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Significance of fidelity deviation in continuous-variable teleportation
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Performance of quantum teleportation is typically measured by the average fidelity, an overlap between the
input and output states. Along with the first moment, we introduce the second moment of fidelity in continuous-
variable (CV) teleportation, i.e., the fidelity deviation as the figure of merit to assess the protocol’s efficiency. We
show that CV states, both Gaussian and non-Gaussian, can be better characterized by considering both average
fidelity and fidelity deviation, which is not possible with only average fidelity. Moreover, we shed light on the
performance of the teleportation protocol in two different input scenarios: One is when input states are sampled
from constrained uniform distribution while the other one is Gaussian suppression of the input states which again
leads to a different classification of CV states according to their performance. The entire analysis is carried out in
noiseless and noisy scenarios with noise being incorporated in the measurement and the shared channels. We also
report that one type of noise can make the protocol robust against the other one, which leads to a “constructive
effect,” and identify the noise models which are responsible for decreasing average fidelity and the increment in
fidelity deviation.
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I. INTRODUCTION

Quantum teleportation (QT), discovered in 1993 [1], is
unmistakably one of the remarkable pieces of sorcery that
quantum mechanics makes possible. After its proposal, it has
tasted unprecedented levels of success both theoretically [2–7]
and experimentally [8–17] in its mere two-decade-long ex-
istence. The latest feather in the cap of experimental QT
is undoubtedly the satellite-based setups that give rise to
the possibility of realizing quantum information transmis-
sion at intercontinental distances [16,18,19]. Interestingly, this
tremendous progress and success in this field do not limit the
research directions, but, on the contrary, widens them. In the
theoretical frontier, in the last couple of years alone, several
new and interesting facets have emerged in this field which
include port-based quantum teleportation [20–23], fidelity en-
hancement of noisy QT using a quantum switch [24–27],
teleportation involving multiple parties [28–31], multiround
quantum teleportation using weak measurements [32], and
fidelity deviation in QT [33].

Among these various avenues, let us briefly discuss and
elaborate on the importance of the idea of fidelity deviation in
QT. Typically, the performance of QT is measured by the aver-
age fidelity. However, such a mean-based characterization has
some limitations since it cannot capture the fluctuations in fi-
delity with the various choices of inputs from the ensemble of
states that are supplied for teleportation. For example, fluctua-
tions become very important in situations where teleportation
is used as an intermediate step in a quantum information pro-
cessing task involving quantum gates. Since the performance
of quantum gates depends on the fluctuations of its input

(that reaches the gate via QT) [34,35], the fidelity deviation
must be taken into account on top of the average fidelity
for characterizing the quality of QT. Noting its importance,
several works have been carried out in investigating the role
of fidelity deviation in QT [36–39].

Continuous-variable (CV) systems offer some distinct ad-
vantages over their discrete counterparts whereby they can
overcome certain difficulties, like Bell-basis indistinguisha-
bility via linear optics [40]. Furthermore, they can be prepared
with near perfect efficiency by using nonlinear interaction of a
crystal with a laser, and the only imperfection can arise due to
the varying intensity of laser light, resulting in a low squeezing
parameter [41], thereby making them potential systems for
implementing quantum information processing tasks. Among
the set of CV systems, Gaussian states hold a privileged posi-
tion owing to their mathematical simplicity and experimental
realizability [42–45].

Notably, it was in the Gaussian domain that the idea of
CV teleportation was first conceptualized by Vaidman, Braun-
stein, and Kimble (referred to as the VBK protocol) [46,47].
From its inception, several directions have been explored in
CV QT by varying the one-shot fidelity [48,49] and the av-
erage fidelity [50]. It includes the extension of the protocol
to non-Gaussian regimes, exhibiting that photon-subtracted
(PS) states can outperform the two-mode squeezed vac-
uum (TMSV) state according to the average fidelity [48,51–
56], incorporating noise [49,50,57,58], constructing CV QT
networks [59–61], understanding the relationship between
measures of quantum correlations and the fidelity [62–69]
(a problem which is considerably well understood in the
discrete case [2,3]), and many more. To show quantum
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FIG. 1. The average teleportation fidelity, F (ordinate), of co-
herent states drawn from a Gaussian ensemble of variance σ = 5.0
against the squeezing of the entangled resource states, r (abscissa).
Squares, circles, and triangles represent the TMSV, photon-added
(PA), and photon-subtracted (PS) states as channels. The classical
bound on the average fidelity is shown with dashed lines. It is
interesting to observe whether such hierarchies among CV states
change with different input distributions like uniform distribution
with energy threshold. Both the axes are dimensionless.

advantage, the classical threshold for the coherent state is
shown to be at most half and quantum resources are known
to beat the optimum measure-prepare strategy for moderate
to high values of the squeezing parameter (see Fig. 1). For a
more detailed review of the literature, see Ref. [70].

In this work, we focus on two independent aspects of CV
quantum teleportation. On one hand, our work focuses on as-
sessing the quality of the protocol with respect to the variation
in input energy. Specifically, we consider input states coming
from different energy distributions: A uniform distribution
having a finite threshold in the maximum permissible energy
to avoid divergence and Gaussian distributions characterized
by a specific variance. For example, we study how the average
fidelity scales with different input distributions and examine
the regimes at which quantum advantage is apparent, since
the classical bound also varies for different energy constraints.
Notice that, in a recent work [71], optimal input states are de-
termined by considering energy-constrained fidelity between
ideal scenarios and additive noise-induced channels, which
can be the case in experiments. From a different perspec-
tive, some of us have recently shown that if the input states
are derived from nonuniform distributions, instead of being
distributed over the entire Bloch sphere, the teleportation pro-
tocol in terms of its average fidelity and fidelity deviation can
be improved [39]. Motivated by these results, in this work
we consider the uniform distribution of input states which are
constrained in energy and show that distributions with lower
energy cutoffs can aid in the teleportation protocol since less
resource squeezing is required for optimal transfer of such
states. In this paradigm, we also compute the entanglement-
free (measure-prepare) bound on QT to show where quantum
advantage is manifested.

On the other hand, we introduce the concept of the second
moment of the fidelity statistics, the fidelity deviation, in CV
systems which quantifies how well a given resource aids in the
teleportation of different states coming from a given ensem-
ble. A lower value of the fidelity deviation indicates that the
resource is capable of transferring various input states with
fidelities very close to the average fidelity. This is essential,
since even if the average fidelity is high, a large deviation
means that some states might still be teleported with subop-
timal fidelity.

Our aim here is to determine the performance of QT by
examining both the average fidelity and fidelity deviation and
classify the CV resource states, both Gaussian TMSV as well
as photon-added and -subtracted states according to their per-
formances. Specifically, we report that, contrary to the known
results, TMSV states turn out to be better suited for CV QT
than the PS states in many situations in the presence or ab-
sence of noise. The investigations are carried out for different
input states: Coherent, squeezed, and squeezed coherent states
when entangled channels are shared. In a noisy regime, we
show that noise in measurement can be circumvented by a
moderate amount of noise in channels, which we refer to as a
constructive effect irrespective of the input energy. Moreover,
we observe that noise in measurement at the sender’s end
has adverse effects on the quality of CV QT in terms of the
average fidelity and its deviation compared to the noise in the
channels. However, both the noise models have more detri-
mental effects on non-Gaussian states than the Gaussian ones,
thereby establishing the TMSV state as a suitable channel for
teleportation in the presence of high input energy.

