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Qubit control noise spectroscopy with optimal suppression of dephasing
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We extend quantum noise spectroscopy (QNS) of amplitude control noise to settings where dephasing noise or
detuning errors make significant contributions to qubit dynamics. Previous approaches to characterize amplitude
noise are limited by their vulnerability to low-frequency dephasing noise and static detuning errors, which can
overwhelm the target control noise signal and introduce bias into estimates of the amplitude noise spectrum.
To overcome this problem, we leverage optimal control to identify a family of amplitude control waveforms
that optimally suppress low-frequency dephasing noise and detuning errors, while maintaining the spectral
concentration in the amplitude filter essential for spectral estimation. The waveforms found via numerical
optimization have surprisingly simple analytic forms, consisting of oscillating sine waves obeying particular
amplitude and frequency constraints. In numerically simulated QNS experiments, these waveforms demonstrate
superior robustness, enabling accurate estimation of the amplitude noise spectrum in regimes where existing
approaches are biased by low-frequency dephasing noise and detuning errors.
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I. INTRODUCTION

Robust, accurate control is a requirement for quantum
technologies ranging from quantum sensors to quantum
computers. In addition to being limited by environmental
noise sources or by crosstalk between neighboring quantum
systems, current gate fidelities are constrained by noise in the
drives and classical electronics used for control [1]. Common
examples of control noise include jitter in the amplitude
and phase of microwave fields used to implement gates
in platforms such as superconducting qubits, trapped ions,
quantum dots, and diamond nitrogen vacancy centers [2–5].
In numerous platforms, control noise is addressed using
composite pulses (CPs), which originated in nuclear magnetic
resonance to correct unknown sources of static amplitude and
phase noise [6]. Approaches such as dynamical decoupling
(DD) or dynamically corrected quantum gates (DCGs) are
capable of refocusing both control and environmental noise
sources, as long as the temporal correlations of the noise
decay on timescales that are slow compared to the control
[7–9]. While CPs, DD, and DCGs are powerful in that they
can increase gate fidelities without detailed knowledge of the
control noise, further gains can be realized by taking into
account specific features of the noise affecting a quantum
device and leveraging optimal control to design robust,
customized gates [3,10–12].

Obtaining the knowledge of the noise necessary for cus-
tomized error mitigation is the domain of quantum noise
spectroscopy (QNS) [13]. Over the last decade, QNS has be-
come a framework to characterize temporally correlated noise
in quantum devices by reconstructing the associated noise
power spectral densities or noise spectra. The noise spectra
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provide a means to perturbatively model the noisy dynamics
of a quantum device, estimate gate fidelities, and define ob-
jective functions for optimal control [3,14]. QNS protocols
were originally devised for classical, Gaussian, dephasing
noise [15,16], but have been extended to multiaxis noise [17],
non-Gaussian dephasing noise [18,19], and noise on multiple
qubits [20–22]. Most QNS protocols follow a procedure in
which a quantum system is (1) prepared in a state that is
sensitive to a target noise source, (2) allowed to evolve under
the influence of noise and control, and, finally, (3) measured to
estimate the expected value of an observable that captures the
dynamical effect of the noise. The control applied in step (2)
modifies the spectral response of the quantum system to noise.
Typically, the control is selected so the system is sensitive to
noise at frequencies within a certain range or band, yielding
an estimate of the noise spectrum in a localized region of the
frequency domain.

The first QNS protocol for characterizing quantum control
noise, introduced and experimentally validated on trapped
ions in Ref. [23], utilized control based on Slepian sequences
from classical signal processing to estimate the spectrum of
multiplicative amplitude noise acting on a single qubit. Wave-
forms based on Slepian sequences were later extended to
enable simultaneous estimation of amplitude and dephasing
noise spectra in Ref. [24]. Slepian sequences are notable for
their optimal spectral concentration or degree of localization
in a target frequency band [25]. In both classical and quantum
settings, the spectral concentration of Slepians translates into
estimates of the noise spectrum with minimal leakage bias
or contamination from noise at frequencies outside the target
band [25–27]. In addition to leveraging Slepians and other
tools from classical signal processing, Refs. [23,24] applied
a quantum tomographic procedure to isolate the dynamical
contribution of the amplitude noise from dephasing, the sec-
ondary noise source in the trapped ion device. Because it
relies on a perturbative expansion, the tomographic procedure
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ensures the estimate of the amplitude noise is unbiased by
the presence of dephasing provided that both noise sources
are sufficiently weak and, furthermore, that the dynamical
contribution of the amplitude noise is on the same order or
stronger than that of dephasing. While this condition holds in
the trapped ion device owing to the dominance of amplitude
noise, higher order terms in the perturbative expansion can
become significant in platforms where dephasing is strong rel-
ative to amplitude noise and/or predominantly low frequency,
characteristic of superconducting qubits and other solid-state
devices. In addition to dephasing, higher order contributions
can also become significant in the presence of static detuning
errors, which can arise from miscalibration or drift in the
carrier frequency of an external control field.

In this paper, we present a protocol for amplitude noise
QNS in regimes where dephasing noise or detuning errors
make significant contributions to qubit dynamics. Our pro-
tocol relies on a reduced-complexity optimization procedure
that takes into account realistic device constraints to arrive
at control waveforms that reduce the impact of higher order
perturbative terms while retaining a high degree of spectral
concentration. While the optimized waveforms sacrifice some
spectral concentration with respect to the Slepians, they ef-
fectively suppress low-frequency dephasing noise and cancel
static detuning errors. The optimized waveforms are well
approximated by a family of analytic functions, which we
term the dephasing-robust waveforms. In numerically simu-
lated QNS experiments, we show that the dephasing robust
waveforms reduce the magnitudes of higher order terms in
the perturbative expansion, allowing for reliable estimation
of the amplitude noise spectrum when combined with the
tomographic procedure of Refs. [23,24].

