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We use the variational quantum eigensolver (VQE) to simulate Kitaev spin models with and without
integrability-breaking perturbations, focusing in particular on the honeycomb and square-octagon lattices. These
models are well known for being exactly solvable in a certain parameter regime via a mapping to free fermions.
We use classical simulations to explore a variational ansatz that takes advantage of this fermionic representation
and is capable of expressing the exact ground state in the solvable limit. We also demonstrate that this ansatz
can be extended beyond this limit to provide excellent accuracy when compared to other VQE approaches. In
certain cases, this fermionic representation is advantageous because it reduces by a factor of two the number of
qubits required to perform the simulation. We also comment on the implications of our results for simulating
non-Abelian anyons on quantum computers.
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I. INTRODUCTION

One of the hallmarks of frustrated interacting two-
dimensional quantum spin systems is the emergence of
quantum spin liquid ground states with long-range topological
order and fractionalized excitations that obey (non-)Abelian
statistics [1,2]. The celebrated Kitaev spin model [3], which
describes spins on a trivalent lattice interacting via an
anisotropic Ising coupling, is a popular playground for the-
oretically studying such phenomena. The model is exactly
solvable in terms of fermionic operators, meaning the Hamil-
tonian reduces to a quadratic form. This means that many
properties of the model can be analytically obtained either
exactly or within the framework of perturbation theory [3–6].
From a computational perspective, being quadratic means that
for a system of N spins, one only needs to diagonalize an
N × N matrix rather than a 2N × 2N one.

Kitaev-type exchange interactions are significant in spin-
orbit coupled Mott insulators [7] such as the iridium oxide
family A2IrO3 (A = Na, Li) and α-RuCl3 [7–10]. This has
resulted in a flurry of research in the search for an experi-
mental realization of the Kitaev quantum spin liquid [11–13].
These materials exhibit additional interaction terms beyond
the Kitaev exchange and show a rich behavior under an ex-
ternal magnetic field, which cannot be treated exactly within
the fermionic description and typically requires a numerical
analysis. Many numerical studies using various techniques
such as exact diagonalization (ED), density-matrix renormal-
ization group (DMRG), and tensor network (TN) methods

have revealed new and exotic phases of the model beyond
the perturbative regime [7,14–23]. Effective field theory tech-
niques can also provide valuable insight into the behavior in a
magnetic field [24].

Quantum computers offer an exciting new framework for
simulating quantum many-body systems. There are a num-
ber of efforts exploring simulation of the Kitaev model on
quantum computers [25–28]. Connections of the Kitaev hon-
eycomb model to quantum error correction have also been
explored previously [29–32], and more recently, it was shown
that one could obtain a logical subspace out of an empty
subsystem code defined on the honeycomb lattice through
particular measurement schedules [33–37]. In this paper, we
focus on variational eigenstate preparation in Kitaev mod-
els with and without integrability-breaking terms. To inject
information about the exact solvability of the model in a
certain regime, we here propose using a fermionic descrip-
tion to simulate the model on a quantum computer. As we
show, in certain situations this allows reducing the number
of required qubits by half compared to VQE approaches that
are formulated within the spin description [25,26]. One in-
teresting application of our method, on which we comment in
Sec. III A 4, is the simulation of non-Abelian anyons on quan-
tum computers. While the fermionic description can reduce
the required qubit number, a drawback of simulating fermions
on quantum computers is the need for a mapping from the
fermionic Hilbert space to that of qubits, which necessitates
deeper quantum circuits [38–43]. This added circuit depth can
make the quantum circuits challenging to run on current noisy
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FIG. 1. (a) Honeycomb lattice and (b) square-octagon lattice with definitions of primitive unit cell vectors a1 and a2 and edge labels. The
dashed lines enclose the smallest unit cell of the lattices, which include the labels of the basis sites. Panel (c) shows the standard gauge choice
of the bond variables uji for both lattices.

intermediate-scale quantum (NISQ) [44] hardware. Whether
the qubit reduction still offers an advantage on NISQ hardware
should be explored in future work.

We make use of the variational quantum eigensolver
(VQE) [45–47], a hybrid algorithm (i.e., one using both clas-
sical and quantum computers) with significant potential for
successful implementation on NISQ devices [45,48–54]. A
VQE algorithm uses a quantum computer to prepare a vari-
ational ansatz state, defined using a parameterized quantum
circuit, and then measures its energy (i.e., the expectation
value of the Hamiltonian in that state). A classical computer
is then used to find the optimal set of variational parameters
that produces the lowest possible energy expectation value.
On a classical computer, preparing the state and calculating
the energy expectation value are computationally expensive,
so handing these steps over to a quantum computer may offer
an effective speed-up. VQE algorithms offer shorter circuits
when compared to other methods like adiabatic real-time
evolution [55], quantum imaginary time evolution [56,57],
or phase estimation [58], and thus are viewed as being well
suited for execution on NISQ devices [45–47,59].

The Kitaev spin model with its bond-dependent interac-
tions can be defined on any trivalent graph, and in this work
we focus on the honeycomb and square-octagon lattices. The
exact solution of the model relies on a mapping to a model
of Majorana fermions coupled to a Z2 lattice gauge field.
In this work, we use classical hardware to perform VQE
simulations of the Kitaev model in the presence of two kinds
of additional Hamiltonian terms. First, there are three-spin
interaction terms that do not mix different gauge sectors of the
model. These terms allow for the calculation to be restricted
to a single gauge sector and lead to a twofold reduction in the
number of qubits. We also consider external magnetic fields
in the x, y, and z directions, which mix different gauge sectors
together, and in this case we include the full Hilbert space
in the calculation. Then, twice as many qubits as spins are
needed in the simulation.

The rest of the paper is organized as follows. In Sec. II, we
give a brief review of certain aspects of the Kitaev model that

are important for our analysis. Then in Sec. III A we discuss
the calculation when restricted to a single gauge sector and
discuss the application of realizing non-Abelian anyons on
quantum computers. Finally, in Sec. III B we discuss how
to extend the calculation to include all gauge sectors of the
model.

II. KITAEV MODEL AND FERMIONIC FORMULATION

A. Kitaev spin Hamiltonian

A trivalent lattice is one in which every site is connected to
three other sites—a condition satisfied, for example, by both
the honeycomb and square-octagon lattices as shown in Fig. 1.
Throughout the text, we reserve the labels i, j, k, . . . for the
lattice sites. The trivalence of the lattice allows for the edges
to be be split into three disjoint sets, which will be referred to
as x, y, and z edges. The designation of x, y, and z edges for
both the honeycomb and square-octagon lattices is shown in
Fig. 1. The Hamiltonian of the Kitaev model is given as

H = −
∑

α=x,y,z

Jα

∑
α−edges

σα
i σα

j , (1)

where σα
i are Pauli operators at site i and α = x, y, z. The

summation over edges counts every lattice bond of type
α once. Explicitly, on the honeycomb lattice, which has
two basis sites τ = 1, 2 per unit cell, it can be written
as H = −∑

α Jα

∑
ri

σα
ri,1

σα
ri+δα,2, where ri = i1a1 + i2a2, and

δx = −a1, δy = −a2, δz = 0. The unit cell vectors ai are
shown in Fig. 1(a). The square-octagon lattice has four
basis sites per unit cell, τ = 1, 2, 3, 4, and its Hamilto-
nian reads explicitly as H = −∑

ri
Jx(σ x

ri,2σ
x
ri,3 + σ x

ri,4σ
x
ri,1) +

Jy(σ y
ri,1

σ
y
ri,2

+ σ
y
ri,3

σ
y
ri,4

) + Jz(σ z
ri,4

σ z
ri+a1,2

+ σ z
ri,3

σ z
ri+a2,1

). The
basis labels τ and unit cell vectors ai are shown in
Fig. 1(b).