If we now compare the results obtained in CV systems
with the known results for two-qubit systems [36–39], the
principal point of difference is the dimension of the sys-
tems under consideration. Incorporating the idea of fidelity
deviation in the continuous-variable paradigm is qualitatively
different from teleportation with qubits. Hence although the
known works provide a wider perspective for qubit telepor-
tation, this knowledge does not provide substantial intuition
in the CV case. In Ref. [36], fidelity deviation was studied
for generic two-qubit states and the existence of resources for
which the fidelity deviation could have vanishing values were
identified, thereby making them universal for the teleportation
protocol. In our work, we study the properties of fidelity
deviation for two-mode entangled resource states and arrive
at a hierarchy between different Gaussian and non-Gaussian
states in terms of their fidelity deviation when the input energy
is fixed within a given range. It is, however, an open question
as to whether universal continuous-variable resource states
exist, which can teleport states without any fluctuations in
the average fidelity. It is also interesting to characterize states
in terms of their fidelity deviation based on state properties
such as linear entropy, concurrence, etc., and show that such
properties may also dictate the teleportation protocol [37]. In-
stead of establishing such a connection, we mainly focus here
on the interplay between the average fidelity and the fidelity
deviation of states for inputs belonging to an ensemble of fixed
energy. We believe that our work helps to identify resources
suitable for teleportation depending on the energy of the state
to be teleported even in the presence of noise. Recently,
combining the two moments of fidelity, a new performance
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measure called teleportation score was introduced [38], for
two-qubit systems. Such a measure for CV teleportation is too
intricate since it depends on several state properties. In our
work, we leave it as an open question whether such a measure
exists for CV systems as well.

The paper is organized as follows. Before presenting the
results, we introduce the monitors which can assess the
performance of QT and the role of input energy in the perfor-
mance and describe briefly the classical limit in each situation
(Sec. II). The trends of average fidelity and fidelity deviation
for noiseless CV teleportation with respect to different inputs
and resource states are presented in Sec. III. The hierarchies
among states according to the fidelity deviation are studied in
Sec. IV for the noiseless case. In Sec. V, we investigate the
effects of noise on the performance of CV QT by considering
the average fidelity while the behavior of fidelity deviation in
the presence of noise is discussed in Sec. VI. Finally, we make
concluding remarks in Sec. VII.

II. REGULARIZED FIGURES OF MERIT

Continuous-variable systems are characterized by canon-
ically conjugate observables, say, X and P, possessing a
continuous spectrum. The system Hamiltonian for N such
pairs, each of which corresponds to a different mode,
reads as

H = 1

2

N∑
k=1

(
X 2

k + P2
k

) =
N∑

k=1

a†
kak + N

2
, (1)

where k denotes the mode, while ak and a†
k represent the

photon annihilation and creation operators, respectively, with

ak = Xk + iPk√
2

, a†
k = Xk − iPk√

2
, (2)

where i = √−1. When a single mode state, |ψin〉, has to be
teleported through a CV channel, the overlap between the out-
put state after implementing the protocol, ρout, and the input
state |ψin〉, referred to as the fidelity f (|ψin〉) = 〈ψin|ρout|ψin〉
measures the efficacy of the protocol. When the standard
CV teleportation scheme is followed [47], the fidelity can be
expressed as [72]

f|ψin〉 = 1

π

∫
d2αχin(−α)χout (α), (3)

where χout (α) = χin(α)χres(α∗, α) [73] with χρ (α) =
tr(ρD(α)), D(α) being the displacement operator, and
χρ (α) is the characteristic function of the single-mode
state ρ.

In our work, we primarily choose |ψin〉 to be a single-
mode pure Gaussian state [74]. Recall that the most general
single-mode pure Gaussian states are the squeezed coherent
states [43], and therefore, most generally,

|ψin〉 ∈ {S(ξ )D(β )|0〉} ∀ξ, β ∈ C, (4)

where S(ξ ) = exp [ 1
2 (ξ ∗â2 − ξ â†2)] represents the single

mode squeezing operator with ξ = ε eiθ in which |ξ | = ε rep-
resents the squeezing strength while θ denotes the squeezing
angle. Here β = beiφ is the displacement parameter. Choosing
|ψin〉 uniformly from the above ensemble is unphysical since

it leads to divergent energies, which can be noted from the
average energy of |ψin〉,

E|ψin〉 = 〈ψin|H |ψin〉 = b2 + sinh2 ε. (5)

This divergence can be prevented by imposing a distribution
p(β, ξ ) with 1

N
∫

p(β, ξ )d2β d2ξ = 1 on the choice of |ψin〉
such that the average energy for the distribution of input
states is

Eavg = 1

N

∫
p(β, ξ )E|ψin〉d

2β d2ξ < ∞. (6)

Endowed with this prescription for taming the divergences, we
classify the performance of CV quantum teleportation using
the first two moments of fidelity, referred to as the average
fidelity [57], given by

F = 1

N

∫
p(β, ξ ) f|ψin〉d|ψin〉, (7)

with N = ∫
p(β, ξ )d|ψin〉, while the corresponding fidelity

deviation [33] reads as


F =
√〈

f 2
|ψin〉

〉 − F2, (8)

where 〈 f 2
|ψin〉〉 = 1

N
∫

p(β, ξ ) f 2
|ψin〉d|ψin〉. Notice that, in the

discrete case, the measure “d|ψin〉′′ implies the entire space of
inputs chosen uniformly from the Hilbert space of the relevant
dimension; i.e., p(β, ξ ) is a uniform distribution. Here in
CV systems, we choose the measure d|ψin〉 with reasonable
cutoffs as mentioned before, making the average energy of the
input ensemble finite. This allows us to construct regularized
versions of average fidelity and fidelity deviation that are free
from typical divergences arising due to infinite-dimensional
systems.

In our analysis, we consider two different realizations of
p(β, ξ ), one with a finite cutoff in energy which we call the
constrained uniform distribution, and the other with a Gaus-
sian suppression, respectively given by

pC (β, ξ ) =
{

const, E|ψin〉 � E
0, E|ψin〉 > E,

(9)

pG(β, ξ ) = e− b2

σc e− ε2

σs . (10)

Both of these distributions rectify the divergent issues. From
Eq. (5), the condition in Eq. (9) can be rewritten as b2 +
sinh2 ε � E . In this case, the average fidelity can be modified
as

F = 1

N

∫ L

ε=0

∫ 2π

θ=0

∫ √
sinh2 L−sinh2 ε

b=0

∫ 2π

φ=0
f|ψin〉 d|ψin〉,

(11)

where d|ψin〉 = b ε dε dθ db dφ and the integral over the dis-
placement parameter b runs from zero to the part of the total
energy not carried by the squeezing. We assume that the total
energy is given by sinh2 L = E , where L is the maximum
value that the squeezing parameter of the state, ε, can possess.
The integration measure in Eq. (11) becomes d |ψin〉 = d2ξ =
2πε dε for the squeezed state, whereas for the coherent state,
it is d |ψin〉 = d2β = b db dφ. Since it is hard by state-of-the-
art experiments to achieve squeezing beyond r = 1.6 [75], we

022433-3



PATRA, GUPTA, ROY, AND SEN(DE) PHYSICAL REVIEW A 106, 022433 (2022)

accordingly fix the energy threshold for the squeezed state
as Lξ = 1.6 such that sinh2 ε � sinh2 Lξ . In order to facilitate
comparison, we also consider the energy cutoff for the coher-
ent state to be the same, due to which |Lβ |2 = sinh2 Lξ even
though, technically, it can possess relatively high energy.