The paper is organized as follows. Section II summarizes
the perturbative treatment of the qubit dynamics under single-
axis control, multiplicative amplitude noise, and dephasing
originally presented in Ref. [23]. This section also introduces
the noise spectrum and control filter functions (FFs), which
capture how applied control modifies the response of the qubit
to noise in the frequency domain. In Sec. III, we present
the tomographic procedure, including perturbative corrections
up to fourth order. We then cast the problem of finding a
control waveform that minimizes the dominant higher-order
corrections into an optimization, using techniques from lin-
ear programming to scalably incorporate physical constraints.
Lastly, we introduce the analytic dephasing-robust wave-
forms, which closely approximate the results of our numerical
optimization. Finally, in Sec. IV, we compare the dephasing-
robust waveforms to the Slepians by numerically simulating
amplitude noise QNS on a qubit subject to low-frequency
dephasing noise or detuning error at various strengths. As
the strength of the amplitude noise decreases relative to the
dephasing or detuning error, we demonstrate that the dephas-
ing robust waveforms enable accurate reconstruction of the
amplitude noise spectrum.

II. BACKGROUND

A. Time domain: Control, noise, and dynamics

We consider a single qubit subject to time-dependent, tem-
porally correlated noise and controlled by modulating the

amplitude �(t ) and phase φ(t ) of an external driving field. By
transforming into a frame rotating with the carrier frequency
of the drive at resonance with the qubit energy splitting and
making the rotating wave approximation, we can write the
control Hamiltonian of the qubit in units of h̄ = 1 as

Hc(t ) = �(t )

2
[cos φ(t )σ1 + sin φ(t )σ2]. (1)

Here, we denote the Pauli operators by �σ = (σ1, σ2, σ3) ≡
(σx, σy, σz ). The actual qubit evolution differs from the ideal
dynamics generated by Hc(t ) due to the presence of dephasing
and amplitude control noise. In the rotating frame, the noise
is described by the Hamiltonian [3]:

HN (t ) = βz(t )σ3 + β�(t )Hc(t ). (2)

Here, the dephasing βz(t ) and amplitude noise β�(t ) are in-
dependent, stationary, Gaussian stochastic processes. Because
βz(t ) and β�(t ) are scalar and commute at all times, we stress
that they are classical noise processes. Quantum noise pro-
cesses, on the other hand, are associated with noncommuting
operators acting on an external environment or bath.

Note that the dephasing enters HN (t ) as an additive
frequency fluctuation whereas the amplitude noise acts mul-
tiplicatively on the control Hamiltonian, inducing fluctuations
in the Rabi frequency with magnitude �(t )β�(t ). While βz(t )
has units of frequency, β�(t ) is dimensionless. Static detuning
errors, which generate coherent rotations about σ3, contribute
to the mean of the dephasing process βz(t ). For later conve-
nience, we write the noise Hamiltonian in matrix form

HN (t ) = �B(t ) N(t ) �σ T , (3)

where

�B(t ) ≡ [β�(t ), β�(t ), βz(t )]

and

N(t ) ≡

⎛
⎜⎝

1
2�(t ) cos φ(t ) 0 0

0 1
2�(t ) sin φ(t ) 0

0 0 1

⎞
⎟⎠ (4)

are the noise vector and noise matrix, respectively.
The complete qubit dynamics, including both control and

noise, is described by the rotating-frame Hamiltonian H (t ) =
Hc(t ) + HN (t ). To isolate the dynamical contribution of the
noise, we make one additional transformation into the tog-
gling frame or interaction picture associated with Hc(t ). If
Uc(t ) = T+exp[−i

∫ t
0 ds Hc(s)] is the ideal gate implemented

by the noiseless control, the qubit dynamics in the toggling
frame are generated by the error Hamiltonian:

H̃ (t ) = Uc(t )†HN (t )Uc(t ). (5)

Since it is a unitary conjugation of Eq. (3), the error Hamilto-
nian can be expressed in matrix form as

H̃ (t ) = �B(t ) Y(t ) �σ T , (6)

where the control matrix is defined as Y(t ) ≡ N(t )R(t )
with [R(t )]i j ≡ 1

2 Tr[Uc(t )†σiUc(t )σ j] [27]. The unitary gen-
erated by the error Hamiltonian or error propagator, Ũ (t ) =
T+ exp[−i

∫ t
0 ds H̃ (s)], evolves the qubit in the toggling frame

and is related to the rotating-frame propagator by U (t ) ≡
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T+ exp[−i
∫ t

0 ds H (s)] = Uc(t )Ũ (t ). Observe that the rotating
and toggling frames are equivalent at a time t such that
Uc(t ) = I . Following Ref. [14], we parametrize the error prop-
agator as

Ũ (t ) = exp[−i�a(t ) · �σ ] = e−i
∑

m �a(m) (t )·�σ , (7)

where �a(t ) ≡ [a1(t ), a2(t ), a3(t )] is the real, time-dependent
error vector. On the right-hand side of this expression, the
mth term in the summation depends on the mth-order term
of a perturbative Magnus expansion of the propagator [28].
For a toggling-frame Hamiltonian along multiple Pauli com-
ponents, it is generally impossible to determine an exact
expression for �a(t ). For sufficiently weak noise [14], the er-
ror vector is approximated by the leading order term in the
Magnus expansion, so Ũ (t ) ≈ exp[−i

∫ t
0 dsH̃ (s)] and

�a(t ) ≈ �a(1)(t ) ≡
∫ t

0
ds �B(s) Y(s), (8)

where the second equality follows from Eq. (6).
Thus far, we have considered the most general form of the

control Hamiltonian in Eq. (1). In the remainder of this paper,
we restrict the drive phase to φ(t ) ∈ {0, π} so the control
generates rotations about the x axis and

Hc(t ) = �(t )

