reasons that jointly lead to
this result: First of all, as we mentioned above, conventional
CVQKD cannot be aware of the existence of practical quan-
tum attacks without adopting attack detection strategy. As a
result, the attacked data will be regarded as normal data, and
they will be used for generating secret keys, resulting in the
overestimation of secret key rate. Second, some parts of pulses
have to be sacrificed for measuring shot noise, which reduces
the pulses that can be used for generating final secret keys.
Third, extra loss will be introduced by the insertion of AM in
the signal path, which will reduce the efficiency of Bob’s mea-
surement. The above reasons indicate that the performance of
conventional CVQKD shown in Fig. 12 is actually imprecise
when considering practical quantum attacks, whereas a tighter
secure bound of the practical CVQKD system can be obtained
by our proposed DADS.

V. CONCLUSION

In this paper, we have proposed a general machine
learning-based defense strategy against practical quantum
attacks, called DADS. In particular, we constructed a set of
features and established a DBSCAN clustering model to de-
tect different practical quantum attacks. We introduced several
machine learning-based metrics to evaluate the performance
of DADS. The results showed that the proposed DADS not
only has the ability to detect most of known attacks, but also
can identify various unknown attacks. We also analyzed the
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security of DADS in the cases of both the asymptotic limit and
the finite-size regime, and the results showed that the overes-
timated secret key rate caused by ignoring practical quantum
attacks can be amended with the help of DADS, thereby a rea-
sonable tighter secure bound of practical CVQKD system can
be finally obtained. Moreover, DADS is beneficial for real-
time attack detection as it does not require a time-consuming
training process when compared to other classification-based
detection scheme.
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APPENDIX A: DATASET PREPARATION

Datasets are generated with the following values of pa-
rameters under practical consideration: Modulation variance
VA = 10, efficiency of homodyne detector η = 0.6, excess
noise of the channel ξ = 0.1N0, electrical noise of detector
Vel = 0.01N0, and transmittance of channel T = 10−αL/10,
where the transmission distance L is set to 30 km, and
the optical loss coefficient α = 0.2 dB/km. A max attenua-
tion coefficient r1 = 0.001 and a nonattenuation coefficient
r2 = 1 are set on the signal path. The mean value of Y
and its variance without quantum attacks can be expressed
as

ȳ = 0,
(A1)

Vi = riηT (VAN0 + ξ ) + N0 + Vel.

LO power is set to 107 photons per pulse with 1% fluctuation,
and the variance of shot noise is set to 0.4.

(a) LO intensity attack [25]: In conventional security anal-
ysis, LO is not taken into consideration, and its intensity is
assumed to remain unchanged. However, in practical imple-
mentation, Eve could intercept not only the signal beam, but
also the LO. By controlling the intensity of LO with attenua-
tion coefficient ν (0 < ν < 1), Eve can reduce channel excess
noise estimation, so as to successfully hide her attack. Hence,
the average power of LO can be attenuated to νP. Assuming
that the attenuation of each LO pulse is identical, the excess
noise introduced by collective attack with monitoring is

ξCol = (1 − ηT )(VEve − 1)

ηT
N0

= (1 − ν)

νηT
N0,

(A2)

where VEve = (1 − νηT )/(ν − νηT ) is the variance of Eve’s
EPR states. The variance of the measurement at Bob side can
be written as

V LOIA
i = ν[riηT (VAN0 + ξ + ξCol ) + N0 + Vel]. (A3)

Note that the variance of shot-noise NLOIA
0 is reduced to νN0

due to the intensity attenuator. Therefore, we find that P, N0,
and Vy can be affected under LO intensity attack.

