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Generating target graph couplings for the quantum approximate optimization
algorithm from native quantum hardware couplings
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We present methods for constructing any target coupling graph using limited global controls in an Ising-
like quantum spin system. Our approach is motivated by implementing the quantum approximate optimization
algorithm (QAOA) on trapped-ion quantum hardware to find approximate solutions to MaxCut. We present
a mathematical description of the problem and provide approximately optimal algorithmic constructions that
generate arbitrary unweighted coupling graphs with n nodes in O(n) global entangling operations and weighted
graphs with m edges in O(m) operations. These upper bounds are not tight in general, and we formulate a
mixed-integer program to solve the graph coupling problem to optimality. We perform numeric experiments

on small graphs with n < 8 and show that optimal sequences, which use fewer operations, can be found using
mixed-integer programs. Noisy simulations of MaxCut QAOA show that our implementation is less susceptible

to noise than the standard gate-based compilation.
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I. INTRODUCTION

While the capabilities of quantum computing hardware
continue to increase both in qubit number and quality of
operations, the field is still a long way from quantum
error correction. Numerous near-term applications for the so-
called NISQ hardware have been proposed including quantum
chemistry, the variational quantum eigensolver, and opti-
mization [1]. Important experimental demonstrations of these
applications have been performed, but to date the hardware
has been too small to be computationally useful compared
to classical methods [2-4]. Quantum hardware naturally per-
forms better on problems which match the native qubit
connectivity, while general problems tend to require signifi-
cant compilation, resulting in increased gate count and worse
performance [5].

A prominent example of an optimization problem is Max-
Cut, which asks to partition the vertices of a given weighted
graph G = (V, E, z), with edge weights z, into two sets S, V' \
S so that the total weight of the edges in the cut (S, V — ) is
maximized. To solve MaxCut with the quantum approximate
optimization algorithm (QAOA) [6-8], each vertex is repre-
sented by a qubit, and the Z eigenstates label the two sets.
The cut size is encoded as the energy of a cost Hamiltonian,
consisting of a sum over two-qubit operators for each edge in
E, where the MaxCut corresponds to the lowest energy eigen-
vector. MaxCut QAOA was recently demonstrated on tens
of ions [9]; however, the problem graph matched the native
hardware coupling graph. To implement MaxCut for an any
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graph, an arbitrary qubit coupling graph (cost Hamiltonian)
must be produced.

In this paper we show how arbitrary coupling operations
can be constructed on a quantum spin system using a limited
set of operations. While we specialize to a trapped-ion system,
our method is general and is applicable to other quantum
systems with natural long-range interactions, such as NMR
manipulation of multispin molecules [10], arrays of Rydberg
atoms [11-13], or certain superconducting qubits coupled
to a common bus resonator [14,15]. While our results have
immediate application to efficient implementation of MaxCut
QAOA on crystals of trapped ions, they may also enable new
classes of quantum simulations.

In Sec. II we provide a physical definition of a coupling
graph as well as implementation details for trapped ion sys-
tems. In Sec. III we physically motivate the problem and then
give a problem statement in purely mathematical terms. In
Sec. IV we discuss various solution methods, including (i) a
lower bound of 2(logn) [16] on the graph coupling number,
i.e., smallest possible number of Ising operations required to
construct a general graph with n nodes, (ii) an O(n) operation
sequence for the construction of unweighted graphs which
we refer to as union of stars, and (iii) an O(m) operation for
constructing arbitrary weighted graphs with m edges.

Preliminary numerical experiments using a mixed-integer
program (MIP) are presented in Sec. V A which validate the
performance of our constructions and show that optimal se-
quences can be found which use fewer Ising operations than
the upper bounds from the constructions. This MIP can be
used to find optimal sequences for small instances (up to
the scale of the NISQ hardware in the near future), but for
large graphs this approach quickly becomes intractable, and
instead, the union-of-stars construction can be used to find
a provable near-optimal solution. Numerical simulations of
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MaxCut QAOA including noise follow in Sec. V B. Finally,
an estimate of hardware execution time is given in Sec. V C.

II. COUPLING OPERATORS AND PHYSICAL CONTROLS

Many quantum systems exhibit intrinsic couplings between
qubits. Physically, these spin-spin couplings comprise the
zero-field Ising model with a coupling Hamiltonian,

n—1

Hlsing = Z Z Ji,jo'[zo';’ (1)

i=1 j=i+1

where o denotes the Pauli-Z matrix acting on the jth ion [17].
The term afaf is a “ZZ coupling” between qubits i and j, and
the values of the interaction energies J; ; depend on the details
of the underlying quantum hardware.

Definition 1 (Coupling graph). We define a coupling graph
G(V,E), |V| = n as a mathematical abstraction of a coupling
operation on an n-qubit system, where each vertex v € V
represents a qubit and each edge e € E represents the strength
of the ZZ coupling between two qubits.

With this definition, an arbitrary coupling operator

n—1 n
C=Y Y ajoio} )

i=1 j=itl

has a coupling graph with adjacency matrix A of entries a; ; =
aj i, where a; ; € R. Hyg,e is a particular physical coupling
operator [compare to Eq. (2)], and the adjacency matrix of the
corresponding coupling graph has elements a; ; = J; ;.

In Sec. IIT we show that a coupling operator C with any
arbitrary adjacency matrix can be constructed from two sim-
ple operations: (A) a global coupling operation, Hyg, Native
to the quantum hardware, and (B) individual qubit bit flips.
Here, we specialize to collections of ions trapped in a com-
mon potential and describe how each of these operations is
realized.

A. Hyyg Implementation

For trapped ion crystals, a wide variety of coupling
graphs, facilitated by the collective normal modes of mo-
tion of the ions, are possible. One method for generating
Higing is the Mglmer-Sgrensen (MS) interaction [18]. With
one-dimensional ion crystals, the MS interaction has been
used extensively for quantum simulations of interacting
spins [19,20] as well as lattice gauge models [21]. For exper-
iments to date with two-dimensional ion crystals, an optical
dipole force (ODF) was used to produce Higng [22,23]. While
the exact dependence of the interaction strength on the optical
fields is different, the dependence of J; ; on the motional mode
structure is identical.