For the Gaussian distribution of squeezed coherent states,
the integrals for computing average fidelity and fidelity devia-
tion get simplified forms since pG(β, ξ ) acts independently
on the coherent and squeezed sectors owing to its product
structure. Note that such simplification is not possible with
uniform distribution having energy thresholds. Using Eq. (7)
with the condition in Eq. (10), the average fidelity for teleport-
ing squeezed coherent states can be computed as

F = 1

N

∫ ∞

ε=0

∫ 2π

θ=0

∫ ∞

b=0

∫ 2π

φ=0

× f|ψin〉 exp

(
− ε2

σs

)
exp

(
− b2

σc

)
d|ψin〉, (12)

where N = (πσs)(πσc), with σs and σc being the variance
corresponding to the input squeezing and the displacement
parameters, respectively. Throughout the paper, we have con-
sidered variance to be the Gaussian distribution parameter and
both the figures of merit are analyzed with respect to variance
in case of sampling of input states from Gaussian distribution.

Using Eq. (6), the average input energy is computed to
be σc + 1

2 eσs
√

πσsErf(
√

σs), where the first term represents
the average energy for the input coherent state and the sec-
ond term corresponds to the average energy for the input
squeezed state individually. Here Erf is the error function
given by Erf(x) = 2√

π

∫ x
0 e−t2

dt . Since the average energy
depends both on σs and σc and increases with them, we take
the range of σs and σc up to 5.0 and 10.0, respectively, in order
to capture all possible prime features that the figures of merit
can exhibit, with respect to the average input energy. Now we
briefly discuss how these reasonable cutoffs of the average
input energy relate to the practical teleportation experiment.

The energy constraint considered in the paper does indeed
hold true for practical teleportation experiments. In any real-
istic CV teleportation setup, the input states have some cutoff
in their energy because states with a very high energy are un-
physical and are typically difficult to prepare in experiments.
Such issues have also been addressed in other works of CV
quantum teleportation in the literature [48,51–56], where only
the average fidelity is computed. We have generalized CV
teleportation via computing the first two moments of fidelity
(the average fidelity and the fidelity deviation) under such
constraints. Summarizing, we consider two instances of such
energy-based constraint:

(1) The first is constrained uniform distribution, where the
input set is constituted only by states less than a particular
amount of energy. Inside this energy-constrained set, the states
are chosen uniformly. We motivate such a choice from qubit
teleportation, where the input states for teleportation are con-
sidered to come from an unconstrained uniform distribution.

(2) The second is Gaussian distribution of the energy of
the inputs. It has already been considered in other works of
CV teleportation involving only the average fidelity.

In a practical situation, where teleportation is used as an
intermediate in a quantum circuit involving CV states, the
states to be teleported are either prepared or generated by
some prior processes. In both cases, the ability of the source
to produce a very high energy state is restricted. For example,
if one considers CV entanglement swapping [76,77] (which is
essentially teleporting a part of the entangled state [76,78,79]),
the states which are shared among three different laboratories
are a pair of two-mode squeezed vacuum. Experimentally, the
TMSV with highest possible entanglement that can be created
so far constitutes an average energy per mode of 5.643 in
natural units [75]. These energy restrictions are ubiquitous in
the CV regime, where, due to dimensional unboundedness,
maximal values of extensive quantities diverge. Therefore, to
make reasonable predictions, one must impose energy con-
straints.

Typically the input state at the sender’s side is completely
unknown to the sender. However, it is reasonable to expect
that the sender has some prior knowledge about the energy
range of the input ensemble to be able to prepare the resource
state and design a suitable strategy for optimal fidelity [39,80].
Therefore, the sender does not require to perform any addi-
tional measurement on the input state to determine its energy
and can simply implement the standard teleportation protocol
once the state is supplied. The prior knowledge of the input
energy ensemble thus allows the sender to teleport the input
state in real CV experiments. One must keep in mind that the
concept of prior knowledge in CV teleportation is fundamen-
tally different from that in the discrete case. This is because
the energy constraint which serves as prior knowledge is a
physical requirement for the protocol to be implemented. It
has to be present, contrary to the discrete case [39] where
prior knowledge is an additionally imposed assumption. In
addition to this, one can also consider that the sender knows
which kind of state has to be teleported, i.e., whether the state
is from an ensemble of squeezed states or coherent states
or squeezed coherent states. This would allow the sender to
further tailor the resource for successful teleportation. Note
that this assumption is a standard practice in the literature of
CV teleportation [46–49].

Our proposed scheme would work best when the sender
has some prior knowledge about the energy of the ensemble
from which the input state is derived. This does not mean,
however, that the sender has concrete information about the
particular state to be teleported. If the sender has absolutely
no information about the energy constraints on the input en-
semble, the protocol would still function, but would yield
suboptimal fidelities. In that case, the best strategy for the
sender is to use a highly squeezed resource state so that the
input states with large energies can be teleported with rea-
sonably good fidelity. Before presenting all the results, let us
briefly discuss the classical limit for CV quantum teleporta-
tion which is essential to estimate any quantum advantage.

The classical limit

In any quantum information protocol, it is necessary to
define a classical threshold which quantifies the performance
of the optimal classical routine for the task. If the figure of
merit for the quantum protocol exceeds the classical limit,
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we can claim with certainty that quantum benefit is obtained.
In quantum teleportation with the discrete qubit formalism,
an average fidelity beyond F = 2/3 indicates the presence of
entanglement, thereby obtaining quantum advantage [2,7,81].

In CV teleportation, when the input states, say, coherent
states |β〉, are sampled from a Gaussian distribution p(|β〉) =
λ
π

exp (−λ|β|2) [82], the optimal fidelity achievable through
the classical measure-prepare strategy is known to be F coh

class �
(1 + λ)/(2 + λ) [83]. If the distribution becomes completely
flat, i.e., λ = 0, it reduces to F coh

class � 0.5. Therefore, for states
sampled from an infinitely flat distribution of energies, any
fidelity above 0.5 guarantees quantum advantage. However,
if the standard deviation of a Gaussian distribution is finite
(λ > 0), or there exists a uniform distribution which con-
tains states up to a particular energy only [as in Eq. (9)],
the classical threshold increases beyond the aforementioned
value. It can be intuitively understood since it is easier for
the concerned parties to replicate the input state through a
measure-prepare strategy when the states are drawn from a
limited energy distribution [83]. Hence, the classical bound
on the average fidelity depends on average input energy and
decreases with the decrease in the spread of input energy.
Specifically, for a given distribution with a finite energy, we
need to determine the corresponding fidelity which is achiev-
able in the absence of entanglement.

Similarly, the optimal classical bound on the teleportation
of squeezed states is not uniquely determined and is no longer
bounded by 0.5 [84]. In Ref. [85], it was demonstrated that
the classical protocol for sending squeezed states with a flatly
distributed energy up to a maximum value can go higher
than 0.9. Similarly, for pure squeezed input states, a fidelity
higher than 81.5% is necessary to obtain quantum advantage,
when the states belong to an infinite ensemble of uniformly
distributed energy [86].

III. CHARACTERIZING NOISELESS CV TELEPORTATION
VIA AVERAGE FIDELITY AND FIDELITY DEVIATION

Before presenting the results in the absence of any kind of
noise, let us specify the resource and input states considered
here.