(b) Calibration attack [26]: Eve manipulates the classical
LO pulses during the operation of CVQKD in order to mod-
ify the clock pulses used at the detection stage. This allows
the eavesdropper to bias the shot-noise estimation usually
performed using a calibrated relationship. Specifically, Eve
performs partial intercept-resend (PIR) attacks for intercept-
ing a part μ of signal pulses and modifying the shape of this
part LO pulses. This can scale the excess noise estimation
since Bob’s shot-noise estimation remains unchanged. The
excess noise introduced by calibration attack can be expressed
as

ξcalib

N0
= Ncalib

0

N0

[
ξ + ξPIR

Ncalib
0

+ 1

ηT

(
1 − N0

Ncalib
0

)]
, (A4)

where ξPIR = 2μN0 is noise introduced by PIR attack. The
excess noise estimation can be scaled to zero whereas
N0/Ncalib

0 = 1 + 2.1ηT . In this condition, μ = 1, and the mea-
surement variance under calibration attack can be written
as

V calib
i = riηT (VA + ε + 2)Ncalib

0 + Ncalib
0 + velN

calib
0 . (A5)

We find that N0 and Vy can be affected under calibration attack.
(c) Saturation attack [23]: It is generally assumed in the

security proofs of CVQKD that the response of the homodyne
detection is linear with respect to the input quadrature. How-
ever, for a practical coherent detector, the linearity domain is
limited. If the value of the input quadrature exceeds the limit,
linearity may not be verified, leading to a saturated behavior.
The security evaluation in CVQKD relies solely on the eval-
uation of second-order moments of the quadrature, whereas
the first-order moments (mean value) are not monitored. This
leaves Eve the freedom to manipulate the mean value of the
quadratures ȳ. Combining this observation with the existence
of a finite domain of linearity for the detection, Eve can
actively introduce a large displacement � (even sometimes
also add an amplification G) on the coherent states received
by Bob in order to induce the homodyne detector to operate
in its saturated region. This strategy enables Eve to influence
Bob’s measurement results and to bias parameter estimation.
The mean value, variance of measurement, and excess noise
estimation under saturation attack can be expressed as

ȳsat = ri

(
α −

√
V ′

i

2π
B − (α − �)

2
− (α − �)

2
A

)
, (A6)

V sat
i = V ′

i

(
1 + A

2
− B2

2π

)
− (α − �)

√
V ′

i

2π
AB

+ (α − �)2

4
(1 − A2), (A7)

ξ sat
i

N0
= 2

ηT G(1 + A)2N0

[
V ′

i

(
1 + A − B2

π

)

− 2

√
2V ′

i

π
(α − �)AB

+ (α − �)2(1 − A2) − 4N0 − 4Vel

]
− VA

N0
, (A8)
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where α is the boundary of the linear range of the homodyne
detector and

V ′
i = riηT (VAN0 + ξ + 2N0) + N0 + Vel, (A9)

A = 2√
π

∫ (α−�)/
√

2V ′
i

0
e−t2

dt, (A10)

B = e−(α−�)2/2V ′
i . (A11)

We find that ȳ and Vy can be affected under saturation attack.
(d) Hybrid attack 1 [22]: This attack consists of two parts,

the first part can be considered as the LO intensity attack,
and the second part can be deemed as the wavelength attack.
In the first part, the pulses are intercepted and represented
by Eve. The amplitudes of the signal pulses and LO pulses
are

√
γ T (XE + iPE )/2 and ALO/

√
γ , respectively, where ALO

is the amplitude of original LO, and γ is a real number.
In the wavelength attack, two beams of additional coherent
pulses are sent into the homodyne detector by Eve. The wave-
lengths of the pulses are different from the wavelength of
typical communication 1550 nm. A photocurrent is generated
when pulses transmit the 50:50 fused biconical taper beam
splitter, which makes the shot noise appear normal. Due to
the two additional reprepared coherent pulses, the number of
pulses Bob receives per unit time np = 2. The excess noise is
given by

Nhyb1
0 = N0

γ
+ (1 − r1r2)K2

+ (35.81 − 35.47r1r2)K, (A12)

ξ hyb1

Nhyb1
0

=
[

(2 + ξ )N0 + (r1 + r2 − 2)K2

ηT

+ 35.47(r1 + r2)K

]
, (A13)

where K is a parameter related to the intensity and wave-
lengths Is, I lo, γ s, and γ lo. γ s and γ lo are the wavelengths of
the pulses that Eve sends. The variance of Bob’s measurement
can be expressed as

V hyb1
i = riηT (VAN0 + 2N0 + ξ ) + N0

γ
+ Vel

+ (1 − ri )
2K2 + (

35.81 + 35.47r2
i

)
K. (A14)

As the shot-noise variance changed by LO intensity attack can
be amended by the light photocurrent, P, Vy, and np can be
affected under hybrid attack 1.