2
σ1, (9)

where we have redefined the amplitude control waveform
�(t ) to take both positive and negative values. For this sim-
plified control,

N(t ) =

⎛
⎜⎝

1
2�(t ) 0 0

0 0 0

0 0 1

⎞
⎟⎠,

R(t ) =

⎛
⎜⎝

1 0 0

0 cos �(t ) − sin �(t )

0 sin �(t ) cos �(t )

⎞
⎟⎠, (10)

Y(t ) =

⎛
⎜⎝

1
2�(t ) 0 0

0 0 0

0 sin �(t ) cos �(t )

⎞
⎟⎠,

where �(t ) = ∫ t
0 ds �(s). From Eqs. (4), (8), and (10), the

components of the error vector to leading order in the Magnus
expansion are [23,27]

a(1)
1 (t ) = 1

2

∫ t

0
ds �(s)β�(s), (11)

a(1)
2 (t ) =

∫ t

0
ds sin �(s)βz(s), (12)

a(1)
3 (t ) =

∫ t

0
ds cos �(s)βz(s). (13)

Due to the sparsity of the control matrix, each component of
the error vector is the integrated product of a single control
matrix element and a single noise source. Observe that the
amplitude noise enters the qubit dynamics solely through the
a(1)

1 (t ) component.

B. Frequency Domain: Spectra and Filter Functions

Because we are ultimately interested in the spectral prop-
erties of the noise, we transform from the time domain to
the frequency domain, where the noise and control are rep-
resented by spectra and FFs, respectively. If the dephasing
and amplitude noise sources are wide-sense stationary, their
autocovariances can be parametrized in terms of the lag time,
τ ≡ t2 − t1, so

〈	βn(t1)	βn(t2)〉 = 〈	βn(τ )	βn(0)〉,
where n ∈ {�, z}, 	O ≡ O − 〈O〉, and 〈·〉 denotes the ensem-
ble average over realizations of the amplitude and dephasing
noise processes. By the Weiner-Kinchin theorem, the power
spectral density or spectrum of the noise is the Fourier trans-
form of the noise autocovariance with respect to the lag time:

Sn(ω) = 1

2π

∫ ∞

−∞
dτ 〈	βn(τ )	βn(0)〉e−iωτ . (14)

The objective of our noise spectroscopy procedure is estimat-
ing S�(ω), the spectrum associated with the amplitude noise.

Estimating S�(ω) requires experimentally measurable
quantities that depend on the noise spectra. We take the ap-
proach of Ref. [23] in which the amplitude noise spectrum is
inferred from quantities derived from the error vector compo-
nents. For notational convenience, define

�β(t ) ≡ [β�(t ), βz(t ), βz(t )], (15)

�y(t ) ≡ [�(t )/2, sin �(t ), cos �(t )], (16)

so the error vector components in Eqs. (11)–(13) are given by
a(1)

i (t ) = ∫ t
0 ds yi(s)βi(s) for i ∈ {1, 2, 3}. The variances of the

error vector components are then [23,27]

〈
	a(1)

i (T )2
〉 = ∫ T

0
dt2

∫ T

0
dt1 〈	βi(t1)	βi(t2)〉 yi(t1)yi(t2)

= 1

π

∫ ∞

0
dω Si(ω) Fi(ω, T ). (17)

This expression is an overlap integral between the noise spec-
trum,

Si(ω) ≡
{

S�(ω), i = 1

Sz(ω), i = 2, 3,

and the associated control FF [3,29,30]:

Fi(ω, T ) ≡
∣∣∣∣
∫ T

0
dt eiωt yi(t )

∣∣∣∣
2

. (18)

The control FFs are frequency-domain representations of the
control generated by Hc(t ). For later convenience, we follow
Ref. [3] and group the FFs according to whether they de-
scribe the qubit’s response to amplitude or dephasing noise
in Eq. (17), forming the amplitude and dephasing FFs

F�(ω, T ) ≡ F1(ω, T ) = 1

4

∣∣∣∣
∫ T

0
dt eiωt �(t )

∣∣∣∣
2

, (19)

FZ (ω, T ) ≡ F2(ω, T ) + F3(ω, T )

=
∣∣∣∣
∫ T

0
dt eiωt sin �(t )

∣∣∣∣
2

+
∣∣∣∣
∫ T

0
dt eiωt cos �(t )

∣∣∣∣
2

.

(20)
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Observe that the amplitude noise spectrum enters the qubit
dynamics through 〈	a(1)

1 (T )2〉, while the dephasing noise
spectrum is present in both 〈	a(1)

2 (T )2〉 and 〈	a(1)
3 (T )2〉,

hence the two contributions to the dephasing FF in Eq. (20).

C. Quantum noise spectroscopy

QNS protocols characterize the environmental noise of a
quantum system by measuring system observables under var-
ious operational settings and correlating the measured values
to the strength of different noise sources. The filter function
formalism (FFF) offers a particularly clear insight into how
this process works. In the FFF, to leading order in a pertur-
bative expansion, the average value of a measured system
quantity is expressed as an overlap integral between the spec-
trum of a noise source and a control FF,

〈M(T )〉 = C
∫ ∞

0
dω S(ω)F (ω, T ), (21)

where C is some proportionality constant.
Note that the variance in Eq. (17) takes precisely this form.

Applying different controls to the quantum system modifies
the shape of F (ω, T ) in the frequency domain. For QNS, the
FF is often engineered to be localized within a chosen pass-
band or frequency interval, e.g., B ≡ [ω0 − δω, ω0 + δω]. For
sufficiently small δω, S(ω) is approximately constant within
B. With the additional assumption that the support of F (ω, T )
is minimal outside B, the quantity 〈M(T )〉 is approximately
proportional to S(ω0),

〈M(T )〉 ≈ S(ω0)C
∫

B
dω F (ω, T ). (22)

Since C and F (ω, T ) are known, we can infer S(ω0). Choos-
ing a set of control waveforms that concentrate F (ω, T ) in
different passbands then enables us to characterize S(ω) over
a range of frequencies.