Resources. In our analysis, the shared resource states used
are squeezed Bell-like states which read as

|�〉 = Ŝ12(ζ )(cos δ|00〉 + eiη sin δ|11〉), (13)

where Ŝ12(ζ ) = e−ζa†
1a†

2+ζ ∗a1a2 is the two-mode squeezing uni-
tary operator with ζ = reiγ . It can be reduced to different
well-known Gaussian and non-Gaussian states: For δ = 0,
it represents the two-mode squeezed vacuum state; choos-
ing δ = arccos[(cosh 2r)−1/2 sinh r] and η = γ − π gives the
two-mode photon-added (PA) squeezed vacuum state; and
by choosing δ = arccos[(cosh 2r)−1/2 cosh r] and η = γ − π ,
we obtain the two-mode photon-subtracted (PS) state, where
the last two are the non-Gaussian states. Note that a single
photon is added (subtracted) in both the modes to create
photon-added (photon-subtracted) states. In this work, com-
parative analysis of utility in using all three quantum resource
states between the sender and the receiver is performed.

Inputs. Three paradigmatic input states, namely, the coher-
ent state having displacement parameter β = beiφ given by

|ψ〉c = D̂(β )|0〉, the squeezed state with squeezing parame-
ter ξ , i.e., |ψ〉s = Ŝ(ξ )|0〉, and the squeezed coherent state,
|ψ〉sc = Ŝ(ξ )D̂(β )|0〉, are considered for investigation. Here,
D̂(β ) = exp(βâ† − β∗â) is the displacement operator and
ξ = εeiθ . Notice that by examining the behavior of squeezed
coherent states as inputs in QT, the role of other input states
on QT can be derived. The analytical expression of the fidelity
f for teleporting a squeezed coherent state using a squeezed
Bell state as a resource is given by [87]

f|ψ〉sc = 4√
�1�2

e
ω2

1
�1

− ω2
2

�2

[
1 + e−2r sin δ(
2 cos δ − 
1 sin δ)

×
{

1

�1

(
1 + 2ω2

1

�1

)
+ 1

�2

(
1 − 2ω2

2

�2

)}

+ 1

4
e−4r
2

2 sin2 δ

(
1

�2
1

{
3 + 12ω2

1

�1
+ 4ω4

1

�2
1

}

+ 1

�2
2

{
3 − 12ω2

2

�2
+ 4ω4

2

�2
2

}

+ 2

�1�2

{
1 + 2ω2

1

�1
− 2ω2

2

�2
− 4ω2

1ω
2
2

�1�2

})]
, (14)

where the parameters 
1, 
2, �1, �2, ω2
1, and ω2

2 take the
forms


1 = (1 + e4r ) + 2(1 − e4r )g + (1 + e4r )g2,


2 = (1 − e4r ) + 2(1 + e4r )g + (1 − e4r )g2,

�1 = e−2r
1 + 2e2ε (1 + g2),

�2 = e−2r
1 + 2e−2ε (1 + g2),

ω2
1 = (1 − g)2(β − β∗)2,

ω2
2 = (1 − g)2(β + β∗)2. (15)

Here g ∈ (0, 1) is the gain factor involved in the measurement
performed by the receiver [82]. Equipped with this fidelity
expression, we compute the maximal average fidelity (F)
by optimizing over g and its corresponding fidelity deviation
(
F) both for the constrained uniform and Gaussian distribu-
tions of input states using Eqs. (7)–(10).

A. Trends of average fidelity and fidelity deviation
with resource squeezing

Let us first investigate the response of the quality factors
for teleportation with respect to the squeezing parameter, r, of
the shared resource state. For all the three shared states consid-
ered here, namely, the TMSV, PA, and PS states, the average
fidelity increases monotonically with r for both constrained
uniform and Gaussian distribution of input states (see Fig. 1).
This is intuitively satisfactory since the Einstein-Podolsky-
Rosen (EPR) correlation increases with an increase of r and
the VBK protocol of teleportation uses EPR correlations as
a resource. We will repeatedly return to these enhancements
of features on increasing r in situations where the average
fidelity fails to beat the classical limit. Instead of discussing
the behavior of average fidelity which is studied and known
with r, let us concentrate on the fidelity deviation with respect
to r for different types of input states as well as resources and
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FIG. 2. The variation of fidelity deviation, 
F (vertical axis), vs squeezing of the shared channels, r (horizontal axis), for uniform
distribution (lower panel) and Gaussian distribution (upper panel) of different input states in the case of both Gaussian and non-Gaussian
resource states. Symbols used for shared channels are same as in Fig. 1. Bottom: Plot of 
F for (a) coherent input states with energy
cutoff L = 1.0 [dark (red)] and L = 2.5 [gray (yellow)], (b) squeezed input states with L = 0.5 [dark (red)] and L = 1.0 [gray (yellow)], and
(c) squeezed coherent input states with the same energy threshold specifications as in (b). Top: 
F for different inputs: (d) coherent states
with σc = 1.0 [dark (red)] and σc = 5.0 [gray (yellow)], (e) squeezed states with σs = 0.5 [dark (red)] and σs = 3.0 [gray (yellow)], and (f)
squeezed coherent states having σs = 0.5, σc = 1.0 [dark (red)] and σs = 3.0, σc = 5.0 [gray (yellow)]. All the axes are dimensionless.

for a fixed average energy of the input distribution (see Fig. 2).
We categorize the trends according to the input states in the
following manner.

Squeezed states. Unlike the average fidelity, a low value of
fidelity deviation ensures good performance of the resource
states. For squeezed input states, we observe that the photon-
added states provide the least deviation from the average
fidelity for small resource squeezing, while the PS state ac-
complishes the task with minimum 
F for higher values of r.
This is true when states are sampled both from the uniform
[Fig. 2(b)] as well as the Gaussian distribution [Fig. 2(e)].
On the other hand, 
F increases with the increase in input
energy, i.e., with the increase of L and σs.

Coherent states. We observe the decreasing trends of 
F
with the increase of r in the resource, irrespective of the
resource state. Like in the previous case, PA states still provide
the least deviation compared to PS or TMSV states although
the PS states overtake it at a very high squeezing. Moreover,
we find that, unlike the squeezed states, there seems to be
a complex relation between the squeezing in resource and
energy threshold in inputs. In particular, 
F is low for en-
sembles with high energy up to a moderate value of r both
for the shared TMSV and PS states although the magnitude
of the squeezing required is more for the TMSV states than
the PS states. For example, 
FLβ=2.5 < 
FLβ=1.0 up to rPS �
0.4 while a similar hierarchy exists for the shared TMSV
with a higher r, i.e., 
FLβ=2.5 < 
FLβ=1.0 when rTMSV � 0.7.

Similar behavior is also observed for the Gaussian distribution
[as shown in Figs. 2(a) and 2(d)].

Squeezed coherent states. The behavior of fidelity deviation
with variation in resource squeezing for squeezed coherent
input states is similar to the other two inputs. The only sig-
nificant difference is the disparity in 
F for uniform and
Gaussian distribution at higher energies. For states chosen
from a Gaussian assemblage, the PS state constitutes the
protocol with the highest value of 
F for low squeezing
strengths at high input energies. As r increases, its deviation
falls below that of the Gaussian TMSV state (for r � 1.0) but
still cannot overcome the one that is furnished by the PA states
as a resource. However, for constrained uniform distribution,
the PS states teleport with minimum 
F at moderate to high
r in the resource.

B. Role of input energies in teleportation

As mentioned before, one of the main focuses of this work
is to find the effects of the energy threshold in the input ensem-
ble on the average fidelity and its deviation. Specifically, we
examine F and 
F with the variation of L in the constrained
uniform distribution and σs as well as σc of the Gaussian
distribution.

