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We investigate the fundamental limit of biological quantum electron microscopy, which is designed to go
beyond the shot noise limit. Inelastic scattering is expected to be the main obstacle in this setting, especially
for thick specimens of actual biological interest. Here we describe a measurement procedure that, in principle,
significantly neutralizes the effect of inelastic scattering.
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I. INTRODUCTION

The raw resolution of biological electron cryomicroscopy
(cryoEM) is manifestly limited by shot noise. This is due to
the small number of imaging electrons intended for avoiding
radiation damage to the frozen specimen [1]. In single-particle
analysis (SPA), for instance, the tolerable number of electrons,
i.e., the electron fluence, is at most ≈5 × 103/nm2 [2]. On
the other hand, biological objects are weak phase objects.
Hence shot noise tends to bury the signal and thus limits the
attainable resolution.

Quantum metrology, where phase measurement is a stan-
dard problem, is a natural approach to improving cryoEM.
Recall that measuring a small phase θ with precision δθ takes
N ≈ δθ−2 electrons because of the shot noise limit. There
have recently been proposals of quantum electron microscopy
(QEM) schemes for approaching the Heisenberg limit, where
N ≈ δθ−1. Some quantum schemes are based on repeated
use of single electrons [3–10], while others use entangle-
ment between electrons and superconducting qubits [11–13].
Nonetheless, many of these methods accumulate the small
phase θ onto a quantum object k times, resulting in a phase kθ

after k electron-passing events through the specimen, which
is then measured. Call this process a single round of measure-
ment, and call k the repetition number. This is equivalent to
measuring a hypothetical object with associated phase shift
kθ , using hypothetical N/k probe particles at the shot noise
limit. As a result, we obtain an increased effective number
of electrons as kN ≈ δθ−2, which approaches the Heisenberg
limit at k = N . However, the usable value of k depends on
the frequency of inelastic scattering. If inelastic scattering
destroys a round of measurement, then all electron passages
used in that round are wasted.

In this work, we explore the limit of QEM. We ask a
question, “Can we neutralize the adverse effect of inelastic
scattering at least partially?,” and give an affirmative answer.
To explore the physical limit, as opposed to the engineering
limit, we assume the full ability to manipulate and measure
the combined system of imaging electrons and other quantum
objects. Without loss of generality, “other quantum objects”
may be thought of as a set of qubits. In short, we consider an
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electron microscope connected to a quantum computer, which
we may call a universal QEM [14].

The raw resolution of current cryoEM is about 3–5 nm
[15]. All high-resolution data to date are obtained only by
averaging over at least tens of thousands of molecules of the
same structure, by using, e.g., SPA. However, the biologist
would ultimately want to see molecules in their cellular con-
text, rather than as ensemble average of purified molecules.
We focus on unique, single specimens in the present work.
At present, only very large proteins (∼MDa) are identifiable
in electron cryotomography (ECT) [16]. High-energy elec-
trons generally are desirable in ECT to ensure transmission
of electrons especially when the specimen is tilted. Moreover,
the effective thickness of the specimen is k times the actual
thickness in QEM. Hence, hereafter we focus on 300 keV
electrons with the wavelength λ = 1.97 pm.

The specimen thickness t is an important parameter in
QEM. As quantum measurement is limited by lossy events, a
relevant length to be compared with t is the inelastic mean free
path � = 200–350 nm for 300 keV electrons [17]. Suppose,
for now, that all inelastic scattering destroys quantum mea-
surement. The fraction of quantum measurements that survive
to the end is e−kt/� because of k electron passing events.
Hence we replace the number of rounds N/k with Ne−kt/�/k.
We thus modify the above relation kN ≈ δθ−2 to kNe−kt/� ≈
δθ−2. The optimal k that maximizes δθ−2 is k1 = �/t , where
we have a relation δθ ≈ √

e/k1N . Improvement over the shot
noise limit δθ ≈ 1/

√
N in terms of the phase measurement

precision is therefore√
k1

e
=
√

�

et
≈
√

100 nm

t
. (1)

This result emphasizes the importance of thinning the spec-
imen. However, perhaps t cannot be smaller than the size
of biological molecules, e.g., ≈10 nm. Moreover, in cryoEM
of vitreous sections (CEMOVIS), the specimen thickness
is “rarely less than 50 nm” [18]. Hence, to attain sizable
improvement, we must neutralize the effect of inelastic scat-
tering, which is the central topic of this paper.

We list some conventions. We generally represent the
length of a vector, for example, a, using the same symbol,
i.e., a = |a|. Symbols î, ĵ, k̂ denote unit vectors parallel to
x, y, and z axes, respectively. The electron optical axis is z.

2469-9926/2022/106(2)/022605(23) 022605-1 ©2022 American Physical Society

https://orcid.org/0000-0001-8688-4983
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.106.022605&domain=pdf&date_stamp=2022-08-05
https://doi.org/10.1103/PhysRevA.106.022605


HIROSHI OKAMOTO PHYSICAL REVIEW A 106, 022605 (2022)

A position in real space is represented as r = xî + yĵ + zk̂.
A wave vector in the reciprocal space is written as k = kx î +
ky ĵ + kzk̂. Its size is related to the wavelength λ as k = 2π/λ,
as opposed to the crystallographic definition k = 1/λ. In many
cases, we need only projections of vectors onto the xy plane,
which are represented by the same symbols when there is no
danger of confusion. Eigenstates of the position and momen-
tum operators are |r〉 and |k〉, respectively. We will often use a
two-dimensional (2D) Fourier transform (FT) and its inverse:

F (k) = FC{ f (r)} =
∫

f (r)e−ik·r d2r, (2)

f (r) = F−1
C {F (k)} =

∫
F (k)eik·r d2k

(2π )2
, (3)

where the subscript C denotes “continuous” of continuous
FT. When there is no risk of confusion, a tensor product
|a〉 ⊗ |b〉 is simply written as |a〉|b〉 or |ab〉. The rest mass of
the electron is denoted as me. We use conventional relativistic
notations β = v

c and γ = 1√
1−β2

. Additional conventions are

presented at relevant places.

II. RESOLUTION-DEPENDENT SPECIMEN DAMAGE

Specimen damage starts from short-range structural fea-
tures progressively towards long-range features. A recent
transmission electron microscopy (TEM) study [19] on a
purple membrane 2D crystal describes radiation damage in
a way that is particularly amenable to theoretical analysis.
Let the scattering vector be q = k f − ki, where ki, k f are
electron wave vectors before and after scattering. The vector
q is practically perpendicular to the optical axis z, and we
will occasionally treat q as a 2D vector in the qxqy plane.
The intensity of the electron wave scattered off the crystal at
a diffraction plane is found to decay as [19]

I = I0e−RFq2/8π2
, (4)

where I is the intensity, I0 is the initial intensity, R ≈ 7 ×
10−4nm4 is a constant, F is electron fluence. The initial
intensity I0 is proportional to Σ0e−R2

gq2/3, as usually found
in the Guinier plot, where Rg is the radius of gyration of
the molecule under study [20]. However, at higher spatial
frequencies, scattered waves from atoms interfere essentially
at random, giving constant average intensity with respect to
q that is the sum of intensities from each atom, with random
phase. Although the particular value of R above pertains to the
purple membrane, we assume that the value generalizes fairly
well to other proteins.

The “B factor” B = RF has a natural interpretation that
electron irradiation basically causes random walks of atoms,
recalling that the standard B factor in x-ray crystallography
expresses the square of thermal atomic displacements. Indeed,
we show that

√
B/8π2 may be regarded as the expected

positional deviation of atoms from the original location. Let
the position and the electron-scattering amplitude (having the
dimension of length) of the sth atom be rs and fs, respectively.
Our argument is valid to the extent that fs can be regarded
as a constant within the range of scattering angle of interest.
The scattered electron wave function amplitude ψ (q) in the

far field is proportional to

ψ (q) ∝
∑

s

fse
−iq·rs . (5)

In the present case the scattering vector q lies almost exactly
in a plane perpendicular to the optical axis. Hence we treat q,
as well as rs, as 2D. Introducing a function γ (r) representing
the projected “density of the scattering amplitude,” we obtain

ψ (q) ∝
∫

d2rγ (r)e−iq·r. (6)

Suppose that atoms random walk. We model this process by
convoluting the projected density of scattering amplitude γ (r)
with

g(r) = 1

2πd2
e− x2+y2

2d2 (7)

upon irradiation, where d is the standard positional displace-
ment from the initial positions of atoms. Fourier transforming,
we obtain the scattering amplitude that is ψ (q) multiplied by

FC{g(r)} = e− d2q2

2 . Hence the initial intensity I0 = |ψ (q)|2 at
zero radiation damage is multiplied by e−d2q2

. This allows us
to identify d2 with B/8π2.

Finally, we note a limitation of this approach. We implicitly
assumed that there are many atoms random walking so that
γ (r) may be considered to be convoluted with a gaussian
function. After a long time, all the intensity on the diffraction
plane is concentrated at q = 0 in this model. However, all the
atoms should remain at some particular positions rather than
having smoothed out by Gaussian averaging. Hence random
intensity in the far field should remain.

III. THE MEASUREMENT PROCEDURE

A. High-level ideas

We begin with a high-level description of our measurement
procedure. Since small structural features disappear fast, it
is sensible to selectively acquire high spatial frequency (SF)
data first. Selective-SF measurement makes sense also in
view of inelastic scattering because high-SF measurements,
associated with high-angle scattering, tend to be insensitive
to small-angle inelastic scattering for reasons to be de-
scribed later. Hence our strategy is to repeat measurement of
scattered-wave amplitude at a specific SF, beginning at a large
q region and progressively moving inwards in the far field.
We show that universal QEM, irrespective of the physical
system it is based on, allows for such selective-SF measure-
ment. However, selective-SF measurement may most easily be
understood as an extended version of entanglement-enhanced
electron microscopy (EEEM; see Appendix A) based on su-
perconducting qubits.

We suppress unwanted signals outside the chosen SF by not
performing phase-to-amplitude conversion and by not quan-
tum enhancing them. As discussed in the previous section,
unwanted low-resolution signals tend to be larger than the
high-resolution signal we are after in typical biological spec-
imens. Such unwanted large signal adversely interfere with
high-resolution measurement because the relation between the
phase shift to contrast is not exactly linear in phase contrast
microscopy.
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The allowable fluence at each SF is rigidly constrained. Let
A be the area of electron beam illumination and define σ = π

q

as the resolution of interest. Since B/8π2 = RF/8π2 is essen-
tially the mean squared distance traveled by random-walking
atoms under electron irradiation, structural information on the
length scale σ should be obtained before σ 2 ≈ B/8π2, i.e.,
electron fluence F reaches Fopt = ζ 8π2σ 2

R , where ζ = O(1) is
a numerical constant.

We briefly digress to give an argument that gives ζ = 0.255
as a plausibly optimal numerical value. The overall physical
picture is that too small a fluence F gives no statistical con-
fidence, while too large an F yields data that mostly reflect
altered structures due to radiation damage. Hence an opti-
mal Fopt should exist. To find a useful ζ value, we make a
pragmatic assumption that a Fourier component θq of the real-
space map of weak phase shift θ (r) of the specimen decays to
zero as θq(F ) = θ0e−F/F0 for some F0. Strictly speaking, this
assumption cannot be entirely right (see the last paragraph of
Sec. II) but we hope to obtain a useful estimate nonetheless.
As shown in the quantitative study of radiation damage [19],
θ2

q is proportional to the diffraction intensity I (q) and hence

θq(F ) = θ0e−RFq2/16π2
. (8)

It follows that F0 = 16π2

Rq2 = 16σ 2

R ≈ 2.3 × 104 nm−2(σ/nm)2.
This is sufficiently large and unless we are after very high
resolution data, we can ignore the specimen change during
each round of quantum measurement, assuming the repeti-
tion number of the order of k ≈ �/t ≈ 10. Let |s〉 be the
unscattered electron state and |a〉 be the scattered state with
the wave vector q. Deferring the question of how to perform
SF-selective measurement, in principle we obtain a quantum
state |s〉 + ikθq(F )|a〉 after a quantum-enhanced measurement
with the repetition number k, providing kθq(F ) � 1 (also
see later discussions in this subsection). By expressing the
state with measurement basis states | ↑〉 = [(1 + i)|s〉 + (1 −
i)|a〉]/2 and | ↓〉 = [(1 − i)|s〉 + (1 + i)|a〉]/2, we obtain the
corresponding probabilities p↑ = 1

2 − kθq(F ) and p↓ = 1
2 +

kθq(F ). Let X be a random variable that represents the number
of events “↑” occurring after Ng = AF/k quantum enhanced
measurements on a specimen area A, each using a group of
k electrons. Note that p↑ is a function of F and hence that
of Ng, because the specimen gradually gets damaged. The
expectation value X is given by

X =
∫

p↑(Ng) dNg ≈ Ng

2
− kθ0

∫ Ng

0
e−kN ′

g/AF0 dN ′
g

= Ng

2
− AF0θ0(1 − e−kNg/AF0 ), (9)

while the variance is approximately a constant with respect to
θ0,

Var(X ) =
∫ Ng

0
p↑(N ′

g)p↓(N ′
g)dN ′

g ≈ Ng

4
. (10)

The estimator for θ0 is

θ̂0(X ) = ν/k

1 − e−ν

(
1

2
− X

Ng

)
, (11)

where ν = kNg/AF0 = F/F0. We obtain

Var(θ̂0(X )) ≈ 1

4kAF0

ν

(1 − e−ν )2
, (12)

which is minimized at νopt ≈ 1.26, where eν = 2ν + 1 is
satisfied. Hence we obtain ζ = 2Fopt/(π2F0) = 2νopt/π

2 ≈
0.255.