The Kitaev model (1) has a conserved quantity associ-
ated with each plaquette p. For the honeycomb lattice, there
is only one kind of plaquette, and the conserved quantity
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[W (6)
p , H] = 0 takes the form

(2)

For the square-octagon lattice, there are two kinds of
plaquettes, giving rise to two distinct plaquette operators
([W (4)

p , H] = [W (8)
p , H] = 0):

(3)

(4)

Note that all Wp have eigenvalues of ±1 since W 2
p = 1. It is

useful to decompose the Hilbert space into blocks labeled by
the eigenvalues of Wp, i.e., L = ⊕

w Lw, where L is the full
Hilbert space and Lw denotes the eigenspace corresponding
to a particular combination w of eigenvalues of the various
Wp operators. A theorem by Lieb [60] tells us that the ground
state belongs to the sector with all Wp = +1. This sector is
referred to as the vortex-free sector.

B. Representing spins using Majorana fermions

The Hilbert space L of the lattice is the tensor product
of the Hilbert spaces Li of each spin, L = ⊗

i Li. We seek
a representation of the local spin Hilbert space using two
fermionic degrees of freedom at each site, or four Majorana
fermions. This fermionic Hilbert space is labeled as L̃i, with
bx,y,z

i , and ci being the four Majorana fermions at each site.
These Majorana operators obey the algebra{

bα
i , bβ

j

} = 2δi jδαβ, {ci, c j} = 2δi j,
{
bα

i , c j
} = 0. (5)

The two-dimensional Hilbert space Li is the physical sub-
space of the four-dimensional Hilbert space L̃i. A physical
state |ψphys〉i ∈ Li is defined such that

Di|ψphys〉i = |ψphys〉i, Di = bx
i by

i b
z
i ci. (6)

The operator Di acts on the physical subspace as an identity,
and since we are only interested in this subspace it should be
noted that two operators differing only by factors of Di are
identified in this treatment. Further, given any |ψ〉i ∈ L̃i, the
physical part of this state can be extracted as follows:

|ψphys〉i = 1
2 (1 + Di )|ψ〉i. (7)

Thus, the operator (1 + Di )/2 is the local projection operator
onto the physical subspace. The full projector can be written
as

P =
∏

i

Pi =
∏

i

1 + Di

2
. (8)

In terms of the Majorana fermions, the Pauli operators take
the following forms:

σ x
i = ibx

i ci, σ
y
i = iby

i ci, σ z
i = ibz

i ci. (9)

Using this representation of the Pauli operators, the Kitaev
model can be written as

H =
∑

α

Jα

∑
α−edges

iûi jcic j, (10)

where

ûi j = ibα
i bα

j , û2
i j = 1, ûi j = −û ji. (11)

Note that the eigenvalues ui j of ûi j are ui j = ±1 since û2
i j = 1.

The operator ûi j can be interpreted as a Z2 gauge field that
couples to the itinerant Majorana fermions ci. For this reason,
we will sometimes refer to the ci Majorana fermions as “mat-
ter” fermions, to distinguish them from the “bond” fermions
bα

i . The operator Di anticommutes with ûi j and therefore can
be interpreted as implementing a gauge transformation that
flips the value of ui j .

C. The single-particle transformation diagonalizing
the Kitaev model

As noted by Kitaev, the operators ûi j commute with all
terms in the Hamiltonian, so the eigenvalues ui j = ±1 are
conserved quantities of the model. Thus, it is useful to write

L̃ =
⊕

u

L̃u, (12)

where L̃u is the subspace with all ui j specified. The conserved
quantities Wp can be expressed in terms of ui j as follows:

W (6)
p =

∏
i∈p

ui+1,i,W (4)
p = −

∏
i∈p

ui+1,i, W (8)
p = −

∏
i∈p

ui+1,i.

(13)

Thus, each subspace L̃u corresponds to a certain configuration
of Wp. We will sometimes refer to L̃u as a “gauge sector,” i.e.
a sector of the full Hilbert space whose gauge has been fixed
by a choice of the eigenvalues ui j .

As noted previously, the ground state belongs to the vortex-
free configuration. There are many configurations of ui j that
give the vortex-free configuration. Figures 1(c) and 1(d) define
our choice of a “standard configuration” ustd

i j for both the
honeycomb and square-octagon lattices, which is a simple
choice of gauge such that all Wp = 1.

In the subspace L̃u, the Hamiltonian in Eq. (10) takes the
following quadratic form:

H = i

2

N∑
i, j=1

Ki jcic j, (14)
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where the matrix K = ui j when i and j make an edge and
Ki j = 0 otherwise. Note that Kji = −Ki j . In order to diago-
nalize a Hamiltonian of this form, we need to find a matrix
R ∈ O(N ) such that

RKRT =
N/2⊕
n=1

[
0 εn

−εn 0

]
, εn � 0. (15)

This transformation can be achieved by a unitary matrix U ,

U −1ciU =
∑

j

R jic j, (16)

such that

U −1HU = i

2

N∑
i, j=1

[RKRT ]i jcic j (17)

= i
N/2∑
i=1

εic2ic2i+1. (18)

Note that the operator U −1HU is different from the operator
H , as U does not commute with H . To read off the spectrum, it
is useful to pair the Majorana fermions into complex fermions.
How the Majorana fermions are paired into complex fermions
is a matter of basis choice. Here we choose to couple the
Majorana fermions inside the same unit cell together. For
the honeycomb lattice, the 1 sublattice is paired with the 2
sublattice, and for the square-octagon lattice, the 1 sublattice
is paired with the 2 sublattice, and the 3 sublattice is paired
with the 4 sublattice. Such a choice of basis can be written in
the following way,

c2 j = a j + a†
j , c2 j+1 = 1

i (a j − a†
j ), (19)

U −1HU =
N/2∑
i=1

2εi

(
a†

i ai − 1

2

)
. (20)

The ground state of H can be written as U |ψ0〉, where

ai|ψ0〉 = 0, for all ai. (21)

The action of the Hamiltonian on U |ψ0〉 is found to be

HU |ψ0〉 = E0U |ψ0〉, (22)