Note that this procedure depends critically on F (ω, T ) be-
ing spectrally concentrated or localized in the target frequency
band, B. If F (ω, T ) exhibits spectral leakage or out-of-band
spectral components, the linear approximation of the overlap
integral in Eq. (22) is no longer valid and 〈M(t )〉 will de-
pend on the value of the spectrum outside of B. References
[23,24,27] minimized spectral leakage for QNS applications
by using control waveforms derived from Slepian sequences,
a family of discrete sequences that maximize spectral concen-
tration for spectral estimation based on classical time series
[26]. In absence of suitable control to localize the FF, the
spectrum can still be estimated through the frequency comb
techniques [16], linear inversion, or equivalent approaches
that discretize the overlap integral over a range of frequencies
[31,32]. Spectral leakage is still a detriment in these settings,
however, as delocalized FFs can produce nonsparse, poten-
tially ill-conditioned linear systems that amplify errors in the
spectral estimate. As such, maximizing spectral concentration
and minimizing spectral leakage is an important principle of
filter design for QNS.

III. DEPHASING-ROBUST CHARACTERIZATION
OF AMPLITUDE NOISE

Since 〈	a(1)
1 (T )2〉 is an overlap integral between the

amplitude noise spectrum and the amplitude FF, the filter-
shaping strategies of the previous section can, in principle, be
applied to infer S�(ω). Accomplishing this in a realistic sys-
tem, however, requires a means of experimentally measuring
〈	a(1)

1 (T )2〉. For noise that is zero mean, Ref. [23] devised a
strategy to measure 〈	a(1)

1 (T )2〉 that holds in a weak noise
limit. As the strength of the noise increases, however, our
ability to reliably determine 〈	a(1)

1 (T )2〉 is complicated by
terms that are higher order in the noise strength. In particular,
higher order dephasing-dependent terms can make it impos-
sible to isolate amplitude noise-dependent quantities, biasing
estimates of S�(ω).

A. Bias from dephasing noise

For weak, zero-mean noise and amplitude control that
generates a net identity (ensuring the toggling and rotating
frames are equivalent), Ref. [23] determined 〈	a(1)

1 (T )2〉 from
a tomographic procedure depending on three experimentally
measurable survival probabilities,〈

	a(1)
1 (T )2〉 ≈ 1

2 [1 + P (↑1, T ) − P (↑2, T ) − P (↑3, T )]

≡ P . (23)

Here, P (↑i, T ) = 〈|〈↑i |U (T )| ↑i〉|2〉 is the probability that
the qubit remains in state | ↑i〉 after evolving under noise and
control for a time T and | ↑i〉 denotes the +1 eigenstate of σi.
This estimate holds in a weak-noise limit in which dynamical
contributions beyond second order in βz(t ) and �(t )β�(t )
are negligible. Beyond this limit, terms that are higher order
in the error vector components are no longer negligible in
Eq. (23). In Appendix A, we extend the measurement strategy
to noise with nonzero mean and include perturbative terms
up to fourth order in βz(t ) and �(t )β�(t ). In the main text,
we focus on dephasing noise with nonzero mean to treat
static detuning errors, but take the amplitude noise to be zero
mean for simplicity. With higher-order perturbative terms and
nonzero-mean dephasing, Eq. (23) becomes〈

	a(1)
1 (T )2

〉 − 1
3

〈
a(1)

1 (T )4
〉 + 〈

a(2)
1 (T )2

〉
− 1

3

〈
a(1)

2 (T )2 a(1)
1 (T )2

〉 − 1
3

〈
a(1)

3 (T )2 a(1)
1 (T )2

〉
≈ 1

2 [1 + P (↑1, T ) − P (↑2, T ) − P (↑3, T )]. (24)

Here, the superscript (2) denotes the second-order Magnus
contribution to the error vector in Eq. (7), an explicit ex-
pression for which is provided in Appendix A. The first two
terms of Eq. (24) depend solely on amplitude noise, while the
remaining terms depend either on dephasing noise or both
amplitude and dephasing noise. When the dephasing noise
is strong relative to the amplitude noise or when the control
increases the sensitivity of the qubit to dephasing noise or
detuning error, the terms on the second line can dominate
over the other higher order terms and become comparable
in magnitude to 〈	a(1)

1 (T )2〉. Therefore, naïvely employing
Eq. (23) for amplitude noise spectroscopy will result in an
estimate of S�(ω) that is biased by dephasing.
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To better elucidate the relationship between noise strength,
noise spectra, amplitude control, and the relative magnitudes
of the terms in Eq. (24), we analyze the higher order terms in
the frequency domain. First, define the overlap integrals

I�(T ) ≡ 1

2π

∫ ∞

−∞
dω F�(ω, T )S�(ω), (25)

IZ (T ) ≡ 1

2π

∫ ∞

−∞
dω FZ (ω, T )

[
Sz(ω) + 2πμ2

z δ(ω)
]
, (26)

where 〈βz(t )〉 ≡ μz is static in time due to stationarity. Ob-
serve that 〈	a(1)

1 (T )2〉 = I�(T ). Since β�(t ) and βz(t ) are
Gaussian, their fourth-order moments factor into products of
one- and two-point correlation functions. Using this factoriza-
tion, we show in Appendix A, that the higher order terms take
the form 〈

a(1)
1 (T )4〉 = 3 I�(T )2, (27)〈

a(1)
1 (T )2a(1)

2 (T )2〉 + 〈
a(1)

1 (T )2a(1)
3 (T )2〉 = I�(T )IZ (T ), (28)

〈
a(2)

1 (T )2〉 = ∫ ∞

−∞
dω

∫ ∞

−∞
dω′ GZ (ω,ω′, T )

