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Quantum error correction in a time-dependent transverse-field Ising model
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We describe a simple quantum error correcting code built out of a time-dependent transverse-field Ising model.
The code is similar to a repetition code, but has two advantages: an N-qubit code can be implemented with a
finite-depth spatially local unitary circuit, and it can subsequently protect against both X and Z errors if N � 10
is even. We propose an implementation of this code with ten ultracold Rydberg atoms in optical tweezers, along
with further generalizations of the code.
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I. INTRODUCTION

Finding fast and efficient protocols for quantum error
correction that can be implemented in present-day quantum
platforms (superconducting qubits [1–5], trapped ions [6–10],
Rydberg atoms [11–15], cavity quantum electrodynamics
[16–19], photons [20,21], silicon [22,23]) is a problem of
widespread interest. Perhaps the most intuitive model of quan-
tum error correction is the quantum repetition code (QRC)
[24], which can correct effectively against a single type of
error (which we take to be Z). Given an initial state consisting
of N qubits

|�0〉 = (α|0〉 + β|1〉) ⊗ |00 . . . 0〉, (1)

where |α|2 + |β|2 = 1 for normalization and |0〉, |1〉 are local
spin-↑, spin-↓ states in the Pauli-Z basis, respectively, one can
find a unitary UQRC such that

|�QRC〉 = UQRC|�0〉

= α√
2N−1

∑
even parity s

|s〉 + β√
2N−1

∑
odd parity s

|s〉, (2)

where a bit string s is even (odd) parity if it has an even (odd)
number of 1s. We can think of |�QRC〉 as a parity-check state:
the parity of the strings determines whether the coefficient
is α vs. β. This parity-check nature makes it easy to correct
against Z measurements. For example, if measuring Z on the
last qubit, if the outcome is 0, then we simply retain the
information in the other N − 1 qubits; if the outcome is 1,
the information is still stored, but we need to apply an X gate
at the end to recover the original qubit.

A key shortcoming of this model is its inability to correct
against even a single X measurement, which collapses the
entire wave function. Of course, more sophisticated codes [25]
are known, which can protect against both a Z and X error;
simplest conceptually among them the Shor nine-qubit code
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[26]. More practical possibilities include the surface code
[27–31], which is more amenable to physical implementation
(and more fault tolerant); at least nine data qubits are needed
to protect one logical qubit in the surface code [31].

In this paper, we present another simple alternative to the
quantum repetition code, which solves two shortcomings of
the repetition code, while maintaining most of its concep-
tual simplicity. Our code is generated by a one-dimensional,
spatially local, time-dependent transverse-field Ising model
(TFIM). While this model has a celebrated history in quan-
tum information theory due to its connection with proposed
Majorana-based quantum computation [32–36], here we will
point out a rather different way that the TFIM can be used to
encode a qubit robustly. Like the repetition code, our code
is inspired by the use of parity-check states to effectively
correct against Z measurement or errors. Indeed, connections
between (random) transverse-field Ising model dynamics and
quantum error correction in the repetition code have been em-
phasized in Refs. [37–39]. Unlike the repetition code, which
relies on the preparation of a GHZ state, our parity-checked
state can be prepared in constant time under unitary dynamics,
and it leads to a code that can correct against both Z and X
errors. The ability of our code to achieve such error-correcting
parity-checked states after finite-time unitary dynamics can
be understood through a connection with symmetry-protected
topological (SPT) phases [40–42], although this code ap-
pears simpler than many others inspired by condensed matter
physics.

The TFIM code we present is naturally realized using
the recent progress made in the control and manipulation
of quantum systems. In particular, optical tweezer arrays of
Rydberg atoms have proven to be a highly tunable system for
quantum applications due to the ability to control the atoms
individually [13,43–48]. Furthermore, while controlling the
initial spatial configuration of the atoms is already a pow-
erful tool, it is now also possible to move the atoms while
preserving qubit coherence [49]. This high degree of control,
both in space and time, position optical tweezer arrays as an
excellent platform for realizing the TFIM code in near-term
experiments.

2469-9926/2022/106(2)/022432(11) 022432-1 ©2022 American Physical Society

http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.106.022432&domain=pdf&date_stamp=2022-08-26
https://doi.org/10.1103/PhysRevA.106.022432


HONG, YOUNG, KAUFMAN, AND LUCAS PHYSICAL REVIEW A 106, 022432 (2022)

FIG. 1. Illustration of the nearest-neighbor encoding procedure
for N = 10 sites.

The rest of the paper is organized as follows: we will
introduce the TFIM code in Sec. II. In Sec. III we describe
conventional syndrome-based quantum error correction, and
show how the TFIM code both recovers the more conventional
phenomenology of the repetition code in the presence of Z
errors (in our basis) and can also go beyond it by correcting
X errors. We present numerical evidence in Sec. IV that the
TFIM code can straightforwardly be used to generate higher
depth codes. The feasibility of implementing the TFIM code
in ultracold atom experiment is described in Sec. V.

