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Quantum metrology with multimode Gaussian states of multiple point sources
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A unified theoretical framework is developed for measuring multimode Gaussian states of multiple point
sources. The spatial and temporal mode functions are found analytically by aid of the circular symmetry of the
object plane and aperture, as well as by the rectangular spectral density function of the background. They relate
the modal operators and statistical moments to the locations of the point sources through the prolate spheroidal
functions. An experimentally straightforward implementation is proposed, which consists of a nonabsorptive
polarization- and phase-modulating spatial light modulator (SLM), three lenses, and a polarization beam splitter.
Interestingly, it is found that the spatial modal annihilation operators are related to the modal field operators in
the image plane by a simple complex-valued scale factor. The quantum Fisher information matrix and quantum
Cramér-Rao bound (QCRB) are also discussed. The numerical calculation of QCRB is completed for the case
where the spatially multimode aperture fields are prepared by the spatial propagation from temporally single-
mode thermal states, coherent states, or quadrature squeezed states of the point sources in the object plane. The
results show that the Rayleigh limit can always be surpassed by means of increasing the mean photon rate or the
squeeze parameter.
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I. INTRODUCTION

Modes and states are two fundamental aspects of clas-
sical and quantum optics, especially in understanding the
resolution of any optical measurement in microscopy, as-
tronomy, remote sensing, and many other fields of science
and technology. As the modes are normalized solutions of
Maxwell equations, traditional measurements based on mode
discrimination inevitably suffer from diffraction effects, such
as the well-known Rayleigh limit. On the contrary, quantum
measurements based on quantum state discrimination have
demonstrated that diffraction limits are irrelevant here, and
that the ultimate bounds of the measurement are determined
by the quantum properties of photons. Therefore, it is im-
portant to develop a quantum theory for the measurement of
general multimode quantum states of multiple sources.

One-mode or two-mode quantum light was the focus of
early research in quantum optics. Although quantum elec-
trodynamics [1] and quantum coherence theory [2,3] treat
light as a multimode field composed of many quantized
harmonic oscillators, their specific applications were mainly
devoted to one or two modes. This is especially true in
the study of nonclassical states [4], including quantum state
tomography [5–7], single-photon generation [8], prepara-
tion of entangled photon pairs using spontaneous parametric
down conversion [4,9], four-wave mixing [10], quantum
dots [11], and nitrogen vacancy defects [12]. In quantum
metrology [13], one-mode or two-mode squeezed light or
entangled photon pairs are utilized as probes to measure
quantum systems and estimate their parameters. Prominent
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progress has been made recently in resolving two incoherent
point sources [14–20]. But it is mainly about two-mode states,
and is currently difficult to extend to multimode and multiple
point sources.

Nonetheless, multimode quantum light has attracted
much attention for superresolution reconstruction in one-
dimensional (1D) [21,22] and two-dimensional (2D) [23,24]
imaging, and more recently for understanding the intrinsic
properties of light and applications in emerging technolo-
gies. The intrinsic properties include wave-particle duality
and multipartite entanglement [25] with modal degrees of
freedom, while the applications are aimed at mode-coupled
quantum networks [26], quantum computing [27], and en-
hanced resolution in quantum metrology [25]. Thanks to the
linearity of the evolution equations of the mode and state
functions, any multimode quantum state can be represented
as a linear combination of the mode basis and the state ba-
sis [25]. This “double linearity” makes multimode quantum
states mathematically more tractable and physically easier
to implement, as demonstrated in the generation [28], prop-
agation [29], and detection processes [2]. Specifically, for
quantum metrology, the above fact enables the optimization
to find the optimal mode with the lowest quantum Cramér-
Rao bound of the parameter uncertainty, in addition to the
optimization to find the optimal quantum state of the probe
light.

However, as mentioned previously, the measurement of
multimode and multiple point sources remains difficult. Con-
sidering this, this paper deals with multimode Gaussian states
of multiple point sources in a unified theoretical framework
for imaging and metrology. Firstly, with the quantum diffrac-
tion integral [29] and the mutual coherence functions [30],
the spatiotemporal mode functions of a circularly symmetrical
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FIG. 1. (a) Quantum diffraction from a circular object plane O
of radius b to a circular aperture A of radius a. The background is
uniform, while the J point sources are independent of each other.
(b) Mode channel model with beam splitters to account for modal
losses. Each mode covers the entire circular areas of the object plane
and the aperture, and the loss in each channel is described by a beam
splitter along the propagation path.

optical system are found. The modal operators and coherency
matrices are analytically expressed in terms of the prolate
spheroidal functions [31,32]. Secondly, an experimentally
straightforward implementation is proposed, which consists
of a spatial light modulator (SLM), three lenses, a polarization
beam splitter (PBS), and some further measurement devices,
such as an array of photodetectors or homodyne detectors
in the image plane. Finally, the quantum Fisher information
matrix (QFIM) and quantum Cramér-Rao bound (QCRB) are
connected to the displacement vectors, coherency matrices,
and fluctuation-related matrices. The numerical calculation of
the QCRB is also presented.

This paper proceeds as follows. In Sec. II, the theoretical
framework is developed. Section III describes the implemen-
tation and image plane measurements. Section IV discusses
the QFIM and QCRB. Concluding remarks are made in
Sec. V.

II. THEORETICAL FRAMEWORK

A. System model and assumptions

Consider a background and J point sources located in an
object plane O of radius b at z = 0, an optical instrument
with an aperture A of radius a at z = R, and an image plane
representing an array of photodetectors or homodyne detec-
tors. The background and aperture are circularly symmetrical
with respect to the z axis [see Fig. 1(a)]. The light radiated
by the jth source and studied in the transverse plane at z is

represented by the positive-frequency field operator Ê j,z(r, t ),
which is normalized such that N̂j,z = Ê†

j,zÊ j,z gives the photon

flux operator in units of 1/(m2 s), Î j,z = h̄ωN̂j,z gives the
energy flux operator, and [30,33]

� j,z(r, r′; t, t ′) = h̄ω Tr[Ê j,z(r′, t ′)ρ̂ j Ê
†
j,z(r, t )] (1)

gives the mutual coherence function [2]. In Eq. (1), ρ̂ j rep-
resents the density operator, h̄ω is the photon energy, j = 0
indicates the background, and Tr denotes the trace of the
following operators.

Note that throughout this paper the symbols with a sub-
script, e.g., ρ̂ j , may denote a single quantity or all the
quantities indexed by the subscript, which can be judged from
the context without confusion.

The fields emitted by the sources are assumed to be statis-
tically independent, quasimonochromatic, stationary in time,
and in spectrally pure [33] Gaussian states. The field of
the background is additionally uniform in the object plane.
Moreover, for simplicity, a single linear polarization, the +z
propagating component of the field, and the paraxial approxi-
mation are considered.

Under these assumptions, in the object plane O and for the
point sources [34], j = 1, . . . , J ,

Ê j,O(r, t ) = EÂ j,O(t )e−iω0tδ(r − r j ), (2)

ϕ j,O(r, r′) = π

k2
0

h̄ω0N jδ(r − r j )δ(r′ − r), (3)

χ j (t − t ′) = 1

N j
Tr
[
Â j,O(t ′)ρ̂ j Â

†
j,O(t )

]
, (4)

and for the background, j = 0,

N0,O(r) = N0, (5)

ϕ0,O(r, r′) = π

k2
0

h̄ω0N0δ(r′ − r). (6)

In the above equations, E accounts for several factors, in-
cluding the single-photon electric field, Eq. (1), and the
definition of the photon flux operator N̂ j,O = Ê†

j,OÊ j,O. The

relation E2 = π/k2
0 holds. Â j,O(t ) is the slowly varying anni-

hilation operator. ω0 is the central angular frequency under
the quasimonochromatic assumption. k0 = ω0/c, and c is the
speed of light in vacuum. The mutual coherence function
� j,O(r, r′; t, t ′) factors into the spatial part ϕ j,O(r, r′) and
the temporal part χ j (t − t ′)exp[iω0(t − t ′)] for the spectrally
pure field. χ j (t − t ′) is normalized such that χ j (0) = 1, and
remains unchanged during propagation. N j and πb2N0 give
the emitted mean photon rates.

B. Quantum diffraction

While χ j (t − t ′) are determined only by the sources,
ϕ j,z(r, r′) vary along the propagation path and depend on
the sources and the Green’s function of free-space diffrac-
tion [29,34],

G(r, z; t ) = δ(t )
k0

i2πz
exp

[
ik0

(
z + |r|2

2z

)]
, (7)

022602-2



QUANTUM METROLOGY WITH MULTIMODE GAUSSIAN … PHYSICAL REVIEW A 106, 022602 (2022)

from the object plane to a transverse plane at z. The aper-
ture fields Ê j,A(r, t ) can be solved for through the quantum
diffraction integral, which is essentially the spatiotemporal
convolution integral of the source fields Ê j,O(r, t ) and the
Green’s function G(r, R; t ).