E0 = −
N/2∑
i=1

εi. (23)

In designing our VQE ansatz, it will be crucial to know
what form the operator U takes. A general SO(N ) transfor-
mation can be applied using exp[

∑
i j θi jcic j], which acts on a

Majorana operator ci as

exp

[
−

∑
i j

θi jcic j

]
ci exp

[∑
i j

θi jcic j

]
= [eθ] jic j . (24)

Even though any antisymmetric matrix can be brought to the
block diagonal form in Eq. (15) by an SO(N ) transforma-
tion, to ensure that the upper-right element of each block
is a positive number (as required) we need to be allowed
O(N ) transformations. This can be seen by noting that the
operation of exchanging the off-diagonal elements of a 2 × 2

FIG. 2. The definition of the three-spin terms in Eq. (25) that are
gauge diagonal. Such terms appear when performing perturbation
theory in a small magnetic field [3]. The quantity ni jk appears in the
fermionic representation of these terms in Eq. (26).

matrix (i.e., σ x) is an operation with determinant −1. Thus,
we might need to attach a local “particle-hole” transformation
to exp[

∑
i j θi jcic j] to make sure all εi � 0. Note that this

operation would only be needed if an odd number of the 2 × 2
blocks need such an operation. For example, switching the
off-diagonal parts of two of these 2 × 2 blocks can be done by
a σ x ⊕ σ x, which has a determinant of +1 and is expressible
by exp[

∑
i j θi jcic j]. In short, it is just the determinant of the

transformation that we need to worry about.
This shows that the pure Kitaev model in Eq. (1) is exactly

solvable. In the next section, we discuss several additional
terms of interest that spoil the exact solvability of the model.
The form of the exact solution will still be a useful guide when
choosing the form of the variational ansatz in the VQE calcu-
lation. If we always include U as a part of the ansatz, we make
sure the algorithm can exactly reproduce the ground state in
the exactly solvable limit, where the model is quadratic in
terms of fermion operators. We will also add more terms to
the ansatz in order to better approximate the ground state in
the presence of interactions as we discuss next.

D. Added interactions

The terms that can be added to the pure Kitaev Hamiltonian
fall into two classes: The first class contains terms that do
not mix different flux sectors, and the second class contains
terms that do. Here we consider both kinds of terms. This
distinction is useful because it informs us how the model will
be simulated on the quantum computer. For terms of the first
kind, we only need to simulate a single gauge sector of the
model, which is a much smaller Hilbert space than that of
the original spin Hilbert space and does reduce the number
of qubits needed for the calculation.

Terms that do not mix different gauge sectors are of the
following form,

V = −
∑

(i, j,k;l )

[
κ
(
σ x

i σ
y
j σ

z
l + σ x

i σ
y
l σ z

k + σ x
l σ

y
j σ

z
k

)+κintσ
x
i σ

y
j σ

z
k

]
,

(25)

where (i, j, k; l ) refers to the ith, jth, and kth sites connected
to the lth site as shown in Fig. 2. These terms show up at third
order when treating an external magnetic field perturbatively.
However, we will study the effects of these terms regardless
of their origin and treat κ and κint as independent parameters.
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The κ and κint terms map to very different looking terms on
the fermionic side [3],

V =
∑

(i, j,k;l )

ni jk[iκ (uilul j c jci + uikuli cick + u jl ulk ckc j )

+ κint uil u jl ukl cic jckcl ], (26)

where ni jk is defined as in Fig. 2. The κ terms correspond to
second-neighbor hopping terms of ci fermions and preserve
the exact solvability of the model. They are important as they
can drive the system into a topologically ordered state. The κint

terms, on the other hand, are four-fermion terms (hence the
subscript as a reminder that these terms add interactions to the
model), and thus spoil the exact solvability of the model. Their
effects are less well studied in the literature. Later, we discuss
one aspect in which these terms can be interesting and useful
in stabilizing Majorana zero modes localized at vortices.

As an example of terms that mix different gauge sectors,
we will consider a uniform external magnetic field,

Hmag = −
∑

i

[
hxσ

x
i + hyσ

y
i + hzσ

z
i

]
. (27)

In the language of the fermionic degrees of freedom, this can
be written as

Hmag = −i
∑

i

[
hxbx

i ci + hyby
i ci + hzb

z
i ci

]
. (28)

When simulating the Kitaev model in an external magnetic
field, we therefore must include all gauge sectors in the
calculation.

III. VQE

A VQE algorithm contains four parts: first, one prepares an
initial state |ψ0〉, which is typically a state that can be easily
prepared on the quantum device. Second, one applies a pa-
rameterized unitary (or quantum circuit) U (θ) with variational
parameters θ to the initial state to prepare the ansatz wave
function |ψ (θ)〉 = U (θ)|ψ0〉. The third step is to measure a
cost function C(θ), which is a sum of observables that are
being measured in the variational state |ψ (θ)〉. To prepare the
ground state of a system, the cost function is usually taken
to be the energy expectation value C(θ) = 〈ψ (θ)|H |ψ (θ)〉.
However, as we will discuss in the dynamical-gauge VQE
section, it can be useful to use a slightly modified cost func-
tion. Finally, the fourth step is the classical optimization over
the set of parameters θ so as to minimize C(θ). This involves
frequent evaluations of the cost function that follow the first
three steps. A VQE algorithm is designed such that the first
three steps are carried out on a quantum computer while the
fourth is done on a classical computer.

A. Fixed-gauge VQE

1. Matter sector initial state

Even though the model is most conveniently expressed
in terms of Majorana fermions, for the sake of simulating
the system on a quantum computer, we need to group the
Majorana fermions into pairs of complex fermions in order
to map the problem onto qubits. We already discussed how

we choose to group the the ci Majoranas into the complex
fermions ai in Eq. (19), namely,

ai = 1
2 (c2i + ic2i+1), a†

i = 1
2 (c2i − ic2i+1). (29)

Note that the label i in ai refers to a unit cell location ri for the
honeycomb model and is a composite index that labels both
unit cell location and a Majorana pair (1,2) or (3,4) for the
square-octagon model. For the purpose of finding the ground
state, we choose an initial state in the vortex-free sector of the
Hilbert space, where the plaquette operators Wp = 1 for all
p. Though it should be mentioned that we could also choose
any other vortex configuration. This will be useful later when
discussing the possible application of realizing non-Abelian
anyons. Further, we also choose the initial state of the system
to be annihilated by all ai, as defined in Eq. (21).

|ψ0〉 ∈ L̃ustd , ai|ψ0〉 = 0 ∀ai. (30)

After a Jordan-Wigner transformation, the details of which
are discussed in Appendix B, this initial state would simply
correspond to the |0〉 state on the quantum computer, i.e., the
“all-0” state in the Z eigenbasis.

