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Quantum Cramér-Rao bound for quantum statistical models with parameter-dependent rank
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Recently a widely used computation expression for quantum Fisher information was shown to be discon-
tinuous at the parameter points where the rank of the parametric density operator changes. The quantum
Cramér-Rao bound can be violated on such singular parameter points if one uses this computation expression
for quantum Fisher information. We point out that the discontinuity of the computation expression of quantum
Fisher information is accompanied with the unboundedness of the symmetric logarithmic derivation operators,
based on which the quantum Fisher information is formally defined and the quantum Cramér-Rao bound is
originally proved. We argue that the limiting version of the quantum Cramér-Rao bound still holds when the
parametric density operator changes its rank by closing the potential loophole of involving an unbounded SLD
operator in the proof of the bound. Moreover, we analyze a typical example of the quantum statistical models
with parameter-dependent rank.
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I. INTRODUCTION

The Fisher information matrix characterizes the least
mean-square error of parameter estimation for a large number
of samples [1,2]. For a finite number of samples, the Fisher
information matrix also gives a lower bound (namely, the
Cramér-Rao bound) on estimation errors when the estimator is
restricted to be locally unbiased [3,4]. These properties make
the Fisher information matrix play a pivotal role in classical
parameter estimation theory [5–7].

For quantum parameter estimation problems, not only
the classical estimators but also the quantum measurements
should be taken into consideration for minimizing the estima-
tion errors. Helstrom derived the first quantum Cramér-Rao
bound (QCRB) by defining the quantum Fisher information
(QFI) matrix as an analog of the classical one [8–12]. Due
to measurement incompatibility caused by Heisenberg’s un-
certainty principle [13], the quantum estimation problems for
multiple parameters are much more intricate than the classical
estimation problems [14–22]. For single-parameter estimation
problems, the QCRB, which is given by the QFI, gives a quite
satisfactory approach to revealing the ultimate quantum limit
of estimation precision.

However, recent researches disclosed a possible defect
about the QCRB at the parameter points where the rank of the
parametric density operator changes [23–27]. Šafránek [23]
demonstrated that a widely used computation expression of
QFI can be different from the Bures metric, which had been
considered to be equivalent (up to a constant factor) to the QFI
for all cases, and discontinuous at such singular parameter
points. Later Seveso et al. [24] showed through examples that
the QCRB based on the QFI does not hold at these limiting
cases. However, it is still not clear why the QCRB can be
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violated and where the loophole is in the previous proof of
the QCRB. This motivated us to study in detail the QCRB in
the quantum parameter estimation problems with parameter-
dependent rank.

In this work, we revisit the derivation of the QCRB and
analyze the potential loophole that may cause the failure of the
QCRB. We point out that the symmetric logarithmic deriva-
tive (SLD) operator, through which the QCRB is derived and
the QFI is defined, is implicitly assumed to be bounded in the
previous derivation of the QCRB as well as in the computation
of the QFI. When the value of parameter approaches the
singular parameter points where the rank of density operator
changes, the SLD operator may become unbounded, and some
previously used computation expressions of the QFI might
inconsistent with the definition of the QFI. We show that this
potential loophole can be closed by proving the QCRB in a
manner that the SLD operator is not involved. Moreover, we
analyze in detail the QCRB in some typical examples of the
quantum statistical models with parameter-dependent rank.

This paper is organized as follows. In Sec. II we give a brief
review of the formal definition of the QFI and two expressions
for the QFI. In Sec. III we investigate the relationships be-
tween the discontinuity of the QFI and the boundedness of the
SLD operator. In Sec. IV we discuss how to prove the QCRB
without resorting to the SLD operator. In Sec. V we analyze
in detail the validity of the QCRB with typical examples. We
summarize our results in Sec. VI.

II. EXPRESSIONS FOR THE QFI AND THE
DISCONTINUITY

Let us start by considering the general problem of estimat-
ing a single parameter with quantum systems. Assume that the
state of the quantum system, described by a density operator
ρθ , depends on an unknown parameter θ . The value of θ can
be estimated by data processing outcomes obtained from a
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measurement performed on the quantum system. A quantum
measurement is mathematically characterized by a positive-
operator-valued measure (POVM) {Ex | Ex � 0,

∑
x Ex = 1}

with x denoting the outcome and 1 being the identity operator.
According to quantum mechanics, the probability of obtaining
an outcome x is given by tr(ρθEx ). The data processing is
represented by an estimator θ̂ that maps the measurement
outcome x into the estimates for θ . The estimation error can
be assessed by the mean-square error defined by

Eθ := Eθ [(θ̂ − θ )2] =
∑

x

[θ̂ (x) − θ ]2tr(ρθEx ), (2.1)

where Eθ denotes the expectation under the probability
distribution given by pθ (x) = tr(ρθEx ). For all quantum mea-
surements and all unbiased estimators θ̂ that satisfy

Eθ [θ̂] =
∑

x

θ̂ (x)tr(ρθEx ) = θ (2.2)

for all possible true values of θ , the estimation error obeys the
QCRB (also known as the Helstrom bound):

Eθ � 1

Fθ

, (2.3)

where Fθ is the QFI whose definition will be given in what
follows.