II. UNITARY ENCODING

We begin with a one-dimensional (1D) spin-chain of un-
coupled qubits in a product state with our information (α, β)
encoded in |ψ〉 = α|0〉 + β|1〉 on the first site, as in (1). We
wish to encode this logical qubit among N physical qubits in
order to protect the information against unwanted projective
measurements.

A. Transverse-field Ising model

The encoding procedure consists of parallelized nearest-
neighbor unitary gates on alternating even and odd bonds
illustrated in Fig. 1. Each unitary gate beginning on a spatial
site i = 1, 2, . . . , N is given by

Ui = 1√
2

(Zi + XiXi+1). (3)

The first term Zi can be thought of as a transverse-field inter-
action in addition to the ferromagnetic coupling in the second
term XiXi+1. Since this gate is involutory (U 2

i = 1), it can be
generated by itself up to an overall phase:

Ui = ie−i π
2 Ui . (4)

Thus, we can realize this encoding procedure with a time-
dependent transverse-field Ising model (TFIM) Hamiltonian

HTFIM(t ) =
∑
〈i j〉

Ji j (t )XiXj +
N∑

i=1

hi(t )Zi, (5)

where 〈i j〉 denote spatially adjacent sites i and j in the 1D
lattice (i.e. |i − j| = 1). For our code, we desire equal cou-
pling strengths hi(t ) = J , while Ji j (t ) will alternate between
values J and 0, according to the circuit sketched in Fig. 1. The
runtime of each layer of the circuit is �t = π/2

√
2J .

It is likely not accidental that the strength of the transverse
field and the Ising term are equal during application of a gate.
Indeed, if we simply turned on all couplings for all time, this

would be the TFIM tuned to its quantum critical point, which
has been known to exhibit useful error correcting properties
[50] due to its relationship with conformal field theory (CFT).
However, the actual decoding process (i.e., code book) gen-
erated by this CFT would not be practical to implement; the
code we present, in contrast, will be implementable.

All of our unitary gates commute with the global Z-parity
operator

Z̄ =
N∏

i=1

Zi (6)

so we can think of Z̄ as a global symmetry operator of the
entire circuit. After the encoding procedure, the quantum state
will take the parity-check form

|�PC〉 = α√
2N−1

∑
even strings s

ηs|s〉 + β√
2N−1

∑
odd strings s

ζs|s〉,

(7)

where the even (odd) bit string states are eigenstates of Z̄ with
eigenvalues ±1, and ηi, ζi = ±1 are phase factors determined
from the encoding procedure, which are not important (for us)
to determine directly: we will instead keep track of signs in the
logical qubit operators XL and ZL (which allow us to recover
an arbitrary qubit).

B. Heisenberg picture

In subsequent analyses, we will compute expectation val-
ues of various Pauli operators with respect to our quantum
state. In particular, the expectation value of some local op-
erator with the initial state will in general become that of a
nonlocal one with the time-evolved state:

〈�0|Oi|�0〉 = 〈�0|Ũ †ŨOiŨ
†Ũ |�0〉 = 〈�(t )|ŨOiŨ

†|�(t )〉,
(8)

where Ũ is the initial encoding procedure. We see that our
initial local operator Oi has undergone reverse time evolution
under Ũ , defined as

Ũ = U2U4 · · ·UN−2 × U1U3 · · ·UN−1. (9)

Since our initial state (1) is a product state, it is a +1 eigenstate
of an exponentially large number of local operators called the
initial stabilizer. After time evolution, the state will be a +1
eigenstate of the reverse time-evolved operators according to
(8). Thus, measuring these check operators after time evolu-
tion is equivalent to measuring the initial stabilizer.

We list the action of Ũ on a few local operators below,
which will be of convenience later:

ŨXkŨ
† =

{−Yk−1YkZk+1Xk+2 for odd 1 < k < N − 2

ZkXk+1 for even k < N

(10a)

ŨYkŨ
† =

{−Yk−1Zk for odd k > 1

Yk−2Zk−1XkXk+1 for even 2 < k < N
(10b)

ŨZkŨ
† =

{
XkZk+1Xk+2 for odd k < N − 2

Yk−2Zk−1Yk for even 2 < k.
(10c)
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FIG. 2. The general procedure of stabilizer quantum error correction is depicted in a flowchart. The error correction depends on the error
syndrome given by the outcomes of measuring the check operators (orange dashed arrow).

We also list the action of an individual two-site unitary Ui

acting on sites i and i + 1 (recall that U †
i = Ui):

UiXiUi = ZiXi+1 (11a)

UiYiUi = −Yi (11b)

UiZiUi = XiXi+1 (11c)

UiXi+1Ui = Xi+1 (11d)

UiYi+1Ui = YiZi+1 (11e)

UiZi+1Ui = −YiYi+1. (11f)

We readily observe that the TFIM code is a Clifford circuit
and is thus easy to simulate [51,52]. (11) can also be used to
readily determine the edge cases k = 1, N not given in (10).

