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Spin-nematic squeezing for dynamical quantum phase transitions
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We study spin-nematic squeezing in a spinor Bose-Einstein condensate and use it to probe dynamical quantum
phase transitions. We show that the quench dynamics of the spin-nematic squeezing exhibits a nonanalytical
change with respect to a final quadratic Zeeman energy, and demonstrate that the squeezing detects not only the
ground state phase diagram, but also the excited state quantum phase transition. We further analyze the dynamic
stabilization of the system and present its relation to the dynamical quantum phase transitions. Our results are
applicable to the spinor condensates with both of the sodium and rubidium atoms.
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I. INTRODUCTION

Nonequilibrium quantum many-body dynamics have been
widely studied in various physical systems, such as trapped
ions [1,2], Rydberg atoms [3], and ultracold atoms [4–6]. A
central direction of this field that concerns new manifestations
of various critical phenomena is dynamical quantum phase
transitions (DQPTs). Generally, the DQPTs denote nonan-
alyticities in the evolution of an initially equilibrated state
undergoing a sudden change of a system parameter [7–9].
A spinor Bose-Einstein condensate provides a good platform
to study the nonequilibrium dynamics which shows many
interesting phenomena, such as spin domains [10–14], topo-
logical defects [15–19], the Kibble-Zurek mechanism [15,20–
29], and DQPTs. In a recent experiment of the spinor con-
densate, DQPTs based on ground state phase transitions were
observed [30]. The DQPTs were also detected in the spinor
condensate corresponding to an excited state phase diagram
[31,32]. However, these two phenomena were observed by
starting with two different initial states, respectively. Thus it is
still an open question whether the DQPTs could be observed
with probing both to the ground state phase diagram and the
excited state quantum phase transition by starting with the
same initial state, instead of two different ones.

Spin squeezing in nonequilibrium quantum many-body dy-
namics has seen rapid progress in recent years due to its
critical role in quantum information, entanglement detection
[33–38], and high-precision measurement [39–55]. Squeezed
states were usually specified by three different components of
the total spin vector Ŝ(Ŝx, Ŝy, Ŝz ). While in a spinor Bose-
Einstein condensate, the state is specifically expressed in the
SU(3) Cartesian dipole quadrupole basis which consists of
the three components of spin vector and the nematic tensor
Q̂i, j (i, j ∈ {x, y, z}). The nematic moments in matrix form
can be written as Q̂i, j = ŜiŜ j + Ŝ j Ŝi − 4

3δi, j with δi, j being
the Kronecker delta. The presence of the nematic tensor in-
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dicates that the squeezing can be generated by some other
types of correlations beyond the spin-spin correlation, such
as the spin-nematic or internematic correlations [53–57]. The
spin-nematic squeezing has been experimentally observed in
the spinor condensate [58].

In this paper, we investigate the connection between the
spin-nematic squeezing and the DQPTs in an antiferromag-
netic spinor condensate with sodium atoms. We use the
spin-nematic squeezing to characterize the behaviors of the
DQPTs. The squeezing detects not only the ground state phase
transition, but also the phase transition for the highest energy
level. We prepare the condensate in a polar state where all of
the atoms condense in the mF = 0 state. We find the quench
dynamics of the spin-nematic squeezing shows a nonanalyti-
cal change as a function of the quadratic Zeeman energy of
a final Hamiltonian at q = 0 and q = −2c2 (c2 denotes an
interaction strength). Here q = 0 and q = −2c2 are the critical
points for the ground phase transition between the antiferro-
magnetic (AFM) phase and the polar phase, and the transition
between the polar phase and a broken axisymmetry (BA)
state for the highest energy level, respectively. We analyze
the dynamic stabilization of the system and show the relation
with the DQPTs. We further confirm that the dynamical frac-
tional population and the optimal squeezing time are also good
measures of the DQPTs. Finally, we discuss the dynamics of
the squeezing with an initial state as AFM state, and show
that squeezing starting with the AFM and the polar states ex-
hibit an asymmetric behavior around the final Zeeman energy
q = 0. Although our results are obtained in the case of c2 > 0,
it could be easily generalized to c2 < 0. We hope our results
could be experimentally verified by both of the condensates
with sodium (c2 > 0) and rubidium (c2 < 0) atoms.