Having found an appropriate value of ζ , we proceed to
consider our highly constrained way to spend the fluence
budget to each SF bands. The electron fluence that one can
expend in a ring-shaped resolution band [q, q + �q] on the
qxqy plane is

�F = Fopt (q) − Fopt (q + �q)

≈ −dFopt (q)

dq
�q = ζ

16π4

Rq3
�q. (13)

There are 2πq
�q square-shaped regions with the side length �q

in the band [q, q + �q] in the q space. Thus, the fluence
budget for the measurement at each square-shaped region is
Fsq = �F

2πq/�q . A natural scale of �q satisfies A�q2 = (2π )2,
where A is the imaging area in the real space, since we do not
have structures finer than �q in the reciprocal space. Thus, we
are allowed to spend electron dose

Nsq = FsqA = ζ
32πσ 4

R
= 3.7 × 104(σ/nm)4 (14)

for measuring scattered wave amplitude at a small area �q2

in the q space. This expression has a quartic dependence on
σ , meaning that allowed fluence is much smaller at a higher
SF. Note that Eq. (14) does not depend on the area A. The
reason is that a large area in the real space is associated with
a finer �q, and hence many points need to be scanned in the
reciprocal space.

In the rest of this section, we briefly sketch the method
of acquiring data at a specific SF q. To focus on the essence
of the idea, consider one-dimensional (1D) specimen, and we
write q = qî = π

σ
î. The specimen is a weak phase object and

an incident wave eikzz is scattered into a state

ei[kzz+θ (x)] ≈ eikzz[1 + iθ (x)], (15)

where θ (x) � 1 is the phase shift map that we want to deter-
mine. It is natural to assume that the process is insensitive to
the tilt of the incident wave, and hence for a small k we have

ei[kzz+kx+θ (x)] ≈ ei(kzz+kx)[1 + iθ (x)]. (16)

Henceforth we omit the common factor eikzz. Let the incident
electron state be superposition of plane waves with the x
component of wave vectors separated by 2q:

ψs(x) =
∑
n∈Z

e2niqx. (17)

We will pretend that n runs over all integers for mathematical
convenience. Obviously this is an idealization because the
aperture angle is finite and small in real electron optics. Since
we focus on the SF q, we study scattering of the incident wave
into a state

ψa(x) =
∑
n∈Z

e(2n+1)iqx, (18)
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which has wave vectors in the midpoints between those in
the incident state. We made the incident waves lattice-like for
symmetry reasons, as will be clear shortly. Note that ψs(x)
and ψa(x) are both real.

Consider a specimen with θ (x) = θ0 cos(qx) for now to
focus on the SF q. A plane wave precisely along the optical
axis scatters into

1 + iθ (x) ≈ 1 + iθ0

2
(eiqx + e−iqx ). (19)

Superposing this, and utilized the assumption that the scatter-
ing process is not sensitive to small tilt angles, we see that
scattering makes the following transformation:

ψs(x) ⇒ ψs(x) + iθ0ψa(x), ψa(x) ⇒ ψa(x) + iθ0ψs(x).
(20)

An alternative way, which provides a complementary view,
to derive Eq.(20) is the following. First, note that ψ0(x) =
ψs(x) + ψa(x) and ψ1(x) = ψs(x) − ψa(x) are proportional
to
∑

n∈Z δ(x − 2nσ ) and
∑

n∈Z δ(x − 2nσ − σ ), respectively.
To see this, one may either use a physical argument or the
mathematical identity∑

n∈Z
e2π inx =

∑
n∈Z

δ(x − n). (21)

Hence ψ0(x) and ψ1(x) should respectively receive phase
shift θ0 and −θ0 because θ (x) = θ0 cos(qx). It follows that
ψ0(x) ⇒ ψ0(x) + iθ0ψ0(x) and ψ1(x) ⇒ ψ1(x) − iθ0ψ1(x),
which is consistent with Eq. (20). Starting with the initial state
ψs(x), we then repeat the transformation Eq. (20) for k times.
The final state should be ψs(x) + ikθ0ψa(x) if kθ0 � 1.

Next, consider general specimens. Unlike the specimen
with the structure θ (x) = θ0 cos(qx), they scatter an incoming
plane wave into all directions. Since we want to perform a se-
lective SF measurement, we wish to confine the quantum state
within the Hilbert subspace H spanned by ψs(x) and ψa(x).
These two states are proportional to mutually interleaving
rows of dots in the reciprocal k space, namely,

∑
n δ(k − 2nq)

for ψs(x) and
∑

n δ(k − 2nq − q) for ψa(x). Scattering of the
primary wave ψs(x) into ψa(x) is caused not only by the SF
component ±q, but also by those at ±3q,±5q, . . . . As we
learned in Sec. II, higher-SF components are expected to be
generally much smaller, and hence we ignore them.

We begin with a SF-selective procedure with a poor
performance, which is instructive nonetheless. We divide
the reciprocal k space into cells, which are intervals [(n −
1
2 )q, (n + 1

2 )q), where n ∈ Z. In other words, we reorganize
k into two variables n and − q

2 � k̂ <
q
2 , such that k = nq + k̂

and hence k̂ indicates the position within a cell. To remain
in H, we measure k̂ but leave n unmeasured. (This is con-
ceptually not much different from measuring the x coordinate
of a particle while leaving its y, z coordinates. Hence this
should in principle be possible.) The measurement outcome
would mostly be k̂ = 0 because of the presence of the intense
primary electron beam. In this case, a superposed state of
ψs(x) and ψa(x) remains intact because both of these have
the same value k̂ = 0, although the parity of n is different
between these. On the other hand, if the measurement result
is k̂ �= 0, i.e., if elastic scattering takes place, the state such
as ψs(x) + ikθ0ψa(x) is destroyed. To see this, for example,

consider the similar amplitudes in the far field at k = 2nq + k̂
and k = (2n + 1)q + k̂, where k̂ ≈ q

2 . Hence the measurement
fails. However, elastic scattering events take place sufficiently
often, and we cannot tolerate such a failure.

To remain in the space H after elastic scattering, we obfus-
cate the fact that elastic scattering ever happened. This is done
by burying the scattered waves under the intense primary wave
by recombining these waves. Details are described in the next
subsection, but what follows are some basic ideas. Since even-
tually we want to determine θ0 in the state ψs(x) + ikθ0ψa(x),
we do not want to recombine the scattered waves with ψs(x)
in such a way that ψs(x) acquires the imaginary part. Re-
combination without such acquisition turns out to be possible
because θ (x) is real, which in turn implies certain symmetry
of the wave function in the reciprocal space. We note that this
recombination process must involve a measurement, since the
quantum state has unknown components outside the Hilbert
subspace H, but we need to project the state back to H. As
a bonus, such a measurement avoids coherently accumulating
unwanted quantum amplitudes that do not belong the SF of
interest. It turns out that a certain symmetry between ψs(x)
and ψa(x) is desirable in our operations since we employ an
extra quantum entity, namely, a qubit. Hence, the recombina-
tion operation of the waves is performed separately in each
cell [(n − 1

2 )q, (n + 1
2 )q). Eventually, we obtain a state of the

form

(1 + A)ψs(x) + (ikθ0 + B)ψa(x), (22)

where A, B are real, unknown, and small amplitudes coming
from the undesirable scattered waves. We now argue that A
and B does not present a significant problem. Consider the
Bloch sphere, wherein ψ0(x) and ψ1(x) are north and south
poles, respectively. To determine the imaginary component
ikθ0, we want to measure the state with the measurement
basis states ψ±(x) ∝ ψ0(x) ± iψ1(x). Note that ψ±(x), ψs(x),
ψa(x), and ψs(x) + ikθψa(x) are all on the equator of the
sphere. Hence a measurement with respect to the basis ψ±(x)
yields information about the longitude of the state on the
Bloch sphere. Since small real values of A, B mean a small
shift in the latitude on the sphere, this will not significantly
affect the measurement using the basis states ψ±(x).

Finally, we emphasize that the primary benefit of the
SF-selective method discussed above lies in the handling of
inelastic scattering. Since inelastic scattering tends to be asso-
ciated with small scattering angles, separation of ψs and ψa in
the far field helps us protect the quantum state that we need.
See Sec. IV for further discussions.

B. Low-level procedure

We now describe details of the SF-selective measurement
sketched above. Our selective-SF measurement procedure
may be understood more smoothly if the reader knows
how the “conventional” entanglement-enhanced electron mi-
croscopy (EEEM) works [11,12]. See Appendix A for an
introduction to EEEM.

We start with definitions. As in the previous subsection,
we consider an incident electron state that form a lattice of
focused beams on the specimen. However, this time the lat-
tice is a 2D square lattice with the lattice constant σ . More
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specifically, let the number of focused beams be M2, where
M = 2 j , where j � 2 is an integer. We define kmax = 2π

σ
and

kmin = kmax/M. For later convenience, we define sets of or-
dered pairs of integers:

M =
{

(n, m) ∈ Z2| − M

2
� n <

M

2
,−M

2
� m <

M

2

}
,

(23)

Ms = {(n, m) ∈ M|n < 0}, (24)

Ma = {(n, m) ∈ M|0 � n}, (25)

Mc =
{

(n, m) ∈ M| − M

4
� n <

M

4

}
, (26)

Me = {(n, m) ∈ M|n is even}, (27)

and

Mo = {(n, m) ∈ M|n is odd}. (28)

Subscripts s, a, c are intended to mean “symmetric,” “anti-
symmetric,” and “center,” respectively. We also define sin-
gleton sets Cs = {(−M

4 , 0)}, Ca = {( M
4 , 0)}, and Cc = {(0, 0)}.

The sets Cs, Ca, and Cc, in a sense, contain the “central”
element of Ms, Ma, and Mc, respectively. Now, each fo-
cused electron beam is at nσ î + mσ ĵ, where (n, m) ∈ M. The
electron state at the point nσ î + mσ ĵ is written as |n, m〉. Since
a quantum state can in principle be transferred, but not copied,
between the electron microscope and a connected quantum
computer [14], the electron state |n, m〉 may equivalently be
viewed, as we will do occasionally, as a state of two “registers
of a quantum computer” n, m, each comprising log2 M qubits.
They express integers n, m in modified two’s complement
notation (MTCN), wherein the sign bit is reversed: 0 means
negative and 1 means positive. Let Q2 be the most significant
qubit (MSQ) of the register n. The remaining part of the reg-
ister n is referred to as register ñ. The integer ñ is represented
again in MTCN and −M

4 � ñ < M
4 is satisfied. Hence we have

ñ =
{

n + M
4 if − M

2 � n < 0

n − M
4 if 0 � n < M

2

. (29)

In addition to the registers n, m, we introduce an extra qubit
Q1, which plays a central role.

We denote a state of a qubit with a bar. Let the basis
states of a qubit be |0〉, |1〉. Define |s〉 = |0〉+|1〉√

2
, |a〉 = |0〉−|1〉√

2
,

|↑〉 = |0〉+i|1〉√
2

, and |↓〉 = |0〉−i|1〉√
2

. The tensor product of an
electron state |p〉 and the Q1 state |q〉 will be denoted as
|p〉|q〉, or simply |pq〉. Negative of complex conjugate will be
abbreviated as NCC. Let an,m be a set of M2 values, where
(n, m) ∈ M. We write 2D discrete FT (DFT)

An,m = 1

M

∑
(r,s)∈M

ar,se
2π i nr+ms

M (30)

as An,m = F{an,m}, where (n, m) ∈ M. The inverse of the
DFT is written as an,m = F−1{An,m}. The DFT is often applied
to a set of quantum amplitudes as quantum FT (QFT [21]),

wherein a state ∑
(n,m)∈M

an,m|n, m〉 (31)

is converted to ∑
(n,m)∈M

An,m|n, m〉, (32)

where An,m = F{an,m}. Here we further define split inverse
FT, which applies inverse-FT individually to two half planes
Ms and Ma, wherein the central points are (−M

4 , 0) and
( M

4 , 0), respectively. More specifically, an,m = F−1
split{An,m} is

a shorthand for

an,m =
√

2

M

∑
(r,s)∈Ms

Ar,se
−2π i

2

(
r+ M

4

)(
n+ M

4

)
+sm

M , (33)

for (n, m) ∈ Ms, and

an,m =
√

2

M

∑
(r,s)∈Ma

Ar,se
−2π i

2

(
r− M

4

)(
n− M

4

)
+sm

M , (34)

for (n, m) ∈ Ma. Alternatively, in accordance with Eq. (29)

añ,m =
√

2

M

∑
(r,s)∈Ms

Ar,se
−2π i

2

(
r+ M

4

)
ñ+sm

M (35)

if n < 0, and

añ,m =
√

2

M

∑
(r,s)∈Ma

Ar,se
−2π i

2

(
r− M

4

)
ñ+sm

M (36)

if n � 0, both for (ñ, m) ∈ Mc.
Three remarks about the split inverse FT are in order. First,

the prefactor is
√

2
M = 1√

M2
2

because the number of elements

involved in each FT is M2

2 . Second, the exponential factor may
be rewritten as, e.g., when (n, m) ∈ Ms,

e−2π i
2

(
r+ M

4

)(
n+ M

4

)
+sm

M = e−2π i

(
r+ M

4

)(
n+ M

4

)
M/2 e−2π i sm

M . (37)

Third, from the QFT perspective, the above operation is equiv-
alent to performing 2D inverse QFT on the state |ñ, m〉, where
we set aside the MSQ of the register n, i.e., Q2. Hence, we
can define the split inverse QFT as a transformation of the
state

∑
(ñ,m)∈Mc

Añ,m|ñ, m〉 into
∑

(ñ,m)∈Mc
añ,m|ñ, m〉, where

añ,m =
√

2

M

∑
(r̃,s)∈Mc

Ar̃,se
−2π i 2r̃ñ+sm

M . (38)

We consider a thin specimen that is characterized by a
2D phase shift map θ (x, y). The area of the measurement on
the specimen is square-shaped, with the side length L = Mσ .
Define θn,m = θ (nσ, mσ ). We set∑

(n,m)∈M
θn,m = 0 (39)

without loss of generality. We aim to measure

θ = 1

M2

∑
(n,m)∈M

(−1)nθn,m, (40)
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which obviously contains SF of q = π
σ

as the main compo-
nent. That is, half the difference between (i) the average value
of θn,m with even n and (ii) the odd n counterpart. The electron
beam array being a square lattice is not particularly important.
In addition, the reader may justifiably worry that a focused
beam would quickly destroy the specimen at the focal point.
A solution to this problem is discussed in Appendix B.

