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Quantum optimization algorithms hold the promise of solving classically hard, discrete optimization problems
in practice. The requirement of encoding such problems in a Hamiltonian realized with a finite (and currently
small) number of qubits, however, poses the risk of finding only the optimum within the restricted space
supported by this Hamiltonian. We describe an iterative algorithm in which a solution obtained with such
a restricted problem Hamiltonian is used to define a new problem Hamiltonian that is better suited than the
previous one. In numerical examples of the shortest vector problem, we show that the algorithm with a sequence
of improved problem Hamiltonians converges to the desired solution.
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I. INTRODUCTION

The currently available hardware for quantum information
processing is getting close to the specifications that are re-
quired for the solution of real-world problems [1]. As a result
of the anticipated ability of quantum computers to break pop-
ular cryptographic protocols, a new generation of protocols
has been developed [2]. These postquantum cryptographic
protocols are expected to be secure even if an eavesdropper
had access to a fully functioning quantum computer. There is a
variety of such protocols, and the assessment of their security
either in terms of security proof or explicit counterattack is a
central goal of the community.

A large class of postquantum cryptographic protocols
is based on the shortest vector problem (SVP) of lattices.
Similar to the prime-factorization problem that Rivest-
Shamir-Adleman (RSA) [3] is built upon, SVP is also a
seemingly simple problem that turns out to be computation-
ally difficult to solve [4]. It is a discrete optimization problem,
defined in terms of a basis of a finite-dimensional vector
space. Lattice vectors are obtained by forming linear combina-
tions of the basis vectors with integer expansion coefficients.
Usually, the security of lattice-based cryptography can be
reduced to the problem of finding the shortest, nonzero vector
of a lattice (in the following simply referred to as the shortest
vector).

The computational effort required to find the shortest vec-
tor depends on the properties of a basis; with a good basis
of short vectors that are close-to-orthogonal to each other, the
shortest vector can typically be found efficiently in practice,
but with a bad basis of long and close-to-parallel vectors
finding the shortest vector is computationally intractable, even
with the largest currently existing classical high-performance
computers for lattices with a dimension in the hundreds. A

crytographic protocol can, therefore, be based on a publicly
known bad basis [4].

Since the shortest-vector problem can be mapped onto a
quantum Ising Hamiltonian [5], such that its eigenvectors and
eigenvalues correspond to lattice vectors and their squared
lengths, it can readily be formulated as a quantum mechanical
algorithm such as an adiabatic algorithm [6,7], variational
quantum eigensolver [8–11], or a quantum approximate op-
timization algorithm (QAOA) [12,13].

A crucial issue in all these implementations is that any
finite number of qubits allows only for an optimization over
a finite range of values of the expansion coefficients. Even
though there is a minimal number of qubits that guarantees
that the shortest vector can be found [5,11], this number
[O(d log d ) where d is the dimension] is far out of reach for
current and foreseeable technology. Even in the absence of
any imperfections, such as limited gate fidelities or decoher-
ence, realistic sizes of a qubit register would thus result in the
risk of finding the shortest vector within a subset of vectors
that is not the actual shortest vector.

As we will show here, the qubit requirement to real-
ize a problem Hamiltonian in a sufficiently large Hilbert
space based on a bad basis is indeed very stringent. Finding
a reasonably short, but not necessarily the shortest vec-
tor within a subset of vectors, however, helps to construct
a better basis than the originally used one, as also ex-
ploited in independent, concurrent work [11]. A quantum
algorithm with a problem Hamiltonian based on this im-
proved basis then gives access to shorter vectors than the
one based on the original problem Hamiltonian. The re-
sultant iterative improvement of basis and corresponding
problem Hamiltonian enables the search for the actual short-
est vector even under stringent limitations of the available
qubits.
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II. QUANTUM OPTIMIZATION FOR THE SHORTEST
VECTOR PROBLEM

A lattice is the collection of points in a d-dimensional
space given by the linear superpositions

∑d
i=1 nibi of basis

vectors bi with integer expansion coefficients ni. Any lattice
[14] can be represented by infinitely many bases; given one
basis {bi}, any other basis {ai} can be formed in terms of linear
combinations

ai =
∑

j

Vi jb j , (1)

where the matrix V has integer elements Vi j and determinant
±1, i.e., it is unimodular.

