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Numerical analysis of quantum circuits for state preparation and unitary operator synthesis
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We perform optimal-control-theory calculations to determine the minimum number of two-qubit controlled-
not (CNOT) gates needed to perform quantum state preparation and unitary operator synthesis for few-qubit
systems. By considering all possible gate configurations, we determine the maximum achievable fidelity as a
function of quantum circuit size. This information allows us to identify the minimum circuit size needed for a
specific target operation and enumerate the different gate configurations that allow a perfect implementation of
the operation. We find that there are a large number of configurations that all produce the desired result, even
at the minimum number of gates. We also show that the number of entangling gates can be reduced if we use
multiqubit entangling gates instead of two-qubit CNOT gates, as one might expect based on parameter counting
calculations. In addition to treating the general case of arbitrary target states or unitary operators, we apply the
numerical approach to the special case of synthesizing the multiqubit Toffoli gate. This approach can be used
to investigate any other specific few-qubit task and provides insight into the tightness of different bounds in the
literature.
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I. INTRODUCTION

Quantum computing devices are making rapid progress
towards large-scale practical applications [1,2]. Presently
available devices have been used to demonstrate quantum
advantage, in which a quantum computer performs a com-
putational task faster than the fastest present-day classical
computer [3,4].

The standard approach to performing quantum protocols
is the so-called circuit model. In this approach a sequence of
quantum gates is applied to the initial quantum state, conclud-
ing with a measurement of the final state to extract the output
of the computation. The sequence of quantum gates used to
perform the algorithm or any part of it is sometimes called the
quantum circuit.

It is well known that any unitary operator can be decom-
posed into, or in other words synthesized from, a sequence
of single- and two-qubit gates, provided the elementary gate
set is universal [5–10]. Similarly, any desired quantum state
can be prepared from any initial state using a sequence of
elementary gates [11–15]. As a result, any quantum algorithm
can be implemented by performing a sequence of these el-
ementary gates applied to a standard initial state. While the
natural gate set depends on the specific technology used in a
given realization of the qubits and their coupling mechanism,
the most common elementary gate set used in the quantum
information theory literature is the controlled-not (CNOT) gate
and the set of all single-qubit unitary operators. We will use

this elementary gate set as the standard one for most of our
calculations in this work.

Quantum algorithms are often designed with a block op-
eration, e.g. a black-box operation or oracle, that transforms
a multiqubit system in a certain desired way. It is impor-
tant for practical applications to be able to decompose such
multiqubit operations into single- and two-qubit gates. A
large amount of literature has been devoted to the question
of quantum circuit complexity, i.e., the smallest number of
single- and two-qubit gates needed to perform specific tasks
in quantum computation. There are two main approaches in
the study of circuit complexity. In one approach, a number
of studies in the literature have proposed systematic methods
to construct n-qubit operations from elementary gates using
step-by-step recipes [16–22]. In the other approach, some
studies have derived lower and upper bounds for the minimum
number of gates needed to perform n-qubit tasks. Impor-
tantly, there are cases for which there is a gap between the
gate counts obtained from the theoretical lower bounds and
those obtained from recipe-based constructions in the litera-
ture.

In this work we investigate this gap by numerically cal-
culating the minimum number of gates needed to perform a
given n-qubit task. Our numerical results therefore provide
tight lower bounds for the quantum circuit sizes needed to
perform various few-qubit tasks. We find in particular that it
is possible to achieve the theoretical lower bounds based on
parameter counting in some cases, while there are cases in
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which the actual minimum circuit sizes are higher than those
obtained from parameter counting calculations. Similarly,
we find that quantum-circuit-construction recipes in the liter-
ature are optimal in some cases but not others. We obtained
these results by modifying an optimal-control-theory algo-
rithm for optimizing control fields such that it can be used
to optimize unitary operators. Considering the exponential
growth of resources needed in general to implement state
preparation and unitary operator synthesis [6,7], our numer-
ical calculations were necessarily limited to small numbers
of qubits and short gate sequences. Specifically, we found
that we can investigate state preparation for up to four qubits
and unitary operators for up to three qubits in the most gen-
eral case before the computation time makes our numerical
approach unfeasible. We therefore cannot draw definitive con-
clusions about large systems. However, our results on small
systems can give an idea about how close past results in the
literature, including both the systematic constructions and the
mathematical bounds, are to the minimum number of gates
needed to perform quantum computing tasks in these systems.
Furthermore, our results on few-qubit systems can be espe-
cially useful for noisy intermediate-scale quantum devices
available today, since these devices are often operated at the
limits of their computational power and any gate optimization
can increase the complexity of problems that they can handle.

II. BACKGROUND AND ANALYSIS METHODS

A quantum circuit is composed of a sequence of quantum
gates. Typically the gate sequence contains single-qubit and
entangling gates. Single-qubit gates are commonly assumed to
have little cost in terms of the needed resources, e.g., imple-
mentation time [1,2]. The entangling gate count is therefore
used as the key metric. We follow this convention in this work
and we refer to the number of entangling gates in a quantum
circuit as the circuit size.

A. Related recent work

In addition to the theoretical approaches mentioned in
Sec. I, a few recent studies have also used numerical opti-
mization techniques for quantum circuit design. Goubault de
Brugière et al. [23] used numerical optimal control methods to
find optimal quantum circuits for synthesizing general unitary
operators using single-qubit gates and the Mølmer-Sørensen
(MS) gate. Since the MS gate, which simultaneously couples
all qubits in the system and contains a continuously tunable
parameter, is the only entangling gate in the gate set, the
overall structure of the quantum circuit is fixed and only
the continuous parameters of the different gates need to be
determined. In this case, conventional optimal control meth-
ods can be applied. A related earlier proposal for performing
quantum algorithms using the MS gate and single-qubit gates
was studied by Martinez et al. [24]. Cerezo et al. [25] pro-
posed a variational state preparation algorithm, where the
parameters of a quantum circuit are optimized with the goal
of approaching a target state. Shirakawa et al. [26] used nu-
merical methods to optimize quantum circuits by adding gates
one at a time and optimizing each gate while keeping the rest
of the quantum circuit fixed. The authors demonstrated that

this approach performs well in some cases, e.g., for preparing
ground states of physical Hamiltonians, while it does not
produce optimal quantum circuits in other cases.

