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gate by optimized dynamical decoupling
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In the quantum-computation scenario, the geometric phase gates are becoming increasingly attractive for their
intrinsic fault tolerance to disturbance. With an adiabatic cyclic evolution, Berry phase appears to realize a
geometric transformation. Performing the quantum gates as many as possible within the timescale of coherence,
however, remains an inconvenient bottleneck due to the systematic errors. Here we propose an accelerated
adiabatic quantum gate based on the Berry phase, the transitionless driving, and the dynamical decoupling.
It reconciles a high fidelity with a high speed in the presence of control noise or imperfection. We optimize
the dynamical-decoupling sequence in the time domain under a popular Gaussian noise spectrum following the
inversely quadratic power law.
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I. INTRODUCTION

By processing the data in a quantum-mechanical way,
quantum computation outperforms its classical counterpart
in selected algorithms or tasks [1,2]. The simulation of the
coherent evolution of generic quantum systems can be mod-
eled by performing ordered sequences of high-fidelity unitary
operations [3–5]. The ubiquitous noises from uncontrollable
environment and imprecise control, however, are inevitable
in any experimental proposal, which pose challenges to the
quality of quantum gate in terms of fidelity and operation
time [6,7]. The quantum geometric phase [8–12], which is
accumulated as the system is moving along the parametric
path, has intrinsic tolerant property against certain fluctuations
during the trajectory. The geometric quantum computation
is therefore appealing and becoming feasible in many ex-
perimental platforms, including the trapped ions [13,14], the
nuclear magnetic resonance [15,16], and the superconducting
circuits [17–20].

As a benchmark implementation of the Abelian geometric
transformation, the quantum gate based on the Berry phase
requires the quantum system to undergo a desired adiabatic
loop in the parametric space [8]. The process is intrinsically
slow. Reducing the evolution time is in practice demanded
to avoid the accumulation of the decoherence influence. On
the other hand, however, speeding up always gives rise to the
transition among the instantaneous eigenstates of the system,
which is supposed to be “frozen” in the adiabatic condition to
maintain the gate fidelity, so that the competitive coherence
time and the high fidelity are seemingly contradictory for the
adiabatic geometric quantum gates. One of the compromise
solutions to reduce the evolution time is using the quantum
gates based on the Aharonov-Anandan phase [9,21], which
emerges in arbitrary cyclic unitary evolutions. Alternatively,
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one can accelerate the evolution process via the transitionless
quantum driving (TQD) [22], which is formulated by the
ancillary Hamiltonian to avoid the level crossing during the
time evolution.

The TQD-accelerated quantum gate based on the Berry
phase is still sensitive to the systematic errors in the con-
trol Hamiltonian or driving parameters. A significant feature
of geometric quantum computation is its compatibility with
certain error-suppression techniques, e.g., the dynamical de-
coupling (DD) [23–27], the unconventional geometric gates
[28–30], the decoherence-free subspaces [31], the quantum
error correction [32,33], and the dynamical correction [19,20],
to maintain the fidelity of the adiabatic or nonadiabatic unitary
transformation. The dynamical decoupling was originated in
the high-precision magnetic resonance spectroscopy and has
been applied to quantum control as a long-standing technique.
A typical DD is to neutralize the effects from the fluctu-
ation noises by applying a sequence of inverse operations
to a two-level system [23]. In this work, we aim to find
an optimized dynamical-decoupling sequence to protect the
TQD-accelerated Berry-phase gate.

Particularly, we consider the effect from the Gaussian
stochastic noises [34] in the control parameters of our nona-
diabatic geometric quantum gates, which would deviate the
output states from the noise-free result. Under various re-
source of noises, we analyze the robustness of the gate fidelity
for a general input state to estimate the deviation and then
apply the dynamical-decoupling sequences to improve the fi-
delity. In the time domain, we analytically derive an optimized
DD sequence under the Gaussian color noise following the
inversely quadratic power-law spectrum.

The rest of the work is arranged as follows. In Sec. II, we
start from a semiclassical Rabi model under parametric driv-
ing and obtain a general time-dependent qubit Hamiltonian
corrected by the counter-rotating interaction up to the first
order. This Hamiltonian is used to establish a set of more
accurate Berry-phase gates accelerated by the transitionless
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quantum driving. In Sec. III, we consider the stochastic fluc-
tuations in various control parameters and their damages to
the fidelity of the preceding nonadiabatic transformation in
the free induction decay (FID). Then in Sec. IV, we apply the
DD technique to the Berry-phase gate and discuss the results
under the inversely quadratic noise spectrum. The detailed
derivation of the optimized control sequence can be found in
the Appendix. We discuss and summarize the whole work in
Sec. V.