×
[

Sz(ω) Sz(ω′)
(2π )2

+ μ2
z

2π
Sz(ω)δ(ω′)

+ μ2
z

2π
Sz(ω′)δ(ω) + μ4

z

3
δ(ω)δ(ω′)

]
. (29)

Here, GZ (ω,ω′, T ) is a higher order FF given by

GZ (ω,ω′, T ) =
∫ T

0
dt1

∫ t1

0
dt2 sin[�(t1) − �(t2)]

×
∫ T

0
dt3

∫ t3

0
dt4 sin[�(t3) − �(t4)]

× [
eiω(t1−t2 )eiω′(t3−t4 ) + eiω(t1−t3 )eiω′(t2−t4 )

+ eiω(t1−t4 )eiω′(t2−t3 )]. (30)

While Eq. (27) depends quadratically on the overlap integral
between the amplitude noise spectrum and the amplitude FF,
Eq. (28) is the product of the overlap integrals associated with
amplitude noise and dephasing noise. Dephasing noise also
enters Eq. (29), which is a two-dimensional overlap integral
involving the dephasing noise spectrum and a higher order FF.
We can express Eq. (24) in terms of the overlap integrals as

1
2 [1 + P (↑1, T ) − P (↑2, T ) − P (↑3, T )]

≈ I�(T ) − I�(T )2 − 1
3 I�(T )IZ (T ) + 〈

a(2)
1 (T )2

〉
, (31)

which highlights the source of each higher-order correction.
If Eq. (23) is used to estimate 〈	a(1)

1 (T )2〉 = I�(T ), then
Eq. (28) contributes a dephasing-dependent multiplicative
bias proportional to IZ (T ). The magnitude of this bias can be
estimated from the measured survival probabilities:

IZ (T ) = 〈
	a(1)

2 (T )2
〉 + 〈

	a(1)
3 (T )2

〉
≈ 1 − P (↑1, T ). (32)

The remaining higher-order term in Eq. (30) contributes a
dephasing-dependent additive bias.

The additive and multiplicative biases can contribute to
the estimator when the dephasing noise is stronger than the
amplitude noise on the interval [0, T ], i.e.,∫ T

0
dt |βz(t )|2 >

∫ T

0
dt |�(t )β�(t )|2, (33)

or when the dephasing FFs FZ (ω, T ) and GZ (ω,ω′, T ) have
significant spectral support in regions of the frequency domain
where Sz(ω) and Sz(ω)Sz(ω′) are, respectively, large. In this
later case, the magnitudes of IZ (T ) and |〈a(2)

1 (T )2〉|1/2 can be
larger than I�(T ) even when the dephasing noise strength is
comparable to or weaker than the amplitude noise strength.
A particularly relevant example involves the 1/ f dephasing
noise present in solid-state platforms such as superconduct-
ing qubits and semiconductor qubits. Since μz �= 0 in the
presence of detuning error, detuning contributes additional
bias through Eq. (26) when the dephasing FF has dc support,
i.e., FZ (0, T ) �= 0. Similarly, if GZ (ω,ω′, T ) �= 0 at ω = 0 or
ω′ = 0, the detuning error can also contribute bias through
Eq. (29).

B. Optimized waveforms

When the FFs have low-frequency or dc support, the
higher-order dephasing-dependent terms can make a signifi-
cant contribution to Eq. (24). As a consequence, 〈	a(1)

1 (T )2〉
can no longer be isolated using the measurement strategy of
Ref. [23], biasing estimates of the amplitude noise spectrum.
Extending amplitude noise QNS to settings with detuning
errors or dephasing noise that is predominantly low frequency
requires a different control strategy. To engineer amplitude
control waveforms that suppress low-frequency dephasing
noise and detuning errors while maintaining spectral concen-
tration of the amplitude filter, we turn to optimal control.
The problem of filter design with bounded controls can be
cast as a scalable optimization problem. Our objective is to
design control waveforms of the form in Eq. (9) suited for am-
plitude noise spectroscopy in the presence of low-frequency
dephasing noise or detuning errors. As such, the amplitude
FF should be spectrally concentrated and the dephasing FF
should act as a high-pass filter, capable of filtering out low-
frequency and dc spectral components. To accomplish this,
we exploit the properties of the family of Slepian or discrete
prolate spheroidal sequences (DPSSs) [25]. For completeness,
we have provided a brief summary of the DPSSs and their
properties in Appendix B. The DPSS of order k is denoted
by {v(k)

n (N,W ) | n = 0, . . . , N − 1}, where N is the length of
the sequence and W ∈ (0, 1/2) is the bandwidth parameter
determining the size of the passband in the frequency domain.
Owing to the spectral concentration of their discrete-time
Fourier transforms (DTFTs), the lowest-order DPSSs have
been used extensively in classical spectral estimation. Ref-
erences [23,27] harnessed the spectral concentration of the
DPSS for amplitude noise spectroscopy in the quantum setting
by employing the piecewise constant amplitude waveforms

�(t ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

� v
(k)
0 (N,W ), t ∈ [0,	t )

� v
(k)
1 (N,W ), t ∈ [	t, 2	t )

...
...

� v
(k)
N−1(N,W ), t ∈ [(N − 1)	t, N	t ),

(34)
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where � is the control amplitude in units of angular frequency
and 	t is a time increment. This waveform produces an
amplitude FF that is spectrally concentrated in the passband
[−2πW/	t, 2πW/	t]. Through analog modulation tech-
niques, the passband can be shifted to different locations
along the frequency axis [27]. For example, sine modu-
lation entails modifying the waveform above so �(t ) =
� sin(ω0n	t )v(k)

n (N,W ) for t ∈ [n	t, (n + 1)	t ). This pro-
duces an amplitude FF with a positive-frequency pass-

band BDPSS(ω0) ≡ [−2πW/	t + ω0, 2πW/	t + ω0]. Co-
sine modulation, in which sin(ω0n	t ) is replaced in the
amplitude control waveform by cos(ω0n	t ), likewise pro-
duces an amplitude FF with positive-frequency passband
BDPSS(ω0).