B. Lower bounds

Before describing the details of our work, we review
past theoretical lower bounds for the CNOT gate counts for
state preparation and unitary operator synthesis in an n-qubit
system [7,17]. To slightly simplify the argument, we use
controlled-Z (CZ) gates instead of CNOT gates. These two gates
are equivalent to each other up to single-qubit operations, and
we refer to them by the two names interchangeably. A quan-
tum circuit with N CZ gates has N + 1 layers of single-qubit
gates, which we also refer to as rotations. At first sight, it
might seem that the number of single-qubit rotations in the
quantum circuit is given by the product n×(N + 1). How-
ever, if two or more single-qubit rotations are applied to the
same qubit in succession without this qubit being involved
in entangling gates, the single-qubit rotations can be com-
bined into one net rotation. We therefore only need to keep
n + 2N single-qubit rotations, n rotations at the initial time
and two rotations after each CZ gate, i.e., one rotation for
each qubit involved in the CZ gate. Each single-qubit rotation
is defined by three parameters that define a rotation in three
dimensions. However, not all of these parameters lead to in-
dependent variations in the operation of the quantum circuit.
In particular, a single-qubit rotation can be decomposed into
a rotation about the z axis followed by a rotation about an
axis in the xy plane. The z-axis rotation commutes with the
CZ gate. As a result, z-axis rotations can be extracted from all
single-qubit rotations and moved past the CZ gates to earlier
steps in the quantum circuit. Apart from the first layer of
single-qubit rotations, each single-qubit rotation is about an
axis in the xy plane and is specified by two independent
parameters. In the case of state preparation, even the first-step
single-qubit rotations can be decomposed into z-axis rota-
tions followed by xy-plane rotations, and the z-axis rotations
can then be ignored because they correspond to irrelevant
overall phase factors. As a result, for state preparation, the
number of independent parameters is 2n + 4N . For unitary
operators, the z-axis rotations in the first step of the quantum
circuit cannot be ignored, which gives a total of 3n + 4N
independent parameters. The theoretical lower bound for the
number of CZ gates is obtained by requiring that the number
of independent parameters in the quantum circuit matches or
exceeds the number of independent parameters in the target.
For state preparation, the number of independent parameter
defining an n-qubit state is 2×2n − 2. For unitary operators
the number of independent parameters is 4n − 1. The above
argument can be generalized to the case where two-qubit CZ

gates are replaced by m-qubit CZ gates. Excluding the first
step of the quantum circuit, each step contains m single-qubit
rotations. As a result, the number of independent parameters
in the quantum circuit is 2n + 2mN for state preparation and
3n + 2mN for unitary operator synthesis. The lower bounds
are then given by N = �(2n − 1 − n)/m� for state preparation
and N = �(4n − 1 − 3n)/2m� for unitary operator synthesis,
where �x� denotes the smallest integer larger than x, i.e., the
ceiling function. Figure 1 shows an example of how the above
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FIG. 1. Number of independent parameters in a four-qubit
quantum state (4QQS) (horizontal cyan line) and the number of
independent parameters in a quantum circuit as a function of circuit
size N . The red circles, green squares, and blue triangles correspond
to using two-, three-, and four-qubit CZ gates, respectively, along with
single-qubit rotations in constructing the quantum circuit. The num-
ber of independent quantum circuit parameters obviously increases
with circuit size. The lower bound for the circuit size needed to per-
fectly prepare an arbitrary four-qubit state is defined by the minimum
value of N for which the data point lies above the horizontal line.

parameter-counting calculations give lower bounds for the
quantum circuit size needed to perfectly perform a target task.

C. Target selection

As the target state or unitary operator, we first consider
random targets to investigate the most general case of an
arbitrary target. To generate a random n-qubit state, we choose
2n random complex numbers with each real or imaginary part
chosen randomly from a uniform distribution centered at zero.
We then calculate the norm of the resulting state vector and
renormalize the state. For unitary operators, we first generate
the first column of a 2n×2n matrix as described above for the
generation of a random state. Next we similarly generate the
second column, but before renormalizing the second column
we subtract from it its projection on the first column to make
sure that the two columns correspond to orthogonal states. We
keep adding columns that are normalized and orthogonal to
all previous columns until we fill the matrix. Once the matrix
is complete, we randomly shuffle its columns. In spite of rely-
ing heavily on randomly generated numbers, the procedures
described above for generating random quantum states and
unitary operators are in fact somewhat biased in the sense
that they do not produce results that are uniform in the Haar
measure [27]. To reduce the bias, we perform an additional
randomization step: We generate ten random unitary operators
following the procedure described above and multiply them
by the state or main unitary operator. The result is a random
instance from a distribution that has a reduced bias. We em-
phasize here that it is not necessary for our purposes to use
distributions that are uniform in the Haar measure. We only
need to avoid special cases, e.g., separable quantum states.

Our approach, which is based on using random number gen-
erators almost everywhere, is essentially guaranteed to avoid
such special cases.