2. Variational ansatz

When performing VQE in the fixed-gauge subspace, we
use an ansatz of the following form:

|ψ (θ)〉 = exp

⎡
⎣∑

i jkl

θb
i jkl cic jckcl

⎤
⎦ exp

[∑
i j

θa
i jcic j

]
|ψ0〉

≡ U b(θb)U a(θa)|ψ0〉 ≡ U (θ)|ψ0〉, (31)

with both θa and θb being antisymmetric under the exchange
of any two indices, and having all components being real. This
form of the ansatz is motivated by the Hamiltonian variational
ansatz successfully used in quantum chemistry and many-
body problems [61,62]. It contains a unitary single-particle
transformation term U a, which can diagonalize the single-
particle sector in the exactly solvable limit, and an interaction
term U b that can account for additional correlations created
by four-fermion interaction terms.

We focus on U a(θa) first. We make this the first part of
our ansatz since from our discussion in Sec. II C, we know it
should be capable of expressing the ground state of the pure
Kitaev model. For a system with N spins, there are N (N−1)

2
independent parameters in θa. However, we are not interested
in this full set of transformations. Rather, we want to mod
out the transformations that leave |ψ0〉 invariant. We leave the
details of such reduction of the ansatz to Appendix A and give
the answer here in terms of the complex fermions ai defined
in Eq. (19),

U a(θa) ≡
∏

i j

exp
[
iθa1

i j (a†
i a†

j + a jai )
]

exp
[
θ

a2
i j (a†

i a†
j − a jai )

]
.

(32)

Note that the number of complex fermions for a system de-
scribed by N Majorana fermions is N/2. Thus, in total θa

contains N
2 ( N

2 − 1) independent parameters.
Recall the discussion below Eq. (24) about the determinant

of the transformation needed to diagonalize the Hamiltonian.
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FIG. 3. VQE results using a state-vector simulator for a fixed gauge configuration in 3 × 3 honeycomb model (hexagonal orange markers)
and 2 × 2 square-octagon model (square blue markers). We show both the error in the ground-state energy, Eerror = |(EVQE − Eexact )/Eexact|,
and the infidelity with respect to the exact ground state 1 − |〈ψexact|ψVQE〉|2. Panel (a) is for the exactly solvable quadratic model with and
without second-neighbor hopping terms κ , while panel (b) includes fermion interactions κint = κ . In panel (b) we use the full ansatz defined in
Eq. (37), and in panel (a) we only include the θa parameters. Results in panel (a) demonstrate that our ansatz can reproduce the ground-state
energy in the exactly solvable model to arbitrary precision set by the error tolerance of the classical optimizer. We are effectively constructing
the unitary U that diagonalizes Ki j variationally (see Sec. II C). Results in panel (b) show the error and infidelity increase in the interacting
model as a function of κint = κ but saturate a low value of ≈10−3. This is at least one order of magnitude better Eerror when compared to other
VQE methods in Ref. [25]. Inset in (b) shows 1 − |〈ψ (κ )|ψ (0)〉|2, where ψ (κ ) is the exact ground state for κ = κint for hexagonal lattice
(dotted orange line) and square-octagon lattice (solid blue line). This is a quantification of how different the ground state at nonzero κ = κint

is compared to ψ (0). Our method here has the advantage of cutting the required number of qubits by two compared to when simulating the
model directly within the spin language.

Since we fix our initial state in Eq. (30), we might need to
supplement U a(θa) with a local particle-hole operation, in
the cases where the ground state has different fermion parity
to |ψ0〉. This can easily be done by using U a(θa)c1 as the
ansatz. In all our simulations, we compare the optimal energy
resulting from using U a(θ) and U a(θ)c1, and report the one
with lowest energy value.

We also choose not to include all of the quartic terms in
U b(θb) to simplify the circuits used. Though it is not strictly
the case, like before, that the dropped terms have no effect on
the result, we found that only including the following terms
offers the best performance in terms of computation time in
our simulations:

U b(θb) ≡
∏
i jkl

exp
[
iθb1

i jkl (a
†
i a†

j a
†
ka†

l + al aka jai )
]

× exp
[
θ

b2
i jkl (a

†
i a†

j a
†
ka†

l − alaka jai )
]
. (33)

With that being said, a more careful study of the effect of
including the dropped terms might be in order, and we leave
this for future work. The number of parameters contained in
the above form of U b(θb) can be found to be 1

4! N ( N
2 − 1)( N

2 −
2)( N

2 − 3). Thus, the total number of parameters contained in
U (θ) is N

2 ( N
2 − 1)[1 + 1

12 ( N
2 − 2)( N

2 − 3)]. We discuss how to
express this ansatz on a quantum computer in Appendix B.

3. Simulations and results

In general, when restricting the Kitaev model with N spins
to a single gauge configuration, we end up with N Majo-
rana fermions ci, one at each site i. This corresponds to
N/2 complex fermions, and thus only N/2 qubits are needed
for simulation. This is a substantial reduction compared to
simulating the spins directly, which would require N qubits.
This reduction makes the fermionic formulations particularly
attractive when considering additional terms in the Kitaev
model that are “gauge diagonal.” Note that the model is no

longer exactly solvable when quartic fermion interactions are
present, which is where VQE calculations in the fermionic
description will be most useful.

We demonstrate the capabilities of the ansatz above using
two geometries: a honeycomb lattice with 3 × 3 unit cells
and a square-octagon lattice with 2 × 2 unit cells. These ge-
ometries have 18 and 16 spins respectively, and thus we only
need 9 and 8 qubits for the VQE, which is a big advantage
for our method. Periodic boundary conditions are applied in
both cases. We set both models inside the gapless region of
the phase diagram. For the honeycomb lattice we set J =
(Jx, Jy, Jz ) = (1, 1, 1), and for the square-octagon lattice we
set J = (1, 1,

√
2).

In Fig. 3(a), we show the results of VQE simulation using
a state-vector simulator for the exactly solvable case κint = 0
as a function of second-neighbor hopping κ . We plot the
error in energy Eerror = |(EVQE − Eexact )/Eexact|, and the state
infidelity 1 − |〈ψexact|ψVQE〉|2, where EVQE and |ψVQE〉 are
the optimal ground-state energy and ground state obtained by
VQE, while Eexact and |ψexact〉 are the ground-state energy and
ground state obtained by exact diagonalization. In this case,
our ansatz can have arbitrary agreement with the exact ground
state with the only bottleneck being the error tolerance we set
for the classical optimizer.

Moving away from the exactly solvable limit by including
the four-fermion interaction term κint in Eq. (26), Fig. 3(b)
shows a sizable decrease in the accuracy of the ansatz even
though both Eerror and the state infidelity seemingly reach a
plateau value of about 10−4, which is still quite a high accu-
racy. To put these numbers into perspective, we compare our
method to other VQE methods studied for the Kitaev model
in Ref. [25]. Our method achieves at least one order of magni-
tude lower error in ground-state energy when compared to all
VQE methods studied in Ref. [25]. It is worth mentioning that
even though the 3-spin interaction terms considered here are
different from the external magnetic field terms [see Eq. (27)]
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considered in Ref. [25], comparisons are still instructive since
the 3-spin interaction terms are exactly the perturbative effects
of the external magnetic field, especially considering that in
Ref. [25] small values of field h = (1, 1, 1)/

√
3 where used.