Inspired by the gradient ascent in function space (GRAFS)
approach of Refs. [11,33], we parametrize the amplitude con-
trol waveform as a piecewise constant linear combination of
cosine and sine modulated DPSS,

�(t ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∑K−1
k=0 �(k)

c v
(k)
0 (N,W ), t ∈ [0,	t )∑K−1

k=0

{
�(k)

c cos[ω0	t] + �(k)
s sin[ω0	t]

}
v

(k)
1 (N,W ), t ∈ [	t, 2	t )

...
...∑K−1

k=0

{
�(k)

c cos[ω0(N − 1)	t] + �(k)
s sin[ω0(N − 1)	t]

}
v

(k)
N−1(N,W ), t ∈ [(N − 1)	t, N	t ).

(35)

Here, the contributions of the cosine- and sine-modulated
DPSSs of order k are determined, respectively, by the real
amplitudes �(k)

s and �(k)
c . Since for all φ ∈ R there exist �(k)

s
and �(k)

c such that sin(ω0m	t + φ) = �(k)
s sin(ω0m	t ) +

�(k)
c cos(ω0m	t ), we do not lose any expressive capability by

restricting the phase to zero in Eq. (35). Due to the linearity
of the Fourier transform, this waveform produces an ampli-
tude FF spectrally concentrated in BDPSS(ω0), equivalent to
the passband of the constituent cosine- and sine-modulated
DPSSs.

While spectral concentration of the amplitude filter is
enforced by the DPSS, we achieve the desired high-pass
dephasing FF by minimizing a control-dependent objective
function over the 2K-dimensional space of the amplitudes
�� ≡ [�(0)

c ,�(0)
s , . . . , �(K−1)

c ,�(K−1)
s ]. Since �(t ) is restricted

to low-order DPSSs for which 2K � N , this optimization
offers a significant dimensionality reduction over approaches
such as GRAPE that optimize over control parameters in each
of the N timesteps [33]. To suppress low-frequency dephasing
noise, we choose an objective function given by the overlap
integral in Eq. (25) with a 1/ f dephasing noise spectrum,

IZ ( ��, T ) = 1

π

∫ ∞

0
dω FZ (ω, ��, T )

1

ω + δω
, (36)

where δω > 0 is a small regularization term to make the
integral well-defined. Minimizing this objective function
corresponds to suppressing the fourth order, dephasing-
dependent terms in Eq. (28), reducing the bias from dephasing
noise. While we do not explicitly incorporate the fourth-order
contribution from Eq. (29) into the objective function, we
found that the waveforms resulting from our optimization
reduce the magnitude of this term, as we will demonstrate
numerically.

In realistic experimental implementations, the control am-
plitude is bounded by the maximum Rabi rate, �max. This
imposes an L∞ constraint on the control waveform in Eq. (35),∣∣∣∣∣

K−1∑
k=0

v(k)
m (N,W )

{
�(k)

c cos[ω0m	t] + �(k)
s sin[ω0m	t]

}∣∣∣∣∣
� �max, (37)

for m ∈ {0, . . . , N − 1}. The set of �� satisfying these
constraints defines the true feasible region of physically
realizable, piecewise constant control waveforms. Directly
imposing all 2N inequality constraints in our optimization,
however, is not scalable and removes the low-dimension ad-
vantage of the Slepian functional basis. Reference [33] instead
accounts for the maximum Rabi rate by imposing box inequal-
ity bounds on the individual basis function coefficients,

K max
m

∣∣v(k)
m (N,W )

∣∣∣∣�(k)
s

∣∣ � �max

2
,

K max
m

∣∣v(k)
m (N,W )

∣∣∣∣�(k)
c

∣∣ � �max

2
,

for k ∈ {0, . . . , K − 1} and using the L-BFGS-B optimization
algorithm, which natively handles such constraints. This ap-
proach reduces the number of constraints from 2N to 4K .
However, as depicted in Fig. 1(a) for the two-dimensional case
with K = 1, the feasible region defined by the box constraints
disregards large portions of the true feasible region. Note that
for this example, the corners of the box constraint do not touch
the edges of the true feasible region. An optimization algo-
rithm will fail to find solutions that lie within the true feasible
region if they fall outside the box constraints. This is particu-
larly problematic for high-amplitude waveforms, which lie at
the boundary of the true feasible region.

To reduce the number of constraints without overly re-
stricting the feasible region, we developed a dimensionality
reduction procedure based on linear programming. This pro-
cedure efficiently approximates the true feasible region with
a reduced set I of linear inequality constraints numbering
|I| � 2N . Intuitively, the dimensionality reduction identifies
the most critical constraints as those with a significant effect
on the size of the feasible region if added or removed. It re-
tains these critical constraints while removing the constraints
which have a minor impact on the feasible region. The critical
constraints that remain in set I take the form

∀i ∈ I
K−1∑
k=0

(
b(k)

s,i �
(k)
s + b(k)

c,i �
(k)
c

)
� �max, (38)
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FIG. 1. Amplitude constraints for optimal control in a toy exam-
ple with K = 1 and �max = 1. Plot (a) compares the feasible region
produced by box constraints [the interior of the dark (green) rectan-
gle] to the true feasible region (white), showing that large portions
of the true feasible region are excluded by the box constraints. In
(b), the linear-programming reduced feasible region [area enclosed
by the dark (blue) lines] is a much closer approximation of the true
feasible region.

where b(k)
s,i , b(k)

c,i ∈ R. Further details on the optimization and
dimensionality reduction procedure are given in Appendix C,
which may be of independent interest for linear programming
optimization problems with a large number of affine con-
straints.