We are now ready to discuss the SF-selective measurement
procedure. The electron state |n, m〉 after transmission through
the specimen is

eiθn,m |n, m〉 ≈ (1 + iθn,m)|n, m〉 (41)

under weak phase approximation, where the small quantity
θn,m is the phase map of a specimen. Define �n,m = F{θn,m}.
Note that

�0,0 = 0 (42)

because of Eq. (39). Unlike the treatment in the previous
subsection, in the following EEEM-like setting, we will deal
with two symmetrically placed incident states

|s〉 = 1

M

∑
(n,m)∈M

ei π
2 n|n, m〉 (43)

and

|a〉 = 1

M

∑
(n,m)∈M

e−i π
2 n|n, m〉, (44)

which are scattered into each other. (A change of the conven-
tion |n, m〉 ⇒ e−i π

2 n|n, m〉 would make it better correspond to
the “sketch” of the method in Sec. III A. However, here we
make |s〉 and |a〉 more symmetric.) These states interfere to
make fringes at either even n spots or odd ones, as in

|0〉 = |s〉 + |a〉√
2

=
√

2

M

∑
(n,m)∈Me

(−1)
n
2 |n, m〉, (45)

|1〉 = |s〉 − |a〉√
2

=
√

2i

M

∑
(n,m)∈Mo

(−1)
n−1

2 |n, m〉. (46)

Our intention is to measure the difference of the average phase
shifts, of the transmitted electron beams, between locations
belonging to |0〉 and |1〉 on the specimen. DFT transforms
states in Eqs. (43) and (44) into | − M

4 , 0〉 and |M
4 , 0〉, respec-

tively.
Figure 1 is designed to visualize aspects of the SF-selective

measurement steps that we describe below. The combined
system of the electron and Q1 has 2M2 complex amplitudes to
specify its state (setting aside the minor issue of normalization
and the overall phase), because the electron has M2 basis vec-
tors |n, m〉 and Q1 has two basis vectors |s〉, |a〉. To visualize
the state of the entire system, we can show two maps Q1:|s〉
and Q1:|a〉, each corresponding to |s〉 and |a〉 of the Q1 states,
with n and m axes, to show a set of complex coefficients.
For example, the point (n, m) of the map for Q1:|s〉 shows
a complex coefficient, i.e., the quantum amplitude, for the
state |n, m〉|s〉. (To visualize complex numbers, one might
use brightness and color to show the amplitude and phase,
respectively, for example. However, we do not do such things
in this paper, because schematic representations of general
ideas suffice for us.)

FIG. 1. Illustrations of quantum states at different stages of
spatial-frequency (SF) selective measurement. The electron state,
which may have been transferred to a quantum computer, in the
branch of the entire wave function, wherein Q1 state is |s〉, is shown
in the left figure. In a similar way, one with |a〉 is on the right. See the
main text for more information. (a) The state right after transmission
of an electron through the specimen. The shape of the “molecule,”
which is imprinted on the phase of electron wave function, is shown
in dashed curves because it is not “visible,” in a loose analogy
with transmission electron microscopy (TEM) imaging. The electron
wavefront is such that the wave goes left if Q1 state is |s〉, and goes
right if Q1 state is |a〉, as indicated by the arrows. (It reflects our
convention of discrete Fourier transform.) (b) We apply QFT to the
quantum states |n, m〉, representing the transmitted array of M × M
beams, to obtain essentially a far-field state. The left-moving wave
in (a) goes to point S, while the right-moving one goes to A. Elasti-
cally scattered waves, whose intensity is indicated by dashed curves,
surround the transmitted waves at S and A. Unlike actual diffraction
in real electron optics, the periodic boundary condition (PBC) is ap-
plicable in a quantum Fourier transform (QFT). Thus, the wave that
goes beyond the left boundary, for example, comes out from the right
side. The scattered amplitudes at B and C are the negative of complex
conjugate (NCC) to each other. The same applies to D and E due to
PBC. The amplitudes of interest at F and G are NCC to itself and
hence is pure imaginary. These amplitudes at F and G are “added”
to, although the wave function branch is different, the transmitted
waves, respectively, at S and A with a π

2 phase difference. (c) The
state after split inverse Fourier transformation (FT), where inverse FT
is performed in n < 0 and n � 0 regions separately. If the outcome of
Q2 measurement in Step 7 is c = 0, the n < 0 part of the map is left
available, while for c = 1, the n � 0 part remains. In each region,
the shape of the “molecule” is recovered to an extent. In contrast
to conventional in-focus phase contrast microscopy, we convert un
wanted phase into amplitude in Step 6 before the split inverse FT,
because we want to accumulate the signal phase onto Q1. (In Step
12, we measure Q1 with respect to basis states {|↑〉, |↓〉}, thus finally
“converting the phase into amplitude,” figuratively speaking, when
the final measurement is done.) Since the unwanted information is
converted to amplitude and is “visible.” again in a loose analogy with
TEM, the “molecules” are drawn with solid curves, as opposed to
dashed curves that are found in (a). The images of the “molecule” is
shown dimly when it is high-pass filtered, where the signal is indeed
expected to be weak.
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We first state steps in SF-selective measurement without
elucidating results of performing these steps.

Step 1: Initialize the state of Q1 to be |s〉.
Step 2: Initialize the state of a new electron to 1√

2
(|s〉 +

|a〉).
Step 3: Apply a CNOT gate that flips Q1 state as |s〉 ⇔ |a〉

if and only if the electron is in state |a〉.
Step 4: Let the electron go through the specimen. Capture

the electron quantum state in registers n and m of a quantum
computer [see Fig. 1(a)].

Step 5: Apply QFT that converts the amplitude of |n, m〉
from an,m to An,m = F{an,m}.

Step 6: Multiply i to two states | ± M
4 , 0〉 [i.e., points S, G,

F, A in Fig. 1(b)].
Step 7: Measure Q2 with respect to basis {|0〉, |1〉}. Let the

outcome be c. [Here we determine if the state is in the n < 0,
or n � 0, region of the map shown in Fig. 1(b).]

Step 8: Apply split inverse QFT. [See Fig. 1(c). Also note
that Q2 is not involved in this operation.]

Step 9: Measure the state of the register ñ (i.e., the register
n without Q2) and m with respect to the basis {|ñ, m〉|(ñ, m) ∈
Mc}. (Although the measurement outcome n̂, m̂ contains
low-resolution information, we do not discuss utilization of
it in the present work.)

Step 10: Apply the single-qubit operation |s〉 ⇔ |a〉 to Q1
if and only if c = 1.

Step 11: Go back to step 2 to repeat the process for k times.
Step 12: Measure Q1 with the basis states {|↑〉, |↓〉}. One

obtains a single bit of data for one round of measurement.
In the rest of this section, we track the state of the micro-

scope system during the above procedure. Anticipating later
arguments, we write the Q1 state after Step 1 in a generalized
form

|s〉 + iα|a〉, (47)

instead of simply writing it as |s〉. Then, as specified in Step 2
a new electron is prepared in the state

1√
2

[|s〉 + |a〉]. (48)

Step 3 is an entangling operation, which results in

1√
2

[(|ss〉 + |aa〉) + iα(|sa〉 + |as〉)]. (49)

In Step 4, the electron goes through the specimen. The exit
wave from the specimen generated from the incident wave |s〉
is

|ψs〉 = 1

M

∑
(n,m)∈M

(1 + iθn,m)ei π
2 n|n, m〉. (50)

Likewise, for the incident wave |a〉 we obtain

|ψa〉 = 1

M

∑
(n,m)∈M

(1 + iθn,m)e−i π
2 n|n, m〉. (51)

Thus, the state of the entire system, having captured the elec-
tron state in the quantum computer, is

1√
2

[(|ψss〉 + |ψaa〉) + iα(|ψsa〉 + |ψas〉)]. (52)

Figure 1(a) schematically shows the state at this point. Both
Q1:|s〉 and Q1:|a〉 maps show the same “biological molecule”
imprinted as phase shift. However, the “wave fronts are tilted”
in the opposite direction between these two maps because of
the e±i π

2 n factors in Eqs. (43) and (44).
Next, in Step 5, we perform 2D quantum fast Fourier trans-

form (QFT) [21], which converts the amplitude cn,m of the
state |n, m〉 to c′

n,m = F{cn,m}. This amounts to moving to the
diffraction plane, although the periodic boundary condition
(PBC) applies here, unlike in the case of actual diffraction
plane in real electron optics. Note two properties of Fourier-
transformed phase map:

�r+M,s = �r,s, (53)

which is the PBC, and

�r,s = �∗
−r,−s, (54)

because θn,m is real. Note that, due to Eq. (40),

θ =
� M

2 ,0

M
=

�− M
2 ,0

M
, (55)

which is what we aim to measure. QFT applied to |ψs〉 and
|ψa〉 yields, taking Eq. (42) into account,

|ψs2〉 =
∣∣∣∣− M

4
, 0

〉
+ i

M

∑
(r,s)∈M\Cs

�r+ M
4 ,s|r, s〉

=
∣∣∣∣− M

4
, 0

〉
+ iθ

∣∣∣∣M4 , 0

〉
+ i

M

×
∑

(r,s)∈M\(Cs∪Ca )

�r+ M
4 ,s|r, s〉 (56)

and

|ψa2〉 =
∣∣∣∣M4 , 0

〉
+ i

M

∑
(r,s)∈M\Ca

�r− M
4 ,s|r, s〉

=
∣∣∣∣M4 , 0

〉
+ iθ

∣∣∣∣− M

4
, 0

〉
+ i

M

×
∑

(r,s)∈M\(Cs∪Ca )

�r− M
4 ,s|r, s〉. (57)

The state of the entire system is thus

|�1〉 = 1√
2

∣∣∣∣− M

4
, 0

〉
[(1 − αθ )|s〉 + i(α + θ )|a〉] + 1√

2

∣∣∣∣M4 , 0

〉
[(1 − αθ )|a〉 + i(α + θ )|s〉]

+ i√
2M

∑
(r,s)∈M\(Cs∪Ca )

|r, s〉[�r+ M
4 ,s(|s〉 + iα|a〉) + �r− M

4 ,s(|a〉 + iα|s〉)]. (58)
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(To verify this, it may help to define and use |p〉 = |s〉 + iα|a〉
and |q〉 = |s〉 + iα|a〉.) Figure 1(b) shows this state. In the
first term of Eq. (58), the large component corresponds to the
points S, while the smaller component corresponds to F. A
similar statement can be made for the second term. The trans-
mitted waves of the two “tilted incident waves” |s〉, |a〉 mainly
make two points S and A in the far field. Elastically scattered
waves are in the third term of Eq. (58) and surround these two
points. They are shown in dashed curves in Fig. 1(b). Because
of Eq. (54), points B and C are NCC to each other. Moreover,
the same can be said for points D and E because of Eq. (53).

To motivate the following steps, we first discuss a method
of poor performance. Suppose that we measure the electron
state at this point. If the measurement outcomes were always
n = ±M

4 and m = 0, then, neglecting αθ , we would be able
to accumulate the phase θ on top of α in Q1. However, some-
times we measure the electron state at other points (r, s), when
elastic scattering occurs. This would result in a Q1 state

�r+ M
4 ,s(|s〉 + iα|a〉) + �r− M

4 ,s(|a〉 + iα|s〉), (59)

which is basically a destroyed state unless one of
�r+ M

4 ,s, �r− M
4 ,s is overwhelmingly larger than the other, in

the sense that the absolute value of their ratio (or its inverse)
has to be much smaller than α, which is generally small to be-
gin with. To avoid such a scenario, we perform the following
steps to obscure the fact that elastic scattering happened.

Hence in Step 6, we apply a “virtual π/2 phase plate” by
selectively apply a phase factor i to the states | ± M

4 , 0〉 that
are points S, G, F, and A in Fig. 1(b). [In our subsequent
computation, we simply remove the factor i from the third
term of Eq. (58), yielding an equivalent result.]

Two definitions are in order before we proceed to Steps 7
and 8. We first introduce

θL
ñ,m = 1

M

∑
(r′,s)∈Mc\Cc

�r′,se
−2π i 2r′ ñ+sm

M , (60)

where we impose the range (ñ, m) ∈ Mc. The addition of
the condition (r′, s) /∈ Cc = {(0, 0)} is unnecessary here, but it
makes later arguments clearer. This quantity clearly represents
a low-pass filtered map of θñ,m, which is compressed in the x
direction. Because the number of pixels along the axis of com-
pression is M/2, we have the slightly odd-looking exponent

−2π i r′ñ
(M/2) − 2π i sm

M = −2π i 2r′ñ+sm
M . We also introduce

θH
ñ,m = 1

M

∑
(r′,s)∈Mc\Cc

�r′+ M
2 ,se

−2π i 2r′ ñ+sm
M , (61)

which also has the range (ñ, m) ∈ Mc. Note that we sub-
tracted θ by excluding the (r′, s) = (0, 0) term [see Eq. (55)].
We list several properties of θL

ñ,m and θH
ñ,m.

(A) Due to Eq. (53), θH
ñ,m is equivalently expressed as (in

terms of r′′ = r′ + M/2)

θH
ñ,m = 1

M

∑
(r′′,s)∈M\

(
Mc∪

{(
− M

2 ,0
)})�r′′,se

−2π i 2r′′ ñ+sm
M , (62)

which makes it clear that θH
ñ,m is a high-pass filtered map of

θñ,m. Being high-pass filtered, we expect elements of θH
ñ,m to

be generally smaller than the low-pass filtered elements θL
ñ,m

for most natural images (see Sec. II).
(B) Equations (54), (60), and (62) tell us that both the

objects θL
ñ,m, θH

ñ,m are approximately real. [It is approximate
because, for example, r′ = −M/4 terms in Eq. (60) contribute
an imaginary part. The influence is small for a large M.]