II. A MORE ACCURATE EFFECTIVE HAMILTONIAN

We start with a Rabi model under parametric driving, in
which a two-level system (qubit) with energy-spacing ωa is
controlled by a driving field with time-modulated frequency
ωb(t ) and phase factor ϕR(t ). The strength of the dipole-dipole
interaction between the qubit and the driving field (Rabi fre-
quency) is described by �R(t ). The system Hamiltonian thus
can be written as

H (t ) = ωa

2
σz + �R(t ) cos [�b(t ) + ϕR(t )]σx, (1)

where �b(t ) ≡ ∫ t
0 ds ωb(s). It is not convenient to construct a

credible quantum gate directly from the original Hamiltonian
in Eq. (1) for the lack of a compact expression of the time
evolution operator. It is popular to see the application of the
rotating-wave approximation (RWA) in the previous treat-
ments [14,35,36]. With respect to the unitary transformation
R(t ) = exp[i�b(t )σz/2], one can find

H ′(t ) = R(t )H (t )R†(t ) + iṘ(t )R†(t )

= 1

2
{[ωa − ωb(t )]σz + �R(t ){cos ϕR(t )

+ cos [2�b(t ) + ϕR(t )]}σx + �R(t ){sin ϕR(t )

− sin [2�b(t ) + ϕR(t )]}σy}

≈ ωa − ωb(t )

2
σz + �R(t )

2
[e−iϕR (t )σ+ + H.c.],

(2)

where the terms with the high-frequency 2�b(t ) are omitted.
The error between the resultant Hamiltonian under RWA and
the original one is thus in the first order of O(�R). H ′(t )
applies to the dispersive regime of a sufficiently weak driv-
ing strength. The contribution of the omitted counter-rotating
terms becomes, however, significant in the strong-coupling
regime and demonstrates intriguing dynamical behaviors
[37–40].

To retain the first-order contribution from the counter-
rotating terms, we choose a different approach with a modified
rotating-wave approximation [39]. We come back to the
Hamiltonian in Eq. (1) and apply a unitary transformation
with respect to

S(t ) = exp

{
i

�R(t )

ωa + ωb(t )
sin[�b(t ) + ϕR(t )]σx

}
. (3)

The original Hamiltonian in the interaction picture is then
rewritten as

H0(t ) = S(t )H (t )S†(t ) + iṠ(t )S†(t )

= ωa

2
σz + �R(t ) cos [�b(t ) + ϕR(t )]σx

+ �R(t )ωa

ωa + ωb(t )
sin [�b(t ) + ϕR(t )]σy + O

(
�2

R

)
− d

dt

{
�R(t )

ωa + ωb(t )
sin[�b(t ) + ϕR(t )]σx

}

≈ ωa

2
σz + �R(t )ωa

ωa + ωb(t )
[e−i�b(t )−iϕR (t )σ+ + H.c.],

(4)

where we omitted the contribution up to the second order of
O(�2

R) and the first-order derivative of the driving parame-
ters with respect to time [14,36] under the assumptions that
|ω̇b(t )|, |ϕ̇R(t )|, and |�̇R(t )| � |ωa + ωb(t )|.

Subsequently, in the rotating frame with respect to R(t ),
one can find a standard time-modulated Hamiltonian describ-
ing a qubit under an effective three-dimensional magnetic
field, i.e.,

H1(t ) = R(t )H0(t )R†(t ) + iṘ(t )R†(t )

= �B(t )

2
· �σ = B0(t )

2
�n(t ) · �σ , (5)

where �n(t ) ≡ [sin θ (t ) cos φ(t ), sin θ (t ) sin φ(t ), cos θ (t )]
parametrizes the direction of the magnetic field and �σ
represents the vector of Pauli operators. Using the driving
parameters, we have

B0(t ) =
√

[ωa − ωb(t )]2 +
[

2�R(t )ωa

ωa + ωb(t )

]2

,

φ(t ) = ϕR(t ),

θ (t ) = arctan

[
2�R(t )ωa

ω2
a − ω2

b(t )

]
.

(6)

The Hamiltonian in Eq. (5) adapts to a larger Rabi fre-
quency �R than that in Eq. (2) by holding the first-order
contribution from the counter-rotating interaction. The dis-
tinction between these two approximated Hamiltonians can be
transparently illustrated by the Rabi oscillation of the popula-
tion on the state |+〉 ≡ (1, 0)T for a two-level system, when
the magnitudes of ωa, ωb, and �R are chosen in almost the
same order. The blue solid line, the yellow dashed line, and
the green dot-dashed line in Fig. 1 represent the respective
results under the original Hamiltonian H (t ) in Eq. (1), the
RWA Hamiltonian H ′(t ) in Eq. (2), and the modified-RWA
Hamiltonian H1(t ) in Eq. (5). Much to our anticipation, the
rotating-wave interaction captures the sinusoid behavior in
quality, while losing nearly all the details of the dynamics.
In contrast, with the aid of the unitary transformation S(t )
in Eq. (3), the analytical result by H1(t ) is very close to the
numerical one by the original Hamiltonian H (t ).