Average fidelity. Let us illustrate the dependence of L, σs,
and σc on F for a fixed resource squeezing r which is chosen
to be moderate (for demonstration, we choose, e.g., r = 0.5
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FIG. 3. [(a), (c)] Average fidelity and [(b), (d)] fidelity deviation
(ordinate) with respect to energy threshold, Lβ in uniform distribu-
tion (lower panel) and σc for Gaussian distribution (upper panel)
(abscissa). Symbols for channels are same as in Fig. 1. In (a)–(d),
inputs are taken to be coherent states having r = 0.5 [dark (red)] and
1.0 [gray (yellow)]. All the axes are dimensionless.

and 1.0). We observe that the average fidelity decreases mono-
tonically with an increase in the input cutoff L and with an
increase in the variance σ for a fixed value of r in the channel,
irrespective of shared states and inputs as depicted in Figs. 3
and 4. It is possibly due to the fact that the performance of
QT decreases with the increase of energy to be teleported,
indicated by the greater value of L(σ ). Note, however, that
a more involved picture emerges when inputs are drawn from

FIG. 4. Average fidelity (lower panel) and fidelity deviation (up-
per panel) (ordinate) against the variance of squeezed coherent input
states, [(a), (c)] σs and [(b), (d)] σc. Symbols are same as in Fig. 1
with resource squeezing r = 1.0. In (a) and (c), σc = 1.0 [dark (red)]
and σc = 5.0 [gray (yellow)], while in (b) and (d), σs = 0.5 [in dark
(red)] and σs = 3.0 [in gray (yellow)]. The classical bounds on the
average fidelity are shown with dashed lines with respective colors.
All the axes are dimensionless.

the Gaussian distribution: The rate of decrements in F with
respect to σs is faster than that with σc (see Fig. 4). We
observe that, to transfer states with a high degree of squeezing
or displacement, we require a highly squeezed resource state
(containing high entanglement) to ensure that the protocol is
successful. We also find that the TMSV states can furnish a
higher value of F for low-energy Gaussian ensembles, with
σ ∼ 0.1 which depends also on the squeezing strength of the
channel although PS states outperform TMSV states in other
ranges of input energies.

Fidelity deviation. As seen in the case of the average fi-
delity, the increase of energy threshold in terms of increasing
L (σ ) creates an obstacle in the success of the QT process, due
to increase of the fidelity deviation with energy, irrespective of
the resource states and inputs, except for the coherent states.
In the case of coherent states, 
F exhibits a nonmonotonic
behavior with input energy; i.e., there is a threshold value of
L and σc up to which it increases and subsequently decreases
after the criticality. Such nonmonotonicity can be eliminated
by increasing r of the channel [see Figs. 3(b) and 3(d)]. For
example, considering the TMSV state as resource, the critical-
ity shifts from σc ∼ 0.8 (L ∼ 1.2) to σc ∼ 2.0 (L ∼ 2.0) when
the resource squeezing is increased from 0.5 to 1.0.

From the patterns of F and 
F , we can safely conclude
that for a teleportation protocol to succeed with a high average
fidelity, such that states are transferred with small variance in
the desired fidelity, resource states with a moderate to high
degree of squeezing are preferred, thereby demonstrating
inverse proportionality between F and 
F . In particular, by
considering squeezed input states from Gaussian distribution,
the resource squeezing required to teleport states increases
with the corresponding variance when the average fidelity is
our major concern. On the other hand, in the case of high
average input energy, we need to make a compromise between
the demand of high average fidelity and the low fidelity
deviation in order to justify the quality of a resource state.

Quantum versus entanglement-free protocol

Let us make a comparison between quantum protocols,
which use entangled channels, and entanglement-free (setting
r = 0.0) ones in terms of the average fidelity. In this study,
the squeezed or coherent states as inputs behave similarly
compared to the squeezed coherent states. For very low values
of the variance, e.g., σs ∼ 0.2 or σc ∼ 0.1, or low input energy
upper bound, L � 0.1, with squeezed or coherent states as
inputs, the entanglement-free protocol performs equally well
as the entangled one. This may be due to the fact that, for
such low input energies, the unentangled protocol itself can
furnish a very high average fidelity. As the energy of the
input ensemble increases, the entanglement-based protocols
win even with low values of the resource squeezing. However,
such energy thresholds are not present in case of squeezed
coherent states as input; i.e., the quantum routine outperforms
the classical one in the entire range of both variance as shown
in Fig. 4. Comparing resource states, we notice that, for a
uniform distribution in inputs, the TMSV and PS states always
manage to beat the measure-prepare strategy while the PA
state can furnish quantum advantage only when the input
energy is very high and the resource squeezing is substantial,
say, r � 1.0.
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IV. RESOURCE HIERARCHIES
VIA FIDELITY DEVIATION

In this section, we highlight situations where the average
fidelity alone cannot completely characterize the performance
in teleportation by various resources. Specifically, we point
out instances where resource states can be classified from the
nontrivial variations obtained in fidelity deviation. Moreover,
our analysis reveals that several parameters, like the squeez-
ing of the resource, distribution of input states, and energy
content, play an important role in the performance of QT.

A. Varying resource squeezing: Advantages of non-Gaussianity

With respect to average fidelity alone, there is a clear hi-
erarchy of resource states with the PS being the best, closely
followed by TMSV, while the photon-added states turn out to
be the worst, failing to beat the classical limit in some cases.
Let us now show that the ranking gets more involved if we
take into account both moments of the fidelity statistics.

When the input states are chosen to be squeezed or co-
herent states, for both constrained uniform and Gaussian
distributions, we get qualitatively similar behavior of fidelity
deviation. The TMSV state shows the largest deviation among
the three shared states. Therefore, for low r, the PS state
is the best resource for quantum teleportation, since it not
only possesses the highest average fidelity but also very low
deviation (see Fig. 3). For high values of r, the average fi-
delity for all the resource states grows, and becomes almost
identical and, therefore, the classification of resource states is
entirely dictated by the fidelity deviation. In this high-r limit,
the deviations for PA and PS state also become nearly equal
while TMSV possesses a visibly larger deviation compared
to these two. Therefore, here PA and PS states become the
better resource for quantum teleportation while the TMSV
state turns out to be the worst. This feature also points out
the role of non-Gaussianity in QT over Gaussian resources,
especially for large squeezing.

For squeezed coherent inputs, things become more in-
volved and we sometimes get different responses for con-
strained uniform and Gaussian distributions. However, note
that, for low average energies of the input, it mimics a pattern
similar to the previous cases. Things become interesting when
relatively large values of input energies are considered. For
example, for the Gaussian distribution, the PS state has a
larger deviation compared to the TMSV state for a range of
relatively low r values. This implies that, for that range of r
values, we have to compare between two resources for which
F1 > F2 and also 
F1 > 
F2 are satisfied (see Fig. 2). Such
a comparison of resources is not straightforward and depends
on the sensitivity requirements in deviation in a given context
(see Ref. [38]).

B. Varying input energies

TMSV and PS as channels. First of all, TMSV and PS states
can always beat the entanglement-free protocol provided that
the squeezing is not too low and the input energy is moder-
ately high. We observe that at a fixed squeezing strength of
the resource states, the photon-subtracted state accounts for
a higher average fidelity than that of the TMSV state, when
the input ensemble has a squeezing cutoff or variance over

a certain value, viz., L � 0.8, while the opposite hierarchy
occurs in other situations. For example, for squeezed and
coherent states as inputs belonging to a Gaussian ensemble
up to a certain value of variance, e.g., σs � 0.2 and σc � 1.2
(for r = 1.0), the shared TMSV state between the sender and
the receiver performs better than the others in terms of the
average fidelity. Notice that such a ranking among states is
not possible unless both fidelity and its deviation are taken in
to account.

Photon-added states. The fidelity deviation for the photon-
added state is very low, especially when we consider its
variation with respect to L, and for a high value of r. The
PA state, however, is not a suitable resource for QT, since it
can only outperform the entanglement-free protocol once the
squeezing is substantial.