(C) Some further equivalent expressions, which are useful
for deriving equations at Step 8, are

θL
ñ,m = 1

M

∑
(r,s)∈Ms\Cs

�r+ M
4 ,se

−2π i
2

(
r+ M

4

)
ñ+sm

M

= 1

M

∑
(r,s)∈Ma\Ca

�r− M
4 ,se

−2π i
2

(
r− M

4

)
ñ+sm

M , (63)

θH
ñ,m = 1

M

∑
(r,s)∈Ms\Cs

�r− M
4 ,se

−2π i
2

(
r+ M

4

)
ñ+sm

M

= 1

M

∑
(r,s)∈Ma\Ca

�r+ M
4 ,se

−2π i
2

(
r− M

4

)
ñ+sm

M . (64)

Note that Eq. (53), which is due to the discrete nature of
QFT that comes with the use of a quantum computer, is
crucial in deriving some of the above results, including the
real-valuedness.

We are now ready to discuss Steps 7 and 8. In Step 7 we
measure Q2 with respect to basis {|0〉, |1〉}. If the result is |0〉,
i.e., c = 0, we are in Ms; and likewise the result |1〉 and c = 1
means we are in Ma. In Step 8, we apply split inverse QFT
to Eq. (58), which has been slightly modified in Step 6. In the
case c = 0, we apply Eq. (35) to obtain

1

M

∑
(ñ,m)∈Mc

|ñ, m〉{(1 − αθ )|s〉 + i(α + θ )|a〉 + [
θL

ñ,m

(|s〉 + iα|a〉)+ θH
ñ,m(|a〉 + iα|s〉)

]}
, (65)

where the qubit state is for Q1. Likewise, if c = 1, we perform Eq. (36) to obtain

1

M

∑
(ñ,m)∈Mc

|ñ, m〉{(1 − αθ )|a〉 + i(α + θ )|s〉 + [
θL

ñ,m(|a〉 + iα|s〉) + θH
ñ,m

(|s〉 + iα|a〉)
]}

. (66)
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Figure 1(c) shows these states in combination.
Next, the measurement of ñ, m in Step 9 yields n̂, m̂. One

readily obtains the resultant Q1 state by inspecting Eqs. (65)
and (66). Since Step 10 applies an operation |s〉 ⇔ |a〉 to Q1
if and only if c = 1, we obtain

|ψ〉 = (
1 − αθ + θL

n̂,m̂ + iαθH
n̂,m̂

)|s〉
+ i
(
α + θ + αθL

n̂,m̂ − iθH
n̂,m̂

)|a〉. (67)

If α, θL
n̂,m̂, θH

n̂,m̂, θ are small, we obtain

|ψ〉 = (
1 + θL

n̂,m̂

)|s〉 + i
(
α + θ − iθH

n̂,m̂

)|a〉 (68)

by neglecting second-order terms. Further neglecting
θL

n̂,m̂, θH
n̂,m̂, we obtain

|ψ〉 = |s〉 + i(α + θ )|a〉. (69)

Since the entire argument goes through with any small α, steps
1–11 result in |ψ〉 = |s〉 + ikθ |a〉 as desired.

Inclusion of errors θL
n̂,m̂, θH

n̂,m̂, which vary randomly for
each round of k repetitions, have a small, second-order effect
in Step 12. A rough reasoning has been given, following
Eq. (22) in Sec. III A. We defer more complete discussion to
Sec. IV G, IV H, where an essentially identical situation arises
in the setting of handling inelastic scattering.

IV. NEUTRALIZATION OF INELASTIC SCATTERING

Next, we consider how to deal with inelastic scattering.
First, we sketch the procedure that we later explain in detail
in the subsections below. We only aim to protect a round of
measurement here and do not try to acquire data from inelastic
scattering events. Suppose that the Q1 state is |s〉 + iα|a〉
before Step 2 and later inelastic scattering occurred in Step
4. The state of the entire system is

|s′s〉 + |a′a〉 + iα(|s′a〉 + |a′s〉), (70)

where |s′〉, |a′〉 are inelastically scattered states from |s〉, |a〉,
respectively. Complete inelastic scattering neutralization
(ISN) would be possible if we could measure the electron in
|s′〉 or |a′〉. However, the incident beams |s〉 and |a〉 inevitably
mix after scattering because of the overlapping tails of the
spread wave functions in the far field. Our goal is to detect
the electron in a state that is as close to |s〉 or |a〉 as possible
before resuming the procedure at Step 2 with a new electron.
Before proceeding, note that it is in principle possible to know
the occurrence of inelastic scattering while preserving the
scattered electron state, for example, by measuring the time
of flight.

To meet the goal mentioned above, we mostly follow the
same steps mentioned in Sec. III. We only replace Step 6 with
a randomization step:

Step 6̃: Let �n,m be a set of real numbers that satisfy
�n+M,m = �n,m+M = �n,m and �M/4+n,m = −�M/4−n,−m, but
are randomly chosen from [0, 2π ) otherwise. Apply a phase
shift operation |n, m〉 ⇒ ei�n,m |n, m〉.

This step randomly shifts each SF component in the map
|ñ, m〉 obtained in Step 8. Specifically, if we get c = 0 in Step

7, by the end of Step 8 we obtain

|� ′〉 = 1√
2

[|s4s〉 + |a4a〉 + iα(|s4a〉 + |a4s〉)],

where

|s4〉 = i

M

∑
(ñ,m)∈Mc

hL
ñ,m|ñ, m〉 (71)

and

|a4〉 = i

M

∑
(ñ,m)∈Mc

hH
ñ,m|ñ, m〉 (72)

are a processed version of inelastically scattered states to be
discussed later. (The states |s4〉 and |a4〉 are swapped if c = 1.)
We will show that hL

ñ,m and hH
ñ,m are real. Hence we have

|� ′〉 = i√
2M

∑
(ñ,m)∈Mc

|ñ, m〉[hL
ñ,m(|s〉 + iα|a〉)

+ hH
ñ,m(|a〉 + iα|s〉)

]
. (73)

Then in Step 9 we measure the electron state |ñ, m〉. We are
then left with a Q1 state

hL
ñ,m(|s〉 + iα|a〉) + hH

ñ,m(|a〉 + iα|s〉), (74)

where ñ, m are the measurement outcomes. We will show
that |hL

ñ,m| � |hH
ñ,m| is probable. Hence the state in Eq. (74)

is approximately |s〉 + iα|a〉 (or |a〉 + iα|s〉 if c = 1, which
can be converted to |s〉 + iα|a〉 by an operation |s〉 ⇐⇒ |a〉).
Thus, we are able to mostly recover the original Q1 state
|s〉 + iα|a〉, successfully neutralizing the adverse effect of in-
elastic scattering. Further analysis reveals that the Q1 state
has the form |s〉 + (iα + η)|a〉, where η ∈ R is generally small
deviation from the ideal, whose magnitude will be estimated
to evaluate the performance of our method [see Fig. 2(c)]. In
the rest of this section, we discuss these procedures in detail.

A. Preliminary remarks

In general, upon inelastic scattering, the specimen is ex-
cited to multiple states, and hence the scattered probe electron
and the specimen get entangled. This gives a mixed probe
electron state. However, the mixed nature of scattered electron
state does not play a significant role because the scattered
probe electron state only weakly depends on the final state of
the specimen as we describe in subsection 3 of Appendix C.
Hence, for simplicity we assume that the state of the spec-
imen goes from the “ground” state |g〉 (More precisely, this
is merely an initial state but we will call it the ground state
hereafter.) to a particular excited state |e〉. Let the energy
difference between the states |g〉, |e〉 be E .

In analyzing ISN, we need to know the wave function of
inelastically scattered electrons. In Appendix C, we briefly
review theory of inelastic scattering [22,23] and obtain the
functional form of such a wave function under the assumption
that we are in the dipole region. Here we describe only the
result. Recall that the scattering vector is q = k f − ki. We
define �k ≡ ki − k f , which is a function of the energy loss
E , whose typical value for exciting a plasmon is ≈20 eV. Let
the scattering angle be θ . Define θE ≡ �k

ki
≈ E

2EK
, where EK
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FIG. 2. Inelastic scattering neutralization (ISN). (a) A state ap-
pearing in inelastic scattering neutralization. We schematically show
the inelastically scattered wave function �0(k) in the far field, which
is an odd function, with unknown dipole orientation a (here a
points towards the upper-right direction). The white and gray regions
indicate positive and negative regions of �0(k), although such a
characterization is oversimplified because the wavefront should also
have the phase factor e−iq·r0 that represents tilt. As is the case with
elastic scattering, the amplitudes at B and C, or D and E, are the
negative of complex conjugate (NCC) to each other. This helps
to generate η ∈ R. (b) An averaged intensity map of inelastically
scattered electron waves in the far field. This is one branch of the
far field wherein Q1 state is |s〉. Although the far field has a finite
area (call it a cell) with the periodic boundary condition (PBC), here
it is shown in a expanded way. The intensity of inelastically scattered
electron wave, which is averaged over all dipole orientations a, is
shown in dashed circles. Although this intensity pattern is repeated
due to PBC, only the one originating from the point S of a single
cell is shown for clarity. The white regions correspond to the set S
described in the text, while the gray regions correspond to A. If one
focuses on an area of either S or A type in a particular cell, then
one should see that the wave intensity in that area comes from waves
originating from many different cells. Subsequently, waves in Ms

and Ma regions, respectively, are mixed up within these regions in
the cell during the split inverse FT. Equations (122) and (124) express
incoherent addition of these waves. (c) This plot shows how μ ≈ |η|,
which quantifies nonideality of ISN, changes with β = λ

2σ
, where σ

is the resolution of interest. Things get better at higher resolution.

is the energy of incident electrons, which we assume to be

300 keV. Let θc =
√

2θE
γ

be the Bethe ridge angle. For the

values of EK and E mentioned above, the angles θE and θc

have values 41 μrad and 7.2 mrad, respectively. Under a fur-
ther reasonable assumption of “achirality” (see Appendix C)
we obtain the form of wave function as

�0(q) =
{

1√
θ2+θ2

E

( q
q

) · a θ < θc

0 θ > θc

, (75)

where a is the unknown direction of the dipole involved in
inelastic scattering in the dipole region. The magnitude of a
is unimportant because the wave function needs to be nor-
malized anyway. Define ψ0(r) = F−1

C {�0(k)}, which is the
real-space wave function right after inelastic scattering.

Since we can not know the location of inelastic scattering
r0, we should use a slightly generalized form of wave function

(see Appendix C)

�1(q) = e−iq·r0�0(q), (76)

for which the following holds:

ψ1(r) = F−1
C {�1(k)} = ψ0(r − r0). (77)

B. An array of inelastically scattered focused beams and their
discrete Fourier transform En,m

For simplicity, first consider a single incident beam focused
at r1. The wave function in the xy plane is ψ (r) = δ2(r − r1).
Fourier transforming, we obtain the far-field wave function in
the upstream of electron optics as

�(ki ) = FC{ψ (r)} = e−iki ·r1 . (78)

We assume that inelastic excitation is insensitive to the angu-
lar variation of incident plane wave measured in ≈10−3 rad.
The scattered waves are superposition of �1(q) because the
incident wave is a superposition of plane waves. Using the
principle of superposition, after inelastic scattering we obtain,
in the far field

�2(q) =
∫

�1(k f − ki )e
−iki ·r1

d2ki

(2π )2
, (79)

which has a form of convolution. Thus, defining ψ2(r) =
F−1

C {�2(q)}, we have

ψ2(r) = ψ1(r)δ2(r − r1) = ψ0(r − r0)δ2(r − r1). (80)

The physical meaning of this is clear because this is the state
right after a scattering event centered at r0, when the incident
electron wave is focused at r1.

Having found the state right after inelastic scattering for a
single focused incident electron beam, we use the principle
of superposition to straightforwardly generalize it to the case
of an array of focused incident beams. (“An array of focused
beams” may be a misnomer, since we only have a single elec-
tron.) Consider the array of focused incident electron beams,

|s〉 = 1

M

∑
(n,m)∈M

ei π
2 n|n, m〉. (81)

This electron wave, comprising M2 focused beams, passes
the specimen, and experiences inelastic scattering. Here we
ignore small phase shift due to simultaneous elastic scattering,
which is a result of only a single passage of the electron wave.
The resultant state is

|s2〉 = 1

M

∑
(n,m)∈M

ψ0(rn,m − r0)ei π
2 n|n, m〉, (82)

where rn,m = nσ î + mσ ĵ. We assume that M is sufficiently
large that we can ignore the possibility of inelastic scattering
occurring at near the edge of the M × M array. Also for
simplicity, write

en,m = ψ0(rn,m − r0) (83)

to describe a discretized version of the wave function right
after inelastic scattering. Next, we apply QFT defined in
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Eqs. (30), (31), and (32) to Eq. (82). We obtain as a result

|s3〉 = 1

M

∑
(n,m)∈M

E (s)
n,m|n, m〉, (84)

where

E (s)
n,m = 1

M

∑
(r,s)∈M

er,se
2π i

(
n+ M

4

)
r+ms

M . (85)

Following exactly the same argument, but for the other state
|a〉, we obtain

E (a)
n,m = 1

M

∑
(r,s)∈M

er,se
2π i

(
n− M

4

)
r+ms

M . (86)

From these relations, we find En+M,m = En,m for both E (s)
n,m and

E (a)
n,m; and E (s)

n+ M
2 ,m

= E (a)
n,m.

C. Symmetry relations for E (s)
n,m and E (a)

n,m

The quantities E (s)
n,m and E (a)

n,m satisfy certain relations that
we call symmetry relations. The intuition is the following.
The set of amplitudes en,m, which reflects the wave function
right after inelastic scattering turns out to be pure imaginary.
The quantities E (s)

n,m and E (a)
n,m are modified versions of DFT of

er,s. Hence E (s)
n,m and E (a)

n,m, which are akin to far-field wave
functions, must satisfy certain relations involving complex
conjugation, similarly to the far-field wave function of a trans-
mitted wave through a pure weak phase object. In addition,
unlike continuous FT found in electron optics, we have certain
additional symmetries because of the periodic nature of DFT.