D. Quantum circuit structure

Once we have generated a random instance of the target,
i.e., either a target state or a target unitary operator, we try
to determine the minimum number of CNOT gates needed to
implement the desired task. Considering a multiqubit system
(with the number of qubits n > 2) and N CNOT gates, there are
multiple different possible configurations for the CNOT gates.
For example, the quantum circuit below shows one example
of a gate sequence containing three CZ gates applied to a four-
qubit system:

R • R

R • R

R • R • R • R

R • R

A few points should be noted about the quantum circuit
above. First, the symbol R denotes a single-qubit unitary op-
erator but not a specific one. In other words, the R operations
in the quantum circuit above can all be different from each
other. Second, we have not assigned a control and target qubit
for each CZ gate. The reason is that the CZ gate is symmetric
with respect to the two qubits. The CZ gate can be turned into a
CNOT gate or vice versa by applying single-qubit gates before
and after the two-qubit gate. Furthermore, the roles of the
control and target qubits in a CNOT gate can be reversed by
changing the single-qubit rotations applied before and after
the CNOT gate, making it irrelevant which qubit is the control
qubit and which qubit is the target qubit for the purpose
of finding the shortest gate sequence. Third, apart from the
single-qubit rotations applied to all the qubits in the first step
of the quantum circuit, we apply single-qubit rotations only
after each CZ gate. The reason is that a sequence of single-
qubit rotations applied in succession to the same qubit can be
combined into a single rotation. This property helps reduce the
computation cost of our numerical calculations, in addition to
being crucial for establishing the lower bound on the number
of CNOT gates, as explained above.

The number of possible configurations for a two-qubit CZ

gate in an n-qubit system is n×(n − 1)/2, which means that
the total number of configurations in an N-gate sequence is
[n×(n − 1)/2]N . For a given target task, we considered all the
possible gate configurations and used optimal-control-theory
methods to find the single-qubit rotation parameters that give
the maximum achievable fidelity for that gate configuration.
The maximum achievable fidelity for a given N is then the
maximum fidelity obtained among all the different calcula-
tions. The shortest gate sequence needed for a perfect imple-
mentation of the task is the minimum value of N that gives a
fidelity value F = 1, up to the unavoidable numerical errors.

We pause for a moment to comment on the reason for
analyzing all possible gate configurations. Numerical opti-
mization algorithms search the space of possible solutions to

022426-3



ASHHAB, YAMAMOTO, YOSHIHARA, AND SEMBA PHYSICAL REVIEW A 106, 022426 (2022)

find the one solution that maximizes some objective, which
in this case is the fidelity of the obtained state or unitary
operator relative to the target state or operator. When the
search space is continuous, one can use gradient-based search
algorithms, which start from some initial guess for the solu-
tion and gradually move in the search space in the direction
that maximizes the increase in fidelity. After a large number
of iterations and barring complications in the topography of
the fidelity as a function of the solution parameters, the al-
gorithm converges to the optimal solution. This approach can
be used for the single-qubit rotations in our problem, since
these rotations can be expressed in terms of rotation angles,
which form a continuous space. Finding the optimal CNOT

gate configuration is trickier. The different configurations do
not form a continuous space. As such, we cannot use standard
gradient-based methods in the search for the optimal gate
configuration. Furthermore, a simple change in one CNOT gate
in the quantum circuit can have a large effect on the fidelity.
We therefore use the brute-force approach in which we try
every single one of the possible configurations and, by varying
the parameters of the single-qubit rotations, determine the
maximum achievable fidelity for every possible gate configu-
ration. We thus acquire a list of CNOT gate configurations and
their maximum achievable fidelities. We then select the gate
configuration that corresponds to the highest fidelity.

E. Numerical optimization algorithm

For the optimization of the single-qubit rotations, we use
a modified version of the gradient ascent pulse engineering
(GRAPE) algorithm [28]. In the standard GRAPE algorithm,
the problem is formulated as a control problem where some
parameters in a time-dependent Hamiltonian are varied in
time to effect the desired operation. It is then assumed (typ-
ically as an approximation) that the system is controlled by
piecewise constant pulses. In other words, the total pulse time
is divided into N time steps during which the Hamiltonian
remains constant. The unitary evolution operator U (T ) of the
dynamics can therefore be expressed as

U (T ) = UNUN−1 · · ·U2U1, (1)

where Uj is a unitary operator that describes the evolution in
the jth time step:

Uj = exp

[
−i�t

(
Ĥ0 +

m∑
k=1

uk ( j)Ĥk

)]
. (2)

Here �t is the duration of the time step, H0 is a time-
independent term in the Hamiltonian, m is the number of
control parameters, uk ( j) is the value of the kth control param-
eter in the jth time step, and Hk is the kth control Hamiltonian.
The algorithm proceeds by evaluating the derivative of the fi-
delity F with respect to variations in all the control parameters
uk ( j), identifying the direction of the gradient and making a
small move in the direction of the gradient, i.e., adding a small
correction to each uk ( j) that is proportional to the deriva-
tive ∂F/∂uk ( j). For a sufficiently small step size, the update
will increase the fidelity. After a large number of iterations,
the fidelity is expected to approach its maximum achievable
value for the situation under consideration. Importantly, when

the time steps �t are small, the derivative ∂F/∂uk ( j) can
be approximated by simple first-order expressions: For state
preparation, the fidelity is defined as

F = Tr[ρFU (T )ρ0U
†(T )] (3)

and its derivative is given by

∂F

∂uk ( j)
= −i�t〈λ j |[Ĥk, ρ j]〉, (4)

where ρ j is the density matrix propagated forward from
the initial density matrix ρ0 and λ j is the density matrix
propagated backward from the target density matrix ρF . For
unitary-operator synthesis, the fidelity is defined as

F =
∣∣∣∣Tr[U †

FU (T )]

2n

∣∣∣∣
2

(5)

and its derivative is given by

∂F

∂uk ( j)
= 2�t

4n
Im(〈Pj |ĤkXj〉〈Xj |Pj〉), (6)

where Xj is the unitary evolution operator propagated forward
from the identity matrix and Pj is the unitary evolution oper-
ator propagated backward from the target unitary matrix UF .
The above expressions for ∂F/∂uk ( j) are derived in Ref. [28].