At the aperture, the field component originating from the
jth point source can be written as either of the following
equations,

Ê j,A(r, t ) = EÂ j,O(t )

iλ0R
e−iω0t eik0(R+|r−r j |2/2R), (8)

ϕ j,A(r, r′) = a j,Aei(k0/R)[(r′2−r2 )/2+(r−r′ )·r j], (9)

where a j,A = h̄ω0N j/4πR2. For the field component from
the background, it is straightforward to use the van Cittert-
Zernike theorem [33,35], which delivers

ϕ0,A(r, r′) = a0,Aexp[(iπ/λ0R)(r′2 − r2)]

×
∫

O
d2r′′exp[(ik0/R)(r − r′) · r′′], (10)

where a0,A = h̄ω0N0/4πR2. This theorem follows directly
from the Fresnel-Kirchhoff diffraction formula with paraxial
approximation, and is equivalent to the quantum diffraction
integral.

Since any spatiotemporally band-limited function can be
expanded into a series by a set of spatiotemporal mode
functions ξ p(r)ζ m(t ), which are complete and orthonormal
(CON) [36] over the aperture A and the observation interval
(0, T ), the aperture field components can be expanded as

Ê j,A(r, t ) =
P∑

p=0

M∑
m=0

â j,p,mξ p(r)ζ m(t )e−iω0t , (11)

with P, M → ∞. The modal annihilation operators

â j,p,m =
∫

A

∫ T

0
ξ ∗

p(r)ζ ∗
m(t )eiω0t Ê j,A(r, t )d2r dt (12)

obey the canonical commutation relations (CCRs)

[â j,p,m, â j,q,n] = 0, [â j,p,m, â†
j,q,n] = δpqδmn. (13)

When spatiotemporally band limited, Ê j,O(r, t ) can be sim-
ilarly expanded, resulting in the modal annihilation operators
b̂ j,p,m. Of particular interest is the case where ξ p(r) are also
CON over the object plane. In this case, â j,p,m and b̂ j,p,m are
related by the beam-splitter model [29],

â j,p,m = √ηp,mb̂ j,p,m +
√

1 − ηp,mê j,p,m, (14)

where ηp,m = ν pγ m, and ν p and γ m are the eigenvalues as-
sociated with ξ p(r) and ζ m(t ), respectively. ê j,p,m are the
modal annihilation operators of the vacuum accounting for the
excitation of the modes by the environment. â j,p,m preserve
the canonical commutator structure of b̂ j,p,m. In this way, the
spatiotemporal modes can be thought of as parallel channels
with efficiencies ηp,m < 1, which is a natural generalization
of the beam-splitter loss model widely used in the single-
mode situations. This parallel-channel model is illustrated in
Fig. 1(b). Note that the two-element vector index l = (p, m)
is used to conveniently specify the entire spatiotemporal mode

related to ξ p(r)ζ m(t ), while p or m is used for an individual
spatial or temporal part. There are L = (P + 1) × (M + 1)
spatiotemporal modes in total. Since the vacuum does not
contribute to the photon counting, ê j,p,m average to zeros in
the photon measurements.

C. Multimode Gaussian density operators and
coherency matrices

The multimode Gaussian density operator for the aperture
field originating from the jth point source can be written in its
P representation [3] as

ρ̂ j = π−L|detV j |−1
∫

e−(a†−〈â j 〉† )V−1
j (a−〈â j 〉)|a〉〈a|d2La, (15)

where â j is defined as an L-dimensional column vector of
â j,p,m, and V j is defined as an L × L coherency matrix of
Vj,p,m,q,n,

〈â j,p,m〉 = Tr(ρ̂ j â j,p,m ), (16)

Vj,p,m,q,n = V (0)
j,p,m,q,n − V (d )

j,p,m,q,n, (17)

V (0)
j,p,m,q,n = Tr(â j,p,mρ̂ j â

†
j,q,n), (18)

V (d )
j,p,m,q,n = 〈â j,p,m〉〈â j,q,n〉∗. (19)

Note the index transfers l = (p, m) and l ′ = (q, n), where
l, l ′ = 1, . . . , L. Once 〈â j〉 and V j are determined, the matrix
elements of ρ̂ j in an appropriate representation are also de-
termined, which can be further used for state discrimination
among multiple objects.

It is suggestive from Eq. (15) that the diagonalization
of V−1

j makes ρ̂ j factor into single-mode density operators
ρ̂ j,p,m, which simplifies the measurement and reconstruction
process. The same idea has been introduced into the theory of
two-hypothesis testing by Helstrom [33]. For this purpose, it is
straightforward from Eqs. (1), (12), and (18) to show that [33]

V (0)
j,p,m,q,n = (h̄ω0)−1I j,p,q� j,m,n, (20)

I j,p,q =
∫

A
d2r′

∫
A

d2r ξ ∗
p(r′)ξ q(r)ϕ j,A(r, r′), (21)

� j,m,n =
∫ T

0
dt ′
∫ T

0
dt ζ ∗

m(t ′)ζ n(t )χ j (t − t ′). (22)

The spatial parts I j,p,q and temporal parts � j,m,n can be found
separately by the following eigenvalue problems [33]:

ν pξ p(r′) = 1

h̄ω0N j,A

∫
A
ϕ j,A(r, r′)ξ p(r)d2r, (23)

γ mζ m(t ′) = 1

T

∫ T

0
χ j (t − t ′)ζ m(t )dt, (24)

and the eigenfunctions ξ p(r) and ζ m(t ) are CON over the
aperture A and the observation interval (0, T ), respectively.
The relations

∑
p ν p = 1 and

∑
m γ m = 1 hold. N j,A is the

received mean photon rate originating from the jth source,
and N0,A = N0(πab)2/4πR2. Thus I j,p,q = h̄ω0N j,Aν pδpq,
� j,m,n = T γ mδmn, and the elements of the coherency matrices
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read

V (0)
j,p,m,q,n = N j,AT ν pγ mδpqδmn. (25)

Clearly, V(0)
j is diagonal, and N j,AT is divided into the

spatiotemporal mode channels proportionally to the mode
eigenvalues ηp,m = ν pγ m with

∑
p,m ηp,m = 1.

However, when ϕ j,A(r, r′) and χ j (t − t ′) related to the jth
source are used to solve for the mode functions ξ p(r) and

ζ m(t ), only V(0)
j corresponding to the jth field component

is diagonalized. Therefore, for the case where common sets
of mode functions ξ p(r) and ζ m(t ) are used simultaneously
for all the fields from the background and J point sources,
care must be taken to choose the mutual coherence functions
to make the following procedures tractable, which will be
discussed in the next section.

D. Explicit spatiotemporal mode functions

When ϕ0,A(r, r′) in Eq. (10) is substituted into the eigen-
value problem in Eq. (23), the eigenfunctions ξ p(r) and
eigenvalues ν p are related [33,37] to the 2D prolate spheroidal
functions ψ p(r/a) and their corresponding eigenvalues λp,
which were studied by Slepian [31] and Frieden [36]. The
eigenfunctions read

ξ p(r) = exp
( iπ

λ0R
r2
)ψ∗

p(r/a)

a
√

zp
, (26)

where zp = ∫A1
ψ∗

p(r)ψ p(r)d2r are the normalization coeffi-
cients over the unit-radius disk A1. The eigenvalues are given
by ν p = 4λp/β

2, and p = (N, n) is the notational transfer of
the mode indices. Thus ξ p(r) are CON over the aperture A,
|r| � a, and any 2D function band limited [31,36] by the
space-bandwidth product β = k0ab/R can be expanded by
ξ p(r).

Similarly, when the spectral density function Xj (ω), i.e.,
the Fourier transform of χ j (t − t ′), is rectangular [33] with a
bandwidth W ,

Xj (ω) = W −1 (|ω| < πW ), (27)

the eigenfunctions ζ m(t ) and eigenvalues γ m of Eq. (24) are
related to the 1D prolate spheroidal functions ψm(t ) and their
corresponding eigenvalues λm, which were studied by Slepian
and Pollak [32] and Frieden [36]. The eigenfunctions read

ζ m(t ) = 1√
λm

ψm

(
t − T

2

)
, (28)

with the eigenvalues γ m = λm/TW . Note that ζ m(t ) and
γ m are purely real valued. Thus ζ m(t ) are CON over the
observation interval t ∈ (0, T ), and any 1D function band
limited [32,36] by the time-bandwidth product TW can be
expanded by ζ m(t ).

The derivations of Eqs. (26) and (28) are provided in Ap-
pendix A.

E. Spatial mode decomposition

Every component of the aperture field can be expanded
by the same spatial mode functions ξ p(r), conditioned on the
bounded space-bandwidth product. Specifically, by Mercer’s

theorem,

ϕ0,A(r, r′) = a0,A(ab)2
∑

p

αpα
∗
pξ

∗
p(r)ξ p(r′). (29)

By a generalized relation similar to Mercer’s theorem,

ϕ j,A(r, r′) = a j,A(ab)2
∑
p,q

g∗
p(r j )gq(r j )ξ

∗
p(r)ξ q(r′), (30)

gp(r) = α∗
p

b
√

zp
ψ p

(r
b

)
, (31)

where αp are related [31] to λp by λp = (β/2π )2|αp|2.
The modal annihilation operators can be written as

â j,p(t ) = b

iδR
EÂ j,O(t )e−iω0t gp(r j )e

ik0(R+r2
j /2R), (32)

â j,p,m = bE
iδR

gp(r j )e
ik0(R+r2

j /2R)â j,O,m, (33)

where δR = λ0R/a is the resolution parameter due to diffrac-
tion, and â j,O,m = ∫ T

0 dt ζ ∗
m(t )Â j,O(t ) are the annihilation

operators of the jth source resulted from the temporal de-
composition in the object plane. The amplitude dependence of
â j,p(t ) and â j,p,m on r j is solely through the functions gp(r j ),
which are normalized to |αp|2 over the disk of radius b, and
which depend on the two-element vector index p = (N, n). N
and n are defined in Slepian’s paper [31].