C. Interpretation as a Majorana fermion code

It is sometimes instructive to interpret the TFIM code in
the language of Majorana fermions. Defining

γi = Z1 · · · Zi−1Xi (12a)

ξi = Z1 · · · Zi−1Yi, (12b)

where γ and ξ are real Majorana modes satisfying {γi, γ j} =
{ξi, ξ j} = 2δi j and {γi, ξ j} = 0, we find that

Ui = − i√
2

(γiξi + ξiγi+1). (13)

The (inverse) action of a TFIM gate on the Majorana modes
is given by

UiγiU
†
i = γi+1 (14a)

Uiγi+1U
†
i = γi (14b)

UiξiU
†
i = −ξi (14c)

Uiξi+1U
†
i = ξi+1. (14d)

We see that γi ←→ γi+1 while ξi −→ −ξi under Ui (ξi+1

is invariant). Due to this linearity, the span of these local
Majorana modes will be preserved, so these modes can be a
convenient operator basis for analyzing the circuit dynamics.
After the encoding procedure Ũ , these modes transform as

γi −→ γσ (i) (15a)

ξi −→ −ξi (15b)

with the exception of ξN remaining invariant. The permutation
cycle σ is given by

σ =
{

(1 3 5 . . . N − 1 N N − 2 N − 4 . . . 2) for even N

(1 3 5 . . . N N − 1 N − 3 N − 5 . . . 2) for odd N.
(16)

Other than the boundary sites, the cycle σ will map odd
sites to consecutively increasing odd sites and even sites to
consecutively decreasing even sites. Each pair of Majorana
modes γ , ξ initially start on a single site. The spatial spreading
of these modes via σ can be interpreted as a measure of
entanglement in the system. For multiple applications of Ũ ,
the dynamics of the Majorana modes can computed via SN

cycle multiplication rules. For the remainder of the paper we
will take N to be even; the case for odd N can be easily
inferred by comparing the permutation cycles in the following
Eq. (16).

III. QUANTUM ERROR CORRECTION FOR ONE QUBIT

For this section we will utilize stabilizer error correction to
protect one qubit of information. The general idea is that we
will measure operators that give us information on undesirable
local errors while leaving our quantum state unchanged. This
procedure is figuratively illustrated in Fig. 2. Any modifica-

tions to the quantum state made by the errors are easy to then
manually correct.

A. Correcting against Z errors in the manner of repetition code

We will first construct a �N, 1, 1� stabilizer quantum error-
correcting code, meaning that we encode one logical qubit
among N physical qubits with code distance 1. At time t = 0,
the stabilizer group is generated by Z2, . . . , ZN . Any operator
that is a product of any of these stabilizers will act trivially on
our initial state. The initial logical operators are XL = X1 and
ZL = Z1. After applying Ũ , the stabilizers Z2, . . . , ZN evolve
into

Z̃k = −iŨγkξkŨ
† = iγσ (k)ξk

=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

XkZk+1Xk+2 for odd k 
= N − 1

Yk−2Zk−1Yk for even k 
= 2, N

XN−1XN for k = N − 1

Y1Y2 for k = 2

−YN−2ZN−1YN for k = N,

(17)
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where the tilde denotes the evolved operator via Ũ . Similarly,
the logical operators become

X̃L = X̃1 = Ũγ1Ũ
† = γ3 = Z1Z2X3 (18a)

Z̃L = Z̃1 = −iŨγ1ξ1Ũ
† = iγ3ξ1 = X1Z2X3. (18b)

To correct for errors introduced by local projective measure-
ments along the Z axis (alternatively, Z errors), we can use the
evolved stabilizer generators in Eq. (17) as check operators
for our encoding. This is quite similar to the conventional
repetition code: a local Z measurement and its associated
projection operator P±

k = (1 ± Zk )/2 will anticommute with
exactly two check operators corresponding to i and σ (i).
If we organize the sites by their position in the cycle σ

and measure all check operators simultaneously, we obtain
an error syndrome equivalent to that of the quantum repe-
tition code. We then apply the appropriate local phase-flip

(Z) operators to recover our encoded state. We can uniquely
identify the location of all errors provided there are fewer
than N/2 of them, and there are no errors in the syndrome
measurements themselves. Thus, with high probability (for
N � 1), we can correct for Z measurements as long as the
external local measurement probability p < 0.5 in between
the syndrome measurements. In the presence of faulty syn-
drome measurements, the success probability of correcting for
errors will follow from an identical analysis as the quantum
repetition code. Such measurements can arise either due to
the environment, or due to the user. To recover our initial in-
formation back onto a single site, we simply apply the inverse
encoder Ũ †.