In the version of the algorithm adapted for this work, we
seek to optimize single-qubit rotations rather than control
fields in a Hamiltonian. Nevertheless, the necessary modifi-
cations turn out to be rather straightforward. For a quantum
circuit with a given gate configuration, the unitary evolution
operator is given by

Utotal = RNVN RN−1VN−1 · · ·V2R1V1R0, (7)

where Rj is the combination (i.e., product) of single-qubit
rotations applied at the jth layer in the quantum circuit and
Vj is the jth CZ gate in the gate configuration under consid-
eration. Each gate configuration is defined by the sequence
Vj , which is therefore kept fixed in the GRAPE optimization,
and only the single-qubit rotations in Rj are optimized for a
given configuration. We update the single-qubit rotations by
making a small detour: We first imagine that we can apply an
additional single-qubit rotation after each single-qubit rotation
in the quantum circuit. The reason for introducing separate
single-qubit rotations, even though each one of the additional
rotations follows a single-qubit rotation on the same qubit, is
that the GRAPE algorithm uses a first-order approximation
that is valid only when the unitary operators being updated are
all close to the identity matrix. Meanwhile, the single-qubit
rotations that are being updated and optimized in our calcu-
lations can be very far from the identity matrix. Introducing
the small update rotations allows us to apply the GRAPE
algorithm to these small rotations and treat them as variables
whose parameters should be chosen to maximize the fidelity
improvement. A small single-qubit rotation on qubit k can be
expressed as

R(δxk, δyk, δzk ) = exp
[−i

(
δxk σ̂

(k)
x + δyk σ̂

(k)
y + δzk σ̂

(k)
z

)]
, (8)

where σ̂ (k)
x , σ̂ (k)

y , and σ̂ (k)
z are the standard Pauli matrices for

qubit k. The three parameters δxk , δyk , and δzk can then be
treated as the uk ( j) parameters in the GRAPE algorithm, with
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corresponding control Hamiltonians (i.e., Ĥk) σ̂ (k)
x , σ̂ (k)

y , and
σ̂ (k)

z . Once the derivatives and gradient of F are evaluated,
each small rotation R(δxk, δyk, δzk ) is determined and mul-
tiplied by the single-qubit rotation preceding it. As a result,
the single-qubit rotations in the gate sequence are updated
and the fidelity is slightly increased. The process is repeated a
large number of iterations to obtain the maximum achievable
fidelity. It is worth mentioning here that our approach can
be thought of as taking each step in the quantum circuit and
treating it as a time step in the GRAPE algorithm, although
there is no time variable in the gate decomposition problem
(apart from the time ordering of the single- and two-qubit
gates in the quantum circuit). In other words, our calculations
give the optimal single-qubit rotations but not the time needed
to implement these rotations in a certain physical system.

As explained above, we systematically go over all possible
gate configurations for a given number of CNOT gates. For
each configuration, we start by randomly generating single-
qubit rotations. Then we use the GRAPE algorithm to update
these rotations. As a general rule, we run 103 optimization
iterations for each situation under consideration and we add
more iterations if we determine they are needed to reduce
numerical errors or if there are discernible fluctuations in the
results indicating slow convergence.

III. NUMERICAL RESULTS

We now present the results of our numerical calculations.
We start with the results for arbitrary targets. Then we present
results for synthesizing Toffoli gates.

A. State preparation

In all our calculations for state preparation, the initial state
is the product state in which each qubit is in the state |0〉.
For each system size and elementary gate set, we plot the
fidelity F as a function of the number of entangling gates
N . The fidelity increases as a function of N until it reaches
F = 1 for a certain value of N , which we can identify as the
minimum number of entangling gates needed for perfect state
preparation.

For a two-qubit system, the calculation is simple. There is
only one possible configuration for the CZ gates. Our numeri-
cal calculations reproduce the well-known result that a single
CZ (or CNOT) gate is sufficient to prepare an arbitrary target
state [14]. This result is represented by the green open circle
in Fig. 2. For a three-qubit system and two-qubit CNOT gates,
each CNOT gate has three possible configurations correspond-
ing to the three possible pairings of the three qubits. The total
number of possible configurations is therefore 3N . The fidelity
F reaches 1 at N = 3, which means that with three CNOT

gates we can prepare an arbitrary target state. Specifically, at
N = 3 we obtain F = 1 up to numerical errors (on the order
of 10−12). This result is in agreement with the protocol in
[16] and is higher than the lower bound (N = 2) based on the
parameter-counting calculation in Sec. II. If for the entangling
gates we use three-qubit CZ gates (cyan diamonds in Fig. 2),
two entangling gates are needed for perfect state preparation.
If we use the generalized parameter-counting formulas given
in Sec. II, we find that the lower bound for three-qubit state

FIG. 2. Maximum achievable fidelity F for n-qubit state prepa-
ration when using a quantum circuit that contains N entangling gates.
The green open circle corresponds to preparing a two-qubit state
(i.e., n = 2) using two-qubit CZ gates (i.e., m = 2). The magenta
crosses and cyan diamonds are for the case n = 3 and corre-
spond to using two- and three-qubit CZ gates, respectively. The
red dots, green squares and blue pluses are for the case n = 4
and correspond to using two-, three-, and four-qubit CZ gates, re-
spectively. We used ten different randomly generated target states
for each setting. To show the statistical spread in the results, the
red dots show the results for all ten instances of the target state
for n = 4 and m = 2. For all other data points, we took the low-
est value of maximum fidelity among the ten random instances.
For a two-qubit system, a single CZ gate is sufficient for per-
fect state preparation. For all other data sets, the last shown (i.e.,
largest-N) data point in each set has an infidelity 1 − F ∼ 10−7 or
less after 103 optimization iterations and shrinks to below 10−12

if we continue the optimization to 106 iterations, which implies
that the small numbers that we obtain for 1 − F are numerical
errors, and the actual achievable fidelity in each one of these cases
is F = 1.

preparation using three-qubit CZ gates is N = 2. Hence our
numerical results in this case agree with the lower bound.