Indeed, en,m = ψ0(rn,m − r0) is pure imaginary. Equa-
tion (75), combined with

ψ0(r) = F−1
C {�0(k)} =

∫
�0(k)eik·r d2k

(2π )2
, (87)

shows that

ψ0(r)∗ =
∫

�0(k)e−ik·r d2k
(2π )2

=
∫

�0(−k)eik·r d2k
(2π )2

= −
∫

�0(k)eik·r d2k
(2π )2

= −ψ0(r). (88)

Hence we obtain e∗
n,m = −en,m.

Now we exhibit the symmetry relations. Since exactly the
same relations hold both for E (s)

n,m and E (a)
n,m, we write these

generically as En,m. These are

E M
4 +a,b = −E∗

M
4 −a,−b (89)

and

E− M
4 +a,b = −E∗

− M
4 −a,−b. (90)

These relations are straightforwardly obtained from Eqs. (85)
and (86) and the relation e∗

n,m = −en,m. Equations (89) and
(90) are crucial for keeping certain quantities real in later
steps.

Figure 2(a) shows the state of the system at this point. (See
also the explanations of Fig. 1 for information about how to

view the figure.) The symmetry relations make the quantum
amplitudes at B and C, or those of D and E, NCC of each other.
The dumbbell structure symbolically illustrates the “dipole”
nature of �0(k).

D. The randomization step

To strengthen later assumptions described in Sec. IV F,
here we “randomize” the coefficients E (s)

n,m and E (a)
n,m. Again,

we denote them collectively as En,m because it can equally be
taken as E (s)

n,m or E (a)
n,m. This is the randomization step. Let a set

of real values be �n,m, which satisfy

�n+M,m = �n,m+M = �n,m, (91)

� M
4 +n,m = −� M

4 −n,−m. (92)

When not constrained by Eqs. (91) and (92), �n,m are cho-
sen at random from [0, 2π ). From these relations, one finds
� M

4 +n,m = −�− 3M
4 −n,−m, and then obtain, by replacing n with

n − M
2 ,

�− M
4 +n,m = −�− M

4 −n,−m. (93)

One can verify that the replacement of En,m with En,mei�n,m ,
which constitutes the randomization step, does not violate the
symmetry relations.

E. The split inverse Fourier transform

We show that application of split inverse QFT on En,m, after
the randomization step, yields gn,m that is purely imaginary,
because of the symmetry relations. By Eq. (35), we have

gL
ñ,m =

√
2

M

∑
(r,s)∈Ms

E (s)
r,s e−2π i

2

(
r+ M

4

)
ñ+sm

M

=
√

2

M

∑
(r,s)∈Mc

E (s)
r− M

4 ,s
e−2π i 2rñ+sm

M , (94)

and by Eq. (36) we obtain

gH
ñ,m =

√
2

M

∑
(r,s)∈Ma

E (s)
r,s e−2π i

2

(
r− M

4

)
ñ+sm

M

=
√

2

M

∑
(r,s)∈Mc

E (s)
r+ M

4 ,s
e−2π i 2rñ+sm

M . (95)

Superscripts L, H denote “low-pass filtered” and “high-pass
filtered,” respectively, in a similar way with the elastic scatter-
ing case. Replacement of E (s)

r,s with E (a)
r,s results in swapping of

gH
ñ,m and gL

ñ,m, as in

gH
ñ,m =

√
2

M

∑
(r,s)∈Ms

E (a)
r,s e−2π i

2

(
r+ M

4

)
ñ+sm

M (96)

and

gL
ñ,m =

√
2

M

∑
(r,s)∈Ma

E (a)
r,s e−2π i

2

(
r− M

4

)
ñ+sm

M . (97)
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Next, we take complex conjugation of gL
ñ,m:

(
gL

ñ,m

)∗ =
√

2

M

∑
(r,s)∈Mc

E∗
r− M

4 ,se
2π i 2rñ+sm

M

= −
√

2

M

∑
(r,s)∈Mc

E− M
4 −r,−se

2π i 2rñ+sm
M

= −
√

2

M

∑
(r′,s′ )∈Mc

E− M
4 +r′,s′e−2π i 2r′ ñ+s′m

M = −gL
ñ,m,

(98)

where (r, s) = (−r′,−s′). Following similar steps, we obtain
(gH

ñ,m)∗ = −gH
ñ,m. Hence, for both low-pass and high-pass fil-

tered versions, gñ,m is purely imaginary. Define hñ,m ∈ R that
satisfy gñ,m = ihñ,m.

Thus, we obtain Eqs. (71) and (72) as resultant states after
performing split inverse FT if c = 0. We obtain

|a4〉 = i

M

∑
(ñ,m)∈Mc

hL
ñ,m|ñ, m〉 (99)

and

|s4〉 = i

M

∑
(ñ,m)∈Mc

hH
ñ,m|ñ, m〉 (100)

if c = 1.

F. Estimating |η| that quantifies nonideality

Next, we estimate the parameter η that appeared, follow-
ing Eq. (74). We begin with a heuristic discussion. Consider
Eq. (85) givng E (s)

n,m. This is FT of en,m, whose center is placed
at (n, m) = (−M

4 , 0). On the other hand, en,m = ψ0(rn,m − r0)
and hence its FT is essentially �0(k)e−ik·r0 . More precisely,
the correspondence before the randomization step is

E (s)
n,m ≈ F�1(k−n− M

4 ,−m), (101)

where kn,m = kmin(nî + mĵ) and F is a proportionality con-
stant. The negative signs are a consequence of the unfortunate
difference of convention between continuous and discrete FT.

Since �0(k) is large only when k is close to zero, E (s)
n,m

clearly is large at around n ≈ −M
4 , m ≈ 0. By a similar ar-

gument, we find that E (a)
n,m is large near n ≈ M

4 , m ≈ 0. Since
split inverse FT is performed separately in regions Ms and
Ma, |hL

ñ,m| tends to be larger than |hH
ñ,m|.

We present estimation of the magnitude of |η|, which we
believe is reasonably accurate and conceptually transparent.
To make this problem tractable, first, we make a quite reason-
able assumption that |hL

n,m| > |hH
n,m| mostly holds. Hence we

obtain

|η| =
∑

(ñ,m)∈Mc

pñ,m

∣∣∣∣hH
ñ,m

hL
ñ,m

∣∣∣∣, (102)

where

pñ,m ∝ ∣∣hL
ñ,m + iαhH

ñ,m

∣∣2 + ∣∣hH
ñ,m + iαhL

ñ,m

∣∣2
≈ ∣∣hL

ñ,m

∣∣2 + ∣∣hH
ñ,m

∣∣2. (103)

Second, note that the randomization step described above
made all pixels “equal,” in the sense that all spatial frequency
components, which are sinusoidal, are randomly shifted in the
real space and hence there is no special location in the real
space. This encourages us to use an approximation

pñ,m = 2

M2
. (104)

Third, we make a standard approximation that root mean
square roughly equals the mean of absolute values,

|η| ≈
√√√√ 2

M2

∑
(ñ,m)∈Mc

(
hH

ñ,m

hL
ñ,m

)2

. (105)

At this point, we make a brief, purely mathematical, digres-
sion to investigate whether the mean of ratios can be replaced
by the ratio of means. More specifically, let an, bn be series,
where n = 1, 2, . . . , N . We assume that an � bn for all n.
Hence we write an = εnbn, where εn � 1. Write this series
εn = ε + δn, where

∑
n δn = 0. Also write bn = b + dn, where∑

n dn = 0. Consider the mean of ratios

1

N

∑
n

an

bn
= 1

N

∑
n

εn = ε + 1

N

∑
n

δn = ε. (106)

On the other hand, the ratio of means is

1
N

∑
n an

1
N

∑
n bn

=
∑

n εnbn∑
n bn

= ε
∑

n bn +∑
n δnbn∑

n bn
= ε +

∑
n δnbn∑

n bn

= ε + b
∑

n δn +∑
n δndn∑

n bn
= ε +

∑
n δndn

Nb
.

(107)

Comparing these, we conclude that the mean of ratio is close
to the ratio of means if two series δn, dn are only weakly
correlated.

Fourth, going back to the main line of reasoning, we as-
sume that the conditions for the above “theorem” are met
with (hH

ñ,m)2 and (hL
ñ,m)2, where the former is identified with

an while the latter corresponds to bn. Then we may use what
we have just shown to obtain, from Eq. (105),

|η| ≈
√√√√∑

(ñ,m)∈Mc

(
hH

ñ,m

)2

∑
(ñ,m)∈Mc

(
hL

ñ,m

)2 . (108)

Application of Parseval’s theorem to Eq. (94) yields∑
(ñ,m)∈Mc

(
hL

ñ,m

)2 =
∑

(n,m)∈Ms

∣∣E (s)
n,m

∣∣2. (109)

From Eq. (96), we also obtain∑
(ñ,m)∈Mc

(
hH

ñ,m

)2 =
∑

(n,m)∈Ms

∣∣E (a)
n,m

∣∣2. (110)

On the other hand, Eq. (85) says, for all (r, s) ∈ Z2,

E (s)
n,m = E (s)

n+Mr,m+Ms. (111)
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We incorporate this periodicity in Eq. (101) to obtain more
accurate expression:

E (s)
n,m ≈ F

∑
(r,s)∈Z2

�1
(
k−n−M

(
r+ 1

4

)
,−m−Ms

)
ei�n,m . (112)

At this point, we make further approximation that the phase
factor in this equation is totally random. The presence of ran-
domization step described in Sec. IV D prompts us to accept
this assumption. We use a mathematical identity∣∣∣∣∣

∑
k

akeiθk

∣∣∣∣∣
2

=
∑

k

|ak|2 + 2
∑
k �=l

akal cos(θk − θl ), (113)

where ak ∈ R and the second term averages to zero when θk

are all random. We obtain

∣∣E (s)
n,m

∣∣2 ≈ F 2

⎡
⎣ ∑

(r,s)∈Z2

|�1(k−n−M(r+ 1
4 ),−m−Ms)|2

⎤
⎦. (114)

Recall that �0(k), mentioned in Eq. (75), includes a particular
direction a of the dipole. This direction should be regarded
random and our analysis should be averaged over the direction
of a. We assume that such averaging can be done here, rather
than at the final stage of computing |η| without introducing
significant error. Equation (75) can be expressed as

�0(k) =
{

a cos ξ√
θ2+θ2

E

θ < θc

0 θ > θc

, (115)

where ξ is the angle between k and a. Hence

|�1(k)|2 = |�0(k)|2 =
{ a2 cos2 ξ

θ2+θ2
E

θ < θc

0 θ > θc
. (116)

To compute the average of cos2 ξ in three-dimensional space,
we take the z axis parallel to k and move a

a on the unit sphere
U . The average of cos2 ξ is, using obvious notations of polar
coordinates,∫

U
cos2 ξ

dS

4π
= 1

2

∫ π

0
dξ cos2 ξ sin ξ = 1

3
. (117)

Henceforth we use the averaged version �(k) shown below,
instead of |�0(k)|2:

�(k) =
{ a2

3
1

θ2+θ2
E

θ < θc

0 θ > θc
, (118)

where the factor a2

3 is not important after all.
Recalling that ka,b = kmin(aî + bĵ), we approximate a sum

by an integral:∑
(n,m)∈Ms

|E (s)
n,m|2k2

min

≈ F 2
∑

(r,s)∈Z2

∫
D

d2k�(k + kmax(r î + sĵ)), (119)

where D denotes a region

D =
{

(kx,ky)| − kmax

4
< kx <

kmax

4
, −kmax

2
< ky <

kmax

2

}
,

(120)

where (kx, ky) ∈ R2. Equivalently, one can define a region S ,
which is a set of “stripes,”

S =
⋃
r∈Z

{
(kx,ky)|r − 1

4
<

kx

kmax
< r + 1

4

}
, (121)

to express ∑
(n,m)∈Ms

∣∣E (s)
n,m

∣∣2k2
min ≈ F 2

∫
S

d2k�(k). (122)

A similar argument on E (a)
n,m yields

A =
⋃
r∈Z

{
(kx,ky)|r + 1

4
<

kx

kmax
< r + 3

4

}
(123)

and ∑
(n,m)∈Ms

∣∣E (a)
n,m

∣∣2k2
min ≈ F 2

∫
A

d2k�(k). (124)

Thus we obtain

|η| ≈
√∫

A d2k�(k)∫
S d2k�(k)

. (125)

We call the right-hand side μ hereafter.
Figure 2(b) is a conceptual picture relevant to the above

argument, which the reader may find useful. Figure 2(c) shows
μ as a function of β = λ

2σ
, where λ = 1.97 pm is the wave-

length of 300 keV electrons.