The MS interaction is created by illuminating the ions with
a pair of lasers tuned near red and blue motional sidebands,
and the J; ; in Eq. (1) are

R (Ak)? Z bimbm

Ji,j = Qin M 'uz 2 ,

3)

m

where M is the single-ion mass, Ak is the momentum im-
parted by the laser interaction, /i is the reduced Planck

constant, and €2; is the Rabi rate for the jth ion, which
depends on atomic matrix elements and the optical intensity
at the ion [24]. Within the sum over motional modes m, the
normal mode frequencies have angular frequency w,,, and
the b;,, are the displacement amplitudes for ion i in mode
m (see, e.g., [25]); u is the angular frequency of the laser
with respect to the qubit frequency. The natural basis for the
MS interaction can be taken to be crl-"aj‘ ; however, it can be
transformed to afof through global rotations with the same
pair of laser beams [26,27].

We define the MS detuning as the difference between the
laser detuning and the mth normal mode, i.e.,

Om = U — Wy “4)

While a wide variety of J; ; are possible through variation
of the laser intensities, the MS detuning, and the motional
modes [28], here we focus on two specific cases. The m = 0
mode is the center-of-mass mode for which all the b; are
equal. If the MS interaction is detuned very close to this mode
such that |6y < §,, Ymm #£ 0, the m = 0 term in the sum in
Eq. (3) dominates, and we have

Ji.j = sgn(8o)Jo, @)

for positive constant Jy. In the language of spin models of
magnetism, this produces an infinite range ferromagnetic or
antiferromagnetic interaction depending on the sign of the de-
tuning [24]. In particular, we show in Sec. IV A that this equal,
all-to-all interaction permits efficient generation of dense, un-
weighted coupling graphs.

B. Bit-flip implementation

One-qubit operations can be envisioned as rotations of
a qubit vector on the Bloch sphere. The unitary Rj(6) =
exp{—i(@/ 2)o7 } is a rotation through an angle 6 about the x
axis. We define a bit flip on the jth qubit as

Xj = Rj(m) = —io;. (6)

X; will flip the state of a qubit in the z or y basis. We assume
that these bit flips can be applied to an individual ion within
the ion crystal, which is accomplished through tightly focused
control beams. Such rotations can be performed sequentially
or in parallel on many ions since they do not change the
motional state of the crystal.

III. PROBLEM STATEMENT

Arbitrary coupling graphs can be composed from the
hardware-native Hyg,e global interaction and single-qubit bit
flips introduced in Sec. II. Following a physical motivation,
we give a precise mathematical description of this construc-
tion problem which does not require any background physical
knowledge.

A. Physical description

Motivated by solving MaxCut with QAOA [6], we want
to find a set of physical operations which efficiently imple-
ments the cost Hamiltonian for a particular target graph. The
cost Hamiltonian is exactly the coupling operation defined in
Eq. (2) apart from overall constants. This is similar to any
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quantum operation compilation problem, where a desired uni-
tary is constructed from a limited set of physical operations.
We can succinctly describe the physical problem:

Problem Statement 1 (Physical). Find an “operation se-
quence,” composed by interleaving Hing interactions and
single-qubit bit flips X, that produces a desired coupling oper-
ation. To mitigate operation error, a short sequence is desired;
we will optimize for a minimum number of Hiy,, applications
or the minimum total strength of Higy,e operations.

The intuition behind this limited set of controls is as fol-
lows. By surrounding a ZZ term with bit flips, the sign of that
term in Higng can be reversed:

X;afanj = —O’I-ZO;. @)

However, X ;HlsingX ; will change the sign of all ZZ terms
acting on ion j. Repeated applications of Hygjye surrounded by
carefully chosen sequences of bit flips were previously used
to isolate individual two-qubit interactions within molecules
in NMR quantum computing [29]. Similar controls were also
proposed to generate four-body spin interactions [30].

We represent these bit-flip operations with a {£1}**" ma-
trix P, where k is the number of Hisne applications, and there
is a column for each qubit. The sign of each entry in a row
encodes the bit flips surrounding that application of Hrgjpg, i.€.,
P, ; = —1 if the ith qubit is flipped in the pth application of
Higing and is equal to 1 otherwise. The coupling for the pth
application of Hygne With strength w), can then be written as

cP = Z Z Cpi 07 0% (8)

i=1 j=i+1
where ¢y, j = wpi,jPpiPp,;-

This can been verified by considering the four possible bit
flips for the i, j term:

wyl; jof Uj P,i=P,; =1, (9a)
XJI (wpi joia )XJ —wpli joi o},
P,i=1P,; =—1, (9b)
X; (w,,JlJU7a )X, = —wpJ; jofos,
P,i=—-1,P,;=1, (9¢)
XJTXiT(pr,;J-UfG;)X}Xj = wyl; jo; 0},
P,i=P,; =—1. (9d)

The net coupling of a series of k applications of Higp, is given
by the sum of their couplings:

k
c=) "= Z Z (Z c,,,i,j>o;a;. (10)
p=1

i=1 j=i+1
By comparison with Eq. (2), we identify that the term
in parenthesis is an element of the total coupling adjacency
matrix, which can therefore be expressed as

A=PTWPQOJ, (11)

where W is a diagonal k x k matrix of Ising interaction
strengths with W), , = w,, © represents element wise matrix
multiplication, and P € {1, —1}F>*",

Both positive and negative strengths w,, are possible. For
Ji,j = +1Jol, we can choose the strength of Hisng by chang-
ing the intensity of the lasers creating the MS interaction;
however, this only permits w, > 0. To achieve an effective
w, < 0, the MS interaction detuning can be negated for J; ; =
—|Jo| through Eq. (5). In Appendix A we give an example of
an operation sequence which creates a particular three-qubit
coupling graph.

An optimal operation sequence is one which produces the
desired coupling graph for the target problem with the least to-
tal error. It is expected that the infidelity of Hipne Will be much
larger than for the X; bit flips. We propose two optimization
criteria: (i) minimizing the total number of Hy,e applications,
and (ii) minimizing the total absolute strength of the Higng
operations. The first accounts for errors which are fixed for
every entangling operation, while the second criterion will ac-
count for strength-dependent effects like residual spin-motion
entanglement. In the mathematical description that follows,
these two criteria are expressed as the Ly and L; norms of W,
respectively.