A quantum mechanical Hamiltonian HP representing a lat-
tice can be defined as [15]

HP =
d∑

i j=1

(bib j ) Q̂iQ̂ j, (2)

where the scalar factors bib j determine the structure of the
lattice and each of the mutually commuting operators Q̂i has
an integer spectrum. Any state that is a mutual eigenvec-
tor of all the operators Q̂i with corresponding eigenvalues
ni corresponds to a lattice vector

∑
i nibi, and the asso-

ciated eigenvalue of HP is given by the squared length∑d
i j=1 bib jnin j of this lattice vector.
In practice, the operators Q̂i act on a Hilbert space that is

the tensor product of d smaller factors and the indices i indi-
cate the factor that the respective operator acts on nontrivially.
Each of the operators Q̂i can be realized in terms of several
qubits and the encoding

Q̂i = 1

2

(
k∑

j=1

2 j−1Ẑi j + 1

)
, (3)

with the Pauli Ẑ operator achieves a nondegenerate spectrum
in the range [−2k−1 + 1, 2k−1] in terms of k qubits. With
this encoding, the problem Hamiltonian for a d-dimensional
lattice is an Ising Hamiltonian with dk qubits interacting via a
ẐẐ interaction [5].

Deterministically finding the first excited state of this
problem Hamiltonian corresponding to the shortest vec-
tor is typically not possible with quantum hardware of
the limited, currently available specifications, but a QAOA
algorithm

|�〉 = exp(−iβHD) exp(−iγ HP ) |�0〉 (4)

of lowest depth [16] can realize a state |�〉 that results in high
probabilities to project onto a low-lying eigenstate of HP upon
measurement of the observables Q̂i if the initial state |�0〉,
Rabi-angles β and γ , and driver Hamiltonian HD are chosen
suitably [13,17].

III. LIMITED PARAMETER RANGE

The problem Hamiltonian in Eq. (2) is defined in terms
of a basis of the lattice and different choices for this ba-
sis will generally result in different Hamiltonians. Even

FIG. 1. The blue (left), orange (middle), and green (right) level
sets depict the spectra of finite-dimensional problem Hamiltonians
[Eq. (2)] for the lattice defined in terms of the bases in Eqs. (7),
(6), and (5) respectively; each of the four operators Q̂i [Eq. (3)] is
comprised of k = 2 qubits. The green (right) spectrum corresponds
to the problem Hamiltonian defined in terms of the shortest basis
and it contains the eigenvalue corresponding to the shortest vector
of length 1. The orange (middle) and blue (left) spectra correspond
to the problem Hamiltonians defined in terms of the increasingly
bad bases, and their lowest eigenvalues lie significantly above the
eigenvalue corresponding to the actual shortest vector.

though any such problem Hamiltonian has the same spec-
trum (given by the squared lengths of all the lattice vectors)
the problem Hamiltonians defined with different lattice bases
have different physical properties, encoded in the scalar
factors bib j .

In any practical implementation with the operators Q̂i real-
ized in terms of several qubits, such as the construction given
in Eq. (3), the resulting problem Hamiltonians are truncated
and their spectra are only subsets of the spectrum of the full
problem Hamiltonian. This truncation also breaks the equiva-
lence of different problem Hamiltonians, and the spectrum of
any truncated problem Hamiltonian depends on the underly-
ing lattice basis.