We then apply the effective Hamiltonian H1(t ) to build
a more accurate quantum gate than H ′(t ). Universal single-
qubit gates can be implemented by virtue of the time-
dependent θ (t ) and φ(t ) in Eq. (6). B0 is set as a constant
number for simplicity. To avoid the undesired transition
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FIG. 1. The population dynamics of the qubit on |+〉 under vari-
ous Hamiltonians, in units of the Rabi frequency �R. The parameters
are set as ωa = 100π MHz, ωb = 60π MHz, and �R = 20π MHz.

among the instantaneous eigenstates of H1(t ) with acceler-
ated time dependence, one can add a counterdiabatic term
following the transitionless quantum driving [22] approach.
The ancillary Hamiltonian HCD(t ) can be expressed by

HCD(t ) = 1
2 [�n(t ) × �̇n(t )] · �σ

= 1
2 (−θ̇ sin φ − φ̇ sin θ cos θ cos φ,

θ̇ cos φ − φ̇ sin θ cos θ sin φ, φ̇ sin2 θ ) · �σ , (7)

where �n(t ) is the unit vector of the magnetic field in Eq. (5).
In Eq. (7), the explicit t dependence of quantities has been
omitted for simplicity, i.e., θ ≡ θ (t ) and φ ≡ φ(t ). The cor-
rected Hamiltonian with the counterdiabatic term is Htot (t ) =
H1(t ) + HCD(t ), which could be diagonalized with the unitary
transformation U0(t ) = exp(iθσy/2) exp(iφσz/2):

Hz(t ) = U0(t )Htot (t )U †
0 (t ) + iU̇0(t )U †

0 (t )

= 1
2 (B0 − φ̇ cos θ )σz. (8)

Rotating back to the concatenated rotating frame with respect
to S(t ) and R(t ), where H1(t ) and Htot (t ) live, the time-
evolution operator reads

U (t ) = U †
0 (t )Uz(t ) = e−iφσz/2e−iθσy/2e−i

∫ t
0 dsHz (s)

=
(

cos θ (t )
2 e−(i/2)[α(t )+φ(t )] − sin θ (t )

2 e(i/2)[α(t )−φ(t )]

sin θ (t )
2 e−(i/2)[α(t )−φ(t )] cos θ (t )

2 e(i/2)[α(t )+φ(t )]

)

(9)

with Uz(t ) ≡ exp[−i
∫ t

0 ds Hz(s)] and α(t ) = ∫ t
0 ds(B0 −

φ̇ cos θ ). Under a proper boundary condition, U (t ) can be
used to realize any desired rotation or qubit gate. For example,
under the setting that θ (T ) = π and α(T ) − φ(T ) = π , U (T )
realizes a Pauli-X gate up to a global phase. In the following
discussion, we are concerned with the phase shift in a cyclic
evolution. With θ (T ) = 2π , the final time-evolution operator
is found to be in a diagonal form:

U (T ) =
(

e−(i/2)[α(T )+φ(T )] 0
0 e(i/2)[α(T )+φ(T )]

)
, (10)

up to an unobservable global π phase. In particular, when
|ψ (0)〉 = |±〉 [|−〉 ≡ (0, 1)T ], one can derive a cyclic process

|ψ (T )〉 = eiπ∓(i/2)[α(T )+φ(T )]|ψ (0)〉 = ei(π+γ± )|ψ (0)〉. The to-
tal phase accumulated in this period is

γ± = ∓1

2

∫ T

0
dt[B0 − φ̇(cos θ − 1)]. (11)

The dynamical phase could be obtained by the corrected
Hamiltonian Htot (t ) and the eigenstates of the effective Hamil-
tonian H1(t ). We have

γ d
± ≡ −

∫ T

0
dt〈ψ (t )|Htot (t )|ψ (t )〉

= −
∫ T

0
dt〈±|U0(t )Htot (t )U †

0 (t )|±〉

= −
∫ T

0
dt〈±|1

2
(−φ̇ sin θσx + θ̇σy + B0σz )|±〉

= ∓1

2

∫ T

0
dtB0 = ∓1

2
B0T . (12)

The geometric phase is thus given by

γ
g
± = γ± − γ d

± = ∓1

2

∫ T

0
dt φ̇(1 − cos θ ), (13)

which is exactly the solid angle in the Bloch sphere described
by θ and φ up to a scale of −1/2 [41]. The evolution period
T could be shortened by TQD as long as the boundary condi-
tions are satisfied.

Provided that the dynamical phase is completely canceled
by any control technique, such as the dynamical decoupling
[21,42] to be discussed later, the geometric phase in Eq. (13)
determines the final time-evolution operator:

U (T ) 

(

eiγ g
+ 0

0 eiγ g
−

)



(
1 0

0 ei
∫ T

0 dt φ̇(1−cos θ )

)
. (14)

Then we can build a quantum geometric phase gate. Un-
der the assumption θ (t ) = ωt , the period is T = 2π/ω and
U (t ) = diag{1, eiη}, where η = γ

g
− − γ

g
+. An arbitrary phase

gate could be attained by adjusting φ. For example, we can
have a Pauli-Z gate when φ = ωt/2 and we have a π/2 gate
when φ = ωt/4. In general, an arbitrary input state |ψ (0)〉 =
cos α1|+〉 + sin α1eiα2 |−〉 would be transformed by the phase
gate to

|ψ (T )〉 = cos α1|+〉 + sin α1eiα2 eiη|−〉, (15)

where α1 and α2 are real-number angles with {α1, α2} ∈
[0, 2π ].