Next we consider the case of preparing a four-qubit state
using two-qubit CNOT gates, in addition to single-qubit rota-
tions. The red dots in Fig. 2 show the results for ten different
target states for each quantum circuit size. As could be ex-
pected, there are large variations in the fidelity for short
quantum circuits, as the randomly generated target states
could be close or far from states that can be reached with a
small number of CNOT gates. The lowest dot can be considered
a good conservative estimate for the fidelity for the hardest-to-
reach target states. As the quantum circuit size increases, the
fidelity increases and instance-to-instance variations decrease.
For a quantum circuit with six CNOT gates (i.e., N = 6), any
target state can be prepared perfectly, i.e., with fidelity F = 1.
Specifically, the numerical results give F values that keep
approaching 1 until the minimum infidelity 1 − F � 10−12.
This result suggests that the asymptotic value of 1 − F is
exactly zero, up to numerical rounding errors. In contrast,
for N = 5 the minimum infidelity converges to 1 − F ∼ 10−4

even if we require that F converges at the level of 10−12. We
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therefore conclude that the fidelity values obtained in this case
are accurate values for the fidelity that cannot be exceeded
with N = 5. In other words, perfect state preparation is not
possible with N = 5. The number N = 6 coincides with the
theoretical lower bound and is shorter than the size (N = 9)
of the gate sequence proposed in Ref. [17]. For the case of
preparing a four-qubit state using multiqubit CZ gates, the
lower bounds are N = 4 for three-qubit CZ gates and N = 3
for four-qubit CZ gates. Our numerical results show that the
minimum circuit sizes in these cases are N = 4 and N = 3, in
agreement with the respective lower bounds.

It is interesting that even below the lower bound for perfect
state preparation, the fidelity can be remarkably high. For
example, all ten red dots at N = 5 in Fig. 2 lie in the range
0.9993–0.9997. In a realistic setup, especially in the near
future, the increase of approximately 10−4 in fidelity that we
gain in going from N = 5 to N = 6 could be offset by errors
that are introduced by the extra CNOT gate in the quantum
circuit. In such a situation, it can be optimal to use a quantum
circuit with five CNOT gates rather than the six-CNOT-gate
circuit based on the lower bound for perfect state preparation.

Because we have fidelity values for all the different gate
configurations, we can go beyond identifying a single opti-
mal control sequence and also analyze the statistics of how
well different gate configurations perform. Before doing that,
however, we consider a geometric analogy between state
preparation and a point moving in a multidimensional space.
If we want to reach an arbitrary point in three-dimensional
Euclidean space, we can first move in the x direction, then
move in the y direction, and finally move in the z direction.
Any permutation of these three steps allows access to any
point in the whole space. We can similarly expect that if one
gate configuration allows a perfect preparation of a random
target state, any alternative configuration that is obtained by
a permutation of the qubit labels will also allow a perfect
preparation of the state. We examine this point by focusing
on one of our ten target states first. To make sure that we do
not have an accidentally easy random instance, we took the
target state that corresponds to the lowest red dot at N = 4
in Fig. 2 and used it as the target state. We then performed
the optimization algorithm with N = 6. The maximum fidelity
that we obtained in this case reached 1 − F ∼ 10−12. We took
the corresponding quantum circuit and inspected the fidelity
data for the 24 permutations obtained by qubit relabeling.
All permutations gave F = 1 (up to numerical errors) after
a sufficient number of optimization iterations [29]. Similarly,
with a few random checks, we verified and confirmed that
the configurations that give F = 1 for any one of our ten ran-
domly generated target states give F = 1 for all target states.
This result also supports the idea that there is a geometric
reason that makes a certain gate configuration able to reach
any target state in the n-qubit Hilbert space.

We now look at the statistics of gate fidelity data for all
different gate configurations for the cases N = 4, 5, and 6. It is
worth noting here that the number of configurations for N = 6
is 66 = 46 656. The histograms in Fig. 3 show the number
of configurations that have any given value of F , all for the
same target state. As above, we use the target state that gave
the lowest value of F at N = 4 in Fig. 2; we note, however,
that all the instances whose histograms we inspected gave

FIG. 3. Histograms of fidelity F values for all the possible CNOT

gate configurations for one instance of the state preparation problem
with a four-qubit target state and using two-qubit CNOT gates as
the entangling gates. A logarithm function is used for the x axis
to magnify the region close to F = 1 and make the features of the
histogram in this region easier to discern. The blue dotted, green
dashed, and red solid lines correspond to N = 4, 5, and 6, respec-
tively. The inset shows the high-fidelity tail of the N = 6 histogram.
The peak at 1 − F = 10−12 includes all the configurations that
gave 1 − F < 10−12, which turn out to be 20% of all possible
configurations.

qualitatively similar results. Instead of using the fidelity F as
the x axis, we use the function − log10(1 − F ), which magni-
fies the region just below F = 1. Up to N = 5 the fidelity data
form relatively simple distributions that end abruptly at some
finite values of F that depend on N and are all smaller than
1. For N = 6, the histogram has a long high-fidelity tail with
a high peak at 1 − F ∼ 10−12. In theory, the configurations
that allow perfect state preparation should give F values that
keep moving closer to F = 1 if we continue the optimization
indefinitely. In practice, however, numerical rounding errors
stop this trend and make the optimization procedure unreliable
when 1 − F ∼ 10−12. We therefore terminate the optimiza-
tion if we obtain 1 − F < 10−12.