The inset in Fig. 3(b) shows the change of the ground
state as a function of κ: 1 − |〈ψ (κ )|ψ (0)〉|2, with |ψ (κ )〉
being the exact ground state as a function of κ . The fact that
1 − |〈ψ (κ )|ψ (0)〉|2 becomes much bigger than our state infi-
delity as κ increases demonstrates the excellent expressivity
of our ansatz.

Another advantage to motivating the variational ansatz
using a fermionic description is the ability to simulate dif-
ferent vortex configurations of the model. Even though Fig. 3
shows results for the vortex-free sector, adding a vortex would
just correspond to a simple change on the Hamiltonian, i.e.,
changing the corresponding signs of ui j . Other than that, the
VQE approach would behave in a very similar manner. Such a
task would be very difficult for VQE using the spin language
since higher vortex configurations would correspond to higher
excited states which are challenging for a variational method
to accurately simulate. Being able to simulate these vortex
excitations has the possible exciting application of simulating
non-Abelian anyons on quantum computers, as we discuss
now.

4. Implications for quantum simulation of non-Abelian anyons

A potentially interesting application for our method is re-
alizing non-Abelian anyons on quantum computers. Let us
for now focus on the honeycomb lattice, though the square-
octagon case is not substantially different. With J = (1, 1, 1)
and κ = κint = 0, the model is gapless. Adding the κ terms
opens up a gap in the spectrum. One of the interesting features
of the model in this region of the parameter space is that it
hosts non-Abelian anyons [3]. In particular, a vortex excitation
of the model (i.e., a plaquette p for which Wp = −1) will carry
a Majorana zero mode. One can therefore imagine using VQE
methods to prepare the ground state in the presence of some
number of vortices. Then, by applying appropriate unitary
transformations to this state (see, e.g., Ref. [63]), one could
manipulate the vortices in order to “braid” the attached Majo-
rana zero modes, which is one route to realizing fault-tolerant
Clifford operations [64]. We discuss below some considera-
tions that must be taken into account when contemplating such
a scheme.

If we have an infinite system with two vortices that are very
far from each other, we expect two degenerate ground states
that have the same energy and different fermion parity. In both
classical and quantum simulations, we only have access to
finite systems and there is a limit to how far away the vortices
can be from each other. As the Majorana modes get close
to each other, they can hybridize, leading to a small energy
gap between the even- and odd-parity states. We henceforth
refer to this energy scale as the “ground-state splitting,” to
avoid confusion with the (larger) energy scale of the bulk
gap, which is associated with creating a vortex excitation. In
practice, it is desirable for this splitting to be as small as possi-
ble to suppress the accumulation of dynamical phases during
braiding. The degree of closeness between the Majorana zero
modes can be quantified by comparing the distance between

FIG. 4. The “ground-state energy splitting” between the ground
and the first excited states on a 3 × 3 honeycomb lattice with two
vortices present (shown in gray) as shown in the inset. The energy
splitting occurs due to the hybridization of two Majorana modes
attached to the vortex excitations. Only in the limit where the vor-
tices are infinitely separated do we expect a truly doubly degenerate
ground-state manifold. This splitting in energy can spoil the braiding
properties of the vortices. The size of the splitting depends on a cor-
relation length. The correlation length is bounded from below when
we only consider κ terms, and the ground-state splitting therefore
experiences a minimum around κ ≈ 0.4. The minimal value of the
ground-state splitting is further reduced when adding the κint terms,
making the Majorana modes more robust.

the vortices to the correlation length ξ , defined as the local-
ization length of the wave function of the Majorana bound
state centered at the location of the vortex (which is inversely
proportional to the bulk gap). To have robust Majorana modes
on a quantum computer, we have to be able to simulate sys-
tems whose sizes are of the order of 2ξ for periodic boundary
conditions. Having open boundaries would not help since we
will also need to require the Majorana modes to be away from
the boundary.

It is thus desirable to make ξ as small as possible, so that
the vortices do not need to be very far apart during braiding.
For κ 
 |J|, one can show that ξ ∝ 1/κ . However, we also
expect this behavior to change for large κ , since a theory with
only κ terms (without Jx, Jy, and Jz terms) will be gapless,
and thus has ξ = ∞. We thus expect ξ to have a minimum
value as a function of κ . This minimum value of ξ is crucial
since it puts a lower bound on the system sizes where we
expect to observe the topological properties of the model
using only the κ terms. This is one area where we find that
including the κint terms can be of some help, as we will now
explain.

When two Majorana modes are close to each other, they
can hybridize, which results in a splitting of the ground-state
degeneracy. A proxy for the robustness of the two Majorana
modes is therefore the size of this energy splitting. In Fig. 4,
we calculate the energy splitting as a function of κ for a
3 × 3 honeycomb lattice with periodic boundary conditions
in the presence of two vortices. Indeed, we notice that the
gap follows a similar trend to that expected for the correlation
length ξ and is bounded from below. However, we find that the
splitting can be further lowered by adding the κint terms. This
can be crucial when the calculation is limited in the number of
qubits that can be used, but we still want to make the Majorana
modes more robust.
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B. Dynamical-gauge VQE

1. Gauge initial state

In this section, we consider the case of nonzero, uniform
external magnetic fields h, as described by Eq. (27). In this
case, one can no longer restrict the calculation to only one
of the L̃u subspaces, where the configuration of fluxes Wp

[see Eq. (13)] is fixed. This follows from Eq. (28), where
the ibα

i ci terms flip the sign of the ui j bond variable with
i and j making an α edge. We thus need to consider the full
fermionic Hilbert space L̃ = ⊕

u L̃u, which includes all flux
sectors. To map the system onto qubits, we note that each link
variable ui j can be represented by a single qubit. A system
of N spins thus requires 2N qubits to simulate both the flux
degrees of freedom and the fermionic (matter) subspace. This
qubit overhead limits the system sizes that we can simulate,
and we show results up to eight spins (requiring 16 qubits)
below. This suggests using an ansatz formulated in the spin
description in the case where the fluxes become dynamic. On
the positive side, the simulations in the fermionic description
give direct access to nontrivial static properties of the vortex
excitations such as their average number in the ground state.
The fermionic language is also more natural to use when one
is interested in the properties of the Majorana edge modes and
their braiding.

In the last section, we discussed how to group the ci (mat-
ter) Majorana fermions into complex fermions; see Eq. (19).
Similarly, the bα

i (bond) Majorana fermions can be combined
into complex fermions in the following way:

g(i, j) = 1
2

(
bα

i + ibα
j

)
, g†

(i, j) = 1
2

(
bα

i − ibα
j

)
, (34)

where α = x, y, z depending whether (i, j) ∈ x, y, z edges.
Using this basis, we can write the gauge variables as

ûi j = ibα
i bα

j = 2g†
(i, j)g(i, j) − 1, (35)

and thus initializing a state in a specific gauge configuration
amounts to choosing whether a certain fermionic orbital is
occupied or empty.