The fidelity deviation helps in removing the degeneracy
among resource states in terms of being the optimal one in
the teleportation protocol. We observe that at high resource
squeezing, according to F , the non-Gaussian resources are
always favorable over the TMSV one. However, introducing
the fidelity deviation into the picture, we find that, only for
high-energy ensembles, the PS state offers the lower 
F
along with high F , thereby making it suitable for the QT
purpose. Furthermore, at very low input energies, the average
fidelity of the TMSV state is the highest among all states and
the fidelity deviation, although higher than the non-Gaussian
resources, is still very low (O(10−2)), thereby making it a
reasonable resource as well. In the intermediate regimes, there
is a competition between the high average fidelity offered
by the PS state and low fidelity deviation by the PA state
although again the PS state is favorable due to high average
fidelity leading to quantum advantage. The above discussion
also manifests that although non-Gaussian resources can help
to improve the teleportation protocol, the resource state must
be chosen wisely, and also according to the input energy.

V. NOISY CV TELEPORTATION

Up to now, the investigations are carried out with the as-
sumption that there is no noise in the preparation of resources
or in the measurement process. Typically, imperfections are
inevitable during the realization of these protocols in labo-
ratories. In our analysis, we consider two main sources of
noise: One occurring in the state itself, due to losses in the
fiber through which the modes of the entangled resource are
transmitted to the concerned parties, while the other one arises
due to imperfect Bell measurements performed at the sender’s
node.

The noisy channel quantified by τ = γ t is proportional to
the fiber propagation length, where γ is the mode damping
rate [57,87], and the fiber loss factor is also associated with
the interaction with a Gaussian bath of mean photon number
nth which is taken to be zero in our work [87]. On the other
hand, the imperfection in Bell measurement is considered by
incorporating photon losses during the procedure which is
modeled with the help of a beam splitter of transmittivity T
and reflectivity R. A nonzero value of R indicates finite losses
in measurement [57]. In the presence of the imperfections
mentioned above, the expression of the one-shot fidelity for
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squeezed coherent states can be written as
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where


1 = (1 + e4r ) + 2eτ/2(1 − e4r )g̃ + eτ (1 + e4r )g̃2,


2 = (1 − e4r ) + 2eτ/2(1 + e4r )g̃ + eτ (1 − e4r )g̃2,
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1 + 2e2ε (1 + g̃2) + 4�,
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ω2
1 = (1 − g̃)2(β − β∗)2,

ω2
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with g̃ = gT and � = 1
2 (1 − e−τ ) + g2R2 [87]. In the pres-

ence of both the noises, the average fidelity and the fidelity
deviation are calculated after optimizing over g. To study the
effects of noise on QT, the moments of fidelity are studied
with respect to a single noise parameter, while maintaining
the other at a fixed value, for different regimes of resource
squeezing and input energy. Moreover, to discuss the results
systematically, our findings for the constrained uniform and
Gaussian distribution of inputs are presented separately.

Notice that in discrete-variable quantum teleportation, a
possible noise model can involve contamination of the re-
source state with white noise [88]. In the CV case, such
admixing with white noise is unphysical since it corresponds
to divergent energies. However, a CV version of the Werner
state does exist as proposed in Ref. [89] where a two-
mode squeezed vacuum state is admixed with a product of
thermal states of identical temperatures (marginals of the
initial TMSV state). Although such states can be consid-
ered a resource, the computation of fidelity would be quite
straightforward using linearity. Instead, motivated by the noise
models considered in Ref. [87], which are argued to be close
to experiments, we consider noise in various steps of the
teleportation process and observe the effects on fidelity and its
deviation. As mentioned before, it arises either from imperfect
Bell measurements by the receiver (quantified by R) or when
the resource is distributed between the two parties through a
fiber channel (quantified by τ ). The noise models considered
in our paper are rooted in the experimental implementation of
CV teleportation and our analysis will shed light on how such
noise can be tackled by adjusting the other parameters in the
system.

A. Average fidelity with constrained uniform input distribution:
Gaussian resources are better

Let us first consider the variation of the average fidelity F
with the measurement noise R, for fixed values of the noise
in channels, τ . As expected, the average fidelity decreases
with an increase in the magnitude of R, which is illustrated
in the lower panels of Fig. 5. However, it can be increased
if the resource squeezing is high or the input energy is low.
Contrary to the noiseless scenario, the PS state provides the
highest F only for high-energy input ensembles (Lξ = 1.0)
with low resource squeezing strengths and low noise limits up
to R, τ = 0.1. Otherwise, when the states to be teleported are
of high energy and the resource squeezing is also sufficient, F
for the Gaussian TMSV state is slightly higher than that of the
PS state, thereby indicating its robustness against noise and
also proving its appropriateness for noisy CV teleportation.

1. Counteracting one noise with the other: A constructive effect

Let us report here an interesting feature when different
values of the resource squeezing are considered. By varying
R, one would expect the average fidelity to be low for higher
values of τ , i.e., in the presence of both noises. This is indeed
the case but not over the entire range of R. We observe that
there exists a region in R where F is higher in the presence of
resource noise, say, τ = 0.3, than that of the scenario without
noise in resources, i.e., with τ = 0. This can be interpreted
as if the effect of one kind of noise is countered by the other
one, thereby exhibiting a constructive phenomenon which is
more pronounced in the case of coherent inputs (see Fig. 5).
It may also indicate that when the resource is affected by
ineffective propagation, the protocol may not be optimal even
with a properly tuned gain parameter g. The point of crossover
depends on the resource squeezing as well as on the energy of
the input state. Comparing Fig. 5(a) with Figs. 5(b) and 5(c),
we realize that the constructive effect is more visible for
non-Gaussian states compared to the Gaussian ones. Notice
that the advantage is counted only when F obtained in a noisy
scenario is higher than the entanglement-free protocol without
noise, which we will discuss later.

The effects of noise on the average fidelity is also distinc-
tive for different classes of input states. In particular, F for the
squeezed coherent states (F � 0.4) is much lower than that
of the squeezed and coherent inputs (F � 0.7), especially for
high ensemble energies, which is not the case in the noise-
less scenario. Moreover, the average fidelity decreases at a
much faster rate for the PS and PA states, which indicates
that the impact of noise is more on non-Gaussian states in
comparison with the TMSV state having moderate squeezing.
Furthermore, the difference between F at higher and lower
values of τ is least for the PA state, ∼0.005, but significantly
more for the TMSV and PS states, ∼0.01.

2. Robustness against resource noise

Let us now fix a moderate amount of noise in measurement
(e.g., we choose R = 0.0 and 0.2) and study the dynamics of
average fidelity by varying noise in the shared channel. First
of all, no constructive effects with τ are seen by comparing
R = 0 and R = 0.2 (see Fig. 5). However, the decrease in
F with increase of τ is much slower than the one observed
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FIG. 5. Average fidelity (along ordinate) vs noise parameters, R (lower panel) and τ (upper panel) (along abscissa) for [(a), (d)] TMSV,
[(b), (e)] PA, and [(c), (f)] PS resource states with coherent states as input. Bottom: R is varied for fixed L = 2.0, r = 1.0 (open squares),
L = 0.5, r = 1.0 (open triangles), and L = 2.0, r = 0.5 (open circles) at resource noise values τ = 0.0 [dark (red)] and τ = 0.3 [gray (green)].
The classical bounds obtained by measure-prepare strategy are shown corresponding to L = 0.5 [dashed gray (pink)] and L = 2.0 [dashed dark
(blue)]. Top: When noise, τ in the channel, varies, the measurement noise is fixed to R = 0.0 [dark(red)] and R = 0.2 [gray (green)]. All other
specifications are same as in the lower panel. All the axes are dimensionless.

by varying R, especially when the squeezing strength in
resource is high, irrespective of Gaussian or non-Gaussian
resource states and inputs (comparing upper and lower panels
of Fig. 5). It demonstrates the adverse effects of inefficient
measurement on the protocol compared to noise in resource
states. However, such a detrimental impact can again be wiped
out in the presence of high squeezing in the shared channel.