One of our main goals in plotting these histograms is to
identify the number of gate configurations that allow a perfect
state preparation. For this purpose, it would be ideal if for
N = 6 the tail ended at some value of F (e.g., a value with
1 − F ∼ 10−5) and were then followed by a well-separated
peak at 1 − F � 10−12 that includes all the F = 1 configu-
rations. This shape of histogram could be expected based on
the intuitive picture of the gate configurations corresponding
to a discrete variable: Unlike continuous variables, unless a
certain gate configuration allows perfect state preparation (i.e.,
F = 1), it should not allow us to approach the target state
by a distance that corresponds to, say, 1 − F ∼ 10−10, which
seems too small for a randomly generated state with the small
numbers n = 4 and N = 6. While the histogram exhibits a
relatively sharp drop at − log10(1 − F ) ≈ 4.5, a small peak
appears around − log10(1 − F ) ≈ 7 and a small tail persists
up to the peak at − log10(1 − F ) = 12. We suspect that all of
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the data points with − log10(1 − F ) > 7 correspond to F = 1,
but the optimization algorithm incorrectly identified them as
having converged at lower values. The peak at 1 − F < 10−12,
which we can confidently identify as corresponding to F = 1,
contains 8611 data points. Hence the number of different gate
configurations in the F = 1 peak is at least 8611. If we also
include gate configurations that are obtained by qubit per-
mutations of F = 1 configurations, the total number of F =
1 configurations rises slightly and becomes 9264, which is
about 20% of all possible gate configurations. In other words,
there are a remarkably large number of gate configurations
that allow a perfect preparation of an arbitrary target state.
Although some multiplicity is to be expected based on qubit
relabeling and commuting gate configurations, there are still
a large number of qualitatively dissimilar gate configurations.
For example, the following three quantum circuits gave the
highest values of F after 104 iterations in the first run of the
algorithm (all of which gave 1 − F < 10−11 and can hence be
confidently identified as having F = 1):

R • R • R • R • R

R • R • R

R • R • R • R

R • R • R • R

R • R • R • R

R • R • R

R • R • • R • R

R • R • R • R

R • R • R • R • R

R • R • R

R • R • R • R • R

R • R • R

Each one of these quantum circuits can be used to generate 23
other equivalent ones by qubit permutations. Furthermore, the
fourth and fifth CZ gates in the first quantum circuit operate
on different qubits and therefore commute with each other,
which generates another 24 quantum circuits that must also
give F = 1. However, the three quantum circuits shown above
do not seem to be easily convertible into each other via qubit
permutation or CZ gate commutation. As an indication that the
third quantum circuit cannot be transformed into either of the
other two by simple permutations and commutation, we note
that the first and third qubits are involved in four CZ gates
while the second and fourth quits are involved in two of CZ

gates. In the other two quantum circuits, only one of the qubits
is involved in four CNOT gates.

It is also interesting to look at correlations between fi-
delity values for quantum circuits of different sizes. These

FIG. 4. Correlations between fidelity values for quantum circuits
of different sizes, specifically quantum circuits of size N1 = 2 and
those of size N2 = 5. Each gate configuration (to which we refer as
Qi) in the set of all configurations with size N1 produces one point
in the plot. The x axis shows the fidelity F1 for the quantum circuit
Qi. The y axis shows the maximum fidelity F2 that can be achieved
with a quantum circuit of size N2 and containing Qi as its initial part.
While there is some correlation between F1 and F2, the highest value
of F2 does not correspond to the highest value of F1, indicating that
optimizing the quantum circuit one layer at a time does not produce
the global optimum among large quantum circuits.

correlations address the question of whether one could start
by optimizing a quantum circuit with one CNOT gate, then
add one layer (i.e., another CNOT gate and the corresponding
single-qubit rotations), optimize the parameters of the newly
added layer while keeping the already-optimized parameters
from the first layer fixed, and so on. If this approach produces
the maximum value of F for large quantum circuits, it would
greatly speed up the optimization of large quantum circuits.
In Fig. 4 we plot the maximum achievable fidelity F2 of a
quantum circuit of size N2 = 5 as a function of the fidelity F1

that is achievable with the initial part of the quantum circuit,
specifically the first two layers of the circuit. Not surprisingly,
there is some correlation between F1 and F2, especially for
small values of fidelity. These correlations can be understood
based on the intuitive idea that bad small quantum circuits
(e.g., those with the same CNOT gate repeated multiple times
in a row) tend to lead to bad larger circuits. A more im-
portant result in Fig. 4 is the fact that the highest values
of F2 do not correspond to the highest values of F1. This
result means that, for example, the first two layers in the op-
timal five-layer quantum circuit are not the optimal two-layer
circuit. In other words, if we construct the quantum circuit
by gradually increasing the circuit size and optimizing each
layer when it is added to the circuit, we will in general not
obtain the optimal quantum circuit. The optimization must be
performed globally to ensure finding the optimal circuit of a
given size.

B. Quantum circuit depth

An important question when designing quantum circuits
is the depth of the circuit. For example, the first of the three
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quantum circuits shown in the preceding section has a smaller
depth and can be implemented faster than the other two,
because the two steps enclosed by the dashed lines can be
implemented simultaneously. We took all 9264 gate configu-
rations that gave F = 1 and calculated the depth for each one
of them. The depths of the quantum circuits had the distribu-
tion {0, 0, 0, 1008, 3984, 4272}. In other words, the minimum
depth is 4, with 1008 different quantum circuits having that
minimum depth. One example of a minimum-depth quantum
circuit is

R • R • R • R • R

R • R • R • R • R

R • R • R

R • R • R

The two pairs of steps that can each be parallelized are shown
by the dashed boxes.