There exist three expressions for the QFI that are often used
in the previous works [8,9,11,28]. The first one is its formal
definition [8,9]:

F (1)
θ := tr

(
ρθL2

θ

)
, (2.4)

where Lθ is the SLD operator defined as the Hermitian opera-
tor satisfying

1
2 (Lθρθ + ρθLθ ) = dρθ

dθ
. (2.5)

The QCRB Eθ � 1/F (1)
θ was originally proved by utilizing

Eq. (2.4) and Eq. (2.5).
Suppose that ρθ = ∑

j λ j |e j〉〈e j | is the spectral decompo-
sition of ρθ . Note that the eigenvalues λ j and the eigenvectors
|e j〉 depend on the true value of the parameter θ . The second
form of the QFI is a widely used computation expression
given by

F (2)
θ :=

∑
j,k∈Kθ

2

λ j + λk

∣∣∣∣
〈
e j

∣∣∣∣dρθ

dθ

∣∣∣∣ek

〉∣∣∣∣
2

, (2.6)

where Kθ is the index set {k | λk (θ ) = 0} with λ j (θ ) denoting
the value of λ j at the parameter point θ . This expression can
be derived by solving the matrix representation of the SLD
operator Lθ with the basis constituted by the eigenvectors of
ρθ and then substituting it into the formal definition Eq. (2.4)
of the QFI.

The third form of the QFI is given by

F (3)
θ := 8 lim

ε→0

1 − ‖√ρθ
√

ρθ+ε‖1

ε2
, (2.7)

where ‖X‖p := [tr(|X |p)]1/p with |X | :=
√

X †X is the
Schatten-p norm of an operator X . The quantity ‖√ρθ√

ρθ+ε‖1 is known as Uhlmman’s fidelity between the density

operators ρθ and ρθ+ε [29–31]. This expression is deeply rele-
vant to the Bures distance [32] between two density operators
ρ and σ :

dB(ρ, σ ) :=
√

2(1 − ‖√ρ
√

σ‖1). (2.8)

It can be seen that the third form F (3)
θ is equivalent to the

metric of the Bures distance between two density operators
up to an insignificant constant factor 4,

F (3)
θ = 4 lim

ε→0

dB(ρθ , ρθ+ε )2

ε2
. (2.9)

In Ref. [25] Zhou and Jiang showed that the computation
expression F (2)

θ can be fully equivalent to a modified Bures
metric:

F (2)
θ = 4 lim

ε→0

dB(ρθ−ε/2, ρθ+ε/2)2

ε2
. (2.10)

III. DISCONTINUOUS QFI AND UNBOUNDED SLD

As shown by Šafránek [23], the expressions F (2)
θ and F (3)

θ ,
given in Eqs. (2.6) and (2.7), can be different at the parameter
points where the rank of ρθ changes. The discrepancy occurs
when a term excluded from the summation in Eq. (2.7) for
F (2)

θ has a finite value as the parameter tends to that specific
value. At a specific value θ ′, it has been shown that [23]

�θ ′ := F (3)
θ ′ − F (2)

θ ′ = lim
θ→θ ′

∑
k∈Kθ ′

1

λk

(
dλk

dθ

)2

=
∑
k∈Kθ ′

2
d2λk

dθ2

∣∣∣∣∣∣
θ=θ ′

, (3.1)

where λ j are the eigenvalues of ρθ and Kθ ′ denotes the index
set {k | λk (θ ′) = 0}. Note that the last equality in Eq. (3.1) is
due to L’Hôpital’s rule in calculus [23,24]. The F (2)-QCRB
can be violated when �θ > 0; see Ref. [24]. In what follows
we shall interpret why the F (2)-QCRB breaks down at the pa-
rameter point where the rank of the density operators changes.