The elements of the coherency matrices are derived as

V (0)
0,p,m,q,n = N0,Aν pδpq�0,m,n, (34)

V (0)
j,p,m,q,n = (ab)2

4πR2
gp(r j )g

∗
q(r j )Vj,O,m,n, (35)

Vj,O,m,n = Tr(â j,O,mρ̂ j â
†
j,O,n) = N j� j,m,n. (36)

The above equations show that the spatial and temporal fac-
tors are separated due to the assumption of spectrally pure
fields. V(0)

j in Eq. (35) are not diagonal but Hermitian for
spatial mode decomposition, since the mode functions are
not the eigenfunctions corresponding to the mutual coherence
functions of the point sources. It is thus expected that the
multimode excitation from the point sources provides much
more information than the single-mode one, as discussed
in Ref. [25]. This point will become more clear when the
quantum Fisher information matrix is discussed later. In this
manner, the problem of measuring multimode Gaussian states
of multiple point sources becomes more tractable. Refer to
Appendix B for the detailed derivations.

F. Temporal decomposition of Lorentzian spectrum

Although the mode decomposition coefficients can always
be calculated numerically in classical optics, it is for mathe-
matical convenience and physical insight to find the analytical
expressions. To temporally decompose the point sources, the
spectral density function of the background field is assumed
to be Eq. (27) to obtain the eigenfunctions in Eq. (28), and
that of the point sources are assumed to be the Lorentzian
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spectrum [33,38],

χ j (t − t ′) = e−W |t−t ′|, (37)

which is typical of quasimonochromatic sources [39].
In this case, every component of the aperture field can

be expanded by the same temporal mode functions ζ m(t ) in
Eq. (28), conditioned on the bounded time-bandwidth prod-
uct. Again by Mercer’s theorem,

χ0(t − t ′) = T
∑

m

γ mζ m(t )ζ m(t ′). (38)

By a generalized relation similar to Mercer’s theorem,

χ j (t − t ′) = T
∑

m

∑
n

ε (+)
m ε (−)

n ζ m(t )ζ n(t ′), (39)

where ε (+)
m = a(+)

m

√
W γ m, and

a(+)
m = 1

λm

∫ T/2

−T/2
eW (t ′+T/2)ψm(t ′)dt ′, (40)

a(−)
n = 1

λn

∫ T/2

−T/2
e−W (t ′+T/2)ψn(t ′)dt ′. (41)

The elements of the coherency matrices are derived as

�0,m,n = T γ mδmn, (42)

� j,m,n = T ε (−)
m ε (+)

n . (43)

Note that � j are not diagonal, since the mode functions are not
the eigenfunctions corresponding to the jth temporal mutual
coherence function. Refer to Appendix B for the derivations.

III. IMPLEMENTATION

The above mode decompositions can be translated into
the physical implementation presented in this section. For
simplicity, the physical implementation of the spatial decom-
position is discussed in detail, while the temporal one can be
similarly realized by a modulation in the time or frequency
domain. Firstly, as will be shown shortly, a nonabsorptive
polarization- and phase-modulating SLM, a lens, and a PBS
are used to act as the mode function multiplier, and the free-
space propagation acts as the integration over the aperture. In
this manner, the spatial mode decomposition is achieved. Sec-
ondly, with two additional lenses, the modal field operators
in the image plane and their relation to the modal annihila-
tion operators are derived. This relation provides an effective
approach to measuring the modal annihilation operators in
the image plane. Finally, the problems of multisource mea-
surement in the image plane and multiparameter retrieval are
presented, which enable the determination of the coherency
matrices and further that of the multimode density operators.

A. Decomposition of aperture fields

From Eqs. (12) and (26), it can be seen that the aperture
fields are multiplied by ξ ∗

p(r). Therefore, the spatial mode
decomposition can be physically implemented by a three-
step scheme [see Fig. 2(a)]. In the first step at the aperture,
a nonabsorptive SLM modulates the polarization and phase
of the aperture field according to the amplitude and phase

FIG. 2. (a) Implementation of the spatial mode decomposition.
The SLM and PBS multiply the aperture field by the function
ψ p(r/a)/a

√
zp, and the lens L1 with focal length f = R multiplies

the aperture field by exp(−iπr2/λ0R). The other two lenses L2 and
L3 with focal length f = R are used to compensate for the phase
shifts proportional to r2. A and I denote the aperture and image plane,
respectively. (b) Part of the spatial mode functions ψ p(r/a)/a

√
zp

sequentially loaded onto the SLM. The odd and even columns are
the amplitudes and phases, respectively, and the two-element vector
indices p = (N, n) are labeled at the upper left corners.

of the function ψ p(r/a)/a
√

zp, respectively. A lens labeled
L1 with focal length f = R provides the aperture field with
phase retardation according to the function exp(−iπr2/λ0R).
In the second step, a PBS transmits the modal field selected
by the SLM and reflects the remaining modes. The free-space
propagation of the field from the aperture to the transmission
port of the PBS is the third step, where the integration over the
aperture A takes effect. Figure 2(b) illustrates the spatial mode
functions sequentially loaded onto the SLM. These functions
are generated through the theory of Slepian [31] and numer-
ically improved by the method of Ref. [40]. The temporal
mode functions can similarly be loaded onto the SLM or other
modulators. These functions are generated from the theory of
Slepian and Pollak [32] and numerically computed through
the procedures provided by Ref. [41]. Refer to Appendix E
for the numerical calculation of the spatial mode functions.

Two additional lenses with focal length f = R are used
to compensate for the phase shifts proportional to r2. One
is placed next to lens L1, and the other is placed against the
image plane I . Then, under the pth mode decomposition and
related to the jth point source, the spatial modal field operator
in the image plane can be expressed as

Ê j,I,p(r, t ) = − 1

δ2
R

b

a
EÂ j,O(t )e−iω0t gp(r + r j )

× exp
[
ik0
(
2R + r2

j

/
2R
)]

, (44)
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and the process is similar to that described in Fourier op-
tics [42]. The derivation is outlined in Appendix C. This
expression indicates that the transverse fields are linearly
proportional to gp(r + r j ), which are symmetric or antisym-
metric about the points r = −r j given by the geometrical
images of the point sources. The symmetry depends on [31]
the index N of p = (N, n) through exp(iNθ ), the azimuthal
part of ψ p(r/b). The modal field operators satisfy Ê j,I,p(r −
r j, t ) = Ê j,I,p(−r − r j, t ) for even N , and Ê j,I,p(r − r j, t ) =
−Ê j,I,p(−r − r j, t ) for odd N .

Interestingly, it is found that the spatial modal annihilation
operators â j,p(t ) are related to the spatial modal field operators
Ê j,I,p(r, t ) in the image plane via

â j,p(t ) = iλ0R exp(−ik0R)Ê j,I,p(0, t ). (45)

Therefore, â j,p(t ) inherit the symmetry from Ê j,I,p(r, t ).
Specifically, since Ê j,I,p(0, t ) = Ê j,I,p(−2r j, t ) for even N
and Ê j,I,p(0, t ) = −Ê j,I,p(−2r j, t ) for odd N , the spatial
modal annihilation operators â j,p(t ) can be measured at these
points other than r = 0. Note that the scale factor is a
complex-valued constant for all the modes, which makes the
relation very simple for practical use.

It is worthy to point out that the relation of Eq. (45) is a
direct result of the spatial propagation of the field through
the optical system described above, and therefore applies to
any quantum state of the point sources. In other words, this
measurement arrangement is universally applicable to any
quantum state, and is independent of the mode functions cho-
sen for the decomposition.

It is noted that the above implementation can be seen as
an extension of the work of Helstrom [33], where Helstrom
used a similar decomposition for the two-hypothesis testing
problems so as to detect a circular uniform object against a
background of thermal noise. However, it is applied here to
handle the multimode field measurement of multiple point
sources against the circular uniform background. Further-
more, there are situations where it is advantageous to use a
decomposition that makes the fields of point sources multi-
mode, rather than the one that makes the fields single mode.
The latter case has been discussed by Helstrom for point
sources. The reason is that multimode fields provide much
more degrees of freedom for measurements to retrieve the
encoded information of the sources.

It is also noted that a similar method of local oscillator
(LO) mode scanning was studied theoretically [25] to de-
termine the coherency matrix and the quadrature covariance
matrix, and was studied experimentally [43] to distinguish
multiple objects. By the scan over the mode indices of the LO,
the overlapped object field modes are detected sequentially.
What makes the difference of this paper is twofold. Firstly,
the scanning mode functions are loaded through the SLM in
the aperture. Therefore, it is intrinsically a parallel way for
multiobject measurement, whereas the scan of Ref. [43] is in
the LO mode and image space. Secondly, all the hardware
is optically passive. Thus it inherently has higher fidelity
of the object fields and no excess noise commonly seen in
practical LO modes. Nonetheless, Ref. [43] is a valid experi-
mental support for the theoretical framework discussed in this
paper.