3. Comparison with the unentangled protocol

The teleportation protocol with unentangled states (clas-
sical protocol) involves a measure-prepare routine, which
evidently does not suffer from the noise models considered
here. Therefore, it is justified to examine whether the noisy
teleportation process can beat the noiseless classical one.

All the different scenarios have so far been compared keep-
ing in mind the quantum advantage; i.e., the shared TMSV
states with coherent inputs to be teleported exhibit maximum
robustness against both the noise models considered here.
Moreover, as the input energy increases, the TMSV state can
retain quantum advantage in the presence of a large amount of
noise. For example, for L = 0.5, the TMSV state with r = 1.0
can outperform the unentangled protocol up to R ∼ 0.16,
while the same resource can retain quantum advantage for
R � 0.28 with L = 1.0 in the case of squeezed input states.
The situation changes in case of the squeezed coherent en-
sembles when the TMSV state can outperform the classical
scheme only for low input energies and for higher values of L
only up to small magnitudes of noise.

In the case of the photon-added state, the regimes of quan-
tum advantage are very limited especially for squeezed input
states and for low input energy. Quantum advantage can only
be found for low R and τ . The PS state performs better than
its photon-added counterpart irrespective of inputs. Again, it
performs best for coherent input states, always outperforming
the classical measure-prepare routine for high input energy.
For low Lβ , it can furnish quantum advantage with sufficient
squeezing (r � 1) unless R and τ are too high while both for
squeezed and squeezed coherent input states, the entangled
states win over the classical protocol with high squeezing and
energy cutoffs when noise in the channel and measurements
is low.

B. Effects of Gaussian input distribution on noisy teleportation

A similar examination is carried out when the input
states are sampled from a Gaussian distribution. Unlike the
constrained uniform distribution, all input states, squeezed,
coherent, and squeezed coherent, share more or less simi-
lar properties of average fidelity with respect to both noise
parameters. So, we mainly discuss the behavior of average
fidelity for squeezed input states and explicitly mention the
corresponding situations for other input states whenever we
come across any individual feature.

As already emphasized, we will only present those situa-
tions in which the performance of the QT protocol is better
than the prepare-measure strategy even in the presence of
noise. Like in the uniform case, the quantum process always
outperforms the classical one in the case of teleporting coher-
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FIG. 6. Average fidelity (ordinate) with noise parameters, R
(lower panel) and τ (upper panel) (abscissa). Input states are chosen
to be again coherent states drawn from a Gaussian distribution with
TMSV (left panel) and PS (right panel) as resources. In all the
panels, the variance and resource squeezing are depicted as σc = 1.0,
r = 1.0 (open squares), σc = 5.0, r = 1.0 (open triangles), and σc =
1.0, r = 1.5 (open circles). The classical threshold corresponding to
σc = 5.0 is shown with dot-dot-dashed gray (pink) lines while the
dotted dark (blue) lines represent σc = 1.0. All other specifications
are same as in Fig. 5. All axes are dimensionless.

ent input states irrespective of all resources and noise models
that are considered here. However, with different choices of
average input energy and resource squeezing, the average
fidelity may be affected differently. Nevertheless, as in the
noiseless scenario, we can get a quantum advantage over the
classical one when the input energy or resource squeezing is
reasonably high.

Impact of measurement noise on average fidelity. We ob-
serve that the average fidelity decreases monotonically with
R, for all types of resources as well as inputs. This is quite
expected since in general noise causes some hindrance in any
protocol. However, three interesting features emerge which
are discussed as follows (see Fig. 6).

(i) Considering only F , Gaussian shared channels are
again more robust against measurement noise in the absence
of resource noise, i.e., τ = 0, as compared to non-Gaussian
ones. More precisely, for coherent states as inputs, the differ-
ence between F at low and high values of measurement noise
is prominent for low input average energy and high resource
squeezing while for the squeezed coherent state, this feature
is noticeable at high average energy of the input. For exam-
ple, when σc = 1.0 and r = 1.5, we define δF = FR=0.0 −
FR=4.0 which for the TMSV state is δFTMSV = 0.133, for PA
is δFPA = 0.165, and for PS, δFPS = 0.163.

Typically, we expect that to obtain a better average fidelity
with a fixed average energy, we require a resource with high
squeezing. However, we observe an opposite behavior with
coherent states as inputs and PS states as quantum channels in
the presence of a noise only in measurements (i.e., taking τ =
0.0). For example, with σc = 1.0, beyond R ∼ 0.35, the low

resource squeezing helps to manage better the average fidelity
than the states with high squeezing. A similar trend is also
observed in the case of teleporting squeezed input states with
TMSV and PS resources although the quantum advantage is
unattainable there.

(ii) Another point of interest is the “constructive effect”
of noise that we have already noted in the case of uniform
distribution of the input states. Moreover, as in the con-
strained uniform distribution, it is noted that the constructive
effect starts at relatively lower values of R for non-Gaussian
resources compared to the Gaussian ones irrespective of
squeezed or coherent states as inputs. For example, consid-
ering r = 1.5 and σc = 1.0, the constructive effect emerges
with the measurement noise values for different shared states
as RTMSV ∼ 0.40, RPA ∼ 0.26, and RPS ∼ 0.28.

(iii) Resources with lower squeezing strength correspond-
ing to a fixed input distribution are less sensitive against
measurement noise. This feature can easily be noted from
Fig. 6 when we compare r = 1.0 and 1.5 for a fixed variance.
Moreover, noisy channels help to retain the robustness against
the noise in measurement.

Response against resource noise. As seen in the case of
constrained uniform distribution, F exhibits some distinct
features in this noise model which are either not observed or
not pronounced in the presence of noise in measurements.

(a) Greater average energy of the input states makes the
performance of the protocol less robust against resource noise.
The measurement noise slightly improves the robustness of
the performance against the resource noise.

(b) We can see that with small values of σc (∼1.0) for
coherent states as input, non-Gaussian resources are more ro-
bust than the Gaussian ones against resource noise (see Fig. 6)
while Gaussian states are the best for squeezed and squeezed
coherent input states in the high-input-energy regime.

Summarizing, we find that in a noisy scenario, both TMSV
and PS states are good quantum channels for QT according to
the average fidelity regardless of energy distribution of inputs
and input states. It will now be interesting to enquire whether
the patterns of fidelity deviation can help us to identify the
suitable resource for QT.

VI. ROLE OF FIDELITY DEVIATION
FOR NOISY TELEPORTATION

We now shift our attention to the behavior of fidelity devi-
ation against two noise parameters, R and τ . In particular, we
illustrate the behavior of 
F with respect to resource noise
(measurement noise) at a fixed measurement noise (resource
noise) for coherent, squeezed, and squeezed coherent states,
respectively, as input.

Constrained uniform input distribution. Let us enumerate
some of the interesting observations below as depicted in
Fig. 7.

(1) Constancy of fidelity deviation. The first interesting ob-
servation is that 
F remains almost constant with the increase
of noise, especially when the variation of R for a fixed value
of τ is studied. A slight increase is seen with the change of τ .