(e) Hybrid attack 2 [24]: Similar to thr saturation attack,
and this attack exploits the finite linear domain of homodyne
detector (HD) too. Eve sends an extra beam of incoherent
strong light on the signal port, which can produce a compara-
tively stronger photocurrent to saturate the HD. By combining
the sending of strong light pulses to Bob with a full intercept-
resend attack, Bob’s measurement can be severely deviated.
The deviation can be expressed as

Dext =
√

η

Ilo
(1 − 2Text )Iext, (A15)

where Text is the overall transmission of external pulses and
is related to the wavelength. Iext is the number of photons per
external pulse. Dext is normalized in

√
N0. The excess noise

under this attack can be expressed as

ξhyb2 = ξ + ξIR + ξext, (A16)

where ξIR = 2N0 is the noise introduced by the IR attack and
ξext is the noise introduced by the external light. Correspond-
ingly, the variance of measurement can be written as

Vhyb2 = ηT (VA + ξhyb2) + 1 + Vel. (A17)

The same as the saturation attack, ȳ and Vy can be affected
under hybrid attack 2.

Several parameters have to be determined before preparing
a dataset for the above practical quantum attacks. Specifically,
the attenuation coefficient ν is set to 0.95 for the intensity
attack as Eve can obtain the full secret keys in this case [25].
For the calibration attack, we assume Eve launches a full
intercept-resend attack, μ is thereby set to 1. For the saturation
attack, α and � are set to 20

√
N0 and 19.5

√
N0 for an excel-

lent attack effect [23]. For the hybrid attack 1, Eve chooses
λ = 20.9, I lo

1 = 5 × 105, Is
1 = 5.4 × 105, I lo

2 = 4.8 × 105, and
Is
2 = 4.4 × 105, so as to make Nhyb1

0 = N0 [22]. For hybrid
attack 2, Text and Iext are set to 0.49 and 1.274 × 107 to
accurately bias the excess noise estimation [24]. Now the
test dataset Ytest = {ynormal, yLOIA, ycal, ysat, yhyb1, yhyb2} can be
obtained with these determined parameters.

Assuming Bob receives 108 pulses in total and 105 pulses
are required to extract a feature vector, thereby 103 data can
be prepared for each type of dataset in Ytest . Note that 90% of
data in the dataset of Ytest are generated based on ri = r1 and
another 10% are generated based on ri = r2 because 10% of
the data are used for measuring the shot-noise variance.

APPENDIX B: CALCULATION OF THE ASYMPTOTIC
SECRET KEY RATE

In the case of the asymptotic limit, Shannon mutual infor-
mation I (A:B) and Holevo bound χBE can be, respectively,
expressed as

I (A:B) = log2
V + χtot

1 + χtot
, (B1)

χBE = S(ρE ) −
∫

dmBρ(mB)S
(
ρ

mB
E

)
, (B2)

where V = Vm + 1 is the channel-added noise referred to
the channel input is χline = 1/T − 1 + ε, the detection-added
noise referred to Bob’s input is χhom = [(1 − η) + vel]/η,
the total noise referred to the channel input is χtot = χline +
χhom/T , mB is the measurement of Bob, S is the von Neu-
mann entropy of the quantum state ρ, ρ(mB) is the probability
density of the measurement, and ρ

mB
E is Eve’s state conditional

on Bob’s measurement. Under Gaussian collective attack, χBE

can be expressed as

χBE =
2∑

i=1

G

(
λi − 1

2

)
−

5∑
i=3

G

(
λi − 1

2

)
, (B3)

where

G(x) = (x + 1)log2(x + 1) − x log2(x), (B4)
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and λ1,2 and λ3,4 are the symplectic eigenvalues that can be
expressed as