The quantum circuit shown above reveals another inter-
esting feature: Not all qubit pairs appear in the CNOT gate
sequence. In particular, there are no CNOT gates on the qubit
pair 1-4 or the pair 2-3. This property could be helpful in the
design or utilization of real devices. For example, if a certain
multiqubit device realized in experiment has one defective
coupling between a pair of qubits, we can look for quantum
circuits that do not utilize that particular qubit pair. The fact
that there are a large number of alternative gate sequences al-
lows us to look for the one that is optimal for implementation
on the experimental device under consideration. Although our
computational limitations allow us to establish this result only
for the case of four-qubit quantum state preparation, it seems
likely that a similar situation will arise for larger systems
and/or for unitary operator synthesis.

C. Unitary operator synthesis

1. Arbitrary target

Next we turn to the case of decomposing, or synthesiz-
ing, n-qubit unitary operators. Figure 5 shows the results
for arbitrary three-qubit unitary operators decomposed into
elementary gates. The fidelity reaches F = 1 at N = 14, in
agreement with the lower bound and slightly shorter than the
size (N = 15) of the decomposition proposed in Ref. [22].
It is interesting to note that the fidelity goes above 0.99 al-
ready for N = 10. As a result, extremely high fidelities can
be obtained even with circuit sizes that are smaller than the
perfect-decomposition lower bound. This result provides con-
crete quantitative benchmarks for the approximate quantum
circuit synthesis of three-qubit unitary operators [30]. We
note that in the unitary operator synthesis calculations, we
used ten different instances up to N = 10 and used fewer
instances for larger values of N , because the computation time
became significant. For the case N = 14, the calculation took
the equivalent of a few months on a single core of a present-
day computer. For all values of N , the instance-to-instance
fluctuations were small and suggested that even with small
numbers of instances, we can expect the numerical results to
accurately represent the statistical average. We also performed

FIG. 5. Maximum achievable fidelity F for three-qubit unitary
operator synthesis as a function of quantum circuit size N . The red
circles and green squares correspond to using two- and three-qubit CZ

gates, respectively. Randomly generated unitary operators were used
as target operators. The inset shows the logarithm of the infidelity
log10(1 − F ) for the high-fidelity points. The arrows indicate that F
can be made arbitrarily close to F = 1 for the last point in each data
set by increasing the number of optimization iterations, while other
data points do not experience significant changes with an increased
number of iterations.

calculations where we used the three-qubit CZ gate (which is
equivalent to the three-qubit Toffoli gate) instead of two-qubit
CNOT gates in the elementary gate set. The minimum circuit
size needed to perfectly reproduce an arbitrary three-qubit
unitary operator was N = 9 in this case. This result agrees
with the respective lower bound.

Figure 6 shows histograms of the fidelity data for different
quantum circuit sizes. It is worth noting that these histograms

FIG. 6. Histograms of fidelity F values for all the possible CNOT

gate configurations for the problem of synthesizing a three-qubit uni-
tary operator using two-qubit CNOT gates and single-qubit gates. The
olive, green, orange, blue, magenta, cyan, and red lines correspond
to N = 8, 9, 10, 11, 12, 13, and 14, respectively. All the data in this
figure were obtained using 103 optimization iterations.
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do not show any qualitative change between N = 14, where
perfect synthesis becomes possible, and smaller values of N .
However, although it is not visible at the y-axis scale used
in Fig. 6, the N = 14 data have a long tail extending to
higher fidelities. After 103 optimization iterations, the highest
fidelities that we obtained in that case had 1 − F ∼ 10−8. Out
of the 314 = 4 782 969 different configurations, five configu-
rations had 1 − F < 10−7 and 3553 configurations had 1 −
F < 10−5. We took the top five configurations and inspected
the fidelity values for their permutations. Most permutations
gave 10−4 < 1 − F < 10−3. We reran the algorithm on all
of them and confirmed that with a few randomly chosen
initial guess choices and 104 iterations all permutations gave
1 − F < 10−8. We then reran the algorithm with 104 itera-
tions on all gate configurations that gave 1 − F < 10−3. If
we identify any gate sequence with a numerical fidelity value
of 1 − F < 10−8 and all its permutations as having F = 1,
we find that about 9.1×105 gate sequences, i.e., about 20%
of all possible sequences, meet these criteria. As in the case
of state preparation, a remarkably large number of distinct
quantum circuits allow a perfect synthesis of arbitrary unitary
operators, even at the lower bound for the quantum circuit
size. The minimum depth of the quantum circuit needed for
perfect unitary operator synthesis must be the same as the
number of CNOT gates, i.e., N = 14, because in a three-qubit
system it is not possible to have two consecutive two-qubit
gates with no overlap in the qubit pairs involved in the two
gates.

2. Multiqubit Toffoli gate

In addition to using arbitrary unitary operators as the target
gates, we also considered the special case of decomposing
Toffoli gates into smaller elementary gates. It should be noted
that such special cases can be decomposable into shorter cir-
cuits than those needed for the general case of an arbitrary
(i.e., worst-case) target. In fact, for the n-qubit Toffoli gate,
it has been shown that the minimum number of CNOT gates
needed for perfect synthesis grows at most quadratically with
n [5,31]. In other words, perfect synthesis of the n-qubit Tof-
foli gate is possible with approximately n2 or fewer two-qubit
CNOT gates, in contrast to the exponential scaling for arbitrary
unitary operators.