First, when the SLD operator is bounded, the F (2)-QCRB
always holds. This is because the original proof of F (1)-
QCRB and the relation F (2)

θ = F (1)
θ are both rigorous for such

a case. To see the latter, recall that the expression Eq. (2.6) for
F (2)

θ is a consequence of solving the SLD equation Eq. (2.5)
for Lθ through matrix representation with the basis constituted
by the eigenvectors of ρθ . With the spectral decomposition
ρθ = ∑

j λ j |e j〉〈e j |, it follows from Eq. (2.5) that

λ j + λk

2
〈e j |Lθ |ek〉 =

〈
e j

∣∣∣∣dρθ

dθ

∣∣∣∣ek

〉
. (3.2)

When λ j + λk 	= 0, the above equality implies that

〈e j |Lθ |ek〉 = 2

λ j + λk

〈
e j

∣∣∣∣dρθ

dθ

∣∣∣∣ek

〉
. (3.3)

For those indices j and k such that λ j + λk = 0, 〈e j |Lθ |ek〉 is
indefinite by Eq. (3.2). On the other hand, the QFI defined in
Eq. (2.4) can be expressed with the spectral decomposition of
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ρ as

F (1)
θ =

∑
jk

λ j |〈e j |Lθ |ek〉|2 =
∑

jk

λ j + λk

2
|〈e j |Lθ |ek〉|2,

(3.4)

where the second equality is due to the symmetrization with
respect to the indices j and k. For those indices j and k such
that λ j + λk = 0, the corresponding terms in the right-hand
side of Eq. (3.4) have no contribution to the summation as long
as the SLD operator is bounded. In such a case, combining
Eqs. (3.2) and (3.4), we can see that F (1)

θ = F (2)
θ . Therefore,

the QCRB based on F (2)
θ must hold when there exists an

bounded SLD operator.
It is not always possible to have a bounded SLD opera-

tor [33] for all range of the parameters, even when the QFI is
finite. For example, for

ρθ = cos2 θ |0〉〈0| + sin2 θ |1〉〈1| with 0 � θ � π/2, (3.5)

the SLD operator is

Lθ = −2 tan θ |0〉〈0| + 2 cot θ |1〉〈1|, (3.6)

which is unbounded at θ = 0 and θ = π/2. Meanwhile, the
QFI for the above statistical model is 4 for all 0 � θ � π/2.

As shown by Ref. [23], F (3)
θ represents the continuous

version of the QFI F (1)
θ , i.e., limθ→θ ′ F (1)

θ = F (3)
θ ′ . Therefore,

we can substitute Eq. (3.4) into the definition of �θ ′ and thus
get

�θ ′ = lim
θ→θ ′

∑
j,k∈Kθ ′

λ j + λk

2
|〈e j |Lθ |ek〉|2. (3.7)

Since (λ j + λk )/2 = 0 at the parameter point θ ′ for all
j, k ∈ Kθ ′ , we get

�θ ′ > 0 ⇐⇒ lim
θ→θ ′

Lθ is unbounded, (3.8)

meaning that the discrepancy between F (2)
θ and F (3)

θ must be
accompanied by an unbounded SLD operator. The divergence
of the SLD operator has also been investigated through the
integral representation of the SLD operator by Rezakhani,
Hassani, and Alipour [26].

Strictly speaking, it is not the QFI (defined by F (1)
θ ) but its

computation expression F (2)
θ that is discontinuous when the

density operator changes its rank. At these singular parameter
points, F (2)

θ does not coincide with the definition of the QFI,
and thus the F (2)-QCRB, i.e., Eθ � 1/F (2)

θ , can be violated.

IV. QCRB AT RANK-CHANGING POINTS

Even though the violation of the F (2)
θ can be ascribed to the

inconsistency between F (2)
θ and F (1)

θ when the SLD operator
is unbounded, it does not mean that the limiting version of
F (1)-QCRB, namely,

Eθ ′ � 1

limθ→θ ′ F (1)
θ

, (4.1)

has been rigorously proved at such singular parameter point
θ ′. This is because the original proof of QCRB [8,9] did not
discuss the cases of unbounded SLD operators. We have to

be cautious about whether some mathematical formulas used
in the original proof of the QCRB still hold for unbounded
operators; e.g., the cyclic property of the trace operation,
tr(AB) = tr(BA) for two operators A and B, can be violated
if unbounded operators are involved. We here argue that the
limiting version of F (1)-QCRB holds even when the SLD
operator becomes unbounded and elucidate it from two per-
spectives in what follows.