B. Mathematical description

We present in this section a mathematical statement of the
target coupling graph construction problem, as motivated by
the preceding physical description:

Problem Statement 2 (Mathematical). Given the target ad-
jacency matrix A € R™" of graph G and an intrinsic
(hardware-dependent) adjacency matrix J € R"*" forn € Z,
find P € {1, —1}**" and a diagonal strength matrix W € R**k
such that

A=PTWPQOJ, (12)

where © is the element-wise multiplication operation. We are
interested in minimizing two objectives, [[Wo and ||W ||,
which denote the Ly and L; norms of the diagonal of W,
respectively. In other words, ||W||o is the number of nonzero
entries along the diagonal, and |[W||; is the sum of the abso-
lute values of the diagonal entries.

Motivated by the discussion leading to Eq. (5), for the rest
of the paper we restrict ourselves to J corresponding to the
unweighted complete graph K,,. Let the strength matrix W take
arbitrary values, and fix J tobe J; ; = 1 fori # j,and J;; =0
foralli e {1,...,n}.

We will first consider minimizing the number of Ising op-
erations, i.e., the Ly norm of the strength matrix W, and define
a new combinatorial quantity called the coupling number of a
graph:

Definition 2 (Graph coupling number). We denote the min-
imum number of Ising operations needed to construct a graph,
i.e., the Ly norm ||W ||y, as the graph coupling number, denoted
by gc(G).

This problem has not been studied in combinatorial op-
timization (to the best of our knowledge). We first observe
that any {£1} operation sequence creates a sign pattern over
a complete graph: —1 edges corresponding to a complete
bipartite graph, and +1 edges correspond to complete graphs
within each bipartition. Therefore the notion of a graph cou-
pling number has an interesting connection to the following
biclique partition number:
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Definition 3. Given an undirected graph G, the biclique
partition number of graph G is defined as the minimum num-
ber of edge-disjoint bicliques (i.e., complete bipartite graphs)
of G whose union includes all of the edges of G. We denote
this number by bp(G).

The problem of determining the biclique partition number
of a graph was introduced by Graham and Pollak in 1971 [31]
and is known to be NP hard [32]. We will show that one
can construct any biclique using a constant number of Ising
operations (irrespective of the size of the graph), which can be
used to show gc(G) < 3bp(G) + 1 for any unweighted graph
G. However, this does not immediately imply NP hardness for
the graph coupling problem—indeed, bp(K,) =n — 1 [31],
whereas gc(K,) = 1. We next lay down some initial obser-
vations and approximation bounds for the graph coupling
number (using a partitioning of the graph edges into bicliques,
in Sec. IV). We verify experimentally that our worst-case
approximation bounds are order optimal for small graphs
(modulo the choice of a parameter M, defined in Appendix B),
and therefore these methods can be of immediate use to quan-
tum physicists.

IV. SOLUTION METHODS

In this section we give combinatorial methods for con-
structing operation sequences with small Ly norm. Our
proposed construction of unweighted graphs has a linear
upper bound on the Ly norm, i.e., |W|lp = O(n), and our con-
struction for weighted graphs requires ||W|o = O(m) number
of Ising operations. We also show that any graph with distinct
edge weights needs at least Q2(logn) Ising operations, i.e.,
the maximum graph coupling number on all graphs with n
vertices is gc(G) = Q(logn). Finally, we describe a simple
mixed-integer program to find optimal solutions on small
graphs.

Prior work by Leung et al. [29] outlined a determinis-
tic method to couple any desired pair of qubits within the
molecules used for NMR quantum computing. NMR qubits
are subject to a global, pairwise ZZ coupling, like Higing,
which is always on. They proposed a construction to decouple
all qubits and selectively recouple any single pair of qubits in
O(n) Ising operations interleaved with single-qubit bit flips,
which can be mapped to the problem formulation in Eq. (12)
with strictly non-negative W. Therefore, using this construc-
tion for all m = |E| edges in E, a target coupling graph can
be produced in O(nm) Ising operations. In our trapped ion
system, however, Hyg,, strengths can also be negative, and
therefore we are able to simplify the construction as well as
reduce the upper bound on the number of operations to O(m)
for weighted graphs and O(n) for unweighted graphs.

A. Union-of-stars construction

In this section we give general constructions for weighted
and unweighted graphs. We will construct a weighted graph in
O(m) = O(n?) Ising operations by constructing each edge in a
constant number of steps and composing those constructions.
For unweighted graphs we will construct a star subgraph
(wherein a single node is adjacent to a set of nonadjacent
nodes) in a constant number of steps and compose these

Wi V3
2 [ U1 Ug

Vi
ug Ul (%) u9 (5% UQ u
U Y R
. . . Vs
1 Wo w2 w1  Wo

wa w1 wo wa w
Va

FIG. 1. Anexample construction for the union-of-stars algorithm
for an unweighted graph (Theorem 6). The original graph (left) can
be decomposed into two star graphs, represented in blue and green,
respectively. Since each star is a complete bipartite graph, it can be
constructed using Lemma 4, with the sets V;, Vs, V5 specified for each
of the stars. The construction of each star takes four Ising operations,
but since one operation is common across the stars, we end up with
a total of seven operations for this construction by combining the
common one using Lemma 3.

constructions to build the graph. Since the edge set of an
unweighted graph is the union of at most n — 1 edge-disjoint
stars, this results in an O(n) construction for unweighted
graphs. Two example union-of-stars constructions for the
same graph are given in Figs. 1 and 2.

We denote a graph G as G = (V, E, z), where z € RIEl js
the weight function on edges E. We first claim that operation
sequences for constructing two different edge weights on the
same graph can be combined. In particular, this will imply that
we can simply augment the sequences for disjoint subgraphs
(with weight 0 on nonedges) to construct the target coupling
graph.

Lemma 1. For weighted graphs G, = (V, E, z;) and G, =
(V,E,zp) with vertex set V and edge set E with
weights 71,7, € RIFl respectively, if G= (V,E,z + 22),
then gc(G) < ge(Gy) + ge(Gr).

FIG. 2. A different star decomposition for the example in Fig. 1.
In Theorem 6, choosing a different ordering for the vertices can
result in a decomposition into a larger number of stars and therefore
in a larger number of Ising operations. The ordering for vertices
in this case is ug, wy, Wy, Wy, Uy, While the ordering for Fig. 1 is
uy, uy. Notice that the maximum degree for any star is 2 in this
decomposition, which could possibly be useful under different error
assumptions.
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Proof. Let A1, A, be the adjacency matrices of Gy, G,
respectively (i.e., A; j =z, jy if (i, j) € E and O otherwise).
Then the adjacency matrix of G is A} + A.