B. Image plane measurement and parameter retrieval

From the image plane operators in Eq. (44), the modal
photon flux operators N̂ j,I,p(r, t ) = Ê†

j,I,pÊ j,I,p read

N̂j,I,p(r, t ) = b2E2

a2δ4
R

|gp(r + r j )|2Â†
j,O(t )Â j,O(t ), (46)

and the spatial modal photon rate operators are obtained from
Eq. (45) as

â†
j,p(t )â j,p(t ) = (λ0R)2N̂j,I,p(0, t ). (47)

It is obvious that N̂j,I,p(r, t ) and â†
j,p(t )â j,p(t ) are symmet-

ric with respect to the points r = −r j , and N̂j,I,p(−2r j, t ) =
N̂j,I,p(0, t ). Therefore, the measurements at these point pairs
are equivalent.

Since Eq. (44) is the image plane response to a point source
located at r j in the object plane, the transfer function from
the object plane to the image plane can be easily obtained.
When the pth mode is selected by the SLM, the spatial mutual
coherence function ϕ0,I,p(r, r′) of the background is derived
as

ϕ0,I,p(r, r′) = a0,Aλp

[
1

b2zp

∫
O

d2rOψ p

(
r′ + rO

b

)

×ψ∗
p

(r + rO

b

)]
(48)

= a0,A(b/δR)2
∫

O
d2rOgp(r′ + rO)g∗

p(r + rO).

(49)

The modal photon flux of the background N0,I,p(r, t ) is cal-
culated as (h̄ω0)−1ϕ0,I,p(r, r) (see Appendix C). Physically,
the factor a0,A = h̄ω0N0/4πR2 represents the power emitted
per unit area of the background and received per unit area of
the aperture, as already shown in ϕ0,A(r, r′) at the aperture in
Eq. (10). The eigenvalue λp accounts for the photon efficiency
of the mode, which is inherent due to diffraction discussed
in Sec. II B. The expression in the square brackets repre-
sents the transverse distribution and is normalized to unity at
r = r′ = 0. Meanwhile, ϕ0,I,p(r, r′) ∝ (b/δR)2 means that it
is proportional to the number of spatial degrees of freedom
in the image plane [33]. The scale factor is controlled by the
overlap integral of two gp(r) functions. This phenomenon is
similar to the autocorrelation function of the optical transfer
function in diffraction theory [35].

To retrieve the parameters of the background and J point
sources, it is convenient to start from the modal photon fluxes
defined above. Let N0,I,p(·), Nj,I,p(·), and NI,p(·) denote the
modal photon fluxes of the background, point sources, and
measurements in the image plane, respectively. The following
equations are established:

NI,p
(
r′

j, t
) = N0,I,p(r′

j, t ; N0) +
J∑

j=1

Nj,I,p(r′
j, t ;N j, r j ),

(50)
for a total of more than 3J + 1 locations r′

j in the image
plane set by the measurement procedure. The locations are
preferably near the geometrical images of the J point sources
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to make the computation more robust to the classical noises
and numerical errors. Therefore, in the sense of least-squares
error, more than 3J + 1 nonlinear equations are used to solve
for 3J + 1 unknowns N0, N j , and r j .

IV. QUANTUM CRAMÉR-RAO BOUND

As the coherency matrices have been obtained, the QFIM
and further the QCRB of the parameter estimation error can
be derived. In Helstrom’s calculations [33,37], the QFIM is
derived from a matrix equation, which is complex valued and
unstable for direct numerical computation.

Recently, the efforts to find the QFIM and the optimal
measurement for the purpose of attaining the QCRB were
reported in literature [44–50]. Significant progress has been
made for arbitrary Gaussian states through the Bures dis-
tance and quantum fidelity, where the statistical moments, i.e.,
the displacement vectors and covariance matrices, and their
derivatives with respect to the parameters are sufficient to
compute the QFIM. Via the Bloch-Messiah reduction [51] to
obtain the symplectic transformation matrices and symplec-
tic eigenvalues, the symmetric logarithmic derivative and the
QFIM [46–49] can be obtained.

In this section, the QCRB for multimode Gaussian states
is briefly discussed firstly. Then, the structural significance of
the covariance matrices is revealed. Finally, a numerical study
of the QCRBs through the proposed theoretical framework is
conducted. The localization errors of multiple point sources
are taken as an example.

A. Computable QFIM and QCRB

Arranging the modal annihilation and creation operators in
the following form provides the displacement vector and co-
variance matrix needed to completely describe the multimode
Gaussian state of the jth point source,

d̂(c)
j = (â1, â2, . . . , â†

1, â†
2, . . .)

T
, (51)

d(c)
j = 〈d̂(c)

j

〉 = Tr
(
ρ̂ j d̂

(c)
j

)
, (52)

V(c)
j = 〈{[d̂(c)

j − d(c)
j

]
,
[
d̂(c),†

j − d(c),†
j

]}〉
, (53)

where {d̂ j, d̂†
j}l,l ′

= d̂l d̂
†
l ′ + d̂†

l ′ d̂l is the compact outer product
notation [52], the subscript j is omitted in the components,
and the subscript transfer l = (p, m) is for notational simplic-
ity. The CCRs in Eq. (13) can be written as[

d̂(c)
j , d̂(c),†

j

] = K, K = I ⊕ (−I), (54)

where I is the L-dimensional identity matrix. The symplectic
eigenvalues κ i of V(c)

j can be computed [52] by taking the
absolute value of the usual eigenvalues of the matrix V j =
KV(c)

j . A quantum state is pure if all κ i = 1; otherwise, it is a
mixed state.

The QFIM Hj,s,s′ (ε) for the parameter vector ε for pure and
isothermal states is expressed as [47,49,50]

Hj,s,s′ (ε) = υ2

2(1 + υ2)
tr
(
V−1

j ∂sV jV−1
j ∂s′V j

)
+ 2∂sd

(c),†
j V(c),−1

j ∂s′d(c)
j , (55)

where υ = 1 for pure states, υ > 1 for isothermal states. ∂s

and ∂s′ denote the derivatives with respect to the parameters
εs and εs′ , respectively. tr represents matrix trace.

For mixed states, the QFIM can be calculated as [49,50]

Hj,s,s′ (ε) = 1

2

L∑
l=1

tr
(
V−l

j ∂sV jV−l
j ∂s′V j

)+ RL,s,s′

+ 2∂sd
(c),†
j V(c),−1

j ∂s′d(c)
j , (56)

with the bounded remainder,

|RL,s,s′ | �

√
tr[(V j∂sV j )

2]
√

tr[(V j∂s′V j )
2]

2κ2L+2
min (κ2

min − 1)
, (57)

where limL→∞ RL = 0, and κmin = min{κ i} is the smallest
symplectic eigenvalue of V(c)

j .
The QCRB Qj (εs) is related to the QFIM Hj,s,s′ (ε)

via [33,44]

Q2
j (εs) = [NH j (ε)]−1

s,s , (58)

where N is the number of independent and identical mea-
surements. And the root-mean-square error of the parameter
estimate is bounded by

�εs � Qj (εs). (59)

B. Structured covariance matrices

The covariance matrices in Eq. (53) can be rewritten into
the following structured matrix form, as outlined in Ap-
pendix D:

V(c)
j = 2

(
1
2 I + V(0)

j C(0)
j

C(0),∗
j

1
2 I + V(0),∗

j

)
− 2

(
V(d )

j C(d )
j

C(d ),∗
j V(d ),∗

j

)
,

(60)

where the coherency matrices V(0)
j = V(0),†

j are defined in

Eq. (18) and explicitly given by Eq. (35), and V(d )
j = V(d ),†

j
can be derived directly from the modal annihilation operators
in Eq. (33). The fluctuation-related matrices C(0)

j = C(0),T
j and

C(d )
j = C(d ),T

j are defined as

C(0)
j,l,l ′ = 1

2 Tr
({âl , âl ′ }ρ̂ j

)
, (61)

C(d )
j,l,l ′ = 〈âl〉〈âl ′ 〉, (62)

and C(0)
j,l,l ′ = Tr(âl âl ′ ρ̂ j ) for the CCRs of Eq. (13).

The explicit expression for C(0)
j,l,l ′ can be written as

C(0)
j,p,m,q,n = −(bE/δR)2gp(r j )gq(r j )e

ik0(2R+r2
j /R)Cj,O,m,n,

(63)

Cj,O,m,n = Tr(ρ̂ j â j,O,mâ j,O,n), (64)

from the modal annihilation operators in Eq. (33), and C(d )
j

can be derived in a similar way.
Note that Eqs. (33), (35), and (63) are separated into spatial

and temporal parts, and the included operators are in the
temporal parts. Therefore, the spatial and temporal modes can
be treated separately to make the physics more clear, thanks
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to the proper choice of the mode functions and the assump-
tion of spectrally pure fields. Furthermore, the multimode
structure can be transformed and enhanced for subtle state
discrimination. In fact, from Eqs. (55) and (56), the QFIM is
proportional to the sum of the matrix traces. When the deriva-
tives with respect to the parameters are appropriate, which are
determined by the quantum system, the QFIM is greater for
both more modes and higher purity of quantum states. The
reason is that the covariance matrices V(c)

j are positive-definite
Hermitian, and the symplectic eigenvalues are lower-bounded
by the eigenvalues of pure states. In other words, the QFIM
of pure states is greater than that of mixed states of the same
type, and the QFIM of pure states with more modes is even
greater than that of pure states with fewer modes.