We can in fact protect two qubits of information against Z
errors if we wrap our chain in a circle. We take the same con-
figuration of unitary gates as in Fig. 1, but add an additional
unitary gate connecting sites N and 1 in the second layer (call
this new encoder Ũ ′). This new encoder corresponds to the
permutation cycle

σ ′ =
{

(1 3 5 . . . N − 1) (N N − 2 N − 4 . . . 2) for even N

(1 3 5 . . . N ) (N − 1 N − 3 N − 5 . . . 2) for odd N.
(19)

Since the new permutation cycle σ ′ is broken into two in-
dependent cycles, if we initialize two qubits on an even and
odd site separately, then we obtain an �N, 2, 1� version of the
above stabilizer code with the even and odd sites acting as in-
dependent systems. In this circular arrangement, the global Z2

symmetry (6) splits into a Z2 × Z2 symmetry corresponding
to the product of Zs in the even and odd sectors, respectively,
in connection with the permutation cycles shown above. Up
to local rotations, this encoded state and corresponding error
correction is equivalent to that of the 1D cluster state [53]
with periodic boundary conditions. If we apply another round
of Ũ ′, the symmetry becomes Z2 × Z2 × Z2 × Z2 because
the permutation σ has four independent cycles. In general,
applying multiple rounds of Ũ ′ will allow us to encode more
logical qubits: one per permutation cycle.

B. Correcting against arbitrary single qubit errors

The TFIM code can easily be generalized to correct for
arbitrary single-qubit errors for even N � 10, resulting in a
�N � 10, 1, 3� stabilizer code.. We begin with the initial state
in Eq. (1) and apply Ũ ′ twice consecutively to obtain the
following check operators:

Z̃ ′
k =

{
XkZk+1Zk+2Zk+3Xk+4 for odd k

Yk−4Zk−3Zk−2Zk−1Yk for even k
, (20)

where the site index k ≡ k mod N . The error correction pro-
cedure for a local Z error will still be the same as before: Zi

will anticommute with two check operators. A local X error
will in general anticommute with three to five check opera-
tors if it acts on an odd or even site, respectively. A lookup
table for the types of errors and associated error syndrome
is listed in Table I. The ability to correct for both X and Z
errors can be extended to arbitrary single-qubit errors due

to linearity. In order to have the required number of check
operators for single-site error correction, we require at least
N = 10 qubits.1 If the check operator length is less than 5,
then the corresponding error syndromes will no longer differ
from one another by at least two checks, and there could be
indistinguishable errors depending on the starting position of
the logical qubit. According to the quantum Hamming bound,
in order to correct for a single arbitrary qubit error with one

1As seen in Table I, detecting an error may require spotting a −1
syndrome measurement outcome for sites k and k + 4 (mod N).
When N = 8, we cannot tell whether these sites correspond to k and
k + 4 or k − 4 and k, and thus certain errors cannot be distinguished.
When N = 6, the X2k and Y2k+1 patterns cannot be distinguished, e.g.

TABLE I. Types of local errors and their associated error syn-
dromes are shown after two rounds of Ũ ′. An entry of 1 indicates
that the error anticommutes with the above check operator and 0 if
it commutes. Note that each row above differs from another row in
�2 columns; thus, even if one of the Z ′ in the table (which would
be known to the user) represents a logical Z (and should not be
measured), it will still be uniquely possible to identify an error given
any pattern of syndrome measurements.

Local
Check operators

error Z̃ ′
2k−3 Z̃ ′

2k−1 Z̃ ′
2k+1 Z̃ ′

2k Z̃ ′
2k+2 Z̃ ′

2k+4

X2k 1 1 0 1 1 1
X2k+1 0 1 0 0 1 1
Y2k 1 1 0 0 1 0
Y2k+1 1 1 1 0 1 1
Z2k 0 0 0 1 0 1
Z2k+1 1 0 1 0 0 0
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logical qubit, we need 2n−1 − 1 � 3n for n physical qubits.
The minimum number of qubits needed is thus 5. Although
the TFIM code does not saturate the Hamming bound, it is
naturally designed to be implemented in Rydberg atom arrays,
as discussed below.

For this code to protect against arbitrary X or Z errors,
it was crucial to have the N and 1 qubits interacting. To
understand why, let us suppose the logical qubit is 1, and we
apply the unitary Ũ k (i.e., k rounds of Ũ ). The check opera-
tors are γσ k (i)ξi for i > 1, and we detect errors by deducing
the number of these checks that do not commute with the
error. There is only one check operator that has a Pauli on
site 1: Z̃2k = Y1Z2 · · ·Y2k , since Z̃1 = X1Z2 · · · X2k+1 is logical
and cannot be measured. We deduce, therefore, that if we
measured the check operators and found that all returned +1
except for Z̃2k → −1, we would not be able to tell apart an X1

or Z1 error; thus we could not correct the error. Alternatively,
if we measure Y1, we will destroy the logical qubit, since no
logical X operator (X̃1, X̃1Z̃2k , etc.) can commute with Y1. In
the circular arrangement, this problem is solved because there
are multiple check operators that have Z1s in their Pauli string.