Let A = (PlTWlPl) OJ and A; = (P2TW2P2) ©®J, where
Py is a ky x n matrix and P is a k» X n matrix for some k;, k.
We construct the matrix P € {—1, 1}+%2)x" by augmenting
P, and P, as follows: for all j € [1, n],

(P1)i,j
P ;= '
! { (P2)i—t.j

if i <k
lfkl <i<k1+k2.

That is, the first k; rows are the matrix P;, and the next k,

rows are the matrix P,. We define a diagonal square matrix W
of size ki + k, as follows:

(W1)ii
W= ’
’ { Wiy i~y

if i <k,
ifky <i <k +k.

That is, the diagonal entries in the first k; rows in W are the
diagonal entries in W, and those in the next k, rows are the
diagonal entries in W,. From a simple calculation,

PTWP O J =P/ WP OJ +PIW:P, 0 J = A + A,.

Choose k; = gc(Gy) and k; = gc(Gz), so that ge(G) < k =
gc(G1) 4 gc(Gy). This proves our claim. |

Corollary 2. For unweighted graphs G, = (V, E;) and
G, = (V,Ey) where E\NE, =0, if G=(V,E; UE,), then
gc(G) < ge(Gy) + ge(Gr).

In many cases, one can do better than adding graph cou-
pling numbers together by removing duplicate rows in P. For
a matrix P and a row vector r of P, let P \ r denote the matrix
P with row r removed.

Lemma 3. Suppose matrices P, W satisfy (PTWP)©J =
A, where A is the adjacency matrix of some graph G. If there
are rows 7, s in P such that r = +s, then there exists matrix
W, such that [(P\ )T W, (P \ 5)] ©J = A.

Proof. Let r = ns, where n € {—1, 1}. Let w,, w, be the
diagonal entries in W corresponding to rows r, s, respectively,
in P. To obtain matrix W; from W, delete the row and column
containing w, and replace w, by w, + nw;. Then it is easily
seen that [(P\ s) Wi (P \s)]©0J = (PTWP)OJ=A. 1

We next show that any biclique (i.e., complete bipartite
graph) and a union of isolated vertices can be constructed
using four Ising operations, which will give us an upper bound
on the graph coupling number for arbitrary graphs.

Lemma 4. Given a weighted graph G = (V, E, 7), where
V is the disjoint union of Vi, V5, V3, (i.e., V=V VU V3
and ViNV; =0 for (i # j)), E={u,v):ueV,veWl
and z, = pu for all e € E (that is, G is a complete bipartite
graph except some isolated vertices, with all edge weights
being equal), gc(G) < 4.

Proof. We give matrices P,W with k =4 such that
PTWPOJ =A. We let column j of P correspond to
vertex v; € V. To define entry P, ; of the matrix P for
each a € {1,2,3,4} and j € {1, ..., n}, we define numbers

Pa,V1 s Pu,V27 Pa,V3 and let

Pa,V| if v € V],
Pa,j = Paqu if v, € VQ,
Pa,V3 if v € V3.

We now give matrix W and specify entries P,y, for [ €
{1,2,3},a €{1,2,3,4}:

Vi Va3
o1 - N
TR R 0 £ 0 o0
- _ 4
P=lr 0 o "=lo o 2 o
-1 0 0 0 -

Note that (PTWP),»J = Z’;zl P, P, Waa. Suppose v; €
Vi, v; € Vo. We show that the edge weight of (v;, v;) in our
construction is u, as expected: since i # j,

PTWPOJ),; = [(1)(1)% + <1>(—1>_T“ + (1)(1)%

A similar calculation shows that when v; € Vi, v; € V3,
(PTWPOJ )i,j = 0 since there is no edge between Vy, V3 and
therefore A; ; = 0. One can check this for every possibility of
v;, v}, so that PTWP ®J = A. Therefore, gc(G) < 4. |

The above decomposition is crucial in constructing graphs
edge-by-edge while incorporating arbitrary edge weights,
i.e., decomposing the graph into a union of edges (wherein
each edge is a trivial biclique), which gets us the following
theorem.

Theorem 5. For any weighted graph G = (V,E,z),
gc(G) < 3m + 1 = O(m), where m is the number of edges
in G.

Proof. Suppose we are given a weighted graph G on n
vertices. Then every edge can be constructed in at most four
steps by the above lemma: Given an edge e = (4, v) € E,
choose A = {u},B={v},C =V — {u, v}, so that E = {e},
and u = z,. Lemma 1 then implies that gc(G) < 4m. Further
note that the third row in the matrix P is all 1’s, and this is
common across the constructions for each edge. Therefore,
from Lemma 3 we can combine these rows into a single row
by summing their strengths, thus giving us an upper bound of
3m + 1 on the total number of Ising operations. ]

Although for general weights, we give a bound of 3m + 1
total Ising operations, we can do much better for unweighted
graphs. We show that there exists a decomposition of any
graph’s (unweighted) edge set into at most n — 1 star graphs
(i.e., bicliques where one side of the partition has only one
vertex), which can be used to give a linear bound on the graph
coupling number. We refer to this construction as the union of
stars.

Theorem 6. For any unweighted graph G = (V, E), E can
be partitioned into n — 1 star graphs (i.e., K; for s < n),
which in turn implies that the graph coupling number gc(G) <
3n—2 = 0(n).
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Proof. We first show that we can write the edge set of G =
(V, E) as the disjoint union of at most n — 1 stars. Consider an
arbitrary ordering of vertices vy, ...,v,. For 1 <i<n—1,
define the star S; = {(v;, v;) € E : i < j}, that is, it consists
of all edges (v;, v;) where i is the lower index. Each S; is a
star, and each edge in E belongs to exactly one S;. Therefore
E is the disjoint union of at most n — 1 nonempty stars.