III. THE EFFECTS FROM CLASSICAL NOISE

The geometric evolution in Eq. (15), which has been accel-
erated by the counterdiabatic term, cannot be faithful in the
presence of nonideal driving. The existence of the classical
noise gives rise to the deviation of the gate fidelity. Here
we demonstrate how the noises in various control parameters
would be detrimental to the performance of quantum gates in
the absence of dynamical decoupling. Then in this section,
we temporarily include the dynamical phase in Eq. (12) that
is exclusively determined by B0. The phase η = γ

g
− − γ

g
+ in
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Eq. (15) then becomes η = γ− − γ+, i.e.,

η =
∫ T

0
dt[B0 − φ̇(cos θ − 1)]. (16)

To measure the phase deviation induced by the classical noise
on the quantum gate, we use a gate fidelity [27,43,44] defined
as

F = 1

4π2

∫ 2π

0
dα1

∫ 2π

0
dα2

M[〈+|ρ(T )|−〉]
〈+|ψ (T )〉〈ψ (T )|−〉 , (17)

where ρ(t ) is the density matrix under the time-evolution
operator U (t ) with noisy parameters and the wave func-
tion |ψ (T )〉 describes the ideal evolution in Eq. (15). M[·]
means the ensemble average over the random realizations of
fluctuated control parameters, e.g., B0 → B0 + δB(t ) and the
arbitrary input states featured with α1 and α2.

In this work, the stationary Gaussian noise [27,45] δξ (t ) is
assumed to follow the statistical properties

〈δξ (t )〉 = 0, C(t − s) = 〈δξ (t )δξ (s)〉 = �γ

2
e−γ |t−s|, (18)

where ξ indicates the noise source, � is the correlation inten-
sity of the noise, and γ is the memory parameter. The Fourier
transform of the two-point correlation function C(t − s) gives
rise to an inverse-quadratic spectral density,

S(ω) =
∫ ∞

−∞
dt eiωtC(t ) = 2�γ 2

ω2 + γ 2
. (19)

When γ → ∞, S(ω) becomes structureless and describes a
Markovian or white noise; while when γ → 0, it describes a
typical non-Markovian noise with a finite-memory capability.

In the rest of this section, we calculate the gate fidelity
during the free induction decay under the parametric fluctua-
tions associated respectively with the magnetic field intensity
B0 and the phase derivative φ̇. Note these two parameters
are separable in the expression of quantum phases, allow-
ing individual addressing over different noise resources. In
comparison to both B0 and φ̇, θ comes into the phase in a
cosine function [see, e.g., Eq. (16)], yielding a higher-order
contribution. Thus the effect from noisy θ could be omitted.

A. Fidelity under noisy magnetic field intensity

We first consider a fluctuated magnetic field B0 in
constructing the phase gate, which is determined by the
driving parameters in Eq. (5). With respect to the unitary
transformation U0(t ), the nonideal counterdiabatic corrected
Hamiltonian in Eq. (8) becomes

H̃z(t ) = 1
2 [B0 + δB(t ) − φ̇ cos θ ]σz. (20)

Consequently, the off-diagonal term of the final density matrix
in Eq. (17) can be obtained by

〈+|ρ(T )|−〉 = 〈+|Ũ †(T )ρ(0)Ũ (T )|−〉, (21)

where ρ(0) ≡ |ψ (0)〉〈ψ (0)| and Ũ (T ) is

Ũ (T ) = e−iφ(T )σz/2e−iθ (T )σy/2e−i
∫ T

0 ds H̃z (s). (22)

Then we have

〈+|ρ(T )|−〉
〈+|ψ (T )〉〈ψ (T )|−〉 = exp

[
−i

∫ T

0
dt δB(t )

]
. (23)

FIG. 2. Landscape of the gate fidelity FB under the stochastic B0

in the parameter space of the strength-memory ratio �/γ and the
running period γ T .

Note this result is independent of α1 and α2, meaning the noise
effect on the gate fidelity does not rely on the input states.
Substituting it into Eq. (17) and using the statistical properties
in Eq. (18), we have [34]

FB = e−(1/2)
∫ T

0 dt
∫ T

0 dsC(t−s) = e−(�/2γ )(γ T +e−γ T −1). (24)

The dependence of the gate fidelity FB on the dimensionless
cyclic period γ T and the memory parameter �/γ is plotted in
Fig. 2.

From both Eq. (24) and Fig. 2, a sufficiently large �/γ

or a sufficiently small γ gives rise to a nearly exponential
decay, which is consistent with a typical Markovian dynam-
ics describing decoherence induced by the white noise. The
nonexponential decay appears in the short-time regime with
γ T � 1, where up to the leading order the exponent of the
fidelity in Eq. (24) becomes quadratic to the running time:

FB ≈ exp

(
−�γ

4
T 2

)
. (25)

Then the characteristic decoherence time T2 can be obtained
by the definition lnFB(T2) = −1 [43],

T2 = 2

(�γ )1/2
(26)

for the free induction decay. Clearly a high-level gate fi-
delity can be maintained in the presence of a weak and
non-Markovian classical noise. It is found when �/γ � 1.0,
FB is over 0.90 at γ T = 0.72.

B. Fidelity under noisy control phase φ

Now we consider the imperfect control over the phase
φ in the presence of random noise associated with its time
derivative φ̇, which leads to φ(T ) → φ(T ) + �φ (T ) with
�φ (T ) = ∫ T

0 dt δφ (t ). Then in the rotating frame, the nonideal
Hamiltonian for the accelerated phase gate becomes

H̃z(t ) = 1
2 {B0 − [φ̇ + δφ (t )] cos θ}σz. (27)
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FIG. 3. Landscape of the gate fidelity Fφ under the stochastic φ̇

in the parameter space of the strength-memory ratio �/γ and the
running period γ T . In (a) and (b), the noise-free parameter θ is set
as θ (t ) = ωt and θ (t ) = ωt − sin(ωt ), respectively.