A problem Hamiltonian constructed in terms of a good
basis will be such that the shortest vector is associated with
eigenvalues of the operators Q̂i that have a small magnitude
because the expansion of the shortest vector in terms of a
good basis requires only small expansion coefficients. Since,
however, the expansion of the shortest vector in terms of a bad
basis typically requires large expansion coefficients, the oper-
ators Q̂i need a broad spectrum to ensure that the spectrum of
the problem Hamiltonian contains the eigenvalue associated
with the shortest vector.

This is exemplified for the case of a four-dimensional lat-
tice L in Fig. 1. A basis {ai} of L with vectors of minimal
lengths is given by

a1 = [1, 0, 0, 0], (5a)

a2 = [0, 2, 0, 0], (5b)

a3 = [0, 0, 3, 0], (5c)

a4 = [0, 0, 0, 4]. (5d)
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FIG. 2. Lowest nonzero eigenvalues of problem Hamiltonians
for the four-dimensional lattice defined in Eq. (5) as a function of
the number of qubits k used in the realization of the operators Q̂i in
Eq. (3). The dots depict the medians over 100 problem Hamiltonians
constructed in terms of randomly chosen unimodular matrices and
the error bars depict the corresponding 75th percentiles.

Two exemplary bases with longer basis vectors are given by

b1 = [3, 0, 15,−12], (6a)

b2 = [0, 4, 3, 8], (6b)

b3 = [28,−18, 9, 8], (6c)

b4 = [0, 0, 3,−4], (6d)

and

c1 = [25, 78, 105, 160], (7a)

c2 = [−3, 32, 18, 64], (7b)

c3 = [53, 128, 195, 264], (7c)

c4 = [0, 8, 9, 12]. (7d)

All three bases represent the same lattice L. The basis {ai}
qualifies as a good basis, while {ci} is a bad basis, and the
basis {bi} is clearly better than {ci}, but substantially worse
than {ai}.

Figure 1 depicts the spectra of the problem Hamiltonians
constructed with either of these three bases and each operator
Q̂i realized in terms of k = 2 qubits. Whereas the spectrum
of the problem Hamiltonian constructed with the basis {ai}
(green) covers mostly low-lying states of the spectrum of the
full problem Hamiltonian, the spectra of the problem Hamilto-
nians constructed with the basis {bi} (orange) and {ci} (blue)
cover substantially more high-lying states. In particular, the
lowest nonzero states encoded in these two Hamiltonians are
substantially higher than the actual shortest vector.

A problem Hamiltonian constructed with a bad basis that
does include the eigenstate of the shortest vector would thus
require substantially more qubits per lattice dimension. Fig-
ure 2 depicts the smallest nonzero eigenvalue of problem
Hamiltonians realized with different numbers of qubits per
lattice dimension as a function of the qubit number k. The dots
depict the medians over 100 bases constructed with randomly
chosen unimodular matrices W = LU obtained as a product

of a lower triangular matrix L and an upper triangular matrix
U with unit diagonal elements, and all other nonvanishing
elements are chosen randomly from a uniform distribution
within the range [−10, 10]; the error bars depict the 75th
percentiles.

The smallest nonzero eigenvalues clearly decrease with the
number of qubits, but even with seven qubits, the median
is still larger than the shortest vector length (indicated by a
light-blue line). Extrapolating from Fig. 2 suggests that about
ten qubits per lattice dimension are required to ensure that the
eigenvector associated with the shortest lattice vector is con-
tained in the explicit realization of the problem Hamiltonian.

Since this qubit requirement seems far out of reach with
near-future technology [18,19], we will present in the fol-
lowing an adaptive algorithm that is based on a gradual
improvement of bases and the corresponding implementation
of the problem Hamiltonian.