II. SPIN-NEMATIC SQUEEZING
OF THE SPINOR CONDENSATE

We consider a spinor Bose-Einstein condensate with an ex-
ternal magnetic field. In a single-mode approximation (SMA),
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the Hamiltonian of the system takes the form [59,60]

Ĥ = c2

2N
Ŝ2 +

1∑
mF =−1

(
qm2

F − pmF
)
â†

mF
âmF , (1)

where Ŝ is total spin operator, N is the total particle num-
ber of the system, mF = −1, 0, 1 being the magnetic spin
quantum number, q and p denote the quadratic and linear
Zeeman energy, respectively. The operator â j (â

†
j ) being an

annihilation (creation) operator of the jth spin mode and c2 is
the spin-dependent interaction energy. The parameter c2 > 0
and c2 < 0 correspond to the sodium and rubidium atoms,
respectively. In the following, we consider the case of c2 > 0.
First, we notice the magnetization Ŝz = â†

1â1 − â†
−1â−1 is con-

served during the time evolution, i.e., [Ĥ , Ŝz] = 0. Thus the
dynamical evolution is restricted to a subspace with a fixed
eigenvalue of Ŝz. To start with, all the atoms are prepared in
the mF = 0 mode, the system will be in the subspace with the
zero magnetization, and the effective Hamiltonian is reduced
to

Ĥ = c2

2N
Ŝ2 − qâ†

0â0. (2)

The dynamical properties of the system are closely related to
the ratio q/c2.

According to the definition of the nematic tensors, the
operators Q̂i, j are written as [61–63]

Q̂yz = i√
2

(â†
0â−1 − â†

1â0 + â†
0â1 − â†

−1â0),

Q̂xz = 1√
2

(â†
1â0 − â†

0â−1 + â†
0â1 − â†

−1â0),

Q̂xx = 2

3
â†

0â0 − 1

3
(â†

1â1 + â†
−1â−1) + â†

1â−1 + â†
−1â1,

Q̂yy = 2

3
â†

0â0 − 1

3
(a†

1â1 + â†
−1â−1) − â†

1â−1 − â†
−1â1,

Q̂zz = 2

3
â†

1â1 − 4

3
â†

0â0 + 2

3
â†

−1â−1.

The operators {Ŝx, Q̂yz, Q̂+} and {Ŝy, Q̂xz, Q̂−} comprise two
SU(2) subspaces. Here, Q̂+ and Q̂− are defined as Q̂+ =
Q̂zz − Q̂yy, Q̂− = Q̂xx − Q̂zz, respectively. From the gener-
alized Heisenberg uncertainty relation �Â�B̂ � 1

2 |〈[Â, B̂]〉|,
only operator pairs with non-zero expectation values for
their commutation relations, i.e., 〈[Â, B̂]〉 �= 0, can exhibit
squeezing. Considering an initial state with all of the atoms
condensed in the mF = 0 mode, we find that only two op-
erators Q̂± have nonzero expectation values. Based on these
relations, two different spin-nematic squeezing parameters are
defined in terms of quadratures of the operators [58,63]

ξ 2
x(y) = 2〈[�(cos θ Ŝx(y) + sin θQ̂yz(xz) )]

2〉/|〈Q̂+(−)〉| (3)

with θ being the quadrature angle. The parameter ξ 2
x(y) < 1

indicates the spin-nematic squeezing. For a proper θ , we can
obtain a minimum value of ξ 2

x(y). Focuing on the squeezing
parameter ξ 2

x , a minimum value of ξ 2
x is obtained at a proper

θ and given by

ξ 2
x = A − √

B2 + C2

|〈Q̂+〉| , (4)

where A ≡ 〈Ŝ2
x + Q̂2

yz〉, B ≡ 〈Ŝ2
x − Q̂2

yz〉, and C ≡ 〈ŜxQ̂yz +
Q̂yzŜx〉.