We start with the well-known case of decomposing the
three-qubit Toffoli gate into two-qubit CNOT gates [10]. The
fidelity F as a function of quantum circuit size N is plotted
in Fig. 7. The data show that six CNOT gates are needed to
perfectly synthesize the three-qubit Toffoli gate. Interestingly,
in the plot of fidelity vs circuit size, two flat steps are en-
countered: N = 2 and N = 3 give the same value of F and
similarly N = 4 and N = 5 give the same value of F . We
found that out of the 36 = 729 possible gate configurations
54 different configurations give F = 1. Since the three-qubit
Toffoli gate is equivalent to the three-qubit CZ gate and the
latter is symmetric with respect to permutations of the three
qubits, a sixfold symmetry resulting from qubit permutations
is expected. As a result, we find 54

6 = 9 dissimilar configu-
rations. Furthermore, since the three-qubit Toffoli gate is its
own inverse, any CNOT gate configuration that gives F = 1
can be reversed in time to produce another configuration that

FIG. 7. Maximum achievable fidelity F as a function of quantum
circuit size N for synthesizing a multiqubit Toffoli gate. The red
circles are for the well-known case of synthesizing a three-qubit
Toffoli gate from two-qubit CNOT gates. The green squares are for the
case of synthesizing a four-qubit Toffoli gate from two-qubit CNOT

gates. The blue triangles are for the case of synthesizing a four-qubit
Toffoli gate from three-qubit Toffoli gates.

also gives F = 1. This consideration allows us to reduce the
number of dissimilar configurations to 6. The CZ (or CNOT)
gate configurations in these quantum circuits are

• • • •
• • • •

• • • •
• • • •
• • • •

• • • •
• • • •
• • • •

• • • •
• • • •
• • • •

• • • •
• • • •
• • • •

• • • •
• • • •
• • • •

• • • •

In all the perfect decompositions, each one of the three qubits
is involved in four CNOT gates, i.e., each combination of
qubit pairs appears twice in the CNOT gates of the quan-
tum circuit. There were configurations in which the same
CNOT gate was repeated twice in succession and there were
configurations in which all adjacent CNOT gates were dif-
ferent from each other, i.e., involved different qubits. It is
also worth noting here that there are a total of 90 different
configurations of six-CNOT-gate sequences where each com-
bination of qubit pairs appears twice in the sequence and the
majority of these ( 54

90 = 60%) can be used to synthesize a
perfect Toffoli gate.
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For the case of decomposing the four-qubit Toffoli gate
into two-qubit CNOT gates, we performed calculations for up
to N = 10. The case N = 10 took the equivalent of a few
months of single-core computation time, which means that
it was too computationally costly to go beyond N = 10. The
fidelity reached only about 0.9 at N = 10, which means that a
few more CNOT gates are probably needed to obtain a perfect
decomposition of the four-qubit Toffoli gate. We note that
the general-case lower bound for an arbitrary n = 4 unitary
operator is N = 61.

For the case of decomposing the four-qubit Toffoli gate
into three-qubit Toffoli gates and single-qubit gates, we find
that eight three-qubit Toffoli gates are needed for a perfect
decomposition. In this calculation we used only three-qubit
CZ gates and single-qubit rotations in the elementary gate set,
i.e., not including two-qubit CNOT gates. If we include both
two- and three-qubit CZ gates in the elementary gate set, we
do not obtain any increase in F compared to the case where
we use only three-qubit CZ gates. As a result, the minimum
number of entangling gates is still N = 8. It should be noted
here that there is a well-known decomposition of the n-qubit
Toffoli gate into two (n − 1)-qubit Toffoli gates, two rotations
controlled by a single qubit and one rotation controlled by
n − 2 qubits [5,31]. Each controlled rotation can be decom-
posed into two CNOT operations and single-qubit rotations.
The gate count then becomes four (n − 1)-qubit Toffoli gates
and four CNOT gates, i.e., a total of eight entangling gates.
Our results show that, at least for the case n = 4, there is
no shorter quantum circuit that achieves the same goal of
perfectly synthesizing the n-qubit Toffoli gate.

Finally, it is worth emphasizing that the minimum number
of gates needed for a perfect decomposition can depend on
the entangling gates in the elementary gate set. For exam-
ple, if the entangling gate in the elementary gate set is the
general controlled-U gate instead of just the CNOT gate, the
three-qubit Toffoli gate can be decomposed into five two-qubit
gates, in addition to single-qubit rotations [10]. We performed
numerical calculations of this case, treating the rotations U
in the controlled-U gates as variables to be optimized, and
we confirmed that the minimum number of gates when using
controlled-U gates is 5. This result shows that the five-gate
decomposition in the literature is optimal in terms of quantum
circuit size.

IV. CONCLUSION

We have performed numerical optimal-control-theory cal-
culations to study various aspects of quantum state prepara-
tion and unitary operator synthesis using elementary gates.
These calculations allowed us to determine minimum quan-
tum circuit sizes and depths for some few-qubit tasks.
Furthermore, the flexibility afforded by numerical calcula-
tions allowed us to analyze statistical information related to all
the possible gate configurations. It also allowed us to investi-
gate the use of alternative gate sets, e.g., ones with multiqubit
gates instead of two-qubit CNOT gates as the entangling gates
in the elementary gate set.

Among the results that we found is the fact that theoret-
ical lower bounds in the literature generally, but not always,
coincide with the actual minimum numbers of gates needed
for various tasks. Other interesting results include the high
fidelities obtained even below the minimum number of gates
for perfect task implementation and the large multiplicity of
quantum circuits that lead to a perfect implementation of the
target task, even at the minimum required number of gates.

Recent studies have shown that quantum circuits can be
simplified and/or accelerated by the use of ancilla qubits
[30,32] or additional quantum states in each qubit [33–35].
It will be interesting to extend our work to study these
more complex situations. The results presented in this paper
demonstrate that numerical methods can be a powerful tool to
complement the theoretical approaches used in the literature
on quantum gate decomposition. Our approach can also be
applied in future studies on quantum circuit optimization,
including in cases where realistic physical constraints apply
to specific quantum computing devices.
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