Our first approach to supporting Eq. (4.1) is adapting the
original proof of the QCRB [8,9,34] to avoid involving the
unbounded SLD. Note that the influence of the SLD oper-
ator is always imposed via the product Lθ

√
ρθ . When the

SLD operator is unbounded, the product Lθ
√

ρθ may still be
bounded. For example, for the density operators in Eq. (3.5),
even the SLD operators is unbounded at θ = 0 and θ = π/2,
the product

Lθ

√
ρθ = −2 sin θ |0〉〈0| + 2 cos θ |1〉〈1| (4.2)

is still bounded at θ = 0 and θ = π/2. This motives us to
introduce the linear operator Qθ that satisfies the following
two conditions:

1

2
(Qθ

√
ρθ + √

ρθQ†
θ ) = dρθ

dθ
, (4.3)

√
ρθQθ − Q†

θ

√
ρθ = 0. (4.4)

In fact, Qθ plays the role of Lθ
√

ρθ , as Eq. (4.3) corresponds
to the SLD equation (2.5) and Eq. (4.4) corresponds to the her-
miticity of the SLD operator. Moreover, the QFI can always
be expressed as

F (1)
θ = ‖Qθ‖2

2. (4.5)

The advantage of Qθ over the SLD operator Lθ is that, accord-
ing to Eq. (4.5), the QFI is infinitely large if and only if Qθ

is unbounded. Therefore, if Qθ is unbounded, the F (1)-QCRB
becomes Eθ � 0, whose validation is trivial. So we only need
to consider the cases where Qθ are bounded.

Now, we assume that Qθ is bounded henceforth and prove
the QCRB without directly resorting to the SLD operator.
For any POVM {Ex} and any estimator θ̂ , let us define
X := ∑

x θ̂ (x)Ex and �X := X − tr(ρθX )1, where 1 denotes
the identity operator. The mean of the estimator is given
by Eθ [θ̂] = tr(ρθX ). The variance of the estimator, Vθ :=
E[θ̂2] − E[θ̂]2, is bounded from below by the variance of the
operator X [15, see Sec. 2.9], that is,

Vθ � tr[ρ(�X )2] = ‖(�X )
√

ρθ‖2
2. (4.6)

Applying the Cauchy-Schwarz inequality, it follows that

‖(�X )
√

ρθ‖2‖Qθ‖2 � |tr[√ρθ (�X )Qθ ]|. (4.7)

Since |z| � |Rez| for any complex number z, we get

|tr[√ρθ (�X )Qθ ]| � |Re tr[
√

ρθ (�X )Qθ ]|

=
∣∣∣∣tr

(
�X

Qθ
√

ρθ + √
ρθQ†

θ

2

)∣∣∣∣
=

∣∣∣∣tr
(

�X
dρθ

dθ

)∣∣∣∣
=

∣∣∣∣dtr(ρθX )

dθ

∣∣∣∣ =
∣∣∣∣dEθ [θ̂]

dθ

∣∣∣∣, (4.8)
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where the equality in the second last line is due to Eq. (4.3). It
then follows from Eqs. (4.6)–(4.8) that

Vθ �
(

d

dθ
Eθ [θ̂]

)2

‖Qθ‖−2
2 �

(
d

dθ
Eθ [θ̂]

)2/
F (1)

θ . (4.9)

For locally unbiased estimators, for which we have Eθ = Vθ

and d
dθ
E[θ̂] = 1, the inequality in Eq. (4.9) becomes Eθ �

‖Qθ‖−2
2 .

Using the operator Qθ instead of the SLD operator Lθ ,
we have proved that the QCRB Eθ � ‖Qθ‖−2

2 always holds
no matter whether the operator Qθ is bounded or not. This
proof can include the special case where Lθ is unbounded at a
singular parameter point θ ′ but the QFI is still finite. In such
cases, the QFI can be expressed as ‖Qθ ′ ‖2

2 = limθ→θ ′ tr(ρθL2
θ )

due to the relation between Qθ and Lθ . Therefore, we get
Eq. (4.1).

Our second approach to supporting the limiting version
of the F (1)-QCRB is bounding the estimation error with the
Bures metric, namely, Eq. (4.10). It is known that the Bures
metric satisfies F (3)

θ ′ = limθ→θ ′ F (1)
θ (e.g. see Ref. [23]), so the

inequality (4.1) is equivalent to

Eθ ′ � 1

F (3)
θ ′

. (4.10)

This inequality was recently proved by Yang, Chiribella, and
Hayashi through a more fundamental relation (denoted by
Yang-Chiribella-Hayashi inequality henceforth) [35]

1

2
(Eθ + Eθ+ε + ε2) � ε2

4dB(ρθ , ρθ+ε )2
(4.11)

for the estimators that are unbiased at both θ and θ + ε. Tak-
ing the limit ε → 0 of the above inequality, Eq. (4.10) can be
obtained. We also give an alternative proof using the purifica-
tion method in Appendix A. In addition, the inequality (4.11)
can be easily generalized to include the biased estimators, as
shown in Appendix B.