We now show how to construct each S; in at most four
steps: Since G is unweighted, choose © = 1 in Lemma 4.
Then, each S; (with possibly other isolated vertices) can
be constructed in at most four steps, since a star is also
a biclique. This, combined with Corollary 2, implies that
gc(G) < 4(n — 1), which after combining rows with all 1’s
in each construction give us the bound in the theorem,
by Lemma 3. ]

The bound in Theorem 6 can be improved by finding
a smaller-sized partition of the edge set of the graph into
bicliques (using Lemma 4), giving a bound of gc(G) <
3bp(G) + 1. However, the biclique partition is NP-hard to
compute. Moreover, it is known that for complete graphs on
n vertices, the biclique partition number bp(K,,) = n — 1 [31],
so that the upper bound on gc(G) still remains 3n — 2 (using
union-of-stars construction). Note that in any construction,
one can further reduce the Ly norm by removing repeating
rows in P, using Lemma 3, although the amount of such a
reduction can be instance dependent.

B. A lower bound

We next discuss a lower bound on the graph coupling
number of any arbitrary graph with distinct edge weights:

Lemma 7. For each n, there is a weighted graph G with n
vertices such that gc(G) = Q2(logn).

Proof For any k mnote that (PTWPQJ), ;=
Z’;zlPa,,-Pa, Waa if i j and it is equal to O otherwise.
That is, each nondiagonal entry of PTWPQOJ is a
linear combination of Ising operation strengths W, , with
coefficients either 1 or —1 (since P € {—1, 1}**"). The set
of all such linear combinations has cardinality of at most
2k, Consider any complete graph on n vertices with distinct
edge weights. Then there are at least @ distinct entries
in A. When @ > 2k 41, by our previous observation,
A#PTWP®J for any diagonal matrix W € R¥* and

matrix P e {£1}***. That is, for PTWPOJ=A to

hold, we need k > log, (*1 — 1), which implies that

ge(G) = Q(logn). [ |

C. Optimal solutions through brute force

We describe a MIP that can be solved to optimality. In
the preceding sections we have given polynomial construc-
tions for generating both weighted and unweighted coupling
graphs, which gave upper bounds for the graph coupling num-
ber. It is important to note that MIPs are not generally solvable
in polynomial time; therefore this is not an efficient method
for finding operation sequences. Instead, by solving the MIP
to optimality, we identify the optimality gap and quantify the
potential gains if a more efficient construction can be found.

To convert the graph coupling problem into a MIP, we
construct a complete operation matrix P by enumerating all
possible rows with elements £ 1. In other words, we must con-
sider all possible choices of bit flips to prove a given sequence
is optimal. Since negating a row in P does not change P WP,
there are 2"~! unique rows of P to consider. Thus finding the
optimal sequence to produce a coupling graph with adjacency
matrix A reduces to finding a strength matrix W such that
PTWP ®J = A. The only variable is the diagonal strength
matrix W, and the objective is to minimize its Ly or L; norm.
A complete description of the MIP is included in Appendix B.

We note that in practice, we have observed that subsam-
pling the complete P matrix and running the MIP for a fixed
amount of time often produces a tractable good solution (i.e.,
better running time and memory requirements); however in
this case, we cannot obtain provable bounds to optimality.
In the next section we compare optimal solutions to the con-
structions for small graphs of up to eight vertices (optimal up
to the choice of the parameter M, which was set to the sum of
the edge weights in the simulations). The brute force search to
optimality is time intensive, with some graphs taking hours to
complete or even longer than 24 hours [33].

V. NUMERICAL EXPERIMENTS

In order to test the utility of the union-of-stars construc-
tion, we conduct two sorts of numerical experiments. In
Sec. VA we compare the required resources to the derived
upper bounds and the optimal controls obtained by brute
force. To demonstrate the utility of running MaxCut QAOA
with the union-of-stars construction of the cost Hamiltonian,
in Sec. VB we compare the simulated performance of our
construction and the standard CNOT construction in the pres-
ence of noise.

A. Optimal results

We compare the union-of-stars construction with opti-
mal [34] sequences of uniform Higy,, operations, where J is
the adjacency matrix of the graph K,,. First we generated 96
Erdds-Rényi random unweighted graphs with seven vertices,
where each edge has a probability p to exist, with four random
graphs for each p € 0.04 x {1, 2, ..., 24}. For each graph we
determined the optimal solution using the brute force MIP
optimizing for either the minimal Ly or L; norm. While the
union-of-stars construction has upper bound 3n — 2 for the
number of Ising operations (Lo norm), in practice many graphs
can be constructed with fewer than n — 1 stars. We chose to
start with the largest star (highest degree vertex), then add the
next largest star, and so on until the target graph was realized.
In addition, we check each P matrix for identical rows and
combine them by summing the corresponding strengths.

Figure 3 compares the union-of-stars solution with the
upper bound and the brute force optimal solution. We observe
that the union of stars typically performs within a factor of 2
of optimality in the Ly norm, while the L; norm is closer to a
factor of 3 worse.

Next, we tested random weighted graphs by randomly
assigning edge weights sampled uniformly from {1, 2, 3} to
Erdds-Rényi graphs with seven vertices and similar edge in-
clusion probabilities. As shown in Fig. 4, the union-of-stars
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FIG. 3. A comparison of the union-of-stars construction to the
optimal sequence found with the brute force MIP for random un-
weighted graphs with seven vertices and measured by the (a) Ly
norm and (b) L; norm defined in Sec. III B. The upper bound proved
with the union of stars is 3n — 2 for the Ly norm (total number of
Ising operations) and n — 1 for L; (sum of the absolute magnitude of
strengths).

method again performs well. For comparison, the expected up-
per bounds of 3/m + 1 for the Ly norm and 37 for the L; norm
are plotted, where m = pn(n — 1)/2 is the expected number
of edges for edge inclusion probability p. Notably, solving
the MIP to optimality for the Ly norm takes significantly
longer compared to the unweighted graphs. Some instances in
Fig. 4(a) timed out (24 h) before reaching optimality; in this
case, the suboptimal values are plotted instead. In Fig. 4(b)
we observe that when we optimize instead for the L; norm on
weighted graphs, the optimal solution is much better than the
union-of-stars construction for graphs with many edges.
Finally, we used the MIP to find the worst-case graph
coupling number (Lo norm) for all nonisomorphic unweighted
graphs with up to eight vertices using the enumeration of
McKay [35]. These results are given in Fig. 5. While the
linear pattern we see between the worst-case graph coupling
number and the number of vertices does not necessarily hold
for larger graphs, it leads us to suppose that the number of
Ising operations required to construct any unweighted graph
on n vertices with uniform Higne and single-qubit bit flips
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e Union Of Stars
501 + Brute Force Till Timeout
Brute Force
40
Z 301 cpt
5 EE L |
20 1 o3 v 3. °c
R
10 VIR T Ik T I R N O
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(b)

FIG. 4. A comparison of union of stars against optimality for
random weighted graphs on seven vertices for the (a) Ly and (b) L,
norms. The upper bound now depends on the expected number of
edges as described in the main text. That some constructions exceed
this expectation reflects the nonzero probability of having more
edges than m.

may be bounded from above by n + 1 (i.e., graph coupling
number is linear), and, therefore, the union-of-stars method is
order-optimal for small graphs.