C. Numerical calculation of QCRB

It has been shown that the displacement vectors, covariance
matrices, and their derivatives with respect to the parame-
ter vector ε can be derived analytically from the functions
ψ p(r j/b) and their derivatives. In the case where ε takes effect
through the propagation from the object plane to the aperture
plane, it is ready now to calculate the numerical values of
the QCRB. Likewise, in the case where ε takes effect through
the temporal behavior of the fields, the functions ψm(t ) come
to play the central roles, and the QCRB can be numerically
calculated accordingly.

For simplicity, this paper takes the polar coordinates r j =
(r j, θ j )T of the point sources as the parameters of this cal-
culation. The fields of the point sources are assumed to be
temporally single-mode thermal states, coherent states, or
quadrature squeezed states. The corresponding displacement
vectors, coherency matrices, and fluctuation-related matrices
are given in Appendix D, which can be used for the explicit
expressions Eqs. (33), (35), and (63) to calculate the spatially
multimode displacement vectors d(c)

j in Eq. (52) and covari-

ance matrices V(c)
j in Eq. (53). As can be seen in Appendix D,

the derivatives with respect to the parameters ε = (r j, θ j )T

depend on the functions gp(r j ), and can be obtained via
Eqs. (31), (E1), (E21), and (E22). Finally, the numerical cal-
culation of the QCRBs Qj (r j ) and Qj (θ j ) is completed by
Eqs. (55), (56), and (58). For the point sources in the object
plane, the temporally single-mode thermal states are treated
as mixed states, while the others are treated as pure states.

The configuration parameters are set as follows. The ob-
ject plane and the aperture are b = a = 1 mm in radius, and
are R = 400 mm apart. With the central wavelength λ0 =
0.532 μm, the space-bandwidth product is β = 29.5, and the
resolution parameter due to diffraction is δR = 0.213 mm.
The maximum spatial mode indices are P = (N, n)max, and
L = 100 matrix traces are included for mixed states. The
number of independent and identical measurements is N = 1.

The QCRBs of the estimation errors �r j and �θ j of the
point sources in coherent states at different locations in the
object plane are shown in Fig. 3. Overall, the QCRBs are
circularly symmetrical and radially nonuniform. Although the
distributions of the QCRBs vary with the maximum spatial
mode indices P = (N, n)max, the radially intermediate zone
has lower bounds than the central zone. This result is quite
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FIG. 3. QCRBs Qj as functions of the location of the point
sources in the object plane. (a), (c), and (e) are for �r j , and (b),
(d), and (f) are for �θ j . The maximum spatial mode indices are
(N, n)max = (9, 9) for (a) and (b), (9, 18) for (c) and (d), and (18, 18)
for (e) and (f). The units of Qj (r j ) are millimeters, and that of Qj (θ j )
are rad. The point sources are in coherent states, and the mean photon
rates N j = 1.0 × 104. The boundaries of the object plane are marked
with yellow circles. To enhance the details, the natural logarithms of
Qj are used.

counterintuitive, since the on-axis point is always in rela-
tively better imaging condition in classical optics. From the
expansion of the aperture field in Eq. (11) and the complete-
ness relation in Eq. (A7), the error of mode decomposition
approaches zero as P → ∞. Therefore, larger (N, n)max are
preferable, and Figs. 3(e) and 3(f) are more accurate than oth-
ers. It is also noted that there are singularities at the center of
Figs. 3(b), 3(d) and 3(f), where Qj (θ j ) approach infinity. This
is simple to understand since the azimuthal angle at the center
is uncertain mathematically. For thermal states and quadrature
squeezed states, the QCRB distributions are similar.

Figure 4 compares the QCRBs for coherent states, ther-
mal states, and quadrature squeezed states, as well as [35]
the Rayleigh limit 0.61δR. In Fig. 4(a), the QCRBs decrease
as the mean photon rate N j of the point sources increases.
The values of coherent states are lower than that of thermal
states. The intersection points of the Rayleigh limit with the
curves of Qj (r j ) for coherent states and thermal states appear
at N j = 1.0 × 104 and N j = 1.6 × 104, respectively. The
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FIG. 4. QCRBs Qj of �r j and �θ j as functions of (a) the mean
photon rate N j and (b) the squeeze parameter �, with ϑ = π/4. The
units of Qj (r j ) and the Rayleigh limit are millimeters, and the units
of Qj (θ j ) are rad. The point source is at the location r j = 1/2 and
θ j = 0 in the object plane. The maximum spatial mode indices are
(N, n)max = (9, 18). For coherent states, � = 0.

Rayleigh limit is surpassed once these points are exceeded.
For Qj (r j ) to be 0.013, which is about 1/10 of the Rayleigh
limit, the mean photon rates should be N j = 9.6 × 104

and N j = 1.2 × 105 for coherent states and thermal states,
respectively.

Figure 4(b) shows the dependence of the QCRBs on the
squeeze parameter �. For coherent states, � = 0, and the
curves start with Qj (r j ) = 413.02, 41.30, and 4.13, corre-
sponding to three cases of N j = 3, 30, and 300, respectively.
The difference between coherent and squeezed states is not
significant for small values of �. Then they turn downward
in the regions around � ≈ 1.88, 3.06, and 4.19, respectively,
and fall off rapidly as � increases beyond those regions. For
all three cases, Qj (r j ) cross the Rayleigh limit at �=6.44 and
reach 0.0013 at �=8.0. At �=8.0, Qj (r j ) are approximately
1% of the Rayleigh limit, or they result in [22] a superresolu-
tion factor SR = 0.61δR/[Qj (r j )] ≈ 100.

Physically, Fig. 4 shows that the Rayleigh limit can al-
ways be surpassed by increasing the mean photon rate or
squeeze parameter. This confirms the widely recognized fact
that the location of a microscopic object can be determined
with precision well above the Rayleigh limit, if enough pho-
tons are collected, or if squeezed light fields are used. The
differences between coherent states and thermal states in
Fig. 4(a) are attributed to the differences in the displacement
vectors 〈â j,O,0〉 and the fluctuation-related matrices Cj,O,0,0

[see Eqs. (D9), (D11), (D13), and (D15)]. Specifically, the
nonzero 〈â j,O,0〉 and Cj,O,0,0 of coherent states contribute to
the decrease and increase in the QCRB via the QFIM in
Eq. (55), respectively. This results in the lower QCRBs for
coherent states compared to that of thermal states. The amount
of difference depends on N j . Since the photon number fluctu-
ation of coherent states is less than that of thermal states [38],
the above results are consistent with the existing studies. For
the curves in Fig. 4(b), the squeeze parameter takes effect
entirely through Eqs. (D21) and (D22). An increase in � is
equivalent to an increase in N j in the manner of sinh2(�).
Thus the increase in Vj,O,0,0 and the decrease in the QCRBs
are much faster for larger values of � than for smaller values.
Meanwhile, Cj,O,0,0 decreases as � increases in the manner
of (1/2)eiϑ sinh(2�), and the decrease in the QCRBs occurs
accordingly. Through free-space propagation from the object
plane to the aperture, the temporally single-mode fields of
point sources become spatially multimode. Therefore, the
behavior of the curves is the result of interferences and fluctu-
ation reductions, both of which are intramodal and intermodal.

V. CONCLUDING REMARKS

To solve the imaging and metrology problems with mul-
timode Gaussian states of multiple point sources, quantum
coherence theory and quantum diffraction theory have been
used to find the field operators and mutual coherence func-
tions at the aperture plane. Considering the circular symmetry
of the object plane and aperture, the spatial mode functions
are found analytically. The modal annihilation operators and
coherency matrices depend on the locations r j of the point
sources through the functions gp(r j ). For a rectangular spec-
tral density function of the background, the temporal mode
functions and the decompositions are also found in a similar
way.

This multimode decomposition can be physically imple-
mented by a three-step scheme consisting of an SLM, three
lenses, and a PBS, which is optically passive and experimen-
tally straightforward. Under this decomposition, the spatial
modal annihilation operators are related to the spatial modal
field operators in the image plane by a simple complex-valued
scale factor. This relation is independent of the mode func-
tions and quantum states of the field. Under the pth mode
decomposition and by the photon counting arranged in the
image plane, a set of equations can be established to retrieve
the unknown parameters of the background and point sources.

Last but not the least, the quantum Fisher information
matrix and quantum Cramér-Rao bounds have been discussed
and numerically calculated. Interestingly, for coherent states,
the numerical calculation shows that the bound in the radially
intermediate zone of the object plane is lower than that in the
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central area, which is quite counterintuitive, since the on-axis
point is always in relatively better imaging condition in clas-
sical optics. With large mean photon rates, the well-known
Rayleigh limit can always be surpassed by thermal states,
coherent states, and quadrature squeezed states. Furthermore,
the advantage of quadrature squeezed states is not significant
until the squeeze parameter is large enough, which must be
taken into account in terms of the practical measurement cost.