We consider a short time evolution and thus the initial
condensate in the mode mF = 0 will be weakly affected
by the spin-mixing dynamics. Such a condition is called
the undepleted pump approximation. In this approximation,
the operators â0 and â†

0 are replaced by the c number√
N . We define three operators K̂x = 1

2 (â†
1â†

−1 + â1â−1), K̂y =
1
2i (â

†
1â†

−1 − â1â−1), and K̂z = 1
2 (â†

1â1 + â†
−1â−1 + 1) which

satisfy [K̂x, K̂y] = −iK̂z, [K̂y, K̂z] = iK̂x, and [K̂z, K̂x] = iK̂y,
and belong to the SU(1,1) group [64–66]. The effective
Hamiltonian (with constant terms dropped) becomes

Ĥeff = 2c2K̂x + 2[c2 − c2/(2N ) + q]K̂z

≈ 2c2K̂x + 2(c2 + q)K̂z. (5)

In the undepleted pump approximation, we have

A = 4N〈K̂z〉 = 2N
−β2 + α2 cosh

√
α2 − β2t

(α2 − β2)
,

B = 4N〈K̂x〉 = −4Nαβ sinh2
√

α2−β2t
2

α2 − β2
,

C = 4N〈K̂y〉 = 2Nα sinh
√

α2 − β2t√
α2 − β2

, (6)

where α = 2c2 and β = 2(c2 + q). At the critical points q f =
0 and q f = −2c2, we have α2 = β2, thus the above param-
eters reduce to A = 2N (1 + α2t2/2), B = −Nα2t2, and C =
2Nαt , respectively. A direct calculation from Eq. (6) yields
a relationship 〈K̂z〉2 = 〈K̂x〉2 + 〈K̂y〉2 + 1

4 . The squeezing pa-
rameter in Eq. (5) is reduced to

ξ 2
x ≈ 2〈K̂z〉 −

√
4〈K̂z〉2 − 1. (7)

In Fig. 1, we plot the spin-nematic squeezing parameter
10 log10(ξ 2

x ) and N0 ≡ 〈N̂0〉/N as a function of t for different
q/c2. We find N0 ≈ 1 in Figs. 1(a) and 1(c), which indicates
the small population transfers from the mF = 0 mode to other
modes. For such a case, the results of the squeezing obtained
by numerical calculation from the Hamiltonian in Eq. (2)
coincide well with the analytical one in Eq. (7), see Figs. 1(d)
and 1(f). When the value of N0 is a little far away from 1, the
analytical result is no longer valid since the undepleted pump
approximation breaks down, see Figs. 1(b) and 1(e).

III. SIGNATURES OF DYNAMICAL QUANTUM
PHASE TRANSITIONS

First, we introduce the phase diagram of the system. Since
we neglect the linear Zeeman energy, the ground state of the
system is determined by the value of q/c2. As shown in Fig. 2
(a1), the ground state for sodium atoms with c2 > 0 exhibits a
first-order quantum transition at the critical point q = 0 from
polar phase where all atoms condense in the mF = 0 mode to
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FIG. 1. The particle population in the mode mF = 0 (a)–(c) and
spin-nematic squeezing ξ 2

x (d)–(f) as a function of t for different
q/c2. The red circles are the numerical results and the blue solid
lines correspond to the analytical results shown in Eq. (7). The total
particle number of the system is chosen N = 104 and the interaction
strength c2/h = 31 Hz.

an AFM phase with equally populated atoms in the mF = ±1
modes [30]. In Fig. 2(a2), we can find the highest energy level
exhibits a phase transition which is similar to rubidium atoms
with c2 < 0, where a second order phase transition occurs
at q = 2c2 between a BA phase with nonzero population at
the mF = 0 mode and the AFM phase. Another transition
occurs at q = −2c2 between a BA phase and a polar phase
[31,67,68].

To explore the DQPTs, we quench the quadratic Zee-
man energy after generating the initial state. Starting with a
high fixed magnetic field, the initial state is prepared to be
|N1, N−1, N0〉 = |0, 0, N〉. Then a microwave dressing field is
suddenly turned on to abruptly change qB to q f = qB + qM ,
where qB and qM represent the initial quadratic Zeeman en-
ergy induced by a magnetic field and a microwave dressing
field, respectively. The quadratic Zeeman energy induced by
the magnetic field can only introduce a positive net quadratic
qB ∝ B2 > 0, while the quadratic Zeeman shift can be swept
from −∞ to ∞ by the microwave dressing field. Generally,
the DQPTs were experimentally observed by measuring the
fractional population [30–32,69,70]. Here, we use the spin-
nematic squeezing to probe the DQPTs.