—— Upper Bound
201 Brute Force
151
g
]
4
510
5 4
0

2 3 4 5 6 7 8
Number of Vertices
FIG. 5. Largest graph coupling number observed in the optimal

generation of unweighted graphs of up to eight vertices compared to
the 3n — 2 upper bound from the union-of-stars construction.
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definition given before Eq. (6) and Ryx (x) = exp{—i(x/2)o{05}.

B. Noisy QAOA

In the standard QAOA [6], a cost and a mixing operator
are applied in an alternating fashion in order to drive the
solution to an extremal state of the cost operator. The quantum
hardware is programed to prepare the state

P
h—/»’ :3> — He—zﬁkb’e—ll/kc |+>®n i

k=1

13)

where the mixing operator is B =) ., o;* and the MaxCut
cost operator C’ is related to the coupling operator C [Eq. (2)]:

n—1 n 1— O_izo_; C n—1 n a ;
=Yy ai,ijz—EJrZ > 5 a4
i=1 j=i+1 i=1 j=i+l
After sampling the quantum state, the estimated expectation
value of the cost, (C') = (7, BIC'|7, B), is computed, and the
2p parameters ¥, B are classically optimized through repeated
calls to the quantum hardware, increasing the likelihood of
observing a MaxCut solution.

The ZZ-coupling terms found in C’ can be implemented in
a quantum circuit in various ways, depending on the physical
quantum architecture and its natural, native gates. For digital
quantum computers, the cost unitary is usually programed
with two CNOT gates and a parameterized Z rotation (Fig. 6)
for each edge in the problem graph. For a graph with m edges,
this requires at least 2m CNOTgates, and more if SWAPS are
required to connect distant qubits. In ion-trap hardware, one
can relate each CNOT gate to one X X -type Mglmer-Sgrenson
interaction, up to single-qubit gates [36]. Here we compare
and contrast this “standard” compilation to the union-of-stars
method presented previously, including quantum error chan-
nels on all gates.

Since the two methods scale differently in terms of their
gate count, we expect different performance when noise is
considered. To test this, we investigate both compilation
models with four example graphs when using a composite
quantum noise model simulated in QISKIT [37]. Specifically,
we consider two-qubit X X Pauli noise channels that act on all
CNOT gates and global Mglmer-Sgrenson or Ising operations
described in the rows of P. This error can be modeled by the
following Kraus operator [38]:

Ey = {\/pxxXXv vV 1 - pxxll}v

where p,, is the probability of an XX error. For the global
MS operations, we assume these two-qubit error channels
are independently applied to all pairs with probability p,, =
p/[n(n —1)/2], so that an error occurs with probability
p [39]. We consider these as “major” sources of noise, as
these operations are likely more prone to error than single-
qubit operations. For each one-qubit gate, we assume “minor”
depolarizing noise and “major” dephasing noise. All minor

errors are fixed to occur 10% as frequently as the major errors.
All qubits also experience measurement noise, which is also
grouped as a minor source of error [40].

In Fig. 7 we show the results of noisy simulations of Max-
Cut QAOA for four small graphs at p = 1 and find that, due to
the reduced required quantum resources in the union-of-stars
method, we see reduced error in the resulting approximation
ratio, (C') /C}.,,. for dense graphs. Figures 7(a)-7(c) show
similar noise tolerance for both cases due to similar required
numbers of entangling gates. However, we see that Fig. 7(d)
shows significantly better performance for the “GMS” com-
pilation built from the union-of-stars method due to its fewer
quantum operations. This indicates that there are classes of
graphs, including dense unweighted graphs, that are more
favorable to construct with the union-of-stars method. Com-
pilations for each of these graphs are given in Appendix D.

C. Resource estimates

Having shown an efficient construction of arbitrary cou-
pling graphs through repeated applications of the Ising
interaction interleaved with individual bit flips, we now esti-
mate how long such operation sequences will take to perform.
We estimate operation times based on our experience with
the hyperfine qubit in 7' Yb*[41-43]; however, these gate
durations are similar to most trapped-ion quantum computing
hardware within an order of magnitude.

We assume a single-qubit bit flip takes time 7, = 5 us and
a two-qubit MS gate Tyys = 100 us. For the center-of-mass
mode of an n-ion chain in a harmonic trap, b; o = 1/4/n, and
therefore the native coupling J; ; scales as 1/n for fixed inten-
sity and detuning, following Eq. (3). Therefore we estimate
the time for an Ising operation is Tigine = 1n(50 us) [44]. In the
union-of-stars construction, each Ising operation is assigned
a strength, and the L; norm gives the sum of the absolute
magnitude of these strengths. The number of rounds of bit
flips is one more than the number of Ising operations (rows of
P), or Ly + 1. Assuming the bit flips are performed in parallel,
then the total time 75 to implement a coupling graph is

6 = (L() + l)TJr + LlTIsing~ (15)

For unweighted graphs, our upper bounds give 7¢ < (3n +
DT, + (n — 1)Tiing. Therefore implementing each MaxCut
QAOA cost layer of an arbitrary, unweighted 10-node graph
will take no more than 5 ms, while a 100-node graph would
take at worst 500 ms, which could be further reduced by
increasing laser intensity. For comparison, the 7} time of the
hyperfine ground state qubit in "'Yb™is effectively infinite,
and T, exceeding 10 min has been demonstrated [45]. Imple-
mentation time is proportional to the number of QAOA layers
p, and given that our bound is not tight, this is a pessimistic
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FIG. 7. Approximation ratio when simulating the noisy p = 1 QAOA for two different compilation methods. “CNOT” compilation refers
to compiling in terms of two-qubit XX (locally equivalent to CNOT gates) gates, while “GMS” refers to compiling following the union-of-stars
method and building in terms of global Mglmer-Sgrenson interactions. Major and minor noise sources are detailed in the text and have a fixed
relationship as indicated on the horizontal axis. Each subfigure shows an inset displaying the example unweighted graph that is considered for

both compilation schemes.

estimate. In Fig. 3 we observe that total Ising and bit-flip oper-
ation counts are often two to five times lower than this bound.
When combined with further reduction of the Ising operation
time, MaxCut QAOA with hundreds of ions is feasible.