V. CONCRETE EXAMPLES

Seveso et al. [24] argued with examples that not only the
F (2)-QCRB but also the F (3)-QCRB can be violated when the
parametric density operator changes its rank through exam-
ples. This conflicts with our result Eq. (4.1) and Eq. (4.10)
in Sec. IV. In what follows, we shall analyze in detail the
example discussed in Ref. [24] and solve the conflict.

Following Ref. [24], we first consider the example whose
parametric density operator reads

ρq = (1 − q)|0〉〈0| + q|1〉〈1| with 0 � q � 1 (5.1)

with q being the parameter of interest. The rank of ρq changes
at the boundary, i.e., q = 0 and q = 1. The SLD is given by

Lq = −1

1 − q
|0〉〈0| + 1

q
|1〉〈1|, (5.2)

which becomes unbounded as q → 0 or q → 1. Meanwhile,
the Bures distance is given by

dB(ρq, ρq′ )2 = 2[1 −
√

(1 − q)(1 − q′) −
√

qq′]. (5.3)

The QFI expressions are given by [24]

F (3)
q = 1

q(1 − q)
, (5.4)

which diverges at q = 0 and q = 1, and

F (2)
q =

{
1, if q = 0 or 1,

1
q(1−q) , 0 < q < 1.

(5.5)

Suppose that we have n copies of the quantum system and per-
form on each copy the projective measurement whose POVM
is given by E0 = |0〉〈0| and E1 = |1〉〈1|. We denote with x j

the measurement outcome on the jth system, which takes the
value 0 and 1 with the probabilities 1 − q and q, respectively.
The statistical quantity

t :=
n∑

j=1

x j (5.6)

is a sufficient statistic for estimating q. The probability of t is
given by

pq(t ) =
(

n

t

)
qt (1 − q)n−t . (5.7)

Note that

∂ ln pq(t )

∂q
= t

q
− n − t

1 − q
= t − nq

q(1 − q)
, (5.8)

implying that the maximum likelihood estimator for this sta-
tistical model is given by

q̂ML(t ) = t

n
. (5.9)

The mean of q̂ML(t ) is q, so q̂ML(t ) is unbiased for all 0 � q �
1. The variance of q̂ML(t ) is q(1 − q)/n, so the mean-square
error of the maximum likelihood estimator vanishes at q = 0
and q = 1. Comparing the meas-square error of the maximum
likelihood estimation with the QFI expressions Eq. (5.4) and
Eq. V.5, it can be seen that the F (2)-QCRB is violated at
q = 0 and q = 1 while the F (3)-QCRB still holds in such a
scenario [24].

Furthermore, Ref. [24] considered a reparametrization of
the above example, namely,

ρϑ = cos2 ϑ |0〉〈0| + sin2 ϑ |1〉〈1| with 0 � ϑ � π

2
. (5.10)

This is a reparametrization of ρq in Eq. (5.1) by substituting
q = sin2 ϑ therein. For this statistical model, the SLD is given
by

Lϑ = −2 tan ϑ |0〉〈0| + 2 cot ϑ |1〉〈1|, (5.11)

which becomes unbounded at ϑ = 0 and ϑ = π/2. Corre-
spondingly, the QFI are given by [23]

F (3)
ϑ = 4 and F (2)

ϑ =
{

0, if ϑ = 0 or π/2,

4, otherwise. (5.12)

The optimal measurement for estimating ϑ is still given by
the POVM {|0〉〈0|, |1〉〈1|}, as the parametric density matrix
is always diagonal with the basis {|0〉, |1〉}. Because the max-
imum likelihood estimator is equivariant [36, Sec. 9.4], the
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maximum likelihood estimator ϑ̂ML for ϑ can be expressed as

ϑ̂ML(t ) = arcsin[
√

q̂ML(t )] = arcsin

(√
t

n

)
, (5.13)

where t is the same as that in Eq. (5.6). This is equivalent
to first estimate q in Eq. (5.1) using the maximum likelihood
estimation and then calculate ϑ via the relation q = sin2 ϑ . It
can be seen from Eq. (5.7) that t has a deterministic value at
q = 0 and q = 1, which correspond to ϑ = 0 and ϑ = π/2,
respectively. Consequently, the variance of ϑ̂ML vanishes at
these parameter points. Meanwhile, the continuous version
of QCRB reads Eϑ � 1/(4n). Due to these facts, it was con-
cluded in Ref. [24] that the continuous version of QCRB (or
the F (3)-QCRB) is violated at θ = 0 and θ = π/2. However,
the continuous version of QCRB should be valid according
to our analysis in the previous section. We shall solve this
conflict in what follows.