λ2
1,2 = 1

2

(
ϕ1 ±

√
ϕ2

1 − 4ϕ2
)
, (B5)

λ3,4 = 1
2

(
ϕ3 ±

√
ϕ2

3 − 4ϕ4
)
, (B6)

where

ϕ1 = V 2 + T 2(V + χline )2 + 2T (1 − V 2), (B7)

ϕ2 = T 2(1 + V χline ), (B8)

ϕ3 = ϕ1χhom + V
√

ϕ2 + T (V + χline )

T (V + χtot )
, (B9)

ϕ4 =
√

ϕ2V + ϕ2χhom

T (V + χtot )
. (B10)

λ5 = 1. Finally, the asymptotic secret key rate of DADS can
be calculated with the above equations [26].

APPENDIX C: CALCULATION OF THE FINITE-SIZE
SECRET KEY RATE

In the case of the finite-size regime, the secret key rate
without any defense strategy can be expressed as [18]

Kfinite = n

N
[βI (A:B) − S(B:E )rPE − �(n)], (C1)

where N and n represent the number of the exchanged signals
between Alice and Bob and the number of the signals used
for key establishment, respectively. m = N − n indicates the
number of the signals used for parameter estimation. rPE de-
notes the failure probability of parameter estimation. �(n) is
related to the security of the privacy amplification, which can
be expressed as

�(n) = (2 dim Hy + 3)

√
log2(2/r̄)

n

+ 2

n
log2(1/rPA), (C2)

where r̄ and rPA represent a smoothing parameter and the
failure probability of the privacy amplification procedure,
respectively. Hy is the Hilbert space corresponding to the vari-
able y used in the raw key. Since the raw key is bit encoded,
we take dim Hy = 2 for the key rate evaluation parameter.
S(B:E )rPE represents the mutual information between Bob
and Eve. It is determined by the covariance matrix �AB of

the bipartite state shared by Alice and Bob. The covariance
matrix can minimize the secret key rate in finite size with a
probability of 1 − rPE, which can be calculated as

�AB =
⎡
⎣ (VA + 1)I

√
Tmin

(
V 2

A + 2VA
)
σz√

Tmin
(
V 2

A + 2VA
)
σz [Tmin(VA + εmax) + 1]I

⎤
⎦,

(C3)

where the matrices I = diag(1, 1) and σz = diag(1,−1). Tmin

and εmax represent the lower and upper bounds of T and ε,
respectively, which are given by

Tmin = t̂2
min

η
, εmax = σ̂ 2

max − 1 − vel

ηT
, (C4)

with

σ̂ 2
max ≈ 1 + ηT ε + vel

+ zrPE/2

√
(1 + ηT ε + vel )

√
2√

m
, (C5)

t̂min ≈
√

ηT − zrPE/2

√
1 + ηT ε + vel

mVA
, (C6)

where zrPE/2 follows 1 − erf (zrPE/2/
√

2)/2 = rPE/2. In our
simulations, these error probabilities can be set to the optimal
value as

r̄ = rPE = rPA = 10−10. (C7)

Substituting Tmin and εmax for T and ε in Eqs. (B1) and ( (B3)),
the finite-size secret key rate without any defense strategy can
be obtained. However, Eq. (C1) does not consider practical
quantum attacks. Similar to the case of the asymptotic limit,
the revised finite-size secret key rate, therefore, can be ex-
pressed as

K rev
fini =

(
nrev

N rev
− κ

)
[βI (A:B) − S(B:E )rPE − �(n)]

+ κ (1 − MRec)[βI (A:B) − S(B:E )rPE − �(n)]

=
(

nrev

N rev
− κ MRec

)
[βI (A:B) − S(B:E )rPE − �(n)].

(C8)

Note that both the number of exchanged signals and the
number of signals used for key establishment will decrease,
i.e., N rev = RN and nrev = Rn as 10% pulses are used for
measuring shot noise in DADS.
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