VI. CONCLUDING REMARKS

We have provided a method to construct arbitrary cou-
pling operations on quantum spin systems using only global
Higing operations and single-qubit bit flips. With this method,
the number of Ising operations necessary scales linearly
in the number of qubits for unweighted graphs and linearly in
the number of edges for weighted graphs. An interesting con-
sequence of this trend is that the use of global, infinite-range
entangling operations may be more efficient than the use of in-
dividual two-qubit gates when applied to algorithms involving
dense, unweighted coupling operations (such as QAOA). This
is because the number of two-qubit gates needed to construct
a coupling operation scales in the number of edges rather than
vertices. Although some two-qubit gates can be performed
in parallel on certain hardware, sparse hardware connectivity
graphs may also require many SWAP operations. Recent work,
which cites a preliminary version of this article, suggests that
nonstandard QAOA implementations, like the one presented
here, are necessary for scaling to large MaxCut graphs [46].

While our union-of-stars construction performs well, we
have not provided an efficient, scalable algorithm to find the

optimal operation sequence for any arbitrary graph. We spec-
ulate that this problem is NP-hard, but we have not rigorously
proven NP-hardness. Therefore there is scope for further re-
search to answer several important questions. For example,
can we solve the problem quickly and optimally for certain
types of graphs? Can we establish a tighter upper bound on
construction? And is this problem NP-hard in general?

It is interesting to consider whether the complexity of
compilation will ever affect what we define as the complexity
of a quantum algorithm. For example, if finding an efficient
compilation requires an exhaustive search, are we just replac-
ing one NP-hard problem with another? For MaxCut QAOA,
our union-of-stars construction provides feasible compilations
with polynomial complexity but without the guarantee of opti-
mality. This optimality gap will only ever be a serious concern
if we find that our distance to optimality in graph construction
is directly correlated to the distance to optimality of our target
algorithm (e.g., QAOA) due to a significant increase in noisy
operation count. For now, particularly for unweighted graphs,
the union-of-stars method we have presented serves as an
effective solution to construct arbitrary coupling operations.

ACKNOWLEDGMENTS

This material is based upon work supported by the Defense
Advanced Research Projects Agency (DARPA) under Con-
tract No. HR001120C0046. The authors are also grateful to

022606-9



JOEL RAJAKUMAR et al.

PHYSICAL REVIEW A 106, 022606 (2022)

Hassan Mortagy for his help in running the experiments on
the computing cluster at Georgia Tech.

APPENDIX A: EXAMPLE

As a simple example, we will show the construction of
a target coupling graph on three qubits using only global
Higing (characterized by J) and singe-qubit bit flips. We will
assume that our global Higy, is perfectly uniform, so J is the
adjacency matrix of K3, and we will consider the construction
of the simple coupling graph with a unit-weight edge between
qubits 1 and 2, and a unit-weight edge between qubits 2 and
3. Therefore we have the following A and J:

0 0

1 0 1 1
A=|1 0 1], /=11 O 1 (A1)
0 1 0 1 1 0
Now we must find some diagonal W € R¥*¥ and P € R¥3
so that A = PTWP ©J is satisfied. A solution P and W that
happens to be optimal in graph coupling number (k) can be

found via the union-of-stars method and they are

o 05 0
P=(1 -1 1)’ W=(0 —0.5)'

To translate this to an experimental implementation of Higng
and X; operations, we iterate through each diagonal element of
W and each corresponding row of P. So first, because W, | =
0.5 we apply a global Hp, of strength 0.5, and because P, =
[1, 1, 1], we apply no X; operations. The coupling operator is
given by

(A2)

Ci = 0.50{05 + 0.50505 4 0.50{03. (A3)

This corresponds to a complete coupling graph K3 with edge
weights of 0.5. In the second step, we apply a global Hygj,e Of
strength —0.5. We achieve the negation by switching the sign
of our detuning from the center-of-mass mode [see Eq. (5)].
Because P, = [1, —1, 1], we also apply X, before and after the
Higing. These bit-flip operations invert the basis of qubit 2 and
negate coupling operation, i.e., 0,0.0, = —o;. This coupling
operator is

G, = (io3)(—0.50{05 — 0.50505 — 0.50{0%)(—ic3)

= 0.50705 4+ 0.50505 — 0.50703. (A4)
The overall coupling operation is
C =Ci + G, =oj0} + 0j03. (AS)

This corresponds to the desired coupling graph, a unit-weight
ZZ-spin coupling between qubits 1 and 2 as well as between
qubits 2 and 3.

APPENDIX B: MIP FORMULATION OF BRUTE
FORCE Ly MINIMIZATION

As discussed in Sec. IVC, we can use a mixed-integer
program to find the optimal operation sequence for small
graphs that minimizes the Ly norm of the strength matrix W.
Recall that our problem is

min W o : {PTWP O J = A),

where W is the diagonal strength matrix, P is a matrix with
{£1} entries, A is the weighted adjacency matrix of the graph
to be constructed, and J is the coupling matrix given by
Ji,j = 1fori # j and 0 otherwise. One can formulate a mixed-
integer program to track the Ly norm of W, given all possible
bit-flip combinations encoded in P € {£1}*" (k = 2"~! for
an n node graph). Let b; denote a binary variable that is equal
to 1 whenever W, ; is nonzero, and O otherwise. Then the MIP
formulation is simply

miani (BD)
i

Wi < biM, fori € [k], (B2)

Wii > —bM, fori e [k], (B3)

(P"WP); ; =A;; fori# j, (B4)

b; € {0, 1}, fori € [k], (B5)

where M is an upper bound on the absolute value of the
strength matrix. We show that for large enough and finite M
(set equal to the upper bounds on ||W,|~ in the following
theorem), the above formulation is equivalent to minimizing
the Ly norm of the strength matrix W.