Another perspective is that the code distance is bounded by
the minimum logical operator length for local errors. Without
periodic boundary conditions, Y1 will remain invariant, and so
the code distance is 1 after encoding. This issue is solved with
periodic boundary conditions since now we have gates, which
can evolve Y1 into longer Pauli strings.

C. Quantum teleportation

Just as the TFIM code can be used to correct for errors, it
can also be used to perform a measurement-assisted quantum
teleportation between any two qubits in the system. Suppose
we wish to transfer our initial quantum state, located on the
left end of the 1D chain (i = 1), to the rightmost qubit of our
1D chain (i = N ). By using local projective measurements
and classical communication, we can achieve such state trans-
fer after a single layer of the TFIM code. Indeed, examining
Eq. (7) suggests that measuring N − 1 sites will push the
information onto the last site up to a local X or Z rotation
(depending on the measurement outcomes). The state transfer
protocol is illustrated in Fig. 3.

We now explain how to correct for both X and Z error in
this process. To correct for a possible bit-flip (X ) error, we
note that the Z-projection operators commute with the global
symmetry operator Z̄ . Thus, we simply need to compute the
overall parity after the measurements. If the parity of the N −
1 measurement outcomes is even (even number of down spins
measured), no application of X is required on the final site. If
that parity is odd, then we need to apply an X to correct for
the resulting bit flip.

In addition to the bit-flip error, we could also have a phase-
flip (Z) error on our final state. Recall that such a phase-flip
error was not possible in the repetition code; the possibility of
this phase flip can be understood as the price to pay for the
ability to correct for both X and Z errors (as in Sec. III), as
well as for the ability to generate the state after a finite-depth
circuit (this is a subject for future work). We can determine
whether a phase flip has occurred by manipulating our check
and logical operators in Eqs. (17) and (18), respectively. Start-

FIG. 3. Illustration of the state transfer protocol for N = 8 sites.
The initial information is stored on the leftmost site. The orange
dashed line denotes the classical information channel required to
perform the correct local rotation gate R at the end. The arrowed
boxes represent local projective measurements along the z axis.

ing from our initial logical operators, we can create longer
(Pauli) strings of logical operators by successively multi-
plying check operators. The goal is to create a new logical
operator. which commutes with all N − 1 projection operators
and thus remains a good logical operator. For the initial X1

logical operator, this problem can be interpreted as trying to
move the X operator onto the final site. As an example, if we
start on site 1 and wish to transfer our information onto site 8
after one application of Ũ , we can define a new initial logical
operator XL = X1Z3Z5Z7 such that

X̃L = Z1Z2X3︸ ︷︷ ︸
logical

(X3Z4X5)(X5Z6X7)(X7X8)︸ ︷︷ ︸
checks

= Z1Z2Z4Z6X8.

(21)

The value of the string of Pauli Z’s on the left of the X
will take on ±1. If Z1Z2Z4Z6 has odd parity (−1), then we
need to apply a Z gate on site 8. For the logical ZL, we can
multiply by all stabilizer generators Z2, . . . , Z8 to obtain Z̄ ,
which remains invariant under the dynamics. Thus, measuring
sites 1–7 in this example and applying a final local gate based
on parities of measurement outcomes will allow us to achieve
state transfer:

X̃L → LOCC X8 (22a)

Z̃L → LOCC Z8, (22b)

where LOCC is short for local operations and classical com-
munication.

In the Majorana representation, we are multiplying check
operators in such a way that we obtain pairs of Majoranas γkξk

on sites other than the final site: in the example above,

γ3︸︷︷︸
logical

(ξ3γ5)(ξ5γ7)(ξ7γ8)︸ ︷︷ ︸
checks

∝ Z1Z2Z4Z6X8. (23)

When applying the unitary Ũ , we observe from the structure
of the Majorana modes that we could always arrange to have
either, neither, or both of γ and ξ on every single site except
for one, by suitable multiplication of the check operators
γσ (i)ξi, simply because we choose the checks to multiply by
in order to follow the cycle from the logical operator γi to
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the final site of interest (γ j). The number of check operators
we must multiply by is �, where σ �(i) = j. The Majorana
representation makes clear that with sufficient knowledge,
information is only truly lost in this code if every single site is
measured. This is true for every value of N , since the cycle in
(16) connects every single site.

With the above scheme, we are able to protect a bit of
quantum information for long times as well as achieve rapid
state transfer to extract the information onto a single site. Note
that the decoding step at the end is not bound by the Lieb-
Robinson theorem [54] (information travels at a finite velocity
in a local quantum spin chain under unitary dynamics such
as Ũ ) since it involves nonunitary projective measurements
across the entire chain. One major advantage of our code
over the standard repetition code is that the Lieb-Robinson
theorem proves the unitary dynamics necessary to generate
the state (2) scales as t ∼ N .2 Our code not only is capable of
achieving what the quantum repetition code can, but it can be
implemented much faster, and (as we showed above) can even
correct for noncommuting errors (both Z and X ).