Note that the QCRB is established only for locally unbi-
ased estimators. Although q̂ML is unbiased for q, ϑ̂ML, as we
will show in the following, is not locally unbiased for ϑ . The
mean of the maximum likelihood estimator is given by

Eϑ [ϑ̂ML(t )] =
n∑

t=0

arcsin

(√
t

n

)
pq(t ) (5.14)

with q = sin2 ϑ and pq(t ) being given by Eq. (5.7). Taking the
derivative of Eϑ [ϑ̂ML(t )], we have

d

dϑ
Eϑ [ϑ̂ML(t )]

=
n∑

t=0

arcsin

(√
t

n

)
dq

dϑ

∂ pq(t )

∂q

∣∣∣∣
q=sin2 ϑ

= 2 sin ϑ cos ϑ

n∑
t=0

arcsin

(√
t

n

)
d pq(t )

dq

∣∣∣∣
q=sin2 ϑ

.

(5.15)

At ϑ = 0 and ϑ = π/2, it can be seen that d
dϑ

Eϑ [ϑ̂ML(t )]
vanishes for a finite n, as sin ϑ cos ϑ = 0. Nevertheless, the
locally unbiased condition requires that d

dϑ
Eϑ [ϑ̂ML(t )] = 1.

Therefore, ϑ̂ is not locally unbiased at ϑ = 0 and ϑ = π/2.
Figure 1 plots the bias of the maximum likelihood estimator
with n samples. It can be seen that the bias abruptly increases
when the true value of ϑ departs from 0 or π/2. Now, it is
clear that the fact ϑ̂ML has zero variance does not mean the
QCRB must be violated, as ϑ̂ML is not a locally unbiased
estimator.

Furthermore, we use the biased version of QCRB Eq. (4.9)
to verify the continuous QCRB for ρϑ at the singular param-
eter points ϑ = 0 and ϑ = π/2. Figure 2 plots the numerical
result of the rescaled variance of the maximum likelihood esti-
mator (nVϑ ) and the biased versions of QCRB with a different
number n of samples at different true values of ϑ . Note that,
unlike the QCRB for a locally unbiased estimator, the biased
version of QCRB depends on the estimators themselves. It can
be seen from Fig. 2 that the biased QCRB always holds, while
the unbiased QCRB is violated near the singular parameter
points ϑ = 0 and ϑ = π/2.
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FIG. 1. The bias, Eϑ [ϑ̂ML] − ϑ , of the maximum likelihood esti-
mator ϑ̂ML vs the true value ϑ . n is the number of samples used for
estimation.

VI. CONCLUSION

In this work, we have studied the validity of the QCRB
at the specific parameter values where the parametric density
operator changes its rank. The violation of the QCRB based
on the widely used computation expression of the QFI, which
is discontinuous at the singular parameter points, is ascribed to
the inconsistency between the computation expression of the
QFI and the formal definition of the QFI as the SLD operator
becomes unbounded. We have showed that the potential loop-
hole of involving an unbounded SLD operator in the proof
of the QCRB can be closed by either using the Qθ operator
instead of the SLD operator or invoking the QCRB based on
the Bures distance, e.g., the Yang-Chiribella-Hayashi inequal-
ity [35]. We have analyzed in detail the QCRB in a typical
example of the quantum statistical models with parameter-
dependent rank and solved the conflict with previous results
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FIG. 2. Rescaled variances nVϑ (indicated with various mark-
ers) of the maximum likelihood estimator and corresponding biased
QCRBs (indicated with various lines). n is the number of samples
used for estimation. The shadow represents the region where the
QCRB for a locally unbiased estimator is violated.
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by showing that the maximum likelihood estimator therein is
not locally unbiased. Our work consolidates the soundness of
the QCRB as well as the QFI at the rank-changing points.
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APPENDIX A: PROOF OF THE QCRB BASED
ON THE BURES DISTANCE BY PURIFICATION

Although the F (3)-QCRB was already proved by Ref. [35],
we here give an alternative way by utilizing the purification of
mixed states. Let us start with the following proposition.

Proposition 1. Assume that Aθ and Aθ ′ are two bounded
operators satisfying ρθ = AθA†

θ and ρθ ′ = Aθ ′A†
θ ′ , respectively.