Using Eqs. (17), (21), and (27), it is straightforward to find for
θ = ωt that

Fφ = e−(1/2)
∫ T

0 dt
∫ T

0 ds[1−cos θ (t )][1−cos θ (s)]C(t−s)

= exp

{
− �

4γ (4π2 + γ 2T 2)2

[
32π4e−γ T

+ 32π4(−1 + γ T ) + 20π2(γ T )3 + 3(γ T )5
]}

. (28)

Similar to FB in Eq. (24), the fidelity Fφ in Eq. (28) is
also a function of dimensionless parameters γ T and �/γ .
An interesting observation is that under the short-time limit,
i.e., γ T � 1, we have Fφ ≈ exp(−�γ T 2/4), the same as
Eq. (25). Then we obtain the same decoherence timescale T2

as in Eq. (26). One can hardly distinguish Fig. 2 and Fig. 3(a).
It is found when �/γ � 1.0, Fφ is over 0.90 at γ T = 0.69.

Equation (28) is, however, reminiscent of an improved
scheme in constructing the quantum phase gate by virtue of
the time dependence of θ . Rather than a constant θ used
in literature [21,42], one can reduce the magnitude of the
integrand in Eq. (28) by selecting a proper and experimen-
tally accessible θ (t ), provided that the boundary condition is
satisfied. For the exponent of the fidelity in Eq. (28), the main
contribution to the integral is around t − s ≈ 0 according to
the exponential decay of the correlation function C(t − s)
[see, e.g., Eq. (18), and the monotonic or asymptotic decay

behavior is popular for all the stationary Gaussian noises].
Then we have Fφ ≈ exp{−1/2(

∫ T
0 dt[1 − cos θ (t )])2}. The

fidelity can thus be enhanced to a certain extent by reducing
the magnitude of

∫ T
0 dt[1 − cos θ (t )]. For example, one can

replace θ (t ) = ωt with θ (t ) = ωt − sin(ωt ) that holds the
same boundary condition. The induced improvement in gate
fidelity can be observed in Fig. 3(b). In contrast to Fig. 3(a),
Fφ is over 0.90 with �/γ = 3.1 when γ T = 0.69. And when
�/γ = 1.0, the same high-level fidelity can be sustained until
γ T = 1.24.

IV. SUPPRESS NOISE BY DYNAMICAL DECOUPLING

The noise analysis over both δB and δφ renders the
same second-order behavior in the running time under the
short-time limit, as suggested by Eqs. (25) and (26). The
gate-fidelity decay induced by the classical noise on the
control parameters can be suppressed by a sequence of dy-
namical decoupling. As a developed technique, dynamical
decoupling can extend the coherence time in many ex-
periments. It has been generalized into various sequences
of pulse to neutralize the influence of the environmental
noises [46]. Spin echo (SE) [47] presents the simplest yet
the original form in these pulse sequences, which consists
of only one π pulse in the middle of the time evolution
besides another one performed in the end. Based on SE,
the Carr-Purcell-Meiboom-Gill sequence (CPMG) [24,48,49]
employs two or more π pulses. In general, the n-pulse ver-
sion of CPMG [24] can be described by a sequence of tk =
(k − 1/2)T/n, k = 1, 2, . . . , n, that is obtained in the fre-
quency domain. When the noise spectrum has a hard cutoff
[26], i.e., S(ω) ∼ ω�(ωc − ω), where �(x) is the Heav-
iside step function [�(x) = 1 when x � 0 and �(x) = 0
when x < 0] or has an exponential-decay cutoff, i.e., S(ω) ∼
exp(−ω/ωc), the Uhrig dynamical-decoupling (UDD) se-
quence [25] is shown to be the most efficient scheme. It
can reduce the decoherence rate down to the nth order
of the running time by using n nonperiodical pulses. In
this section, we focus on the noise spectrum of the mag-
netic field δB(t ) following the inverse-quadratic power law.
It is shown that CPMG is the optimized choice instead of
UDD. The analysis can be straightforwardly extended to the
noisy φ̇.

A. Spin echo on geometric phase

We choose SE as a warm-up example to illustrate the
DD effect on the geometric phase (Fig. 4). The other pulse
sequences can be analyzed in a similar way. To focus on the
sequence itself, the pulses are considered to be ideal, i.e.,
instantaneous and with no error [24,25]. The SE scheme is a
concatenated process of two piecewise segments, i.e., 0 → t f

and t f → T , where t f = T/2. A π pulse is inserted at the
moment t f to switch the signs of the eigenstates. Another
π pulse is imposed on the system in the end to complete a
cyclic process. Starting from the initial state |ψ (0)〉 = |+〉 and
denoting the instantaneous eigenstates as | ± (t )〉, the whole
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FIG. 4. Landscape of the spin-echo gate fidelity FSE under the
stochastic B0 in the parameter space of the strength-memory ratio
�/γ and the running period γ T .