In the same way as we label the sites of the model with
Latin indices i, j, k, . . . , we will label the edges using Greek
letters μ, ν, λ, . . . . However, there is an ambiguity when writ-
ing gμ for example since g(i, j) = g( j,i), but (i, j) and ( j, i) are
the same edge. In order to remove this ambiguity, we define gν

such that g†
νgν = 1 on all edges corresponding to the standard

configuration ustd
i j , shown in Fig. 1(c).

We choose to initialize the system in the standard gauge
configuration, with all ui j = 1. Thus, our initial state is such
that

g†
ν |ψ0〉 = 0, ∀g†

ν . (36)

2. Variational ansatz

We use the following ansatz when extending the calcula-
tion to include all gauge configurations,

|ψ (θ)〉 = exp
[∑

θ c
i jcib j

]
exp

[ ∑
θb

i jbib j

]
× exp

[∑
θa

i jcic j

]
|ψ0〉 ≡ U c(θc)U b(θb)U a(θa)|ψ0〉.

(37)

Similar to the discussion in Sec. III A 2 and Appendix A, we
choose to reduce the number of parameters by keeping only
the following terms,

U a(θa) =
∏

i j

exp
[
iθa1

i j (a†
i a†

j + a jai )
]

exp
[
θ

a2
i j (a†

i a†
j − a jai )

]
,

(38)

U b(θb) =
∏
μν

exp
[
iθb1

μν (g†
μg†

ν + gνgμ)
]

exp
[
θb2
μν (g†

μg†
ν−gνgμ)

]
,

(39)

U c(θc) =
∏
iμ

exp
[
iθ c1

iμ (a†
i g†

μ + gμai )
]

exp
[
θ

c2
iμ (a†

i g†
μ − gμai )

]
.

(40)

Here, θa contains N
2 ( N

2 − 1) parameters for a system with N
spins. Such a system will have 3N

2 edges, and thus θb contains
3N
2 ( 3N

2 − 1) parameters and θc contains 3N2

2 parameters. In
total, the ansatz U (θ) has 2N (2N − 1) parameters.

3. Avoiding unphysical states

The variational state in Eq. (37) explores states in the full
Hilbert space, which includes both physical and unphysical
states. When using the expectation value of the energy C(θ) =
〈ψ (θ)|H |ψ (θ)〉 as a cost function, it is not guaranteed that the
optimal state |ψ (θoptimal)〉 belongs to the physical subspace.
Unphysical states are defined such that P|ψ〉 = 0, where P
is the projection operator as defined in Eq. (8). Therefore,
in the case of VQE with a dynamical gauge field we use the
following cost function

C(θ) = 〈ψ (θ)|PH |ψ (θ)〉
〈ψ (θ)|P|ψ (θ)〉 , (41)

which explicitly includes the projector onto the physical sub-
space. We observed that using this cost function, the algorithm
always converged to a physical state in all the cases tested.

In Appendix B, we discuss the Jordan-Wigner transfor-
mation of the Majorana fermions of the Kitaev model. The
Jordan-Wigner transformation of the projection operator P
(much like the Hamiltonian) is a sum of Pauli strings. Since
both P and H are a sum of Pauli strings, PH is also a sum
of Pauli strings. Pauli strings are observables that can be
measured on a quantum computer, and how to measure sum
of Pauli strings efficiently has been discussed in the literature
[65–69].

Another possible solution to making sure |ψ (θoptimal )〉 be-
longs to the physical subspace is to modify the cost function
by adding an on-site chemical potential to the Hamiltonian
C(θ) = 〈H − μ

∑
i Pi〉. Such a chemical potential term penal-

izes states for having an unphysical component. On one hand,
this solution has the advantage of only needing to measure
local projectors Pi instead of the full projection P = ∏

i Pi,
which can get very small for large system sizes and can
limit the scalability of the method above. On the other hand,
because [H,Pi] = 0 the addition of this chemical potential
term will make the optimization process harder, and probably
one will need to fine-tune μ for optimal results. It is an
interesting problem to compare both methods in more detail,
and we leave it for future work. In this work, for the sake of
demonstrating our ansatz, we only use Eq. (41).
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FIG. 5. Dynamic gauge VQE results using a state-vector simulator. Panels (a) and (b) show the VQE energy error compared to exact
diagonalization (ED), Eerror = |(EVQE − Eexact )/Eexact|, as a function of magnetic field h = h0(1, 1, 1). The accuracy is close to machine
precision for the 1 × 1 square-octagon model and increases as a function of h0 up to ≈10−3 for the larger models. Panel (c) shows
the ground-state magnetization mz = ∑

i 〈σ z
i 〉/N as a function of field applied along the z axis, h = (0, 0, hz ), for both honeycomb and

square-octagon models. It shows very good agreement with exact results and shows that an external field induces a finite magnetization
mz that saturates when the field becomes of the order of the Kitaev exchange. The susceptibility is larger for the square-octagon model. Panel
(d) shows the average value of the plaquette operator w = ∑

p〈Wp〉/n (n is the total number of plaquettes) in the ground state as a function of a
magnetic field applied along x, h = (hx, 0, 0). The legend is identical to panel (c). Results show that fluxes proliferate due to an external field,
and they give a quantitative estimate to the extent of the perturbative regime, where one considers only the flux free sector with w = 1. For all
calculations we use J = (1, 1, 1) for the honeycomb lattice and J = (1, 1,

√
2) for the square-octagon lattice.

4. Simulations and results

With the gauge variables being dynamic, we demonstrate
the capabilities of the ansatz above using three geometries:
1 × 1 square-octagon, 2 × 1 square-octagon, and 2 × 2 hon-
eycomb lattice. These geometries have 4, 8, and 8 spins,
respectively, and thus require 8, 16, and 16 qubits to simulate.
Periodic boundary conditions are applied in both cases. As be-
fore, we set both models inside the gapless region of the phase
diagram when the magnetic field vanishes. For the honeycomb
lattice we set J = (1, 1, 1), and for the square-octagon lattice
we set J = (1, 1,

√
2).

Figures 5(a) and 5(b) show the error in the ground-state
energy comparing the VQE results to that of exact diago-
nalization in the presence of a uniform magnetic field h =
h0(1, 1, 1). Again we compare our results to those in Ref. [25].
Here we can make more direct comparisons since we are sim-
ulating the same added interactions to the Kitaev model, i.e.,
external fields. We expect that for small enough value of h0

our method should always perform better. For h0 = 0.05/
√

3,
the value of the field studied in Ref. [25], we find similar
Eerror between our method and the best method described in
Ref. [25] of about 10−6.