As far as the application is concerned, the theory presented
in this paper is applicable to the general cases of far-field
imaging and parameter estimation, such as microscopy, quan-
tum tomography, and quantum optical computing. Obviously,
with minor modification, the theory can also be applied to
astronomy, remote sensing, and free-space quantum commu-
nication.
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APPENDIX A: DERIVATION OF THE SPATIAL AND
TEMPORAL MODE FUNCTIONS

1. Spatial mode functions

The derivation of the spatial mode functions is basi-
cally by comparing the defining integral equation studied by
Slepian [31] with the defining integral equation, Eq. (23),
where the spatial mutual coherence function of the back-
ground Eq. (10) is used. This process is similar to that of
Helstrom [37].

Let r = ax, r′ = ay, and r′′ = bz. Rewrite Eq. (10) as

ϕ0,A(r, r′) = π h̄ω0N0

k2
0a2

exp

[
i
πa2

λ0R

(
y2 − x2

)]
Kc(x − y),

(A1)

Kc(x) =
(

β

2π

)2 ∫
O1

d2z exp(iβx · z), (A2)

where β = k0ab/R, and O1 is a unit-radius disk in the object
plane. Substituting Eq. (A1) into Eq. (23) results in

1

4
β2ν p

[
ξ p(ay)exp

(
−i

πa2

λ0R
y2

)]

=
∫

A1

d2x Kc(x − y)

[
ξ p(ax)exp

(
−i

πa2

λ0R
x2

)]
, (A3)

where A1 is a unit-radius disk in the aperture plane. Taking
the conjugate of the integral equations in Eqs. (12)–(14) of
Ref. [31], and exchanging the positions of x and y, one obtains

λN,nψ
∗
N,n(y) =

∫
A1

d2x Kc(x − y)ψ∗
N,n(x). (A4)

Then by comparing Eq. (A3) with Eq. (A4) one finds that

ξ p(ax)exp

(
−i

πa2

λ0R
x2

)
= ψ∗

N,n(x), (A5)

and ν p = 4λN,n/β
2, with p = (N, n) as the notational transfer.

Since ψN,n(x) in Ref. [31] is not normalized over the unit-

radius disk A1, it is normalized here and delivers ξ p(r) in
Eq. (26).

The orthonormality of ξ p(r) can be established by the fact
that∫

A
d2r ξ ∗

p(r)ξ q(r) =
∫

A
d2r

1

a
√

zp
ψ p

( r
a

) 1

a
√

zq
ψ∗

q

( r
a

)

= (1/zp)
∫

A1

d2x ψ p(x)ψ∗
q(x)

= δpq, (A6)

and the completeness relation can be derived similarly to
Ref. [36] as

∞∑
p=0

ξ ∗
p(r)ξ p(r′) = δ(r − r′). (A7)

2. Temporal mode functions

For the spectral density function Xj (ω) in Eq. (27), the
temporal mutual coherence function can be expressed as [33]

χ j (t − t ′) = (1/2π )
∫ πW

−πW
dω Xj (ω)e−iω(t−t ′ )

= sin [πW (t − t ′)]
πW (t − t ′)

. (A8)

Substitute this result into Eq. (24), then let t = τ + T/2 and
t ′ = τ ′ + T/2. After some straightforward calculations, the
result is

TW γ mζ m

(
τ ′ + T

2

)

=
∫ T/2

−T/2
dτ

sin [πW (τ − τ ′)]
π (τ − τ ′)

ζ m

(
τ + T

2

)
. (A9)

Comparing Eq. (A9) with Eq. (11) of Ref. [32], one finds that

ζ m

(
τ + T

2

)
= ψm(τ ), (A10)

and γ m = λm/TW . The normalization over (0, T ) yields
Eq. (28).

The orthonormality of ζ m(t ) can be verified as∫ T

0
dt ζ m(t )ζ n(t )

=
∫ T

0
dt

1√
λm

ψm

(
t − T

2

) 1√
λn

ψn

(
t − T

2

)
= δmn, (A11)

and the completeness relation can be shown similarly to
Ref. [36] as

∞∑
m=0

ζ m(t )ζ m(t ′) = δ(t − t ′). (A12)

APPENDIX B: SPATIOTEMPORAL MODE
DECOMPOSITIONS

In this Appendix, it will be shown that the spatial and
temporal mutual coherence functions at the aperture can be
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analytically decomposed by common spatial and temporal
mode functions. This allows the modal annihilation operators
and coherency matrices to be explicitly expressed by the ex-
perimentally determinable quantities.

1. Decomposition of the mutual coherence
functions of the background

The mode functions ξ p(r) in Eq. (26) and the corre-
sponding eigenvalues ν p = 4λp/β

2 are the solutions to the
eigenvalue problem in Eq. (23), when ϕ0,A(r, r′) is included in
the kernel function. By Mercer’s theorem or the completeness
relation in Eq. (A7), one obtains

1

�ω0N0,A
ϕ0,A(r, r′) =

∑
p

ν pξ
∗
p(r)ξ p(r′). (B1)

This leads to Eq. (29) as

ϕ0,A(r, r′) = 4h̄ω0N0,A

β2

∑
p

λpξ
∗
p(r)ξ p(r′)

= 4h̄ω0N0,A

β2

∑
p

(
β

2π

)2

αpα
∗
pξ

∗
p(r)ξ p(r′)

= h̄ω0N0(ab)2

4πR2

∑
p

αpα
∗
pξ

∗
p(r)ξ p(r′)

= a0,A(ab)2
∑

p

αpα
∗
pξ

∗
p(r)ξ p(r′), (B2)

where λp = (β/2π )2|αp|2, N0A = N0(πab)2/4πR2, and
a0,A = h̄ω0N0/4πR2.

From χ0(t − t ′) in Eqs. (27) and (A8), according to
Eq. (24) and Mercer’s theorem, or by the completeness re-
lation in Eq. (A12), the relation in Eq. (38) is easily obtained.

2. Decomposition of the mutual coherence
functions of the point sources

To derive the relation in Eq. (30), the following identity can
be proven first:

exp(−iβx · y) =
∑

p

α∗
p

zp
ψ∗

p(y)ψ p(x). (B3)

Proof. From the defining integral equation Eq. (15) of
Ref. [31], and with notational change, it is found that

αpψ p(x) =
∫

A1

d2y exp(iβx · y)ψ p(y), (B4)

α∗
pψ p(x) =

∫
A1

d2y exp(−iβx · y)ψ p(y), (B5)

where p = (N, n), αN,n = iN 2πbN,n, and bN,n is real. For all
f (y) band limited by β, f (y) =∑p fpψ p(y), where fp =
(1/zp)

∫
A1

d2y ψ∗
p(y) f (y). It is simple to show that∫

A1

d2y exp(−iβx · y) f (y)

=
∑

p

fp

∫
A1

d2y exp(−iβx · y)ψ p(y)

=
∑

p

1

zp

∫
A1

d2yψ∗
p(y) f (y)α∗

pψ p(x)

=
∫

A1

d2y f (y)
∑

p

α∗
p

zp
ψ∗

p(y)ψ p(x). (B6)

Since the above equalities hold for any band-limited function
f (y), they deliver Eq. (B3). �

By Eq. (B3), the factor exp[i(k0/R)(r − r′) · r j] in Eq. (9)
of ϕ j,A(r, r′), can be rearranged as

exp

[
i
k0

R
(r − r′) · r j

]
= exp(iβx · z j )exp(−iβy · z j )

=
∑
p,q

αpα
∗
q

zpzq
ψ∗

p(z j )ψq(z j )ψ p(x)ψ∗
q(y), (B7)

with r = ax, r′ = ay, and r j = bz j . Then Eq. (9) becomes

ϕ j,A(r, r′) = a j,A exp
[
i

π

λ0R

(
r′2 − r2

)]

×
∑
p,q

αpα
∗
q

zpzq
ψ∗

p(z j )ψq(z j )ψ p(x)ψ∗
q(y)

= aj,A(ab)2
∑
p,q

αp

b
√

zp
ψ∗

p

(r j

b

) α∗
q

b
√

zq
ψq

(r j

b

)

×
[
ψ p(x)

a
√

zp
exp
(
−i

π

λ0R
r2
)]

×
[
ψ∗

q(y)

a
√

zq
exp
(

i
π

λ0R
r′2
)]

= a j,A(ab)2
∑
p,q

g∗
p(r j )gq(r j )ξ

∗
p(r)ξ q(r′), (B8)

where

gp(r) = α∗
p

b
√

zp
ψ p

(r
b

)
. (B9)

Equation (30) is thus obtained. With ψ p(r) in Eq. (E1), the
symmetry of gp(r) depends on the factor exp(iNθ ). Specifi-
cally, gp(r) is even for even N and odd for odd N .