process can be described by

|ψ (0)〉 = |+〉 → |ψ (t f − 0+)〉 = eiγ̄1 |+(t f )〉 π pulse−−−→
|ψ (t f + 0+)〉 = eiγ̄1 |−(t f )〉 →

|ψ (T − 0+)〉 = ei(γ̄1+γ̄2 )|−(T )〉 π pulse−−−→
|ψ (T )〉 = ei(γ̄1+γ̄2 )|+(T )〉 = ei(π+γ̄1+γ̄2 )|+〉,

(29)

where the boundary condition has been applied in the last
equation. γ̄1 and γ̄2 represent the quantum phases generated
in the first and the second segments, respectively. According
to Eqs. (10), (11), and (20), these two nonideal phases turn out
to be

γ̄1 = −1

2

∫ T/2

0
dt[B0 + δB(t ) − φ̇′(cos θ ′ − 1)],

γ̄2 = 1

2

∫ T

T/2
dt[B0 + δB(t ) − φ̇′(cos θ ′ − 1)],

(30)

where φ′ = φ and θ ′ = θ during the first-half period t ∈
(0, t f ) and φ′ = −φ and θ ′ = θ during the second-half period
t ∈ (t f , T ) due to the spin-echo effect. By Eq. (30), the ideal
dynamical phase proportional to B0 vanishes in the end of the
running while the geometric phase is accumulated to realize
a desired transformation and it holds the same form as in
Eq. (13). When the initial state starts from |ψ (0)〉 = |−〉,
the signs of those phases in Eq. (30) are reversed and the
SE scheme still works. In any loop, however, the dynamical
phase associated with the accumulation of the stochastic noise
δB(t ) during the two consecutive time integrals has not been
completely eliminated.

Then we measure the gate fidelity in the presence of the
random magnetic field under the spin-echo scheme. The ratio
of the off-diagonal elements of the density matrix in Eq. (17)
is found to be

〈+|ρ(T )|−〉
〈+|ψ (T )〉〈ψ (T )|−〉 = e−i[

∫ T/2
0 dt δB (t )−∫ T

T/2 dt δB (t )]
. (31)

On ensemble average, we have

FSE = M

[
exp

(
−i

∫ T/2

0
dt δB(t ) + i

∫ T

T/2
dt δB(t )

)]

= exp

[
− �

2γ
(γ T − e−γ T − 3 + 4e−γ T/2)

]
, (32)

as plotted in Fig. 4. In contrast to Fig. 2, one can find that
under the SE scheme, the high-level regime of the gate fi-
delity is significantly enlarged. When �/γ = 2.0, FSE can be
maintained over 0.98 for γ T = 1.0. In the short-time limit
γ T � 1, we have

FSE ≈ exp

(
−�γ 2

24
T 3

)
. (33)

In comparison to the quadratic dependence in Eq. (25), the
exponent function is reduced to the third order of the running
time of the geometric gate by the spin-echo effect. It is shown
in the Appendix that for the inversely quadratic power-law
noise spectrum, one can further reduce the decay coefficient
by more DD operations, yet cannot reduce the exponent func-
tion to more higher orders of the running interval T .

B. CPMG on geometric phase

Generally, we apply n π pulses into the running period
(0, T ) to suppress the geometric-phase error. The whole pro-
cess is divided into n + 1 segments described by 0 → t1,
t1 → t2, ..., tn → T . We then seek an optimized sequence of
the DD-operation moments tk . Similar to Eq. (32), the gate
fidelity can be represented by

Fn = M
[
e−i

∫ T
0 dt δB (t ) f (T ;t )

]
, (34)

where f (T ; t ) = ∑n
k=0(−1)k�(tk+1 − t )�(t − tk ) with t0 =

0 and tn+1 = T , indicating the π -pulse-induced sign change
of the quantum phase. Moreover, to hold the same geometric
phase as that in Eq. (13) for the FID process, the phase param-
eters φ′ and θ ′ in all the segments are set as φ′ = f (T ; t )φ and
θ ′ = θ .

The gate fidelity in Eq. (34) can be represented by Fn ≡
e−χ (T ) [43,44], where the decay function χ (T ) is obtained
by the noise spectrum S(ω) and f̃ (ω, T ) = ∫ T

0 dt e−iωt f (T ; t )
[the Fourier transform of f (T ; t )],

χ (T ) = 1

2

∫ ∞

−∞

dω

2π
| f̃ (ω, T )|2S(ω)

= 1

2

∫ ∞

−∞

dω

π

F (ωT )

ω2
S(ω). (35)

Note in the second line of Eq. (35), a filter function F (ωT ) ≡
|ω f̃ (ω, T )|2/2 appears to measure the effects of the pulse
sequence. Using the Taylor expansion around ωT = 0, we
have

χ (T ) =
∫ ∞

−∞

dω

2πω2

[
F (0) + F ′(0)ωT + F ′′(0)

(ωT )2

2!