Unlike the fixed gauge VQE case, in this case it is hard
to compare the optimized state infidelity with respect to exact
diagonalization. The reason for this is the massive degener-
acy introduced by the gauge freedom. Adding the magnetic
field terms does not change the fact that the model is invari-
ant under a gauge transformation. Thus, the full fermionic
Hilbert space has many degenerate ground states that can
be related to each other by a gauge transformation. This
makes comparing state fidelity much harder than in the fixed-
gauge VQE case, especially for the 16-qubit cases where
getting the full spectrum using exact diagonalization is time-
consuming and we could only solve for the ground state
even in the exact diagonalization calculation. There is no
guarantee that the ground state found by exact diagonaliza-
tion should be the same as the ground state found by the
VQE algorithm. We do expect them to be gauge related,
though.

We validate the accuracy of the optimized state by
calculating some known physical features that is gauge in-
dependent. In Fig. 5(c) we show the average polarization
mz = ∑

i〈σ z
i 〉/N , and in Fig. 5(d) we present the average value

of the plaquette operator w = ∑
p〈Wp〉/n. Here, n is the total

number of plaquettes. Both quantities show good agreement
between our VQE results (square markers) and exact diago-
nalization (solid lines). We note that similar calculation where
shown in Ref. [26].

For the average magnetization shown Fig. 5(c), we see
that the magnetization vanishes at zero field, mz(h = 0) = 0,
which is a signature of the spin-liquid phase. As the magni-
tude of the field increases, the magnetization increases until
it reaches a saturation point where all spins are pointing in
the same direction as the field (indicating a fully polarized
paramagnetic state). At least for the geometries considered,

we see that the magnetic susceptibility
∂mz

∂hz
|hz=0 is larger for

the square-octagon than for the honeycomb lattice model.
Figure 5(d) shows that at h = 0 the ground state has w = 1

as expected since all Wp = 1 (no vortices). As more and more
flux is put through the system, w decreases as vortices are
excited in the system. At large values of the field in the x
direction, we see w going to zero. This is consistent for both
the honeycomb and square-octagon lattices where a product
state with all spins pointing in the x direction would yield
W (6)

p = W (4)
p = W (8)

p = 0. This is different in the situation
where the field is pointing along the z direction since a state
that is polarized along z would still have W (4)

p = 1 for the
square-octagon lattice.

IV. CONCLUSION

We simulate Kitaev spin models using VQE with an ansatz
that is motivated by the fermionic description of the model.
In cases where the gauge degrees of freedom are static, our
method only requires half as many qubits as there are physical
spins in the model. This includes nontrivial cases where the
matter fermion problem is interacting. Such interaction terms
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arise when treating an external magnetic field within perturba-
tion theory. We show that using the fermionic formulation has
the additional advantage of being able to realize and simulate
properties of non-Abelian anyons, i.e., Majorana zero modes
bound near static vortex excitations. Specifically, we find
that the Majorana bound states can become more localized
(and thus more robust) in the presence of matter fermion
interactions. We can capture these excited states within a
ground-state VQE calculation by running a matter fermion
VQE on top of a static background of vortex excitations. We
see this as an exciting new direction that can be explored in
more detail in future work.

We find that the accuracy of our method generally com-
pares well to other VQE studies of the Kitaev model on the
square-octagon lattice. In the presence of a uniform exter-
nal magnetic field sufficiently small that it can be treated
within perturbation theory, our method shows at least one
order of magnitude better Eerror for the 16 spin geometry than
results presented in Ref. [25]. The better Eerror in this work
demonstrates that fermionizing spin models can provide an
advantage when additional constraints limit the size of the
Hilbert space where the ground state is located.

Further, we expand our method to perform VQE simu-
lations in the presence of terms that couple different gauge
sectors. In this case, we encountered a challenging issue that
VQE converged to completely unphysical states. We offered
two possible solutions to this problem: We used one of them in
this work, and leave the other one for future work. Optimiza-
tion over a set of constraints is an interesting problem in its
own right, and having a separate future study comparing the
various ways of handling the problem for our method is use-
ful. Future work could also be directed toward performing an
in-depth comparison between VQE ansätze in the fermionic
and the spin description (such as the Hamiltonian variational
ansatz used in Refs. [25,26]) with regards to the depth of the
circuits and the complexity of the classical optimization, in
particular in the presence of noise.
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APPENDIX A: RELEVANT PARTS OF THE ANSATZ

Our ansatz introduced in Sec. III A 2 can be simplified by
modding out the parts of the ansatz that leaves the initial state
invariant. Let us look at the action of U a(θa) on |ψ0〉, where

U a(θa) = exp

[∑
i j

θa
i jcic j

]
, (A1)

and ai|ψ0〉 = 0 for all ai. We begin by writing U a(θa) in terms
of the complex fermions ai,

U a(θa) = exp
∑

i j

(
θa

2i,2 jc2ic2 j + θa
2i+1,2 jc2i+1c2 j

+ θa
2i,2 j+1c2ic2 j+1 + θa

2i+1,2i+1c2i+1c2 j+1
)

= exp

[∑
i j

[
iθa1

i j (a†
i a j + a†

j ai ) + θ
a2
i j (a†

i a j − a†
j ai )

]

+
∑

i j

[
iθa3

i j (a†
i a†

j + a jai ) + θ
a4
i j (a†

i a†
j − a jai )

]]
,

(A2)

where it can be shown that

θ
a1
i j = θa

2i,2 j − θa
2i+1,2 j+1, θ

a2
i j = θa

2i,2 j + θa
2i+1,2 j+1,

θ
a3
i j = θa

2i+1,2 j + θa
2i,2 j+1, θ

a4
i j = θa

2i+1,2 j − θa
2i,2 j+1. (A3)

Since the commutators [a†
i a j, a†

i′a j′ ], [a†
i a j, ai′a j′ ],

[a†
i a†

j , ai′a j′ ], and [aia j, ai′a j′ ] are either zero or a quadratic

product of ai/s and a†
i /s we can write

exp

[∑
i j

[
iθa3

i j (a†
i a j + a†

j ai ) + θ
a4
i j (a†

i a j − a†
j ai )

]

+
∑

i j

[
iθa1

i j (a†
i a†

j + a jai ) + θ
a2
i j (a†

i a†
j − a jai )

]]

=
∏

i j

exp
[
iθ ′a1

i j (a†
i a†

j + a jai )
]

exp[θ ′a2
i j (a†

i a†
j − a jai )]

×
∏

i j

exp
[
iθ ′a3

i j (a†
i a j + a†

j ai )
]

exp
[
θ

′a4
i j (a†

i a j − a†
j ai )

]
.