Crucially, if the waveform in Eq. (35) satisfies this set of re-
duced linear constraints, then it also satisfies the set of original
constraints in Eq. (37). That is, the feasible region generated
by the reduced linear constraints is a subset of the true feasible
region. A comparison of the feasible regions generated by
the box constraints and the reduced linear constraints along
with the true feasible region for K = 1 is shown in Fig. 1. In
this example, the |I| = 12 reduced linear constraints generate
a feasible region that closely approximates the true feasible
region generated by the N = 40 000 constraints in Eq. (37), a
dramatic improvement over the box constraints. This advan-
tage continues into higher dimensions with K > 1.

In addition to the waveform amplitude being bounded by
the maximum Rabi rate, the control must generate a net
identity for Eq. (24) to hold. We can ensure that the control
implements an identity gate by requiring that the amplitude
waveform integrates to zero, i.e.,

∫ T
0 dt �(t ) = 0. For our

piecewise-constant waveforms in Eq. (35), this condition is
imposed by

K−1∑
k=0

[
�(k)

s c(k)
s + �(k)

c c(k)
c

] = 0, (39)

where

c(k)
s =

N−1∑
m=0

sin[ω0m	t]v(k)
m (N,W ),

c(k)
c =

N−1∑
m=0

cos[ω0m	t]v(k)
m (N,W ).

We further add a nonlinear constraint that the dc component of
the dephasing FF is exactly zero, FZ (ω = 0, ��, T ) = 0, which
eliminates the contribution of detuning error in Eq. (26). This
constraint can be discretized and expanded as

0 =
∣∣∣∣∣
N−1∑
i=0

sin �i

∣∣∣∣∣
2

+
∣∣∣∣∣
N−1∑
i=0

cos �i

∣∣∣∣∣
2

, (40)

where

�i = 	t
i−1∑
m=0

K−1∑
k=0

v(k)
m (N,W )

{
�(k)

c cos[ω0m	t]

+ �(k)
s sin[ω0m	t]

}
.

Equations (39) and (40) add two additional constraints to the
|I| linear constraints required to bound the Rabi rate.

We implemented the nonlinear optimization using parame-
ters relevant to superconducting transmon qubits. In Eq. (35),
we took N = 20 000 and 	t = 5 ns, so the total duration
of the waveform is T = N	t = 100 μs. For the DPSS, we
selected the bandwidth parameter so NW = 1. Typical appli-
cations use only the first 2NW DPSS, as higher order Slepians
are less spectrally concentrated. In our optimization, we found
that using the first 2NW + 1 DPSS or, equivalently, taking
K = 3 in Eq. (35), produced superior results at the expense
of slightly increased spectral leakage in the amplitude FF.
Using a gradient-based interior-point solver [34–36], we min-
imized the objective function Iz( ��, T ) over �� subject to the
linear constraints in Eqs. (38) and (39). We performed this
optimization for 200 different modulation frequencies ω0 ∈
{2π/T, 2 · 2π/T, . . . , 200 · 2π/T }, so ω0/2π ranged from
0.01 MHz to 2.00 MHz. For each frequency ω0, the modulated
DPSS basis functions in Eq. (35) define a new family of
parameterized waveforms, a new feasible region (and reduced
feasible region), and a new optimization problem:

min
�

(k)
c ,�

(k)
s

2
∫ ∞

0
dω FZ (ω, ��, T )

1

ω + δω

s.t. ∀i ∈ I
K−1∑
k=0

(
b(k)

s,i �
(k)
s + b(k)

c,i �
(k)
c

)
� �max,

K−1∑
k=0

(
�(k)

s c(k)
s + �(k)

c c(k)
c

) = 0,

FZ (ω = 0, ��, T ) = 0. (41)

A sample waveform resulting from this optimization at mod-
ulation frequency ω0/2π = 0.1 MHz is displayed in Fig. 2
along with the associated amplitude and dephasing FFs. For
comparison, Fig. 2 also shows the FFs generated by the
k = 0 DPSS (Slepian) waveform in Eq. (34) combined with
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FIG. 2. Comparison of waveforms and FFs for amplitude noise QNS. The optimized waveforms (orange circles) and dephasing-robust
waveforms corresponding to the first root of J0 (blue solid line) are plotted (a) with their associated amplitude FFs (b) and dephasing FFs
(c). The optimized and dephasing-robust waveforms and FFs almost completely overlap. Shown in (d) is the k = 0 DPSS (Slepian) waveform
for N = 2 × 104 and NW = 1 along with the corresponding amplitude (e) and dephasing (f) FFs. All waveforms have total time duration
T = 100 μs and are modulated at frequency ω0/2π = λ/2π = 0.1 MHz to shift the passband of the amplitude FF.

sine modulation at frequency ω0/2π = 0.1 MHz. The ampli-
tude FFs of both the optimized [Fig. 2(b)] and the Slepian
[Fig. 2(e)] are spectrally concentrated in passbands centered
at 0.1 MHz. Although the optimized amplitude FF displays
more spectral leakage in the form of oscillatory sidelobes
outside the passband, the optimized dephasing FF in Fig. 2(c)
is largely suppressed at frequencies below 0.1 MHz. This is
a substantial improvement over the dephasing FF generated
by the Slepian waveform, which has significant support at
low frequencies. This demonstrates the effectiveness of the
optimization in reducing the low-frequency components of the
dephasing FF.