(2) Dependence of input energy on deviation. 
F pos-
sesses a high value for all resource states, across moderate
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FIG. 7. Fidelity deviation, 
F (vertical axis), against noise pa-
rameters, R (lower panel) and τ (upper panel) (horizontal axis), for
squeezed coherent input states using TMSV states (left panel) and
PS states (right panel) as resources. The energy cutoff and resource
squeezing are depicted as L = 2.0, r = 1.0 (open squares), L = 2.0,
r = 0.5 (open triangles), and L = 0.5, r = 1.0 (open circles). All
other specifications are the same as in Fig. 6. All the axes are
dimensionless.

values of R and τ when the input energy is high and the
squeezing is moderate.

(3) Measurement noise versus resource noise. Focusing
on the variation of 
F against the measurement inefficiency,
we find that at moderate values of the resource noise, e.g.,
τ = 0.3, the deviation is higher than that of the case with
τ = 0 across the entire range of R except some situations with
squeezed coherent input states. Thus there is no counteracting
effect of one noise on the other, as in the case of average
fidelity. In contrast, if we consider 
F with a nonvanishing
moderate value of R, say, 0.2, it is less for all values of τ

for Gaussian as well as non-Gaussian states compared to the
situation with vanishing R (as depicted in Fig. 7), thereby
exhibiting constructive effects also in fidelity deviation.

(4) Optimal channels. Scrutinizing the behavior of fidelity
deviation, we observe that, even in presence of the noise
models considered here, non-Gaussian states give low fidelity
deviation compared to that obtained from the Gaussian ones.
Among non-Gaussian states, photon-added states give lower
fidelity deviation than that of the photon-subtracted ones like
the noiseless situation. However, it is important to note that
PA states rarely give any quantum advantage according to the
average fidelity and hence such a low fidelity deviation does
not lead to any benefit in QT.

Role of Gaussian input distribution. Let us compare the
trends of 
F obtained for inputs chosen from the Gaussian
distribution with the uniform distribution discussed above by
varying R and τ .

First of all, the variation of 
F observed with R and τ

having low input energy is more than that obtained in the
constrained uniform case for different inputs.

Second, except for TMSV states in which high energy
sometimes gives low 
F , the relation between input energy

FIG. 8. 
F (ordinate) by varying R (lower panel) and τ (upper
panel) (abscissa) for squeezed coherent states as inputs drawn from a
Gaussian distribution using TMSV (left panel) and PS (right panel)
states as shared channels. We depict the variance parameters as σs =
0.5, σc = 1.0 (open squares), σs = 0.5, σc = 5.0 (open triangles),
and σs = 3.0, σc = 5.0 (open circles). Here we consider the resource
squeezing r = 1.0. All other specifications are the same as in Fig. 6.
All axes are dimensionless.

and the deviation observed in the uniform distribution remains
the same for the Gaussian distribution.

Third, like the uniform distribution, with the increase of τ

from a vanishing value to a moderate one, deviation always
increases for coherent input states while for the squeezed
coherent state, there are some exceptional regions where the
opposite picture emerges for all three quantum channels.
However, unlike uniform distribution, the increase of R does
not lead to low fidelity deviation in this case with the variation
of τ ; it remains almost constant with τ after the increase of R,
which can be justified by inspecting Fig. 8.

Finally, analyzing both the fidelity and its deviation along
with input energy distributions, one cannot identify a sin-
gle channel which is more suitable for QT than the others.
Specifically, our study reveals that in the presence of noise
in measurements as well as channels, there is a competition
between non-Gaussian photon-subtracted and the Gaussian
TMSV states which give the quantum advantage in QT de-
pending on the energy of the input ensembles.

VII. CONCLUSION

Quantum teleportation is one of the most researched
information-theoretic protocols, both in terms of its theoret-
ical foundations as well as experimental implementations.
Traditionally, the performance of quantum teleportation is as-
sessed using the average fidelity. Recently in discrete-variable
quantum teleportation, it was shown that the standard devia-
tion of fidelity, namely, the fidelity deviation, can nontrivially
alter the calibration of the performance in teleportation.

In this work, we have introduced the concept of fidelity
deviation in continuous-variable (CV) quantum teleportation
(QT) both for the ideal and noisy cases. In CV teleportation,
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the concept of average fidelity and fidelity deviation, when
considered as a direct continuation from the case of discrete
variables, suffers from energetic divergences. We presented
regularized versions of these quantities, free from such diver-
gences, by considering that the set of states to be teleported
is constrained to have a finite energy cutoff or by introducing
Gaussian suppression of the input energy. In particular, for the
constrained uniform distribution with a fixed energy thresh-
old, states are drawn with equal probability over all energy
values under the threshold, and for the Gaussian ensemble
a fixed variance determines the average energy range of the
input set.

In ideal CV teleportation, we first reported the general
trends of average fidelity and fidelity deviation for both the
considered constrained uniform and Gaussian distributions of
inputs for both Gaussian and non-Gaussian shared states be-
tween the sender and the receiver. In the noiseless scenario, we
observed that the average fidelity decreases with the energy
of the input state at a fixed value of the resource squeezing.
The fidelity deviation too suffers from the rise in ensemble
energy, such that it is more for input states of higher energy
compared to the inputs having low energy cutoffs. However,
the effect of ensemble energy is different on different resource
states. We found that the photon-added (PA) state is the least
useful resource since it can overcome the classical bound only
at large values of the input energy. The situation improves
for increased resource squeezing, but the photon-subtracted
(PS) state as well as the Gaussian TMSV state perform far
better than the PA state. The PS state is the most efficient re-
source since it provides the highest average fidelity for highly
energetic input sets with reasonably low fidelity deviation,
although the PA state furnishes the minimum value in this
regard. Overall, advantage is offered by non-Gaussian states
for both the figures of merit and the PS state establishes itself
as the go-to resource. We also showed how fidelity deviation
can nontrivially alter the hierarchy among resource states for
which the average fidelities behave almost identically.

Noise is inevitable in any experiment, and many develop-
ments have been made to study the effect of noise on the
primary figure of merit: The average fidelity. We further the
investigation into the noisy teleportation process by including

the second moment of the fidelity statistics. Our work focuses
on the behavior of the aforementioned figures of merit with
respect to the input ensembles which are characterized by their
energy distribution. We also considered the impact of noise
present in the channels as well as measurements on fidelity
statistics. Interestingly, we found that both kinds of noise are
seen to affect the non-Gaussian states to a greater extent, in
the sense that their average fidelity falls at a much faster rate,
thereby making the TMSV state the best resource, especially
at higher input energies. The difference in the sources of noise
leads to a constructive effect: The resource noise is able to
counter the effects of imperfection in measurements, due to
which the average fidelity for a higher value of the resource
noise is better than that at a lower value of the same, when
studied against the variation of the noise. The resource noise
also affects the teleportation protocol to a lesser extent, since
the figures of merit change very slowly with respect to its
variations. Moreover, the effects of noise are less pronounced
in the case of low-energy-input ensembles and high squeezing
strength of the available resources. In the case of the input
states, we report that the coherent state suffers much less due
to noise as compared to the squeezed and squeezed coherent
ensembles.

Our work analyzes the performance of the CV teleportation
protocol in light of the regularized version of both average
fidelity and fidelity deviation. We demonstrate how incorpo-
rating this additional quantifier (fidelity deviation) can provide
fundamental insights into the classification of shared channels
for QT that the average fidelity alone cannot capture both
in noiseless and noisy scenarios. We believe that the present
work opens avenues into research on CV teleportation.
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