IV. HIGHER DISTANCE CODES

Thus far, we have shown how the TFIM code can protect
against arbitrary single-qubit errors. We now argue that with
some modifications, TFIM-based codes can also protect a
finite fraction of qubits against a finite fraction of stochastic
erasure errors, and that they may represent a more easily im-
plementable version of the random low-depth codes analyzed
in Ref. [56] with comparable performance.

In an operator language, if we want qubits on sites
k1, . . . , kn to be protected, then we must be able to find check
operators such that (X̃ , Z̃ )k j × ∏

Z̃ is the identity on sites with
errors for suitable products of check operators, and each of the
logical X and Z on the protected sites.

Unfortunately, as given, the TFIM code cannot protect two
logical qubits against arbitrary errors. To understand why,
observe that on any given site, there are at most two logical
or check operators that can have an X on that site. If at any
point in time during the code, each of these operators (e.g.,
X1Z2X3 and X3Z4X5) happen to both be logical operators, then
measurement or erasure on site 3 will destroy some informa-
tion: only the combined logical operator (X1Z2X3)(X3Z4X5)
can survive erasure (by being proportional to identity I on site
3): all other check operators will have Pauli Z on site 3. This
conclusion extends to codes generated by higher depth circuits
(i.e., applying Ũ k for k > 1), for the same reason (albeit the
notation gets more cumbersome). If we wish to protect a finite
fraction of qubits, we will inevitably run into a pair of qubits,
which cannot simultaneously be protected. Hence, we will
look for a modified TFIM code in which the check operators
have a reasonable density of both Pauli X s and Zs to overcome
this obstruction.

2This can be seen by noting that (2) is a GHZ-like state in
the X basis, and the time to prepare such states is constrained
by Lieb-Robinson bounds. Ref. [55] contains some discussions on
the relationship between GHZ preparation time and Lieb-Robinson
bounds.

FIG. 4. A modified TFIM encoder is illustrated with intermediate
layers of random local Hadamard (H ) gates. The red colored sites
denote initial logical qubits, and the light-gray colored sites are
initialized in the |0〉 state.

Fortunately, there is a relatively simple strategy to address
this, which is to apply Hadamard gates periodically to each
qubit. The simplest implementation is to apply Hadamard
gates with local probability pH in an intermediate circuit layer
between the encoding layers, depicted in Fig. 4. The logical
and check operators will then be more complicated strings of
X and Z . As our circuits will remain Clifford circuits under
these local Hadamard gates (which simply flip X and Z on the
site they are applied), we can readily numerically simulate the
distribution of Paulis in our check operators.

To analyze the performance of this modified TFIM code,
we consider a prototypical error model of random erasure
errors. Namely, on each site, with some probability pE , we
measure a random Pauli matrix and discard the measurement
outcome. We assume that we have knowledge of which sites
are erased in this way. In order to protect against such a
measurement, we need to make sure that all logical operators
can be chosen to be the identity on every single erased site. We
find that in typical realizations of such a code, there are many
Z̃i operators that can be used to correct for arbitrary single-site
errors (see Fig. 5), implying that some fraction of them could
correspond to logical qubits. We do not present an explicit
analysis of the fraction of qubits, which can be protected given
the probability a given site is erased. However, as suggested
in Fig. 5, after n rounds of this random TFIM code, for most
values of pH there are at least O(n) check operators that could
be used to remove an X,Y , or Z on any given site.

If the erasure errors are random, we need to worry that
there will be a rare sequence of many sites in a row in which
all sites in the sequence are erased. If the erasure probability is
q, then the longest sequence of erased sites will have a length
L of order qL ∼ N−1 (recall that the total number of qubits is
N); namely,

L ∼ log N

log q−1
. (24)

This suggests that if we want to use a finite fraction of qubits
in the system as logical, we will need to run the code for a
time t ∝ L ∝ log N to ensure that we can correct against all
erasure errors in the system, if the probability that a given
site is erased is sufficiently low. In other words, we need the
lengths of our check operators to be at least O(L) for sufficient
erasure protection. Previous studies of 1D codes indeed show
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FIG. 5. The average number of check operators with X,Y, Z support on an even (left plot) or odd site (middle plot) as a function of local
Hadamard probability pH is shown for n = 4 rounds of Ũ and N = 100. The average number of overlapping check operators on the central
site of the chain is also plotted as a function of n for pH = 0.5 (right plot). The averages are performed over 100 circuit iterations, and error
bars (denoted with shading) represent the standard deviation of sample-to-sample fluctuations.

that check operators must be extensively large to correct for
an extensive amount of errors [57].

A more detailed statistical analysis of a similar problem
was presented in Ref. [56] in the context of random Clifford
circuits, which are believed to be the (asymptotically) lowest
depth one-dimensional circuits capable of error correction.
Our numerics suggest that the TFIM code can also saturate
this asymptotic bound, while arguably having a more obvious
experimental implementation. While we leave a detailed sta-
tistical analysis of the performance of our code in the N → ∞
limit to future work, Fig. 6 shows that our code can protect
against a finite density of erasure errors on N sites after a cir-
cuit depth which scales as log N , consistent with the heuristic
argument in (24).