G. Multiple inelastic scattering in a single round of quantum
measurement

Consider the effect of multiple inelastic scattering. Sup-
pose that they occurred w times. We first note that, in the
above entire reasoning, the parameter α in Eq. (47) could have
been any complex number. We explicitly write α = ρ + iκ ,
and the state before inelastic scattering is

|s〉 + (iρ − κ )|a〉. (126)

After inelastic scattering, we obtain

(|s〉 + iα|a〉) + η(|a〉 + iα|s〉)

= (1 + iρη − κη)|s〉 + (iρ − κ + η)|a〉. (127)

Assuming that ρη and κη are small, this state approximately
equals

|s〉 + (iρ − κ + η)|a〉. (128)

This shows that the effect of inelastic scattering additively
accumulates. In other words, after n inelastic scattering, each
with associated η parameter ηi, i = 1, 2, . . . , n, we obtain a
Q1 state of a form

|s〉 +
(

iρ +
n∑

i=1

ηi

)
|a〉. (129)

To develop a rough picture, assume that all ηi have the same
absolute value μ > 0 derived in Eq. (125), but their signs are
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random. Then
∑w

i=1 ηi represents random walk on the real
line, which results in ∣∣∣∣∣

w∑
i=1

ηi

∣∣∣∣∣ ≈ √
wμ. (130)

H. Estimating the final outcome of imaging

Finally, we consider how the accumulated error
√

wμ af-
fects our measurement. Consider a general qubit state

|ψ〉 = e−i ϕ

2 cos
θ

2
|0〉 + ei ϕ

2 sin
θ

2
|1〉, (131)

where θ, ϕ are latitude and longitude on the Bloch sphere,
respectively. Comparing with Eq. (129) and (130), we find that
θ, ϕ correspond to ρ,

√
wμ as

ϕ = −2ρ, (132)

θ = π

2
− 2

√
wμ = π

2
− �, (133)

where we defined � to indicate the angular deviation from the
ideal great circle on the Bloch sphere, which passes the states
|s〉, |a〉, |↑〉, |↓〉. Hence |ψ〉 expressed in terms of θ, ϕ is

|ψ〉 = eiρ cos

(
π

4
− �

2

)
|0〉 + e−iρ sin

(
π

4
− �

2

)
|1〉.

(134)
Using the basis state |↑〉, |↓〉, we obtain (multiplying an over-
all phase factor ei ϕ

2 )

|ψ〉 = C↑|↑〉 + C↓|↓〉, (135)

where

C↑ = cos θ
2 − ieiϕ sin θ

2√
2

, (136)

C↓ = cos θ
2 + ieiϕ sin θ

2√
2

, (137)

and hence

p↑ = |C↑|2 = 1 + sin θ sin ϕ

2

= 1 − cos � sin(2ρ)

2
≈ 1

2
− ρ cos �, (138)

p↓ = |C↓|2 ≈ 1
2 + ρ cos �. (139)

Hence the signal we want to detect, ρ, weakens by the factor
cos �.

Next, we consider improvement in terms of signal-to-noise
ratio (SNR). A single round of quantum measurement com-
prises transmission of k electrons through the specimen. The
number of inelastic scattering events in a single round of
quantum measurement is, on average,

w = kt

�
, (140)

where k is the repetition number, t is the specimen thickness,
and � is the inelastic mean free path. Let half the phase
difference between specimen areas 0 and 1, where the elec-
tron states |0〉, |1〉 are respectively focused, that we want to

measure, be θ . The accumulated phase after a single round
of quantum measurement, weakened by inelastic scattering
events, is

kθ cos � = kθ cos(2
√

wμ) = kθ cos

(
2

√
kt

�
μ

)
. (141)

We use N electrons and try this N
k times. In the language

of binomial distribution B(n, p), where n = N
k and p = 1

2 +
kθ cos � in the present case, the mean is np = N

2k + Nθ cos �

and the variance is np(1 − p) ≈ N
4k . We divide the signal

Nθ cos � (142)

by noise, which is square root of the variance

1

2

√
N

k
. (143)

We want to find the optimal repetition number k2, which
maximizes SNR. To find k2, we may consider a quantity that
is square of the ratio of Eq. (142) to Eq. (143):

4Nkθ
2

cos2 � ∝ k cos2

(
2

√
kt

�
μ

)
= F (k). (144)

Then, we should get dF (k)
dk = 0 at k = k2. We find a condition

dF (k)

dk
= cos2 ξ − ξ cos ξ sin ξ = 0,

or equivalently

1

ξ
= tan ξ, (145)

in terms of

ξ = 2

√
kt

�
μ. (146)

Numerical solution to this equation turns out to be ξ = 0.86
and we further obtain ξ 2 = 0.74. Thus we get

k2 = ξ 2

4μ2

�

t
≈ 0.74

4μ2

�

t
, (147)

and improvement of S/N is

√
k2 cos

(
2

√
k2t

�
μ

)
=
√

k2 cos ξ . (148)

When μ2 is large at low resolution, we may as well not
perform inelastic scattering neutralization. In the absence of
inelastic scattering neutralization, the optimal k is k1 = �/t
and improvement of S/N ratio is

√
k1/e = √

�/et as shown
in Eq. (1). These results show advantage of inelastic scattering
neutralization because we can use a larger k2 than k1 when μ2

is small, as shown in Eq. (147). Otherwise we should employ
k1. In this case, S/N ratios given by Eqs. (1) and (148) turn
out to be similar. Indeed, numerically, cos ξ ≈ 0.65 is close
to 1√

e
≈ 0.61, indicating that Eq. (148) is not too bad with

a moderately large μ2, although our calculations implicitly
assumed a small μ2. See Sec. V for information about the
repetition number k that the experimenter should choose at
a given SF.
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FIG. 3. The optimal repetition number k, enabled by inelas-
tic scattering neutralization, is plotted against β = λ/2σ , where σ

is resolution of interest. For example, β = 2 mrad corresponds to
σ = 0.5 nm. The phase resolution is improved by ≈0.65

√
k. The

dash-dotted curve and the solid curve correspond to kopt defined in
the main text for �/t = 10 and 5, which roughly correspond to
the specimen thickness of t ≈ 30 nm and 60 nm, respectively. On
the other hand, radiation damage governs the allowed number of
electrons Nsq (the dotted curve) and the actual repetition number k
should equal min{kopt, Nsq}.

Since it is better not to use ISN when μ2 is too large, we
define kopt = max{k2, k1}. On the other hand, k cannot exceed
the dose limit Nsq of Eq. (14). Figure 3 shows how kopt and
Nsq depend on β = λ/2σ .

V. EXPECTED IMPROVEMENT: A SIMULATION STUDY

To visually assess the improvement afforded by ISN,
we simulate imaging of the Marburg virus VP35 domain
molecule [24]. Figure 4 shows the result. The noiseless map
of phase shift shown in Fig. 4(a) is produced by multislice
simulation as described in Appendix D. Figures 4(b)–4(f) are
addition of the phase map and noise. Figure 4(b) shows the
case without quantum advantage. (However, SF-dependent
electron dose control mentioned in Sec. III A is employed and
hence this is not conventional TEM imaging.) Figures 4(c)
and 4(d) show simulated images with and without ISN for a

FIG. 4. Simulated images of the Marburg virus VP35 domain
molecule [24]. (a) A bandpass-filtered phase map. (b) Imaging
without quantum enhancement, i.e., the repetition number k = 1.
(c) QEM imaging without inelastic scattering neutralization (ISN),
wherein k1 = �/t = 10, roughly corresponding to a specimen thick-
ness t ≈ 30 nm. (d) QEM imaging with ISN. The repetition number
is k̃2, where �/t = 10. (e) QEM imaging without ISN, wherein
�/t = 5 (i.e., specimen thickness t ≈ 60 nm). (f) QEM imaging
with ISN, wherein �/t = 5. The horizontal length of all images is
10 nm.

thin (≈30 nm) specimen, whereas Figs. 4(e) and 4(f) show
corresponding images for a relatively thick (≈60 nm) speci-
men. For simplicity, we assume that energy loss E is always
20 eV [25]. All computations are performed on 240 × 240
pixels image data, with each square pixel having the side
length l = 0.05 nm. We label each pixel with a pair of integers
(n, m), each of which ranges from −120 to 119.

In what follows, we describe the procedure to generate
noise in each case. Typically, although not always, many
rounds of quantum measurements, each involving k electron
passing events, are performed for each pixel. Hence we expect
the noise to be approximately Gaussian, which approximates
the binomial distribution. In all three imaging methods—i.e.,
TEM with no quantum enhancement but with SF-dependent
dose control, “conventional QEM,” and QEM with ISN—the
amount of noise depends on

β = q

kz
= π

σkz
= λ

2σ
, (149)

where kz is the wave number along the optical axis, and λ =
2π/kz ≈ 1.97 pm is the wavelength of 300 keV electrons.
Equation (149) is valid insofar as the vector q may be regarded
as being perpendicular to the optical axis.

Specific steps are the following. First, we generate real-
valued, independent gaussian noise, with zero mean and unit
variance, in each pixel on the image plane. Second, we per-
form fast Fourier transform (FFT) to obtain the noise in the
diffraction plane, which results in a complex-valued map.
The pixel (0, 119) in the map, for example, corresponds to
a scattering angle

β ≈ sin β = λ

2l
= 1.97 pm

2 × 0.05 nm
× 119

120
= 19.5 mrad.

(150)
Third, to the map on the diffraction plane we multiply a
function that describes the q-dependent amplitude of noise.
For the “classical” case of Fig. 4(b), we multiply the standard
deviation of shot noise

1√
Nsq

= 1√
FsqA

=
√

Rq4

32π5ζ
=
√

R

32π5ζ

q2

k2
z

k2
z

= 10−6

λ2

√
R

2πζ

(
β

mrad

)2

= (β/mrad)2

186
, (151)

where ζ = 0.255 as described in Sec. III A. Uncertainties
associated with parameters such as R, ζ do not warrant the
precision appearing in the numerical value 186, but we use
this value in the simulation anyway. Equation (151) over-
estimates noise when Nsq < 1, where we do not perform
measurement and hence there is no noise (and no signal).
However, computed images in Fig. 4 is bandpass-filtered any-
way, and hence this particular artefact does not matter.

The images shown in Figs. 4(c)–4(f) have smaller noise
than Eq. (151) indicates, because of quantum advantage. To
discuss degrees of noise reduction, using k1, kopt, and ξ de-
fined in Sec. IV H, we define

k̃1 = max{min{k1, Nsq}, e} (152)
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and

k̃2 = max{min{kopt, Nsq}, cos−2 ξ}. (153)

We obtain cos−2 ξ = 2.35 from Eq. (145). Hence Eq. (153)
can more specifically be written as, noting

√
0.74/4 = 0.43,

k̃2 = max

{
min

{
k1 max

{(
0.43

μ

)2

, 1

}
, Nsq

}
, 2.35

}
.

(154)
Remark: Figure 2(c), along with Fig. 3, clearly show that the
resolution, at which Nsq = 2.35, is much higher than another
resolution, where μ = 0.43 holds.

For the QEM cases, we multiply factors of noise reduction
compared to the classical case of Eq. (151). They are, first,

√
e

k̃1
(155)

for QEM without ISN and second,

1√
k̃2 cos ξ

(156)

for QEM with ISN.
Here we elaborate on Eq. (152) somewhat. Since the noise

reduction factor compared to classical imaging is
√

e
k̃1

, there

is no point in employing k̃1 less than e. One would simply
perform classical measurement in this case. The outermost
“max” function in Eq. (152) ensures that we get at least the
classical performance. Otherwise we would use k1 as the
repetition number, unless k1 exceeds the dose limit Nsq. In
the latter case, we take Nsq as the repetition number of the
quantum measurement.

The idea behind Eq. (154) for k̃2 is similar. Once again, the
outermost “max” function ensures the classical performance
in the worst case. The “min” function in it ensures that we do
not exceed the dose limit Nsq. The innermost “max” function
makes sure that ISN is employed only when it is advanta-
geous, compared to “conventional” QEM, to do so.

Fourth and finally, we apply inverse FFT to obtain
spatial-frequency-weighted noise patterns. The result should
mathematically be real, but the real part should be taken in
actual numerical computation. The resultant noise patterns are
simply added to the phase map, i.e., θ (x, y) of the exit wave
1 + iθ (x, y) [shown in Fig. 4(a)] to obtain Figs. 4(b)–4(f).

A bandpass filter is applied to images because the improve-
ment by ISN is mainly at high resolution and visually rather
subtle, requiring removal of large low resolution components.
Thus all six images are filtered by multiplying a function
e−β2/2β2

H (1 − e−β2/2β2
L ) in the βxβy-space, where β2 = β2

x +
β2

y , βL = 2 mrad and βH = 3.5 mrad. The contrast of all im-
ages in Fig. 4(a)–4(f) are adjusted in the following way. Given
a numerical array representing an image, the mean μ̄ and
the standard deviation σ̄ are computed. The highest and the
lowest brightness in each presented image are then made to
correspond to the values μ̄ + 5σ̄ and μ̄ − 5σ̄ , respectively.
Finally, the images are cropped to the size of approximately
80 × 200 pixels for presentation.

VI. CONCLUSION

In summary, it is in principle possible to neutralize, to the
extent we discussed, inelastic scattering especially at high res-
olution. We conjecture that this is essentially the fundamental
limit of electron microscopy of beam sensitive specimens,
when performing standard imaging. On the other hand, non-
standard imaging, such as image verification [26] among other
possibilities, is worth further study.
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APPENDIX A: ENTANGLEMENT ENHANCED ELECTRON
MICROSCOPY: A BRIEF INTRODUCTION

In this Appendix, we briefly review entanglement-
enhanced electron microscopy [11–13] for readers who are
unfamiliar with the scheme. This review purposely avoids
the implementation aspect of the scheme, such as the use of
superconducting quantum devices. Instead, we focus on prin-
ciples, and therefore we take it for granted that all theoretically
possible operations, such as unitary transformations, addition
of an initialized ancilla qubit, and measurements on arbitrary
subsystems are possible. We ignore the spin of the electron,
regarding it to be decoupled from the degrees of freedom of
interest. We intend to make Appendix A as self-contained as
possible. As a result, there are few redundancies with the main
text.