For any POVM {Ex} and any unbiased estimator θ̂ , we have

Eθ � 1
4β2‖Aθ ′ − Aθ‖−2

2 , (A1)

where ‖X‖2 =
√

tr(X †X ) is the Schatten-2 norm of an opera-
tor X and β is a scalar quantity defined by

β := θ ′ − θ −
∑

x

ηx,θ‖
√

Ex(Aθ ′ − Aθ )‖2
2 (A2)

with ηx,θ := θ̂ (x) − θ for brevity.
Proof. The mean-square error of estimating θ can be ex-

pressed as

Eθ =
∑

x

η2
x,θ‖

√
ExAθ‖2

2. (A3)

By inserting
∑

x Ex = 1 into ‖Aθ ′ − Aθ‖2
2, we get

‖Aθ ′ − Aθ‖2
2 =

∑
x

‖√Ex(Aθ ′ − Aθ )‖2
2. (A4)

It then can be shown that

E1/2
θ ‖Aθ ′ − Aθ‖2 �

∑
x

|ηx,θ |‖
√

ExAθ‖2‖
√

Ex(Aθ ′ − Aθ )‖2

�
∑

x

|ηx,θ ||tr[A†
θEx(Aθ ′ − Aθ )]| =: α.

(A5)

Here the first inequality is due to a Cauchy-Schwarz inequality
[
∑

x f (x)2][
∑

x g(x)2] � [
∑

x f (x)g(x)]2 for two real func-
tions f (x) = ηx,θ‖

√
ExAθ‖2 and g(x) = ‖√Ex(Aθ ′ − Aθ )‖2,

and the second one is due to a Cauchy-Schwarz inequal-
ity ‖X‖2‖Y ‖2 � |tr(X †Y )| for two bounded operators X =√

ExAθ and Y = √
Ex(Aθ ′ − Aθ ). Noting that |z| � |Rez| for

any complex number z and
∑

x | fx| � | ∑x fx| for any series
of scalars fx, we get

α �
∣∣∣∣∣
∑

x

ηx,θRe tr[A†
θEx(Aθ ′ − Aθ )]

∣∣∣∣∣
=

∣∣∣∣∣
∑

x

ηx,θ

2
tr[Ex(Aθ ′A†

θ + AθA†
θ ′ − 2AθA†

θ )]

∣∣∣∣∣.

Substituting

Aθ ′A†
θ + Aθ A†

θ ′ − 2AθA†
θ

= −(Aθ ′ − Aθ )(Aθ ′ − Aθ )† + Aθ ′A†
θ ′ − AθA†

θ (A6)

into the right-hand side of the above inequality, we get

α � 1

2

∣∣∣∣∣−
∑

x

ηx,θ‖
√

Ex(Aθ ′ − Aθ )‖2
2

+
∑

x

ηx,θ‖
√

ExAθ ′ ‖2
2 −

∑
x

ηx,θ‖
√

ExAθ‖2
2

∣∣∣∣∣. (A7)

For all unbiased estimators θ̂ ,
∑

x θ̂ (x)tr(ExAθA†
θ ) = θ , which

implies that ∑
x

ηx,θ‖
√

ExAθ ′ ‖2
2 = θ ′ − θ (A8)

for all θ and θ ′. Specifically for θ ′ = θ , we have∑
x

ηx,θ‖
√

ExAθ‖2
2 = 0. (A9)

Substituting Eq. (A8) and Eq. (A9) into the right-hand side
of Eq. (A7), we get α2 � β2/4. Therefore, together with
Eq. (A5), we get Eq. (A1).

The inequality (A1) can be further refined from two per-
spectives. First, the operator A satisfying ρ = AA† for a given
ρ is not unique. All the operators A = √

ρU with U being
an arbitrary unitary operator satisfy ρ = AA† and are called
amplitudes of ρ. The inequality (A1) holds for all amplitudes
of ρθ and ρθ ′ ; this supplies a freedom of choosing specific Aθ

and Aθ ′ to formulate useful lower bounds based on Eq. (A1).
The Bures-Uhlmman geometry for density operators tell us
that [33,37]

min
Aθ ,Aθ ′

‖Aθ ′ − Aθ‖2
2 = dB(ρθ , ρθ ′ )2, (A10)

and the minimum is attained by the amplitudes satisfying

A†
θAθ ′ = A†

θ ′Aθ � 0. (A11)

Two amplitudes satisfying the above condition are called par-
allel [38]. For parallel amplitudes Aθ and Aθ ′ we have

Eθ � β2

4dB(ρθ , ρθ ′ )2
. (A12)

Note that the quantity β defined by Eq. (A2) still depends on
the POVM and estimator.