The following identity is needed to derive the temporal part
in Eq. (39):

eW (t−t ′ ) =
∑
m,n

a(+)
m a(−)

n ψm

(
t − T

2

)
ψn

(
t ′ − T

2

)
, (B10)

with a(+)
m and a(−)

n defined in Eqs. (40) and (41).
Proof. For all g(t ) band limited by the time-bandwidth

product TW , g(t ) =∑m gmψm(t ), where ψm(t ) are the 1D
prolate spheroidal functions on (−T/2, T/2), and were stud-
ied by Slepian and Pollak [32]. Also eW t and e−W t are
band limited over the interval (0, T ), and can be expanded
by ψm(t − T/2) with the expansion coefficients given in
Eqs. (40) and (41). Therefore, Eq. (B10) is obtained as the
product of eW t and e−W t ′

. �
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By the temporal mode functions in Eq. (28) and the eigen-
values, Eq. (B10) can be further transformed into

eW (t−t ′ ) = T
∑
m,n

(
a(+)

m

√
W γ m

)(
a(−)

n

√
W γ n

)
ζ m(t )ζ n(t ′),

(B11)

with ε (+)
m = a(+)

m

√
W γ m, and ε (−)

n = a(−)
n

√
W γ n. By Eq. (37),

the explicit expression for χ j (t − t ′) in Eq. (39) is derived.

3. Derivation of the coherency matrices

The coherency matrix of the background V (0)
0,p,m,q,n in

Eq. (34) is obtained from Eq. (25) with Eq. (42). For the point
sources, the spatial factor I j,p,q in Eq. (21) can be extended by
using the explicit expression of ϕ j,A(r, r′) in Eq. (30),

I j,p,q =
∫

A
d2r′

∫
A

d2r ξ ∗
p(r′)ξ q(r)

× a j,A(ab)2
∑
p′,q′

g∗
p′ (r j )gq′ (r j )ξ

∗
p′ (r)ξ q′ (r′)

= a j,A(ab)2
∑
p′,q′

[
gq′ (r j )

∫
A

d2r′ξ ∗
p(r′)ξ q′ (r′)

]

×
[

g∗
p′ (r j )

∫
A

d2r ξ q(r)ξ ∗
p′ (r)

]

= a j,A(ab)2
∑

p′,q′[gq′ (r j )δpq′]
[
g∗

p′ (r j )δqp′
]

= a j,A(ab)2gp(r j )g
∗
q(r j ). (B12)

In the above derivation, the orthonormality condition Eq. (A6)
is used. Thus V (0)

j,p,m,q,n in Eq. (35) is obtained.
The temporal factor � j,m,n in Eq. (22) can also be extended

by using χ j (t − t ′) in Eq. (39):

� j,m,n =
∫ T

0
dt ′
∫ T

0
dt ζ m(t ′)ζ n(t )T

∑
m′,n′

ε
(+)
m′ ε

(−)
n′ ζ m′ (t )ζ n′ (t ′)

= T
∑
m′,n′

[
ε

(−)
n′

∫ T

0
dt ′ζ m(t ′)ζ n′ (t ′)

]

×
[
ε

(+)
m′

∫ T

0
dt ζ n(t )ζ m′ (t )

]

= T
∑

m′,n′ (ε
(−)
n′ δmn′ )(ε (+)

m′ δnm′ )

= T ε (−)
m ε (+)

n . (B13)

The orthonormality condition Eq. (A11) is used in the above
derivation. Thus the elements of the coherency matrices of the
point sources are obtained as shown in Eq. (43).

4. Derivation of the modal annihilation operators

To derive the explicit expression for the modal annihilation
operators in Eq. (32), substitute the aperture field in Eq. (8)
and the spatial mode functions in Eq. (26) into Eq. (12), and

perform the spatial integration. One obtains

â j,p(t ) = 1

iλ0R
EÂ j,O(t )e−iω0t eik0R

×
∫

A
d2rexp

[
i

π

λ0R

(−r2 + |r − r j |2
)]ψ p(r/a)

a
√

zp
.

(B14)

The above integral can be rewritten as the defining inte-
gral [31] of the eigenfunctions ψ p(x), as shown in Eq. (B5):

a exp
(

i
π

λ0R
r2

j

) ∫
A1

d2x exp(−iβx · z j )
ψ p(x)
√

zp

= a exp
(

i
π

λ0R
r2

j

)
α∗

p

ψ p(z j )√
zp

= ab exp
(

i
π

λ0R
r2

j

)
gp(r j ), (B15)

and gp(r) is defined in Eq. (B9). By δR = λ0R/a being the
resolution parameter due to diffraction, the explicit expres-
sion of the modal annihilation operators in Eq. (32) is finally
obtained.

APPENDIX C: IMAGE PLANE FIELDS

1. Spatial modal field operators

Under the spatiotemporal mode decompositions in the
aperture, the field operators in the image plane and related to
the J point sources can be derived. For clarity, only the spatial
mode decompositions are considered here, and the temporal
ones are similar and omitted.

By the SLM and PBS, the factor ψ p(r/a)/a
√

zp of the spa-
tial mode function ξ ∗

p(r) from Eq. (26) is modulated onto the
field. After the lens L1 of focal length f = R, the modulated
field of the jth source can be expressed as

ξ ∗
p(r)Ê j,A(r, t ) = 1

iλ0Ra
EÂ j,O(t )e−iω0t exp(ik0R)

× exp

(
i

k0

2R
r2

j

)
exp

(
−i

k0

R
r · r j

)
ψ p(r/a)

√
zp

.

(C1)

With the second lens L2 of focal length f = R arranged
immediately after the lens L1, the field is multiplied by
exp(−ik0r2/2R). Then the field propagates through a distance
R in free space toward the image plane, which is described by
the diffraction integral using the Green’s function in Eq. (7).
With the lens L2 taken into account, the diffraction integral of
the last two factors of Eq. (C1) is

1√
zp

∫
A

d2r′exp

(
−i

k0

R
r′ · r j

)
ψ p

(
r′

a

)
exp

(
−i

k0

2R
r′2
)

× k0

i2πR
exp

(
ik0R + i

k0

2R
|r − r′|2

)

= k0

i2πR
√

zp
exp

(
ik0R + i

k0

2R
r2

)

×
∫

A
d2r′exp

[
−i

k0

R
(r + r j ) · r′

]
ψ p

(
r′

a

)
. (C2)
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The last integral in Eq. (C2) can be rewritten using the
eigenvalue problem in Eq. (B5):∫

A
d2r′exp

[
−i

k0

R
(r + r j ) · r′

]
ψ p

(
r′

a

)

= a2
∫

A1

d2x exp[−iβ(y + z j ) · x]ψ p(x)

= a2α∗
pψ p(y + z j )

= a2α∗
pψ p

(r + r j

b

)
. (C3)

The field in the image plane before the last lens L3 can be
written as

Ê j,I ′,p(r, t ) = − 1

δ2
R

b

a
EÂ j,O(t )e−iω0t gp(r + r j )

× exp

[
ik0

(
2R + r2

j

2R
+ r2

2R

)]
. (C4)

On account of the last lens L3 of focal length f = R, which
multiplies the field with exp(−ik0r2/2R), the image plane
field under the pth spatial mode decomposition is obtained
as shown in Eq. (44).

2. Modal transfer function and modal coherence function

From the field operator in Eq. (44), the complex transfer
function from the object plane to the image plane under the
pth spatial mode decomposition can be written as

Kj,I,p(rO, r) = − 1

δ2
R

b

a
gp(r + rO) exp

[
ik0

(
2R + r2

O

2R

)]
. (C5)

Accordingly, the spatial mutual coherence function in the
image plane can be calculated as

ϕ j,I,p(r, r′) =
∫

O
d2r′

2Kj,I,p(r′
2, r′)

×
∫

O
d2r′

1K∗
j,I,p(r′

1, r)ϕ j,O(r′
1, r′

2). (C6)

For the background, substituting Eq. (6) into the above
equation, one obtains

ϕ0,I,p(r, r′) = a0,Aλp
1

b2zp

∫
O

d2rOψ p

(
r′+ rO

b

)
ψ∗

p

(r+ rO

b

)

= a0,A

(
b

δR

)2 ∫
O

d2rOgp(r′ + rO)g∗
p(r + rO),

(C7)

where (b/δR)2 = (β/2π )2. Thus Eqs. (48) and (49) are ob-
tained.

APPENDIX D: COVARIANCE MATRICES

1. Matrix operations

Starting from the definitions of the displacement vector and
covariance matrix in Eqs. (52) and (53), one can show that

V(c)
j = 〈{d̂(c)

j , d̂(c),†
j

}〉− {〈d̂(c)
j

〉
,
〈
d̂(c)

j

〉†}
. (D1)

After a laborious matrix calculation and making use of the
CCRs in Eq. (13), one obtains

〈{
d̂(c)

j , d̂(c),†
j

}〉 = 2

(
1
2 I + V(0)

j C(0)
j

C(0),∗
j

1
2 I + V(0),∗

j

)
, (D2)

{〈
d̂(c)

j

〉
,
〈
d̂(c)

j

〉†} = 2

(
V(d )

j C(d )
j

C(d ),∗
j V(d ),∗

j

)
, (D3)

where the block matrices are derived from Eq. (D1) as

I + 2V(0)
j =

⎛
⎜⎝

〈â1â†
1〉 + 〈â†

1â1〉 〈â1â†
2〉 + 〈â†

2â1〉 · · ·
〈â2â†

1〉 + 〈â†
1â2〉 〈â2â†

2〉 + 〈â†
2â2〉 · · ·

...
...