Let the electron states |0〉, |1〉 be ones that are localized
on nonoverlapping regions 0 and 1 on a biological specimen
when the electron passes the specimen. Recall that the speci-
men may be regarded as a weak phase object in cryoEM. We
want to measure the difference in phase shifts between the
regions 0 and 1. Keep in mind that there are many electron
states other than |0〉, |1〉. Define symmetric and asymmetric
states as

|s〉 = |0〉 + |1〉√
2

, |a〉 = |0〉 − |1〉√
2

. (A1)

Let the initial electron state be |0〉. Consider a separate two-
state system (call it qubit Q1) with basis states |0〉, |1〉, where
the bar indicates that the state belongs to Q1. Another set
of basis states |s〉, |a〉 for Q1 is defined in terms of |0〉, |1〉
exactly as in Eq. (A1). Suppose that Q1 is in the state

|α〉 = eiα|0〉 + e−iα|1〉√
2

, (A2)

for some α, whose significance will be apparent shortly. We
occasionally write a state of the combined system of an elec-
tron in a state u, and the qubit in a state v, as

|uv〉 = |u〉 ⊗ |v〉. (A3)

Hence we write the current state as |0α〉. Let U be a unitary
operation, which flips the electron state as |0〉 ⇒ |1〉, |1〉 ⇒
|0〉 if and only if the qubit is in the state |1〉. (This should
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be realizable with a superconducting qubit [11–13].) In other
words,

α|0〉 + β|1〉 ⇒ β|0〉 + α|1〉 (A4)

if and only if the qubit is in the state |1〉. In short, U is the
quantum controlled-NOT gate in the language of quantum
information science. We apply U to the electron-qubit system
in the initial state |0α〉, which results in

eiα|00〉 + e−iα|11〉√
2

. (A5)

Upon passing the biological specimen, the two electron states
|0〉, |1〉 acquire different phase shifts as

|0〉 ⇒ eiθ |0〉, |1〉 ⇒ e−iθ |1〉, (A6)

where θ is half the relative phase shift between the specimen
regions 0 and 1, which correspond respectively to the local-
ized electron states |0〉, |1〉. Our objective is to determine θ as
precisely as possible. After the electron transmits through the
specimen, the state of the entire system is

ei(α+θ )|00〉 + e−i(α+θ )|11〉√
2

= |s〉√
2

⊗ ei(α+θ )|0〉 + e−i(α+θ )|1〉√
2

+ |a〉√
2

⊗ ei(α+θ )|0〉 − e−i(α+θ )|1〉√
2

. (A7)

Next, we measure the electron state in the basis {|s〉, |a〉}. If
the measurement outcome indicates |s〉, then the qubit is left
in the state

ei(α+θ )|0〉 + e−i(α+θ )|1〉√
2

. (A8)

Likewise, when the outcome indicates |a〉, then the qubit state
is

ei(α+θ )|0〉 − e−i(α+θ )|1〉√
2

, (A9)

which can readily be brought to Eq. (A8) by the Pauli-Z-gate
operation |0〉 ⇒ |0〉, |1〉 ⇒ −|1〉. Thus, the overall effect of
passing an electron through the specimen is to have the qubit

state evolution from Eq. (A2) to Eq. (A8). This means that
we can start with α = 0 and repeat the process k times, which
means that k electrons pass the specimen, to obtain the state

eikθ |0〉 + e−ikθ |1〉√
2

. (A10)

Consequently, the small phase shift θ accumulate on Q1 k
times. Next, we measure this qubit state with respect to the
basis states

|↑〉 = |0〉 + i|1〉√
2

, |↓〉 = |0〉 − i|1〉√
2

. (A11)

Hence Eq. (A10) equals

1

2
{eikθ (|↑〉 + |↓〉) − ie−ikθ (|↑〉 − |↓〉)} = eikθ − ie−ikθ

2
|↑〉 + eikθ + ie−ikθ

2
|↓〉

= e−i π
4

ei
(

π
4 +kθ

)
+ e−i

(
π
4 +kθ

)
2

|↑〉 + ei π
4

ei
(

π
4 −kθ

)
+ e−i

(
π
4 −kθ

)
2

|↓〉. (A12)

Hence probabilities for the two outcomes ↑, ↓ are

p↑ = cos2

(
π

4
+ kθ

)
, p↓ = cos2

(
π

4
− kθ

)
. (A13)

Hence we obtain

p↑ = 1 − sin 2kθ

2
, p↓ = 1 + sin 2kθ

2
. (A14)

(Further consideration shows that the Pauli-Z gate operations
mentioned above does not have to be performed at all, as
long as we count the number of measurement outcomes cor-
responding to |a〉.) This form of probability offers advantage
over the conventional method that use k electrons separately,
i.e., a set of k measurements, each with

p̂↑ = 1 − sin 2θ

2
, p̂↓ = 1 + sin 2θ

2
. (A15)

for the following reasons. Assume kθ � 1 for simplicity
and consider the quantum-enhanced case represented with
Eq. (A14) first. Let a random variable X be such that its

value is 1 when the measurement outcome is ↑ and otherwise
0. The expectation value of X is 〈X 〉 = p↑ = (1 − 2kθ )/2,
while the standard deviation is σ (X ) = √

p↑ p↓ ≈ 1/2. Con-
sider another random variable Y = 1−2X

2k , which is designed to
have the property 〈Y 〉 = θ . Its standard deviation is σ (Y ) ≈ 1

2k
because σ (Y ) = √

Var(Y ) and

Var(Y ) = Var

(
1 − 2X

2k

)

= 1

k2
Var(X ) = 1

k2
σ 2(X ) = 1

4k2
. (A16)

On the other hand, consider the “classical” case, where a
measurement represented by Eq. (A15) is repeated k times.
A relevant random variable here is Z ∼ B(k, p̂↑), where
B(k, p̂↑) is the binomial distribution, with 〈Z〉 = k p̂↑ = k(1 −
2θ )/2 and σ (Z ) = √

k p̂↑ p̂↓ ≈ √
k/2. Take another random

variable W = 1
2 − Z

k designed for the property 〈W 〉 = θ .

022605-17



HIROSHI OKAMOTO PHYSICAL REVIEW A 106, 022605 (2022)

One finds σ (W ) ≈ 1
2
√

k
, which is worse than the quantum-

enhanced case.
It is instructive to view the exact same measurement pro-

cess from the perspective of another basis {|s〉, |a〉} and
{|s〉, |a〉}. The Q1 state |σ 〉 in Eq. (A2) is expressed as

|σ 〉 = cos α|s〉 + i sin α|a〉. (A17)

The initial electron state is

|0〉 = |s〉 + |a〉√
2

. (A18)

As is well known and readily verifiable, roles of the con-
trol qubit and the target qubit of the controlled-NOT gate are

swapped upon the change of the basis states. The controlled-
NOT U flips the qubit state as |s〉 ⇒ |a〉, |a〉 ⇒ |s〉 if and only
if the electron is in the state |a〉. Applying U to the combined
initial state |0α〉, we obtain

cos α

( |ss〉 + |aa〉√
2

)
+ i sin α

( |sa〉 + |as〉√
2

)
. (A19)

Equation (A6) now states

|s〉 ⇒ cos θ |s〉 + i sin θ |a〉, |a〉 ⇒ cos θ |a〉 + i sin θ |s〉.
(A20)

Hence, after the electron passes the specimen, the entire state
is

cos θ

[
cos α

( |ss〉 + |aa〉√
2

)
+ i sin α

( |sa〉 + |as〉√
2

)]
+ i sin θ

[
cos α

( |sa〉 + |as〉√
2

)
+ i sin α

( |ss〉 + |aa〉√
2

)]

= cos(α + θ )

( |ss〉 + |aa〉√
2

)
+ i sin(α + θ )

( |sa〉 + |as〉√
2

)
. (A21)

We measure the electron state in the basis {|s〉, |a〉}. If the
measurement outcome is |s〉, then the qubit is left in the state

cos(α + θ )|s〉 + i sin(α + θ )|a〉. (A22)

Likewise, if the outcome is |a〉, then we obtain

cos(α + θ )|a〉 + i sin(α + θ )|s〉. (A23)

This state can readily be brought to the form Eq. (A22) by the
operation |s〉 ⇐⇒ |a〉. The measurement of Q1 after passing
k electrons proceeds in the same way described in the above.
In summary, we see that, in this alternative basis, the electron
wave gets scattered from the state |s〉 to |a〉 or vice versa with a
small amplitude ≈ iθ . This amplitude accumulates in the state
|a〉 of Q1.

Finally, we consider processes that lead to failure of the
measurement. The first such process is inelastic electron scat-
tering. In the simplest case, the probe electron excites a
localized degree of freedom of the specimen. This leads to,
for example, ejection of a K-shell electron in the specimen.
The probe electron position is effectively “measured” in this
process because the excitation is localized within the region
0 or 1. Hence, the electron is projected onto a state that has
overlap with only one of the states |0〉 and |1〉. As a result, the
state Eq. (A5) gets disentangled and the qubit state is projected
onto |0〉 or |1〉. Thus, we completely lose the information
encoded in the parameter α. We waste all the dose budget
corresponding to κ � k electrons if such inelastic scattering
happens after using κ electrons in the round of measurement.
Fortunately, K-shell ejection processes have small scattering
cross sections in cryoEM [13]. A somewhat more delocalized
plasmon excitations are much more frequent. (The typical en-
ergy loss due to plasmons is �E ≈ 20 eV [25].) The problem
is less severe at higher resolution, where regions 0 and 1 are
close, because both the states |0〉 and |1〉 may be within the
delocalization length. In the far field, the degree of localiza-
tion manifests itself as the angular spread of the inelastically
scattered wave. For example, if excitation of an atom caused
localization of the electron wave to an atomic dimension δx,

then the spread of the scattered wave ∼λ/δx would be much
larger than what is observed. Our hope is to keep the absolute
amplitudes pertaining to |0〉 and |1〉 balanced after an inelastic
scattering event. In the present work, we wish to determine
whether the detected electron originates from the state |s〉 or
|a〉, in spite of the angular spread caused by inelastic scatter-
ing. See the main text for our strategy.

The second process that may lead to failure of measure-
ment is elastic scattering. This process involves electron states
outside the Hilbert space spanned by |0〉 and |1〉. Call them
|2〉, |3〉, . . . . These states can naturally be introduced into
Eq. (A20) as states pertaining to “other scattering angles” as

|s〉 ⇒ cos θ |s〉 + i sin θ |a〉 + ε2|2〉 + ε3|3〉 + · · · ,

|a〉 ⇒ cos θ |a〉 + i sin θ |s〉 + η2|2〉 + η3|3〉 + · · · , (A24)

where εi and ηi are unknown complex amplitudes and the
right-hand side is no longer normalized. Note that, in the basis
|0〉, |1〉, this relation is expressed as

|0〉 ⇒ eiθ |0〉 + ε2 + η2√
2

|2〉 + ε3 + η3√
2

|3〉 + · · · ,

|1〉 ⇒ e−iθ |1〉 + ε2 − η2√
2

|2〉 + ε3 − η3√
2

|3〉 + · · · , (A25)

which also represents scattering into other states. Now, sup-
pose that we found the electron in the state |2〉 due to
elastic scattering. Then, Eq. (A19) is transformed into a Q1
state

cos α

(
ε2|s〉 + η2|a〉√

2

)
+ i sin α

(
ε2|a〉 + η2|s〉√

2

)
. (A26)

This is a disaster from which we cannot recover. One way to
avoid it is to detect the electron in a state that has a compo-
nent of the form |0〉 + eiθ |1〉 alongside |2〉, |3〉, · · · [11,13].
However, this mixes |s〉 and |a〉, making handling of inelastic
scattering difficult. In the main text, we describe a satisfactory
solution to this problem.
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APPENDIX B: DATA ANALYSIS WITH A SHIFTED
ELECTRON BEAM ARRAY

The scheme in the main text uses an array of focused elec-
tron beams. However, a focused electron beams would quickly
destroy the specimen at the focal points. Nonetheless, focused
electron beams are suitable for a proposed quantum electron
detector [14] that could, in principle, transfer the electron state
to a quantum information processor. To solve this problem of
specimen damage, we propose to shift the beam array every
time a single round of quantum measurement is done. Below
we describe how to process the data obtained in that way. Note
that, within a single round using k electrons, we need to focus
the beam at the same point, or at least these k focal points
should all be within an area that equals the desired resolution
squared.

We consider a 1D case with M � 1, without losing the gist
of the argument. Hence we consider a 1D map of phase shift
θ (x), and we measure

θ = 1

M

∑
− M

2 �n< M
2

(−1)nθn, (B1)

where θn = θ (nσ ).
We show that this measurement detects SFs

q = π

σ
,

3π

σ
,

5π

σ
, · · · (B2)

in the case M → ∞. (Alternatively, the reader may convince
themselves by drawing diagrams.) Define δS (x) as

δS (x) =
∑
n∈Z

δ(x − 2nσ ) −
∑
n∈Z

δ(x − σ − 2nσ ). (B3)

Then, from Eq. (B1) we obtain, since M = L
σ

,

θ = lim
L→∞

σ

L

∫ L
2

− L
2

θ (x)δS (x) dx. (B4)

By Plancherel’s theorem, the integral part in the above equals,
noting δS (x) = δ∗

S (x),∫ ∞

−∞
θ (x)δ∗

S (x) dx =
∫ ∞

−∞
�(q)�∗

S (q)
dq

2π
, (B5)

where

�(q) =
∫ ∞

−∞
θ (x)e−iqx dx (B6)

and

�S (q) =
∫ ∞

−∞
δS (x)e−iqx dx

= (1 − e−iqσ )
∑
n∈Z

δ

(
qσ

π
− n

)

= 2π

σ

∑
m∈Z

δ

(
q − (2m + 1)π

σ

)
, (B7)

where we used an identity
∑

n∈Z e2π inx = ∑
n∈Z δ(x − n).

Putting results together, we find

θ ∝
∑
m∈Z

∫ ∞

−∞
�(q)δ

(
q − (2m + 1)π

σ

)
dq

2π
, (B8)

which is what we wanted to show.
Of the SFs in Eq. (B2), virtually only q = π

σ
is important

because finer structures are generally smaller in cryoEM (see
Sec. II). The scheme is insensitive to all other SFs, as shown
above. Hence we focus on the q = π

σ
component, that is of the

form

θ (x) = A cos(qx + φ) = A cos

(
π

σ
x + φ

)
. (B9)

Equation (B1) yields, for θn = θ (nσ ),

θ = A cos φ. (B10)

To obtain full information, we do another measurement at
θn = θ (nσ + σ

2 ) to obtain

θ = −A sin φ. (B11)

Equations (B10) and (B11) clearly give A and φ, which are all
the information about the spatial frequency q = π

σ
.