+ F (3)(0)
(ωT )3

3!
+ · · · +

]
S(ω). (36)

Under the general noise with a power-law spectrum S(ω) ∼
1/ωm, m � 2, the high-order terms F (n)(0) with n − m � 1
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FIG. 5. The gate fidelity under various DD sequences (SE,
CPMGn, and UDDn) in the presence of the Gaussian noise following
the inverse-quadratic power-law spectrum. (a) The gate dynamics
versus γ T when �/γ = 4; (b) the gate dependence on �/γ when
γ T = 4.

would lead to the nonconvergent integration
∫ ∞
−∞ dω ωn−2−m.

In contrast, if S(ω) has a hard cutoff at an upper-bound
frequency ωc or has an exponential decay with frequency,
such as S(ω) ∼ exp(−ω/ωc), then the convergency could be
held at any order. Without frequency cutoff, the UDD scheme
[25] does not necessarily supply an optimized sequence for a
polynomial spectrum.

Some existing works [43,44] about DD have addressed the
noise δB(t ) with the statistical properties in Eq. (18). Here we
provide an alternative way in the Appendix to optimize the
pulse sequence in the time domain for the quadratic power-
law spectrum. We find the most efficient sequence can be
analytically described by

tk = (k − 1/2)

n
T, k = 1, 2, . . . , n, (37)

which is exactly the CPMGn sequence with n � 2. When
n = 1, it reduces to the SE sequence. When n = 2, it is also
coincident to the UDD sequence.

In Figs. 5(a) and 5(b), we show the gate fidelities under
various DD sequences in terms of the dynamics and their
dependence on the memory parameter, respectively. The solid
line, circle-dotted line, plus-dotted line, star-dotted line, cross-
dotted line, right-triangle-dotted line, and left-triangle-dotted
line represent the fidelities under FID, SE, CPMG2, UDD3,
CPMG3, UDD10, and CPMG10, respectively, where n de-

notes the number of π pulses. In both Figs. 5(a) and 5(b), the
performance of the geometric phase gate is steadily improved
by inserting more periodical π pulses into the running period.
We also demonstrate that CPMGn outperforms UDDn when
n � 3. It is found when �/γ = 4.0 and γ T = 4.0, the gate fi-
delity can be maintained over 0.90 by CPMG10. By Eqs. (37)
and (35), it is found that up to the leading-order contribution
the gate -fidelity becomes

Fn ≈ exp

[
− �

24n2γ
(γ T )3

]
. (38)

As for the scaling of the decoherence time T2 over the pulse
number n, we have

T2 =
(

24

�γ 2

)1/3

n2/3. (39)

The power law with n2/3 implies that more DD pulses are
required to enhance the coherence time of our geometric phase
gate.

V. DISCUSSION AND CONCLUSION

The analysis over the classical noise in this work is mainly
based on the Gaussian approximation. Then the two-point cor-
relation function C(t − s) is sufficient to determine its impact
on the decoherence behavior in the time evolution. As pointed
out in literature [43,44], random telegraph noise in the weak
noise regime can be described by Eq. (18) and the power-
law noise can be described by a linear combination of the
similar correlation functions with various parameters. Under
the non-Gaussian assumption, the noise effect also involves a
multiple-point correlation function. It is thus not convenient
to analytically obtain FB in Eq. (24), Fφ in Eq. (28), and FSE

in Eq. (32) to witness the effect of a non-Markovian noise
on the gate fidelity. Although the non-Gaussian noise would
reduce the coherence time in FID, it has been shown to be
more suppressed under CPMG rather than UDD [44]. The
non-Gaussian noise is therefore negligible when applying our
dynamical-decoupling scheme, that is proved to be a CPMG,
into the accelerated phase-gate construction.

In summary, we construct a quick-and-faithful geometric
phase gate by combining the transitionless-quantum-driving
approach and the dynamical-decoupling control into the Berry
phase. The former is used to shorten the running time as
required by the adiabatic passage and the latter is used to
neutralize the classical noise on the control parameters. Our
proposal is based on a semiclassical Rabi model under a
parametric driving. Using a modified transformation to hold
the first-order contribution from the counter-rotating inter-
action, our effective Hamiltonian is superior to that under
the conventional rotating-wave approximation and adapts to
a strong driving beyond the dispersive regime. We analyze
the gate fidelity under the random fluctuation or noise on the
effective magnetic field and the control phase. In the time do-
main, we find that the CPMGn sequence is the most efficient
DD scheme against the inversely quadratic power-law noise
to maintain a high-level fidelity and we obtain the scaling
behavior of the decoherence time T2 with respect to the DD
operation number n. Our investigation provides a systematic
estimation over the errors in constructing the Berry-phase gate
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caused by the classical noise. It is useful in optimizing the per-
formance of quantum gates under Gaussian noise following a
power-law spectrum.

In addition, combining the noninstantaneous DD pulses
with the approximated TQD approaches [50,51] would be
a near-future target. The phase-gate fidelity is supposed to
be more robust when the counterdiabatic operation could be
performed along the same direction as the DD pulses.
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APPENDIX: OPTIMIZED SEQUENCE FOR GAUSSIAN
NOISE OF POWER-LAW SPECTRUM

This Appendix contributes to optimizing the DD sequence
to cancel the classical Gaussian noise on the magnetic-field in-
tensity. We provide a proof in the time domain rather than that
in the frequency domain [43]. The derivation starts from the
gate fidelity under n pulses in Eq. (34). Using the correlation
function in Eq. (18), we have

Fn({tk, k = 1, 2, . . . , n})

= M
[
e−i

∫ T
0 dt δB (t ) f (T ;t )

]
= exp

[
−1

2

∫ T

0
dt

∫ T

0
dsC(t − s) f (T ; t ) f (T ; s)

]
.