V. IMPLEMENTATION IN RYDBERG ATOM ARRAYS

We now describe the realization of the TFIM quantum
error correcting code using Rydberg atoms. To do so, we will
consider two different approaches, using 1/r6 van der Waals
(vdW) interactions: (i) using the Rydberg interactions directly
and (ii) using dressed Rydberg interactions [48,58–66], both

of which are illustrated in Fig. 7. In the first approach, the
Rydberg interactions can be very strong, allowing for quick
implementation of the necessary gates. However, because of
the 1/r6 scaling of the vdW interactions, this requires know-
ing the distance of the atoms with a high degree of accuracy.
In the second approach, the interaction potential plateaus at
short distances, avoiding this issue. However, the gate times
are increased, so decoherence from dissipation becomes more
relevant, particularly from avalanche processes due to black-
body radiation [67,68]. In both approaches, crosstalk between
parallel two-qubit gates can be eliminated by moving the
atoms [cf. Fig. 7(c)], which can be achieved using Rydberg
tweezer arrays [49].

In the first approach [Fig. 7(a)], the qubit is encoded via
|0〉 ≡ |g〉 and |1〉 ≡ |r〉, where |g〉, |r〉 denote ground and
Rydberg states, respectively. The vdW interactions from the
Rydberg interactions take the form

VvdW =
∑
i< j

C6

r6
i j

|rir j〉〈rir j |

= 1

4

∑
i< j

C6

r6
i j

(ZiZ j + Zi + Zj + 1), (25)

FIG. 6. Numerical simulation results are shown for a TFIM code with random Hadamard gates and erasures. N/2 qubits are logical, and
so only N/2 check operators are available for erasure protection. Left: Successful erasure recovery probability is plotted as a function of single
site erasure probability for three different circuit depths t = 2n for n rounds of Ũ . Note the quantum Hamming bound sets an upper limit
pE � (1 − f )/2 for protecting f N logical operators; for this simulation we have f = 1/2. Right: The circuit depth t required to recover a
given erasure probability pE = 0.5 with average success probability 〈pQEC〉 = 0.9 is plotted as a function of the length of the chain (note the
log scale on the x axis). Both plots are obtained by averaging over 100 iterations of the circuit.
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FIG. 7. Approaches for engineering the encoding gates using
Rydberg interactions. The states |g〉, |r〉, |e〉 denote a ground state,
Rydberg state, and an intermediate state, respectively. The long-lived
state |g′〉 is used to store the qubit (along with |g〉) when the gates
are not being applied. The drive �′ with detuning �′ is used to both
generate the transverse field and to remove a longitudinal field, which
arises due to the form of the Rydberg interactions. In both, we define
|0〉 ≡ |g〉 and store |1〉 in the long-lived state |g′〉 when the gates
U are not being applied, coherently transferring |g′〉 to (from) the
interacting |1〉 state via a fast π pulse to apply U . (a) In the first
approach, we define |1〉 ≡ |r〉, leading to vdW Ising interactions.
(b) In the second approach, the |e〉 and |r〉 states are weakly dressed
with Rabi frequency � and detuning � � �, producing a dressed
state |d〉 ≈ |e〉 + �

2�
|r〉. We define |0〉 ≡ |d〉, leading to soft-core

Ising interactions with a vdW tail. (c) In order to avoid long-range
interactions between different pairs of atoms, the atoms are moved
in (ii) between the first (i) and second (iii) layers of the encoding,
eliminating unwanted interactions

where C6 denotes the strength of the vdW interactions, ri j

is the distance between atoms i and j. Note that we have
assumed no angular dependence in C6, which can be achieved
by either using a L = 0 state or by fixing θi j = θ , which is
defined relative to the quantization axis. Before and after the
gate is applied, the |1〉 state can be coherently transferred
from (to) some other long-lived state |g′〉 via a fast π pulse
to suppress decoherence.

In the second approach [Fig. 7(b)], we utilize Rydberg
dressing by introducing a third atomic state |e〉 which is
weakly dressed with |r〉 via a drive with Rabi frequency
� and detuning � � �. Here, we now encode |1〉 ≡ |d〉 ≈
|e〉 + �

2�
|r〉, where |d〉 is one of the two dressed states of the

drive. As a result of the dressing, the Rydberg interactions take
the modified form

VvdW = �4

8�3

∑
i< j

1

1 + (r/rb)6
|did j〉〈did j |

= �4

32�3

∑
i< j

1

1 + (r/rb)6
(ZiZ j + Zi + Zj + 1), (26)

where C6/r6
b = −2� defines the blockade radius rb. Due to

the dressing, the interactions take the form of a soft-core

potential with a power-law tail. As a result, the interac-
tion is approximately constant for a range of r � rb. Like
in the first approach, we assume there is no angular de-
pendence in C6. As in the first approach, the |1〉 state
can be mapped from/to a long-lived state |g′〉 to suppress
decoherence.