To avoid excessive damaging of the specimen at x = n
2σ ,

where n ∈ Z, consider measurements at x = ( n
2 + δ

π
)σ for

some δ. Equation (B9) shows that, in this case, we can replace
φ with φ + δ in all the calculation above. Thus we obtain

θ = A cos(φ + δ) (B12)

for θn = θ ((n + δ
π

)σ ) and

θ = −A sin(φ + δ) (B13)

for θn = θ ((n + 1
2 + δ

π
)σ ). Clearly, Eqs. (B12) and (B13)

yield A and φ as well.

APPENDIX C: ELECTRON WAVEFUNCTION AFTER
INELASTIC SCATTERING

1. Brief review of inelastic scattering

Here we review some known facts about inelastic scat-
tering, in part because we also want to fix notations. See
Refs. [22,23] for further information. Let a0 be Bohr radius
4πε0 h̄2

mee2 . Let R be Rydberg energy h̄2

2mea2
0
. Consider incident

electron plane wave eiki ·r = 〈r|ki〉 and an outgoing plane
wave eik f ·r = 〈r|k f 〉. Upon inelastic scattering, the specimen
is excited from the “ground state” |g〉 to an excited state |e〉.
Let the scattering vector be q = k f − ki. Let the Hamiltonian
be H = Hp + H0 + V , where Hp is the kinetic energy of the
probe electron, while H0 contains kinetic energy of (possibly
multiple) nuclei and electrons in the specimen, and the poten-
tial energy describing their interactions. In short, Hp + H0 is
the noninteracting part in terms of the probe-specimen inter-
action. Let the number of relevant electrons involved within
the specimen be N . The interaction term V , which describes
interaction between the probe electron and the specimen, is

V (r) = VN + e2

4πε0

N∑
i=1

1

|r − ri| , (C1)

where VN describes interaction between the probe electron
and the atomic nuclei; and ri is the position of ith electron
in the specimen. Let the specimen wave function, e.g., the one
pertaining to the ground state �(r1, r2, · · · , rN ) be antisym-
metrized already. Theory of inelastic scattering tells us that
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the differential scattering cross section is

dσ

d�
= m2

e

4π2h̄4

k f

ki
|〈 f |V |i〉|2, (C2)

where |i〉 = |kig〉 and | f 〉 = |k f e〉. (Note that dimension of
|ki〉, |k f 〉 is L

3
2 because they are normalized as 〈k f |ki〉 =

(2π )3δ2(k f − ki ).) The same quantity is often expressed us-
ing the generalized oscillator strength (GOS) f (q) as

dσ

d�
= 4γ 2R

Eq2

k f

ki
f (q). (C3)

The GOS is known to reduce to the dipole oscillator strength
when q → 0. (The question of “Compared to what?” will be
answered shortly.) Equation (C3) is used not only for excita-
tions of inner shell electrons or that of isolated atoms, but also
in the case of outer-shell excitations, where chemical bond-
ings between atoms play a role, and collective excitations such
as plasmons. In all these cases, f (q) tends to have a constant
value in the dipole region [22]. Henceforth we assume that
most of relevant scattering is in the dipole region. In this case,
GOS is known to be expressed as

f (q) = E

R

|ε(q)|2
(qa0)2

, (C4)

where ε(q) is the inelastic form factor. The dimensionless
form factor ε(q) is given as

ε(q) =
N∑

i=1

〈e|eiq·ri |g〉 = N〈e|eiq·r1 |g〉. (C5)

The second equality holds because all electrons are identical
particles and equivalent. Expanding this, we obtain

N〈e|eiq·r1 |g〉 = N〈e|g〉 + Niq · 〈e|r1|g〉 + · · · . (C6)

The first, zeroth-order term vanishes by orthogonality. We
assume that the spatial extent of relevant bound electron states
are small compared to 2π

q , so that the second and higher-order
terms are negligible, which is another way to say that we work
in the dipole region. Hence we obtain

ε(q) = q · a, (C7)

where a = Ni〈e|r1|g〉.

2. Assumption about dipole-region scattering

The vector a = Ni〈e|r1|g〉 may have real and imaginary
parts, as in

a = aR + iaI , (C8)

where both aR and aI are real vectors with unknown directions
and lengths. At this point, we make a second assumption that
aR and aI are parallel to each other. Then we can regard
the vector a simply as a real vector, up to an unimportant
overall phase factor eiu that we omit hereafter. To visualize
the meaning of this assumption, suppose, instead, that aR ∝ î
and aI ∝ ĵ. We will later see that the scattered electron wave
in the far field is essentially ε(q)

q2 . We also note that relevant q
approximately lies within the xy plane. We find that the above

wave function

ε(q)

q2
= q · aR + iq · aI

q2
(C9)

cannot be superposed onto its own mirror image, unless we
“peel the wave function off the xy plane.” The word “dipole re-
gion” feels inappropriate for this kind of state, which we may
call chiral, although there appears to be no such definitions in
the literature, presumably because only the statistical average
of the square of wave functions mattered thus far. Hence our
second assumption is that the scattered electron state is achiral
in the above sense.

3. The exit wave after inelastic scattering

Consider the wave function of the probe electron right after
inelastic scattering. Let the time evolution operator be U (t ).
Noting that 〈k f e|�final〉 is the wave function of the final state
in the reciprocal space �0(k f ), we intend to find, for a large t ,

�0(k f ) = 〈k f e|�final〉 = 〈k f e|U (t )|kig〉 = 〈 f |U (t )|i〉.
(C10)

On the other hand, the following expression appears in stan-
dard derivations of Fermi’s golden rule:

〈 f |U (t )|i〉 = −〈 f |V |i〉
h̄ω

(eiωt − 1)

= − it

h̄
〈 f |V |i〉ei ωt

2
sin( ωt

2 )
ωt
2

. (C11)

It is also known that (the reader may convince themselves,
using contour integration etc.)

k
sin kx

kx
k→∞−−−→ πδ(x). (C12)

Using this, the above expression is modified to

〈 f |U (t )|i〉 t→∞−−−→ −2π i

h̄
〈 f |V |i〉ei ωt

2 δ(ω). (C13)

If we restrict the range of k f to ones that satisfy energy con-
servation of the inelastic scattering process, we can omit the
factor δ(ω) to obtain, neglecting the unimportant proportional
factor

〈 f |U (t )|i〉 t→∞−−−→ 〈 f |V |i〉. (C14)

Hence we obtain

�0(k f ) ∝ 〈 f |V |i〉 = 〈k f e|V |kig〉.
We find, using Eqs. (C2), (C3), and (C4), this is proportional
to

ε(q)

q2
∝ q · a

q2
. (C15)

Recall that q is a shorthand for k f − ki. We write the energy
of the incident electron as

EK =
√

m2
ec4 + c2 p2 − mec2 = ER − mec2, (C16)

where we also defined ER. In terms of the scattering angle θ ,
measured from the original direction ki, standard considera-
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tions [22] yield the wave function

ψ (k f ) ∝ 1

q

(
q
q

)
· a = 1

ki

√
θ2 + θ2

E

(
q
q

)
· a, (C17)

where θE = �k
ki

≈ E
2EK

. Its numerical value is θE = 41 μrad
for EK = 300 keV and E = 20 eV. This is very small com-
pared to typical scattering angles, and hence variation of E
affects only the region θ � θE . This is why we mentioned,
in Sec. IV A, that the scattered electron state only weakly
depends on the final state |e〉 of the specimen, thus justifying
our not using mixed quantum states.

At a larger scattering angle, we impose a cutoff to �0(k f )
at the Bethe ridge at the scattering angle θc. Suppose that
an incident electron, with energy EK , knocks a single bound
electron off its bound state with a binding energy EB. Purely
kinematic considerations on energy and momentum conserva-
tion, where we assume that the bound electron remains to be
nonrelativistic after being knocked off the bound state, tell us
that the probe electron undergoes scattering with a scattering

angle θ , which reaches the maximum θc =
√

2θE
γ

with respect

to EB, when EB = 0.
We make a brief digression to derive the relation θc =√

2θE
γ

. From the momentum conservation

q2 = k2
i + k2

f − 2kik f cos θ

(C18)
≈ (ki − k f )2 + kik f θ

2 ≈ �k2 + k2θ2,

where �k = |ki − k f |. We also have energy conservation√
m2

ec4 + c2h̄2k2
i =

√
m2

ec4 + c2h̄2k2
f + h̄2q2

2me
+ EB. (C19)

Note that the energy loss E is

E =
√

m2
ec4 + c2h̄2k2

i −
√

m2
ec4 + c2h̄2k2

f

= dE

d p
h̄�k = h̄2c2k

ER
�k. (C20)

Hence, energy conservation is simplified to k
ER

�k = q2

2mec2 +
EB

h̄2c2 or

2k�k = γ q2 + 2EREB

h̄2c2
. (C21)

Combining this with the momentum conservation relation, we
obtain

2k�k

γ
− 2EREB

γ h̄2c2
= q2 = �k2 + k2θ2, (C22)

and hence

θ2 = 2�k

γ k
−
(

�k

k

)2

− 2EREB

γ k2h̄2c2
. (C23)

The angle θ reaches the maximum θc with respect to the
binding energy EB, when EB = 0:

θ2 < θ2
c = 2�k

γ k
−
(

�k

k

)2

≈ 2�k

γ k
. (C24)

Recalling �k
k = θE , we obtain the Bethe ridge angle

θc =
√

2θE

γ
, (C25)

which is 7.2 mrad for 300 keV electrons.
Summarizing, the electron that underwent inelastic scatter-

ing has a wave function in the far field:

�0(q) =
{

1√
θ2+θ2

E

( q
q

) · a θ < θc

0 θ > θc

, (C26)

where a has an unknown direction, and we write the wave
function as a function of q = k f − ki rather than that of the
final momentum k f for later convenience. The magnitude of
a is unimportant because it is absorbed in the overall normal-
ization factor. Since in most cases q is approximately in the
xy plane, only x, y components of a are important.

Although Eq. (C14) is t → ∞ limit, since the electron
propagates in the free space after scattering, we should be able
to find the wave function ψ0(r) right after scattering by simply
performing inverse Fourier transform to �0(q):

ψ0(r) = F−1
C {�0(q)}. (C27)

Equation (C26) assumed that the scattering occurred at the
origin x = y = 0. Since actual inelastic scattering occurs at an
unknown location r0, we need to generalize this result. Fourier
transforming ψ0(r − r0) suffices for this purpose. Thus we
obtain

�1(q) =
∫

ψ0(r − r0)e−iq·rd2r

= e−iq·r0

∫
ψ0(r − r0)e−iq·(r−r0 ) d2r = e−iq·r0�0(q).

(C28)

APPENDIX D: COMPUTING THE PHASE MAP

We computed the phase map [Fig. 4(a)] of the Marburg
virus VP35 oligomerization domain (5TOI) using the multi-
slice algorithm. The thickness of each slice is 1 nm. A simpler
simulation using the projection assumption [27] gave very
similar results, which is not surprising because the thickness
of the 5TOI molecule is as thin as ≈3 nm.

The handling of water molecules surrounding the 5TOI
molecule closely followed the method described by Shang and
Sigworth [28]. Here we describe only places where we made
deviations from their method when we took the surrounding
water molecules into account. Following the main text, we
focus on 300 keV electrons. All computations were carried
out on a Cartesian grid with a grid spacing 0.05 nm. The
shape of the space was cubic with the volume V = L3, where
L = 12.0 nm.

First, we remark that the surrounding water structure is
not obviously averaged out under the assumption of single
image acquisition in the present work, unlike in the context
of SPA considered in Ref. [28]. However, there is evidence
that water molecules move significantly during the electron
exposure [29]. Here we assume that the use of averaged-out
water density is justified.
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TABLE I. The inner potential Vi (multiplied by the volume).

Element H C N O S

Vi/V nm3 0.0253 0.118 0.106 0.095 0.246

We computed the inner potentials of relevant elements H,
C, N, O, and S as follows. The scattering amplitudes f (θ ) at
θ = 0 for the elements were obtained from a NIST database
[30]. From these values we computed the values of inner po-
tentials Vi (which has the dimension of voltage times volume)
as

Vi = 2π h̄2

γ mee
f (0). (D1)

Table I shows the result.
The mean inner potential of ice is computed to be

4.5276 V. In other words, this value represents the inner
potential of the water molecule, consisting of two hydrogen
atoms and one oxygen atom, divided by its molecular volume
in ice. There is a discrepancy in the literature regarding the
exact value of it. Reference [28] reports 3.6 V for “bulk vit-
reous ice,” whereas Ref. [17] reports a value 4.5301 V for
“low-density amorphous ice” (LDA ice). Under the assump-
tion that the density of LDA ice 9.3 × 102 kg/m3 is relevant,
the latter value, which is consistent with our result, is more
appropriate.

TABLE II. Atomic radii ai.

Element H C N O S

ai/nm 0 0.180 0.164 0.144 0.177

The “atomic radii” used for computing the “binary mask
function” m(r) [28] are shown in Table II. We use van der
Waals (VDW) radii taken from Table 2 of Ref. [31] for
this purpose. To be precise, the VDW radii depend on the
atomic group to which the atom belongs. However, we simply
averaged all values appearing in the “ProtOr Radii” column of
the Table 2 of Ref. [31]. This is clearly a crude approximation
but we believe that the associated error is insignificant for the
present purpose of evaluating QEM.

Hydrogen requires a special treatment. Atomic coordinates
for the hydrogen atoms are absent in the PDB data, for the
Marburg virus VP35 oligomerization domain (5TOI) [24].
Following the general strategy described in Ref. [28], we
modified the inner potential values of C, N, O, and S atoms
in accordance with the expected number of the associated H
atoms to each of these elements. We computed the expected
values as weighted average of the number of hydrogen atoms
in each type of amino acid residue, over all residue types with
weights in accordance with the frequency of each residue in
the 5TOI molecule.
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