(A1)

With the dimensionless parameters x ≡ γ T , y ≡ �/γ , and
μk ≡ tk/T , the decay function χ (x, y) ≡ − lnFn can be ex-
pressed by

χ (x, y) = y

2

[
x − 1 + (−1)ne−x

− 2
n+1∑
k=0

n∑
j=1

(−1)|k− j|e−|μk−μ j |x
]
, (A2)

where μ0 = 0 and μn+1 = 1. Note expanding χ (x, y) about x
is equivalent to expanding it about T . It is obtained that

χ (x, y) = y

2
(C0 + C1x + C2x2 + C3x3 + · · · ), (A3)

where the coefficients of the first few orders are

C0 = −1 + (−1)n − 2
n+1∑
k=0

n∑
j=1

(−1)|k− j|, (A4a)

C1 = 1 − (−1)n + 2
n+1∑
k=0

n∑
j=1

(−1)|k− j||μk − μ j |, (A4b)

C2 = 1

2
(−1)n −

n+1∑
k=0

n∑
j=1

(−1)|k− j||μk − μ j |2, (A4c)

C3 = 1

6
(−1)n+1 + 1

3

n+1∑
k=0

n∑
j=1

(−1)|k− j||μk − μ j |3. (A4d)

It is straightforward to verify that both the zero-order and
the first-order coefficients C0 and C1 are exactly 0, irrespective
to the sequence arrangement {μk}.

When n is an even integer, the summation in the second-
order coefficient C2 can be decomposed into three terms, being
formally relevant to μ2

k , −2μkμ j , and μ2
j , respectively. By

virtue of μ0 = 0 and μn+1 = 1, the μ2
k or μ2

j term is proved to
vanish by

n+1∑
k=0

n∑
j=1

(−1)|k− j|μ2
k =

n+1∑
k=0

μ2
k

n∑
j=1

(−1)|k− j| = 0. (A5)

Equation (A4c) can then be reduced to

C2 = 1

2
+ 2

n+1∑
k=0

n∑
j=1

(−1)|k− j|μkμ j

= 1

2
+ 2

[
n∑

k=1

(−1)k−1μk

]2

+ 2
n∑

k=1

(−1)k−1μk

= 1

2

[
1 +

n∑
k=1

(−1)k−12μk

]2

. (A6)

When n is odd, the summations about μ2
k and μ2

j in C2 are
simplified to

n+1∑
k=0

μ2
k

n∑
j=1

(−1)|k− j| +
n∑

j=1

μ2
j

n+1∑
k=0

(−1)|k− j|

=
n+1∑
k=0

μ2
k (−1)|k−1| +

n∑
j=1

μ2
j (−1) j

= μ2
0(−1)1 + μ2

n+1(−1)n = −1. (A7)

Then Eq. (A4c) can be reduced to

C2 = −1

2
− (−1) + 2

n+1∑
k=0

n∑
j=1

(−1)|k− j|μkμ j

= 1

2
+ 2

[
n∑

k=1

(−1)k−1μk

]2

− 2
n∑

k=1

(−1)k−1μk

= 1

2

[
−1 +

n∑
k=1

(−1)k−12μk

]2

. (A8)

Summarizing Eqs. (A6) and (A8), the condition of C2 = 0 can
be written as

(−1)n + 2
n∑

k=1

(−1)k−1μk = 0. (A9)

It has a clear physical indication or consequence that after
applying those π pulses at μk , the dynamical phase in the ab-
sence of noise is thus exactly eliminated to leave a geometric
transformation.

To find the optimized sequence, we now study the
extreme-value condition ∂μkC3 = 0, k = 1, 2, . . . , n, under
the constraints that 0 < μ1 < μ2 < · · · < μn < 1. By virtue
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of Eq. (A9), we have

μn =
n−1∑
k=1

(−1)n−k−1μk + 1

2
. (A10)

With Eq. (A4d), we have for k = n − 1 that

∂C3

∂μn−1
= (μn−1 − μn)

[
2 − μn−1 − μn

+ (−1)n−1(μn−1 + μn)

+ 2
n−2∑
k=1

(−1)n−k−1(μn−1 + μn − 2μk )

]
= 0.

(A11)

For n either even or odd, it gives rise to

μn−1 = 3

2

n−2∑
k=1

(−1)n−k−2μk + 1

4
. (A12)

By a similar derivation with decreasing k, we can obtain a
general formula

μn− j = 2 j + 1

j + 1

n− j−1∑
k=1

(−1)n−k− j−1μk + 1

2 j + 2
. (A13)

In the end, it is found that μ1 = 1/(2n). Then by iteratively
using Eq. (A13), we can find the solution is exactly the
CPMGn, i.e., μk = (k − 1/2)/n. And the minimum value of
the third-order coefficient C3 turns out to be x3/(12n2), which
corresponds to the decay behavior in Eq. (38) of the main text.
The result also demonstrates that the C3 cannot be completely
eliminated under an arbitrary choice of μk or tk .
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