We define a quantity, ξ 2
m ≡ mint (ξ 2

x ), being the optimal
squeezing. We denote the occurrence time of the optimal
squeezing as the optimal time tm and the fractional population
at tm as Nm

0 . In the regions of q f < −2c2 and q f > 0, ξ 2
m can

be obtained as

ξ 2
m =

{ q f

q f +2c2
, q f > 0,

q f +2c2

q f
, q f < −2c2.

(8)
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FIG. 2. The order parameter N0 as a function of the quadratic
Zeeman energy q in the units of c2 for the ground state (a1) and the
highest energy state with zero magnetization (a2). Numerical result
of the optimal spin-nematic squeezing ξ 2

m (b) with c2/h = 31 Hz.
The inset shown in (b) denotes the squeezing parameter ξ 2

m without
Logarithmic function. The particle number of the system is chosen
N = 104.

Moreover, one can get the optimal squeezing time tm =
π

2
√

q f (q f +2c2 )
and the corresponding fractional population

Nm
0 = 2c2

2
q f (q f +2c2 ) in both of the above two regions. In Fig. 2(b),

we plot ξ 2
m as a function of q f /c2. It shows qualitatively dif-

ferent behaviors in the three regions of q f /c2. The location of
the singularity at q f = 0 in the squeezing parameter coincides
with that of ground state phase transition.

The squeezing parameter ξ 2
m also presents a discontinu-

ous change at q f = −2c2 which corresponds to the critical
point of excited state phase transition, see the inset shown
in Fig. 2(b). In fact, the spin squeezing parameter will get
sharper with increasing of the system size. As shown in Fig. 3,
this feature turns up at both of the two points q f = −2c2 and
q f = 0.

Figures 4 further illustrates Nm
0 and the optimal evolu-

tion time tm with respect to q f , respectively. We find Nm
0

exhibits a decrease at q f = −2c2 and a sudden dip at q f = 0.
The optimal time tm shows a sharp peak around q f = 0 and
q f = −2c2. Here, the optimal time is closely related to the
nearest-neighbor energy gap at the highest two energy levels
of the system, see Appendix A. This is why it could be used to
capture the excited state phase transition in the antiferromag-
netic condensate.

Physically, the above phenomena can also be explained in
terms of the phase diagram of the system and the stabiliza-
tion dynamics in the mean-field approximation. As shown in
Figs. 2(a1) and 2(a2), the highest energy state for q < −2c2

and the ground state for q > 0 share the same polar state
with N0 = 1. Starting from the polar state, the population
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FIG. 3. The optimal spin-nematic squeezing ξ 2
m (a)–(d) and 10 log10 ξ 2

m (e)–(h) as a function of qf /c2 for different N with c2/h = 31 Hz.

in the mode mF = 0 remains N when we suddenly tune q
to q f < −2c2 or q f > 0. When we tune q to the region of
−2c2 < q f < 0, many particles will be transferred from the
mF = 0 mode to the mF = ±1 modes. Indeed, according to
the stability analysis, the dynamics of the system are stable
in the regions of q f < −2c2, and q f > 0, thus Nm

0 � 1 and
ξ 2

m in these two regions is much smaller than ξ 2
m in the region

of −2c2 < q f < 0. The analytic stability region is derived in
Appendix B.

In a current experiment [30], the signatures of DQPT at
q f = 0 was observed by measuring the value of N0 at the
first dip of the spin oscillations induced by the spin mixing
dynamics. But with the same measurement of N0, the DQPT
at q f = −2c2 was not detected in the experiment. This is
because, in the practical experiment, the spin oscillation at
q f = −2c2 is barely visible in quench dynamics and one could
not find where the first dip is located. To test whether the
measurement of the squeezing at q f = −2c2 will encounter
the similar problem in the experiment, we plot ξ 2

x and N0

as a function of t with q f = −2c2 in Fig. 5. It is shown the
squeezing parameter ξ 2

x attains its minimum at t = 18.6 ms
which is about half of the time of the first dip. That is, one
could observe the minimum squeezing before the spin oscil-
lation goes to its first dip. Thus both of DQPTs at q f = 0 and
q f = −2c2 can be observed by measuring ξ 2

m.
On the contrary, starting from the initial AFM state

|N/2, N/2, 0〉, the signature of DQPT at q f = 2c2 is experi-
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FIG. 4. Numerical result of the fractional population at tm, i.e.,
N m