IV. ADAPTIVE PROBLEM HAMILTONIAN

The iterative quantum optimization with adaptive prob-
lem Hamiltonian (IQOAP) algorithm is initialized with the
problem Hamiltonian constructed with the bad basis that is
publicly available in a cryptographic protocol. An algorithm
such as QAOA that can find a low-lying state in the spec-
trum of this problem Hamiltonian, at least probabilistically,
produces a lattice vector. If it is possible to replace one of
the basis vectors with this newly obtained vector while main-
taining a basis [i.e., a set of vectors that spans the complete
lattice, or, equivalently a set of vectors related to the original
basis via Eq. (1) by a unimodular matrix V ], the basis is
updated provided that the new basis vector is shorter than the
basis vector that is being dropped. Independently of whether
the basis is updated or not, the algorithm continues with the
above quantum optimization using the problem Hamiltonian
constructed with the current basis.

The central advantage of this strategy is that the number
of qubits required to run the quantum optimization is sig-
nificantly reduced. Even a realization with too few qubits to
encode the actual shortest vector can help to find a better
basis, which in turn will help to find short vectors at the
available qubit count. One may certainly expect that the rate
of convergence depends on the number of utilized qubits, but
as we will show in the following, even an implementation with
few qubits does typically result in reliable convergence to the
actual shortest vector.

In the following discussion, the quantum mechanical part
of IQOAP is performed in terms of QAOA with a single step
in terms of problem Hamiltonian and driver Hamiltonian each,
as given in Eq. (4). The driver Hamiltonian HD = ∑

j X̂ j is
given by the collective Pauli X̂ . A single-step QAOA typically
results in a high chance of observing the ground state of the
problem Hamiltonian if β [in Eq. (4)] is chosen to adopt
the value of π/4, and the value γ is chosen such that the
expectation value is minimized [13,20]. Since in the present
case the interest lies in the lowest excited eigenstate, it is
indeed favorable to choose the values for the Rabi angles β

and γ such that 〈�| HP |�〉 is minimized under the constraint
β = γ . Since 〈�| HP |�〉 can be classically evaluated with-
out explicit construction of the state |�〉 in Eq. (4) [13,21],
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FIG. 3. Convergence of the basis during an IQOAP algorithm
for the four-dimensional basis defined through Eq. (7). The y axis
shows the lengths of the four basis vectors. The medians of the
shortest, second shortest, second longest, and longest vectors over 50
iterations of the algorithm are denoted by blue circle, purple triangle,
green square, and red star symbols, respectively. The error bars depict
the 80th percentiles. The fluctuations result from the probabilistic
nature of QAOA. The inset depicts a zoom in to the later stage of
the algorithm and the horizontal lines depict the lengths of the basis
vectors given in Eq. (5).

this minimization can be performed classically without using
quantum mechanical computational resources.

Each run of QAOA yields a lattice vector v. This is substi-
tuted into the basis if the following criteria are met.

(1) v is shorter than some basis vector b.
(2) Replacing b with v preserves the lattice.
(3) If there are multiple eligible vectors to replace, then

the longest eligible basis vector is replaced by v.
If the above criteria are not met, then the QAOA circuit is

repeated with the same problem Hamiltonian. Figure 3 depicts
an example of how the basis vectors of the four-dimensional
lattice defined through Eq. (7) decrease as the algorithm
progresses. The problem Hamiltonian is encoded with k = 2
qubits for each operator Q̂i in Eq. (3).

The dots depict the medians over 50 independent execu-
tions of the algorithm and the error bars indicate the 80th
percentiles. For reasons of visibility only data for every fifth
iteration step is depicted and the four data sets are depicted
with different offsets on the x axis to avoid overlapping sym-
bols. Typically it is possible to update the basis after two to ten
repetitions of QAOA, and indeed, the lengths of all the four
basis vectors decrease rapidly as the algorithm progresses.

The inset shows a zoom in to the later stage of the algo-
rithm with the convergence towards the shortest basis. After
50 iterations, the actual shortest vector is found with high
probability (82%) and also the other obtained basis vectors
coincide with the shortest vectors [Eq. (5)] in the vast majority
of cases.