Second, the inequality Eq. (A1) holds for any two pa-
rameter points θ and θ ′ in the range of the parameter. This
supplies another freedom of formulate useful lower bounds on
the estimation error at θ . Let us consider two infinitesimally
neighboring parameter points by defining ε := θ ′ − θ and
taking the limit ε → 0. Assuming that Aθ is differentiable so
that Aθ ′ ≈ Aθ + εdAθ /dθ . Therefore, we obtain

β ≈ ε − ε2
∑

x

ηx,θ tr

(
dA†

θ

dθ
Ex

dAθ

dθ

)
, (A13)

and thus Eq. (A1) becomes

Eθ � 1

4
lim
ε→0

β2‖Aθ ′ − Aθ‖−2
2 = 1

4

∥∥∥∥dAθ

dθ

∥∥∥∥
−2

2

. (A14)
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Note that in Proposition 1 is established the estimator that
is unbiased at both the parameter point θ and θ + ε; When
taking the limit ε → 0, the unbiased condition at θ and θ + ε

is equivalent to the local unbiased condition.
If we consider the inequality Eq. (A1) with the parallel am-

plitudes for two infinitesimally neighboring parameter points,
it follows that

Eθ �
[

4 lim
ε→0

dB(ρθ , ρθ+ε )2

ε2

]−1

= 1

F (3)
θ

. (A15)

Therefore, we obtain the QCRB without resorting to the SLD
operator.

The purification method is often used for approaching
the QCRB for noisy quantum-enhanced metrology; e.g., see
Refs. [39–41]. Here the inequalities derived in Proposition 1
can take the range of the unbiased conditions from the local
infinitesimal neighborhood to any two reference points. This
may be useful in further study of noisy-enhanced metrology.

APPENDIX B: GENERALIZATION OF THE
YANG-CHIRIBELLA-HAYASHI INEQUALITY TO BIASED

ESTIMATORS

We here show that the original proof [35] of the Yang-
Chiribella-Hayashi inequality (4.11) can be slightly changed
to include biased estimators. For simplicity, we assume that
the measurement outcome x is discretely valued. The deriva-
tion can be easily generalized to the continuous valued
observables.

First, it can be shown from the definitions of the variance
and the mean of the estimator that

Vθ [θ̂ ] + Vθ+ε[θ̂ ] + (Eθ+ε[θ̂ ] − Eθ [θ̂])2

=
∑

x

(θ̂ − Eθ [θ̂])2[pθ (x) + pθ+ε (x)]. (B1)

The following steps are similar to that in Ref. [35]. It follows
from pθ (x) + pθ+ε (x) � [

√
pθ (x) + √

pθ+ε (x)]2/2 that∑
x

(θ̂ − Eθ [θ̂])2[pθ (x) + pθ+ε (x)]

� 1

2

∑
x

(θ̂ − Eθ [θ̂ ])2[
√

pθ (x) +
√

pθ+ε (x)]2. (B2)

With the Bhattacharyya coefficient B(pθ , pθ+ε ) :=∑
x

√
pθ (x)pθ+ε (x), we have

2[1 − B(pθ , pθ+ε )] =
∑

x

[
√

pθ (x) −
√

pθ+ε (x)]2. (B3)

It then follows from the Cauchy-Schwarz inequality that

r.h.s. of Eq. (B2) × 2[1 − B(pθ , pθ+ε )]

� 1

2

{∑
x

(θ̂ − Eθ [θ̂])[pθ (x) − pθ+ε (x)]

}2

= 1

2
(Eθ+ε[θ̂] − Eθ [θ̂ ])2. (B4)

Combining Eqs. (B1), (B2), (B4), and B(pθ , pθ+ε ) �
‖√ρθ

√
ρθ+ε‖1 (see Ref. [42]), it can be shown that

Vθ [θ̂] + Vθ+ε[θ̂] + (Eθ+ε[θ̂] − Eθ [θ̂])2

� (Eθ+ε[θ̂] − Eθ [θ̂])2

2dB(ρθ , ρθ+ε )2
. (B5)

For unbiased estimators, the above inequality becomes the
Yang-Chiribella-Hayashi inequality (4.11). Taking the limit
ε → 0 in the above inequality, we get the biased version of
F (3)-QCRB:

Vθ �
(

d

dθ
Eθ [θ̂]

)2/
F (3)

θ . (B6)
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