Theorem 8. Given a graph G = (V, E, z), let W, be the
optimal strength matrix for the graph coupling problem for G,
and let r = gc(G) = [|[W,llo. Also let Z =), |z(e)|. Then,
forr > 1,

r(r — 1)%
W, < r
A {Z(r_ b

if G is unweighted,
if G is weighted.

Consequently, using Theorems 5 and 6, we get

3n—1

Wl < (Bn—-2)": if G is unweighted,
1S Nz@Bm)™ if G s weighted.

We defer the proof of this theorem to Appendix C. These
upper bounds help us show provable optimality of the mixed-
integer program using an appropriately large value of M.
In practice, though, it may not make sense to use large
strength matrices W due to instability of the quantum sys-
tem and potential introduction of noise at high strengths. In
our computations, therefore, we set this constant as the sum
of edge weights in the graph, ie., M =), |z(e)| for eight
node graphs, and obtain solutions with strengths much smaller
than M.

We further note that if the objective is to minimize the L;
norm, then the program becomes linear:

min Zbl» (B6)
Wi < b;, fori e [k], (B7)
Wii = —bi, fori € [k], (B8)
(P"WP);,; =A;; fori# j, (B9)
b; € R4, fori e [k], (B10)

which is typically easier to solve compared to the Ly norm
minimization and can be solved to optimality without using
the big-M constraints.
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FIG. 8. QAOA circuit for p = 1 using global MS interactions which build an (a) four-node star graph and (b) four-node complete graph

missing the edge connecting nodes 0 and 1.

APPENDIX C: PROOF FOR THEOREM 8.

For a real matrix B, we define ||B||p = ZB,-J;&O 1, |B]l: =
Zi’j |B; jl, and ||B|loc = max; ; |B; |, that is, we look at the
matrix B as a vector and use the corresponding vector norms.
Further, for a square matrix B € {—1, 1}"*", we use the bound
known as Hadamard’s inequality [47]:

r

det(B) < r2.
Suppose B is invertible. For 7 = 1, ||[B™!||oo = 1. Forr > 1,
_ lladj(B)llo 1
B o=t 2 (r—1D7. Cl
1B~ lloc [ det(B)| (r—1 (ChH

The inequality holds because det(B) > 1 (due to invertibility),
and the entries of adj(B) are minors of B, and are therefore
bounded by Hadamard’s inequality above.

We now proceed to prove the theorem. Recall the graph
coupling problem:

min |Wl|o : {PTWP O J = A},

where W is the diagonal strength matrix, P is a matrix with
entries in £1, A is the weighted adjacency matrix of the graph
to be constructed, and J is the coupling matrix given by J; ; =
1 for i # j and O otherwise.

As in the MIP formulation in Appendix B, we can assume
that the rows of P are all possible sequences {£1}" up to
sign so that P has k = 2"=1 rows, and W is a k x k diago-
nal matrix. Then, for i # j, the constraint (P"WP O J), ; =
Zﬁ:l Py iP; jW,q = A, j is linear in strengths W, ,. Let us say
O jya = PaiPyjfora € [kl and i, j € [n], i # j. For ease of
notation, we treat W and A as vectors, and throughout this
proof, we use the following reformulation of the problem:

min |[W]o: QW =A,
WeRk

where Q is an appropriately defined matrix in {1} Htxk and
Ae R™T . . As in the statement of the theorem, let W, be an
optimal strength matrix for this problem and let r = [|W,]|o.
Let Q' be the submatrix of Q obtained by removing all
columns with indices j for which (W,); = 0, and let W, be
the corresponding restriction of W,. Then, since W, = A,
we have Q'W/ = A, and Q' € {:l:l}”(" X We claim that the

columns of Q' are linearly independent, and therefore that
rank(Q') = r. To see this, let Cy, ..., C, be the columns of Q'.
Suppose C, = Zl 1 @;C; for some numbers a; € R. Define
velR as

ifl1 <j<
1f]—r.

<r-—1,

_ {(Wj)j+a,~(W;),
=0

Then, Q'v =A and ||v|lo < r—1 < r = [[W/]l, a contradic-
tion. Therefore columns Cy, ..., C, are independent.

Since rank(Q’) = r, Q' has a set of r linearly independent
rows {Ri,...,R,} such that the restriction of Q' to these
rows is an invertible matrix. Call this matrix Q" and call the
corresponding restriction of A as A’. Then Q"W, = A’, where
Q’ is an invertible matrix in {£1}"*". Equation (C1) gives us
that forr > 1,

Walloo = I/ lloo = Q") ' All
IN— ’ =1
<@ Moo x 1Al < A [1(r — D)7

For unweighted graphs, ||A’||; = ||A|lo <
Walleo < r(r — 1)'7 < r'z. For weighted graphs, |A'[; <
lIA]l; < Z, establishing the bound.

r, and therefore

TABLE 1. Compilation of graphs from Fig. 7 using global MS
operations.

Graph P w

@ (1)

11 11 3y/4 0 0 0
-1 1 1 1 0 y/i4 0 0
©) 1 -1 1 1 0 0 —y/4 0
1 -1 1 1 0 0 0 /4
11 1 1 1\ /[3y/4 0 0 0
@ |-t 0 y/i4 0 0
-1 -1 1 1 1 0 0 —y/4 0
1 -1 1 1 1 0 0 0 y/4

022606-11



JOEL RAJAKUMAR et al.

PHYSICAL REVIEW A 106, 022606 (2022)

The second set of bounds follows using bounds on r in
Theorems 5 and 6: r = gc(G) < 3n — 2 for unweighted
graphs, and r < 3m + 1 for weighted graphs.

APPENDIX D: COMPILATIONS FOR NOISE MODELING

The operation matrices P and W for the graphs modeled in
Fig. 7 are given in Table I. We note that there are only two

graph types: a star [in (a) and (b)] and a complete graph with
a single missing edge [in (c) and (d)]. We show the gate-based
compilation for each of these types of graphs, using global
interactions, in Fig. 8. We intentionally do not use any gate
simplifications for clarity. The compilation of these two graph
types is independent of the number of edges and the number
of nodes.
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