Using either of the above approaches, the Ising interactions
may be prepared. To realize the desired Hamiltonian, we must
add a transverse field and remove the longitudinal field Z , both
of which can be achieved using a drive applied to the first
atom and by going to a rotating frame for the second atom.
For the first approach, the |g〉 → |r〉 transition is driven, while
for the second approach, the |g〉 → |e〉 transition is driven.
Note that for the second approach, light shifts due to the
weak dressing field should be taken into account to turn the
|g〉 → |e〉 drive into a resonant |g〉 → |d〉 drive. In both cases,
this introduces a �′X/2 term for the driven atom, providing
the desired transverse field. To remove the longitudinal field,
we apply a detuning �′ to the drive, which exactly cancels
the longitudinal field on the driven atom. For the undriven
atom, we may simply use the same rotating frame defined by
R2 = e−i�′Z2t/2 as for the driven atom. Since this commutes
with the Hamiltonian, it only removes the longitudinal field.
Hence

H = VvdW + Hd, (27a)

Hd = �′

2
X1 − �′

2
Z1, (27b)

H̃ = R†
2HR2 − iR†

2∂tR2

= V0Z1Z2 +
(

V0 − �′

2

)
Z1 +

(
V0 − �′

2

)
Z2 + �′

2
X1,

(27c)

where Hd is the drive used to generate the transverse field
(already in the corresponding rotating frame), H̃ is the Hamil-
tonian in the rotating frame, and V0 is the Rydberg interaction
between the two atoms. From this, we see that by setting
� = � = 2V0, we may realize the desired Hamiltonian.

In either of the above approaches, we can suppress the
dephasing effects of the power-law tails in interactions in an
optical tweezer setup by simply moving the atoms quite close
together before applying the Ui gates. In general, we might
expect that in a time t , there is possible dephasing by an angle
(assuming the vdW interactions are given by (25), though an
analogous formula holds for the other case):

φ ∝ 4t
∞∑

n=1

C6

(nr1)6
< 4.08

C6

r6
0

t ∝ 4.08

(
r0

r1

)6

. (28)

Here r0 (r1) is the typical interatom spacing between neigh-
boring atoms, which are (not) subject to U [cf. Fig. 7(c)],
and we have used the fact that the gate time t is inversely
proportional to C6/r6

0 . By increasing the ratio r1/r0, this effect
can be arbitrarily decreased. For example, using r1/r0 = 4, the
effect is suppressed by at least a factor of 4000 compared to
r1/r0 = 1.

In addition to engineering U to encode the qubit, we must
also measure the check operators in order to implement the
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error correcting code. This may be achieved through the use
of an ancilla qubit for each check operator [49,69–71]. For
each qubit in a given check operator, we must then apply a
two-qubit entangling gate with the ancilla gate, along with
any necessary one-qubit gates. Although the check operators
involve several qubits, we may again take advantage of the
ability to move the ancilla qubits as needed. The requisite two-
qubit entangling gates can be naturally realized via Rydberg
blockade gates [11,72–74], which have been demonstrated ex-
perimentally with high fidelities [75–79]. In particular, these
allow for a straightforward implementation of a controlled-
NOT (CNOT) gate.

As an example, if we wish to measure the check operator
XkZk+1Zk+2Zk+3Xk+4, we may proceed as follows: (i) Initial-
ize the ancilla qubit in |0〉 and apply a π/2 pulse to the k
and k + 4 qubits, mapping X to Z . (ii) Apply a Rydberg CNOT

gate between the ancilla qubit and each qubit in the check
operator. (iii) Apply a −π/2 pulse to the k and k + 4 qubits,
mapping Z back to X . (iv) Measure the ancilla qubit; the
measurement result corresponds to the parity of the check
operator. Note that the CNOT gates for each ancilla qubit may
be applied in parallel as long as one ensures that crosstalk
between the different gates is eliminated, as discussed above
for the implementation of U .

Since the check operator length is larger than the code dis-
tance, there is a possibility of cascading errors during the syn-
drome extraction. In order to combat this effect and achieve
fault tolerance, we would need to utilize a more complicated
scheme such as Shor’s cat-state syndrome extraction [80].

VI. CONCLUSIONS

In this paper we have introduced a simple quantum error
correcting code based on a time-dependent transverse-field
Ising model. This represents a practical alternative and im-
provement to the quantum repetition code, realizable in near
term platforms, including trapped Rydberg atoms, where we
proposed concrete implementations of the code.

This code is a simple illustration of more profound and
general concepts, which have been recently discussed in the
literature, such as the ability to perform quantum teleportation
across arbitrarily large distances using only measurements and
a finite-depth circuit acting on an initial product state [81], and
the link between SPT phases and error correction [40–42].
A careful analysis of the dynamics in this model has also
suggested general tradeoffs between the sensitivity of the code
to measurement outcomes and the time required to generate it:
general theorems along these lines have recently been reported
[82].
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