0 (a), and tm (b) as a function of qf /c2 with c2/h = 31 Hz. The
particle number of the system is chosen N = 104.

mentally observed by measuring N0 at the first peak of the
spin oscillation, while q f = 0 cannot be observed [32]. Here,
both of the two critical points can be observed by measuring
the spin-nematic squeezing. As shown in Fig. 6, ξ 2

m is plotted
as a function of q f /c2 with the initial state |N/2, N/2, 0〉.
Comparing the result shown in Fig. 2(b), we find the the
curves of ξ 2

m for the initial states |N/2, N/2, 0〉 and |0, 0, N〉
are asymmetric around q f = 0. In order to explain such a phe-
nomenon, we consider the undepleted pump approximation in
which the particle numbers in the modes mF = ±1 are weakly
affected by the spin mixing dynamics. We assume the opera-
tor â±1 and â†

±1 are replaced by the c number
√

N/2. Then
the SU(1,1) operators are redefined as K̂ ′

x = 1
4 (â†

0â†
0 + â0â0),
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FIG. 5. The numerical results of the spin-nematic squeezing ξ 2
x

(a) and the fractional population N0 (b) as a function of t with qf =
−2c2. The red arrow denotes the position of the first dip of the spin
oscillations. The vertical dotted line indicates the optimal squeezing
occures. The parameters are the same as for Fig. 1.
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FIG. 6. The numerical results of the optimal spin-nematic
squeezing ξ 2

m as a function of qf /c2 with the initial state
|N/2, N/2, 0〉 and |0, 0, N〉, respectively. The parameters are the
same as for Fig. 1.

K̂ ′
y = 1

4i (â
†
0â†

0 − â0â0), and K̂ ′
z = 1

2 â†
0â0 + 1

4 , the Hamiltonian
in Eq. (2) becomes

Ĥ ′
eff = 2c2K̂ ′

x + 2(c2 − q)K̂ ′
z . (9)

Here we notice that the difference between the effective
Hamiltonians in Eqs. (5) and (9) is the sign of q. Thus the
dynamics of optimal spin-nematic squeezing ξ 2

m exhibits an
asymmetrical behavior around q f = 0. In fact, our results can
also be applied to the case of rubidium atoms which have
negative c2. When c2 < 0, ξ 2

m for the initial state as |0, 0, N〉
is the same as ξ 2

m for the initial state as |N/2, N/2, 0〉 with
c2 > 0.

IV. CONCLUSION

In summary, we have studied the spin-nematic squeezing
in a spinor condensate with sodium atoms, and showed that
the spin-nematic squeezing can be used to characterize the
DQPTs of the spinor condensate. The squeezing detects both
the ground phase transition between the AFM phase and polar
phase and the excited state transition between the polar phase
and the BA phase. We also showed the dynamical fractional
population at the optimal squeezing time could also distin-
guish the DQPTs. We further made a connection between
dynamical stabilization and the nonanalytical change of the
spin-nematic squeezing. Finally, we discussed the dynamics
of the squeezing for an AFM state as the initial state, and
found the optimal squeezing ξ 2

m starting with the AFM and the
polar states exhibit an asymmetrical behavior around q f = 0.
In addition, our results are correct for both of the cases of
c2 > 0 and c2 < 0. Thus both of the condensates with sodium
(c2 > 0) and rubidium atoms (c2 < 0) are good candidates for
experimental verification.
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and −0.5424, based on linear fits (denoted by solid lines) to the log-
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APPENDIX A: POWER-LAW SCALING OF THE OPTIMAL
TIME AND THE ENERGY GAP

To understand why the time scale can characterize DQPT,
we discuss the relationship between the optimal time and the
energy gap δE at the highest two energy levels of the system.
In Fig. 7, we plot tm and τ = 1/δE as a function of q f /c2.
We find the results exhibit a power-law scaling with q f /c2

and the two log-log curves have similar slopes. The extracted
power-law scaling exponents are −0.5467 for tm and −0.5424
for τ through linear fits to the log-log curves. This implies
that the optimal time tm is closely related to δE in the energy
spectrum. So it can capture excited state phase transitions of
the system.