. . .

⎞
⎟⎠,

(D4)

2C(0)
j =

⎛
⎜⎝

2〈â2
1〉 〈â1â2〉 + 〈â2â1〉 · · ·

〈â2â1〉 + 〈â1â2〉 2〈â2
2〉 · · ·

...
...

. . .

⎞
⎟⎠,

(D5)

2V(d )
j = 2

⎛
⎜⎝

〈â1〉〈â†
1〉 〈â1〉〈â†

2〉 · · ·
〈â2〉〈â†

1〉 〈â2〉〈â†
2〉 · · ·

...
...

. . .

⎞
⎟⎠, (D6)

2C(d )
j = 2

⎛
⎜⎝

〈â1〉2 〈â1〉〈â2〉 · · ·
〈â2〉〈â1〉 〈â2〉2 · · ·

...
...

. . .

⎞
⎟⎠. (D7)

Thus Eq. (60) is obtained.

2. Typical single-mode Gaussian states

The displacement vectors, coherency matrices, and
fluctuation-related matrices of the single temporal mode ther-
mal states, coherent states, and quadrature squeezed states are
calculated here [38]. The subscripts for multimode fields and
multiple point sources are retained for consistency.

For thermal states, the density operators read

ρ̂ j = 1

1 + N j

∞∑
n=0

( N j

1 + N j

)n

|n〉〈n|. (D8)

Thus the displacement vectors, coherency matrices, and
fluctuation-related matrices are

〈â j,O,0〉 = Tr(ρ̂ j â j,O,0) = 0, (D9)

Vj,O,0,0 = Tr(â j,O,0ρ̂ j â
†
j,O,0) = N j, (D10)

Cj,O,0,0 = Tr(ρ̂ j â
2
j,O,0) = 0. (D11)

For coherent states,

ρ̂ j = |α〉〈α|, (D12)

〈â j,O,0〉 = α j,O,0, (D13)

Vj,O,0,0 = |α j,O,0|2 = N j, (D14)

Cj,O,0,0 = α2
j,O,0. (D15)
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For quadrature squeezed states,

ρ̂ j = |α, ς〉〈α, ς |, (D16)

|α, ς〉 = D̂(α)Ŝ(ς )|0〉, (D17)

with the squeeze operator Ŝ(ς ) and the displacement operator
D̂(α) defined as

Ŝ(ς ) = exp[(ς∗â2 − ς â†2)/2], (D18)

D̂(α) = exp(αâ† − α∗â), (D19)

where ς = � eiϑ , and � is the squeeze parameter. Thus,

〈â j,O,0〉 = α j,O,0, (D20)

Vj,O,0,0 = N j + sinh2(�), (D21)

Cj,O,0,0 = α2
j,O,0 − eiϑ sinh(2�)/2. (D22)

Finally, the matrices needed to calculate the covariance
matrices in Eq. (60) can be written explicitly as

V(0)
j = (ab)2

4πR2

⎛
⎝g1g∗

1 g1g∗
2 · · ·

g2g∗
1 g2g∗

2 · · ·
...

...
. . .

⎞
⎠Vj,O,0,0, (D23)

V(d )
j = b2E2

δ2
R

⎛
⎝g1g∗

1 g1g∗
2 · · ·

g2g∗
1 g2g∗

2 · · ·
...

...
. . .

⎞
⎠|〈â j,O,0〉|2, (D24)

C(0)
j = −b2E2

δ2
R

eik0(2R+r2
j /R)

⎛
⎝g1g1 g1g2 · · ·

g2g1 g2g2 · · ·
...

...
. . .

⎞
⎠Cj,O,0,0,

(D25)

C(d )
j = −b2E2

δ2
R

eik0(2R+r2
j /R)

⎛
⎝g1g1 g1g2 · · ·

g2g1 g2g2 · · ·
...

...
. . .

⎞
⎠〈â j,O,0〉2,

(D26)

where gp(r j ) are written as gp for notational simplicity.

APPENDIX E: NUMERICAL CALCULATION OF
SPATIAL MODE FUNCTIONS

The functions ψ p(r) needed to define the spatial mode
functions ξ p(r) via Eq. (26) are directly related to the
generalized prolate spheroidal functions ϕN,n(r) studied by
Slepian [31],

ψ p(r) = ψN,n(r, θ ) = RN,n(r)exp(iNθ )

=
(

1√
r

)
ϕN,n(r)exp(iNθ ) (0 � r � 1). (E1)

The functions ϕN,n(r) are real valued and

ϕN,n(r) =
S∑

s=0

d (N,n)
s (β )TN,s(r), (E2)

where S → ∞. The functions TN,s(r) are related [31,40] to the
Jacobi polynomials P(a,b)

s (x) as

TN,s(r) = hN,s

(
N + s

s

)−1

rN+1/2P(N,0)
s (1 − 2r2), (E3)

hN,s = [2(N + 2s + 1)]1/2

(
N + s

s

)
, (E4)

and TN,s(r) are orthonormal as

∫ 1

0
TN,s(r)TN,s′ (r)dr = δss′ . (E5)

By substituting the above equations into the generalized
prolate differential equation with eigenvalue χ , and by using
the three-term recursion relation of P(a,b)

s (x), one obtains

ϑ (1)
s d (N,n)

s+1 + (ϑ (0)
s − χ

)
d (N,n)

s + ϑ (−1)
s d (N,n)

s−1 = 0, (E6)

where the dependence on β is omitted for simplicity, and

ϑ (1)
s = β2γ

(1)
N,s+1 (s � 0), (E7)

ϑ (0)
s = κN,s + β2γ

(0)
N,s (s � 0), (E8)

ϑ (−1)
s = β2γ

(−1)
N,s−1 (s � 1), (E9)

κN,s = (N + 2s + 1/2)(N + 2s + 3/2), (E10)

γ
(−1)
N,s = − (s + N + 1)2

(2s + N + 1)(2s + N + 2)

hN,s

hN,s+1
, (E11)

γ
(0)
N,s = 2s(s + 1) + N (2s + N + 1)

(2s + N )(2s + N + 2)
, (E12)

γ
(1)
N,s = − s2

(2s + N )(2s + N + 1)

hN,s

hN,s−1
. (E13)

Then one obtains an eigenvalue problem of a tridiagonal ma-
trix,

B =

⎛
⎜⎜⎜⎜⎜⎝

ϑ
(0)
0 ϑ

(1)
0 0 · · · 0 0

ϑ
(−1)
1 ϑ

(0)
1 ϑ

(1)
1 · · · 0 0

...
...

...
. . .

...
...

0 0 0 · · · ϑ
(0)
S−1 ϑ

(1)
S−1

0 0 0 · · · ϑ
(−1)
S ϑ

(0)
S

⎞
⎟⎟⎟⎟⎟⎠, (E14)

d = (d (N,n)
0 , d (N,n)

1 , . . . , d (N,n)
S

)T
, (E15)

and

Bd = χd. (E16)

The nth eigenvalue χN,n and the corresponding eigenvec-
tor d(N,n) of B are thus found, and λN,n is related to d(N,n)

via [31,36]

λp = βγ 2
N,n, γ N,n = (β/2)N+1d (N,n)

0

(N + 1)!
∑S

s=0 d (N,n)
s

. (E17)

Then the eigenvalues corresponding to the spatial mode
functions are calculated via ν p = 4λp/β

2. Substituting the
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eigenvector d(N,n) into Eqs. (E2) and (E1) yields

RN,n(r) =
(

1√
r

)
ϕN,n(r)

=
S∑

s=0

d (N,n)
s hN,s

(
N + s

s

)−1

rN P(N,0)
s

(
1 − 2r2

)
.

(E18)

Thanks to the derivative formula of the Jacobi polynomi-
als [53],

dk

dxk
P(a,b)

s (x) = 1

2k
(s + a + b + 1)kP(a+k,b+k)

s−k (x), (E19)

with (x)k being the Pochhammers symbol [41] defined as

(x)k = x(x + 1) · · · (x + k − 1), (E20)

the derivative of RN,n(r) with respect to r can be expressed as
follows.

For N = 0, since P(a,b)
0 (x) = 1,

R′
N,n(r) =

S∑
s=1

d (0,n)
s

√
2(2s + 1)

[−2r(s + 1)P(1,1)
s−1

(
1 − 2r2

)]
.

(E21)

For N > 0,

R′
N,n(r) = d (N,n)

0

√
2(N + 1)NrN−1

+
S∑

s=1

d (N,n)
s hN,s

(
N + s

s

)−1

× [NrN−1P(N,0)
s (1 − 2r2)

−2rN+1(s + N + 1)P(N+1,1)
s−1 (1 − 2r2)

]
. (E22)

Finally, by substituting the above equations into Eq. (26) via
Eq. (E1), one obtains all the explicit expressions of the spatial
mode functions and their derivatives with respect to r. The
derivatives with respect to θ can be obtained directly from
Eq. (E1).
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