(A4)

However, since the parameters in the exponent are to be
found variationally anyway, the exact relationship between
the primed and unprimed θ/s is not relevant, and we can just
as well use the right-hand side of the equation above in our
ansatz. Finally, we notice that

∏
i j

exp
[
iθa3

i j (a†
i a j + a†

j ai )
]

exp
[
θ

a4
i j (a†

i a j − a†
j ai )

]|ψ0〉

= eiφ|ψ0〉 (A5)

since ai|ψ0〉 = 0 for all ai. Thus, in our ansatz we only use

U a(θa) ≡
∏

i j

exp
[
iθa1

i j (a†
i a†

j + a jai )
]

exp
[
θ

a2
i j (a†

i a†
j − a jai )

]
(A6)

without any loss of generality. For a system with N spins, the
above expression has N/2(N/2 − 1) as opposed to the N (N −
1)/2 independent parameters of Eq. (A1).
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APPENDIX B: MAPPING THE FERMIONIC
MODEL ONTO QUBITS

1. The Jordan-Wigner transformation

A system of N qubits has a 2N dimensional Hilbert space
that is spanned by

|s1 . . . sN 〉 = (σ+
1 )s1 . . . (σ+

N )sN |0〉, si ∈ {0, 1}, (B1)

where σ+
i = 1

2 (σ x
i − iσ y

i ), and the state |0〉 is defined such
that σ−

i |0〉 = 0 for all σ−
i = (σ+

i )†. The operators σ± obey
the following commutation relationships:

[σ−
i , σ+

j ] = δi j, [σ−
i , σ+

j ] = 0. (B2)

Consider a fermionic Hilbert space of N orbitals (we take
orbital here to also include the spin) with ai, i ∈ {1, . . . , N}
being the annihilation operators for these N orbitals. Like
qubits the Hilbert space is 2N dimensional, since each orbital
can either be full or empty, and is spanned by

|n1 . . . nN 〉 = (a†
1)n1 . . . (a†

N )nN |0〉, ni ∈ {0, 1}. (B3)

However, unlike qubits the operators ai/s satisfy the following
anticommutation relationships,

{ai, a†
j} = δi j, {ai, a j} = 0, (B4)

where |0〉 is the state annihilated by all lowering operators.
The difference in the algebra described by Eqs. (B2) and

(B4) prevents a simple map such as σ−
i = ai and σ+

i = a†
i .

Instead, the Jordan-Wigner transformation yields the correct
mapping that preserves the correct anticommutation relation-
ships of the fermions,

ai =
∏
j<i

σ z
j σ

−
i , a†

i =
∏
j<i

σ z
j σ

+
i . (B5)

2. Transforming the Hamiltonian and the ansatz

As discussed in the main text, it is useful to have a distinc-
tion between two kinds of Majoranas of the Kitaev model,
the bα

i Majoranas that make up the gauge sector and the c
Majoranas that make up the fermionic sector. In the main text,
we chose to have

c2n = an + a†
n, c2n+1 = 1

i (an − a†
n). (B6)

Since a pair of Majoranas combine to make a complex
fermion, for a system of N spins the index n above ranges
from 1 to N/2. Using the transformation in Eq. (B5), we see
that the Majorana fermions maps to the following,

c2n =
∏
m<n

σ z
mσ x

n , c2n+1 =
∏
m<n

σ z
mσ y

n . (B7)

Further, we also have a complex fermion gμ associated with
each edge as discussed in the main text. Since the complex
fermions gμ are defined in such a specific way such that
g†

μgμ = 1 corresponds to the standard gauge configuration
ustd

i j , we need a new notation for the bα
i Majorana fermions

in order to avoid ambiguous notations and properly keep track
of minus signs. We define

b1
ν = g†

ν + gν, b2
ν = 1

i (g†
ν − gν ). (B8)

For the Jordan-Wigner transformation, we make the following
identification:

gν ≡ aν+N/2. (B9)

With this, we can extend the Jordan-Wigner transformation to
include the bα

i Majorana fermions:

b1
ν =

∏
m<ν+N/2

σ z
mσ x

ν+N/2, b2
ν =

∏
m<ν+N/2

σ z
mσ

y
ν+N/2. (B10)

Using Eqs. (B7) and (B10), one can work out the
Jordan-Wigner transformation of all possible terms in the
Hamiltonian. Defining

S ji =
∏

j�p<i

σ z
p, (B11)

the fixed gauge Hamiltonian transforms as follows:∑
j>i

iAi jcic j =
∑
j>i

Ai j iσαi
i′ Si′ j′σ

α j

j′ , (B12)

∑
l>k> j>i

Vi jkl cic jckcl =
∑

l>k> j>i

σ
αi
i′ Si′ j′σ

α j

j′ σ
αk
k′ Sk′l ′σ

αl
l ′ , (B13)

with i′, j′, k′, l ′ = �i/2�, � j/2�, �k/2�, �l/2�, αi = x when i
is even and αi = y when i is odd.

When dealing with dynamic gauge Hamiltonian, we have∑
j>i

Jαcic jb
α
i bα

j = iσαi
i′ Si′ j′σ

α j

j′
[
si jσ

z
ν+N/2

]
, (B14)

∑
i

hαcib
α
i = iσαi

i′ Si′ν+N/2 σ
βα

ν+N/2, (B15)

where si j = ± and βα = x, y when bα
i = b1

ν , or bα
i = b2

ν

respectively.
We now move on to the Jordan-Wigner transformed ansatz.

We start with

U a(θa) ≡
∏
i< j

exp
[
iθa1

i j (a†
i a†

j + a jai )
]

exp
[
θ

a2
i j (a†

i a†
j − a jai )

]
.

(B16)

Using Eq. (B5), we can write the exponents as

a†
i a†

j + a jai = 2
(
σ x

i Si jσ
x
j − σ

y
i Si jσ

y
j

)
, (B17)

a†
i a†

j − a jai = −2i
(
σ x

i Si jσ
y
j + σ

y
i Si jσ

x
j

)
. (B18)

Next we look into the transformation of

U b(θb) ≡
∏

i< j<k<l

exp
[
iθb1

i jkl (a
†
i a†

j a
†
ka†

l + al aka jai )
]

× exp
[
θ

b2
i jkl (a

†
i a†

j a
†
ka†

l − al aka jai )
]
. (B19)

Using Eq. (B5), the exponents can be transformed as follows:

a†
na†

ma†
ka†

l + al akaman = (
σ x

i Si jσ
x
j σ x

k Sklσ
x
l − σ

y
i Si jσ

y
j σ x

k Sklσ
x
l − all permutations of x, y + σ

y
i Si jσ

y
j σ

y
k Sklσ

y
l

)
, (B20)

a†
na†

ma†
ka†

l − alakaman = 2i
(
σ

y
i Si jσ

y
j σ

y
k Sklσ

x
l + all permutations of x, y − σ x

i Si jσ
x
j σ x

k Sklσ
y
l + all permutations of x, y

)
. (B21)
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FIG. 6. Building blocks for the ansatz. Here Ui = H (Hadamard gate) if αi = x, and Ui = Rx ( π

2 ) (rotation about x axis by π/2) if αi = y.

In Fig. 6, we show how this transformed ansatz can be im-
plemented on a quantum computer. Finally, we note that the
ansatz used in the dynamical gauge VQE [Eqs. (38), (39), and

(40)] can be transformed to operators that can be acted with
on qubits using equations that are very similar to Eqs. (B17)
and (B18).
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