APPENDIX B: DYNAMIC STABILIZATION
OF THE SPINOR CONDENSATE

Here we derive the dynamical stability regions of the spinor
condensate. In the mean-field framework and under the SMA,
the wave functions for the different spin components are rep-
resented by a complex vector 
ζ = (ζ1, ζ0, ζ−1)T , where ζi is
the amplitude and satisfies |
ζ |2 = 1. Considering an initial
state with zero fractional magnetization, the magnetization
will be a constant in the motion. The vector ζi can be written
as

ζ1 =
√

1 − ρ0

2
ei(θ+θL ), ζ0 = √

ρ0,

ζ−1 =
√

1 − ρ0

2
ei(θ−θL ), (B1)

where ρi = Ni/N denotes the spin population in ith compo-
nent, θ = (θ1 + θ−1 − 2θ0)/2 is the relative phase between
spinors, and θL = (θ1 − θ−1)/2 is the Larmor recession phase.
The free spin mixing dynamics yields the equations [71]

ρ̇0 = 2c̃2ρ0(1 − ρ0) sin 2θ ,

θ̇ = −2q̃ + 2c̃2(1 − 2ρ0)(1 + cos 2θ ), (B2)
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where c̃2 = c2/h̄ and q̃ = q/h̄. To analysis the stability
regions, we discuss the dynamical equations of the spin
and nematic operators. Using the parametrization shown in
Eq. (B1), the expectation values of Ŝx, Q̂yz, Ŝy, and Q̂xz for the
vector ζi are obtained as [62]

Sx = 2
√

ρ0(1 − ρ0) cos θ cos θL,

Qyz = −2
√

ρ0(1 − ρ0) sin θ cos θL,

Sy = −2
√

ρ0(1 − ρ0) cos θ sin θL,

Qxz = −2
√

ρ0(1 − ρ0) sin θ sin θL.

Defining S2
⊥ = S2

x + S2
y , Q2

⊥ = Q2
yz + Q2

xz, we have S⊥ =
2
√

ρ0(1 − ρ0) cos θ and Q⊥ = 2
√

ρ0(1 − ρ0) sin θ . Further
define a parameter x = 2ρ0 − 1, we obtain

S2
⊥ + Q2

⊥ + x2 = 1. (B3)

Obviously, S⊥, Q⊥, and x form a unit sphere and can be
denoted as a spin representation. Based on the Eq. (B2), the
differential equations of S⊥ and Q⊥ are [62](

Ṡ⊥
Q̇⊥

)
=

[
0 q̃ f

−(2c̃2 + q̃ f ) 0

](
S⊥
Q⊥

)
. (B4)

To solve the dynamical stability of the system, we employ
a linear stability analysis which has a wide application in
various nonlinear systems. To begin with, three infinitesimal
variables δS⊥, δQ⊥ and δx are introduced by S⊥ = S0

⊥ + δS⊥,
Q⊥ = Q0

⊥ + δQ⊥, and x = x0 + δx, respectively, where S0
⊥,

Q0
⊥ and x0 are the expectation of the initial state. For our case

with the initial state as ρ0 = 1, we have S0
⊥ = Q0

⊥ = 0 and
x0 = 1. Then the linearized equations of motion in the matrix
form reduce to(

δṠ⊥
δQ̇⊥

)
=

[
0 q̃ f

−(2c̃2 + q̃ f ) 0

](
δQ⊥
δS⊥

)
. (B5)

Defining the above matrix as m, the time evolution is given
by its exponential form as exp(tm). Adopting the stability
analysis technique employed in an optical resonator theory,
the determinant of the dynamics of S⊥ and Q⊥ must satisfy
the condition |Tr[exp(tm)]| < 2. A direct calculation yields

| cosh
√−q̃ f (2c̃2 + q̃ f )t | < 1. (B6)

Obviously, the above equation holds when q f > 0 and q f <

−2c2 for c2 > 0. Thus the dynamic of the system is stable in
the region of q f > 0 and q f < −2c2.
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