These convergence properties are indeed not specific to
this particular lattice, as shown in Fig. 4 which depicts the
convergence of the algorithm for different four-dimensional
lattices. The rate of convergence is very similar to that shown
in Fig. 3; only the fluctuations around the medians (depicted

FIG. 4. Convergence of the IQOAP algorithm with 50 randomly
chosen four-dimensional lattices. Since the lengths of the shortest
vectors are different for different lattices, the y axis depicts the
lengths of the basis vectors normalized to the lengths of the shortest
basis vectors with a scaling factor of j = 1, 2, 3, 4. The medians
of the scaled shortest, second shortest, second longest, and longest
vectors over 50 iterations of the algorithm are denoted by blue circle,
purple triangle, green square, and red star symbols, respectively. The
error bars depict the 80th percentiles.

by the error bars) are a bit larger. Also here, the actual short-
est vector is found within 50 iterations in the vast majority
of cases, highlighting that the algorithm converges reliably
independent of the properties of the underlying lattice.

V. CONCLUSION

The ability to update the problem Hamiltonian during the
progress of the algorithm opens up a new avenue of combining
classical and quantum mechanical elements in an algorithm.
Whereas many current hybrid algorithms such as the varia-
tional quantum eigensolver [8–11] have quantum and classical
components (the quantum mechanical evaluation of a function
and its classical minimization) that are independent of each
other, the classical and quantum mechanical aspects in IQOAP
are closely intertwined in that extracting classical information
from QAOA [12,13] (or a similar algorithm) and classically
updating the basis and corresponding problem Hamiltonian
creates a modified problem to be solved by quantum mechan-
ical means. The updated problem, in turn, gives access to
classical information of increased relevance and this interplay
of quantum and classical elements then results in the algo-
rithm’s convergence.

The weight of classical and quantum mechanical compo-
nents in the algorithm can be readily shifted to either side. An
increasing number of available qubits gives access to broader
spectra of the truncated problem Hamiltonians, which reduces
the number of classical basis-updates before the shortest vec-
tor is found. The effort on the quantum mechanical side of
the algorithm can be reduced if classical lattice reduction
algorithms [4] are employed together with the basis updates.

While certainly beyond the capabilities of current quantum
technologies, one can also envision a more coherent version
of this algorithm, in which there is no classical readout during
the algorithm, but a problem Hamiltonian conditioned on the

022435-4



ITERATIVE QUANTUM OPTIMIZATION WITH AN … PHYSICAL REVIEW A 106, 022435 (2022)

current state of the algorithm executed so far is being imple-
mented.

The present algorithm also does not need to be under-
stood as a stand-alone solution, but can also be combined
with classical basis reduction algorithms [22,23]. Depending
on the progress in the development of coherent quantum
devices, it might be advisable to start with a classical ba-
sis reduction until a treatment with a device with limited
qubit number becomes actually helpful; but if devices with
large qubit numbers but insufficient coherence time to solve
the full problem are available, one can also consider using
the present algorithm as an initial step for further classical
processing.

The multiple possibilities to expand the present algorithm
in terms of classical or quantum mechanical components
make this algorithm sufficiently versatile for applications also
beyond the presently discussed lattice problems, such as the
closest vector problem (CVP) [4] and learning with errors
(LWE) [24].

While the scaling of the number of qubits required to rep-
resent the shortest vector is already rigorously bounded [11],
very little is known about the scaling of the computational
time of quantum algorithms with increasing dimension of the
underlying lattice. Since the problems that can be simulated
by classical means are so much smaller than problems of inter-
est in cryptography, extrapolation from classical simulations
is not likely to provide a meaningful estimate. The reduction
in qubit numbers, however, will allow us to explore quantum
algorithms for high-dimensional lattice problems even if hard-
ware to directly solve the full problem is not yet available. As
such, the present or similar techniques [11] can also help to
estimate the quantum complexity of lattice problems.
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