C. Analytic dephasing-robust waveforms

The optimized waveform for ω0/2π = 0.1 MHz obtained
in the previous section and plotted in Fig. 2(a) appears to
be a simple oscillatory function with a relatively constant
amplitude. This pattern continues over a range of modula-
tion frequencies. Specifically, we find that the numerically
optimized waveforms are well-approximated by analytic func-
tions, which we term dephasing-robust waveforms. These
waveforms are defined by

�d-r(t ) ≡ �0 sin(λt ), (42)

where the amplitude �0 and control modulation frequency
λ are constrained to take particular values that enforce sup-
pression of low-frequency dephasing noise, namely, �0 and λ

must satisfy

λ = 2πM

T
, (43)

J0

(
�0

λ

)
= 0, (44)

where M is an integer, T is the total duration of the wave-
form, and J0 is the order-0 Bessel function of the first kind.
Interestingly, a sinusoidal driving field satisfying these same
conditions was employed in Ref. ([37]) to create dressed

qubits robust to detuning and static amplitude offsets. The
first condition guarantees that the dephasing-robust wave-
forms generate a net identity over the time interval [0, T ],
as

∫ T
0 dt �d-r(t ) = 0. The second condition is equivalent to

requiring that the ratio �0/λ be a root of J0. The Bessel
function J0 has infinitely many roots, with the first three being
approximately 2.40, 5.52, and 8.65. As we will show, the
first and second conditions imply that FZ (0, T ) = 0, ensuring
that the mean-dependent contributions in Eqs. (26) and (29)
vanish. Figure 2(a) shows that the dephasing-robust waveform
corresponding to the first root is nearly identical to the wave-
form obtained by numerical optimization.

As desired for amplitude noise QNS, the amplitude FFs
generated by the dephasing-robust waveforms are localized in
tunable passbands set by λ. The amplitude FF follows from
Eq. (19) and takes the form

F�(ω, T ) =
(

�0λ sin(ωT/2)

ω2 − λ2

)2

, (45)

which is spectrally concentrated in the passband Bd-r(λ) =
[λ − 2π/T, λ + 2π/T ].

The most notable property of the dephasing-robust wave-
forms is that spectral concentration of the amplitude FF is
preserved, while low-frequency components of the dephas-
ing FF are suppressed. Using the periodic structure of the
dephasing-robust waveform, we show in Appendix D that the
dephasing filter can be expressed as

FZ (ω, T ) = sin2(Mπω/λ)

sin2(πω/λ)

[ ∣∣∣∣
∫ 2π/λ

0
dt cos �(t )e−iωt

∣∣∣∣
2

+
∣∣∣∣
∫ 2π/λ

0
dt sin �(t )e−iωt

∣∣∣∣
2
]
. (46)
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FIG. 3. Leading order dephasing-robust waveforms and FFs. Dephasing-robust waveform solutions corresponding to the first (top row),
second (middle row), and third (bottom row) roots of J0, all with modulation frequency λ = 0.10 MHz and total time duration T = 100 μs.
Plotted from left to right are the amplitude control waveforms [(a), (d), (g)], the amplitude FFs [(b), (e), (h)], and dephasing FFs [(c), (f), (i)].
Note that the dephasing FFs are suppressed at frequencies below λ.

The significance of Eq. (44) becomes apparent when we ex-
amine this expression at ω = 0, noting that∫ 2π/λ

0
dt cos �(t ) = 2π cos(�0/λ)J0(�0/λ)

λ
, (47)∫ 2π/λ

0
dt sin �(t ) = 2π sin(�0/λ)J0(�0/λ)

λ
. (48)

The condition J0(�0/λ) = 0, thus, guarantees FZ (0, T ) = 0,
which cancels detuning error.

The term immediately to the right of the equality in
Eq. (46), which is known as the Fejér kernel [38], is a periodic
function with peaks centered at integer multiples of λ. For
fixed λ, the height of the peaks increases and the width of
the peaks decreases with increasing M. When M � 1, the
Fejér kernel is approximated by a frequency comb or sum of
delta functions centered at integer multiples of λ [16]. In this
regime, we show in Appendix D that the dephasing FF takes
the form

FZ (ω, T ) ≈ 2πT
∑
k∈Z

δ(ω − kλ)

∣∣∣∣Jk

(
�0

λ

)∣∣∣∣
2

, (49)

where Jk is the order-k Bessel function of the first kind.
Since FZ (0, T ) = 0, the dephasing FF is a high-pass filter that
suppresses low frequency dephasing noise up to the cutoff
frequency λ.

Along with the formal derivation of Eq. (49) presented in
Appendix D, there is an intuitive explanation for the structure
of the dephasing FF based on an analogy with DD sequences.
We note that the dephasing-robust waveforms in Eq. (42)
consist of an alternating train of half-sine window pulses,
which for the lowest Bessel root correspond to a rotation of
approximately ±1.53π . This is reminiscent of DD sequences
with finite-width ±π pulses [39,40]. Using Eq. (20), the zero-
frequency component of the dephasing FF can be expressed

as

FZ (ω = 0, T ) =
∣∣∣∣
∫ T

0
dt exp i�(t )

∣∣∣∣
2

. (50)

For an alternating train of ±π finite-width pulses, �(t )
smoothly transitions between [0, π ], meaning that exp i�(t )
is always within the first two quadrants of the complex plane.
As such, exp i�(t ) has a positive imaginary component for all
t and FZ (ω = 0, T ) in Eq. (50) will be nonzero. Over-rotating
the pulses beyond π , as is done by the dephasing-robust
waveforms, allows �(t ) to take values beyond [0, π ] and
exp i�(t ) to take values in all four quadrants of the complex
plane. With a carefully chosen over-rotation, contributions
from quadrants III and IV cancel those from quadrants I and
II, which causes the dephasing FF to vanish at zero frequency.
With the dc component of the dephasing FF removed, the
structure of the waveform as an evenly spaced alternating
pulse train produces a high-pass filter similarly to dynamical
decoupling sequences.

D. Comparison of waveforms

Since the dephasing-robust and optimized waveforms are
nearly identical for the first root of J0, it is unsurprising that
the amplitude and dephasing FFs in Figs. 2(b) and 2(c) also
closely match. Figure 3 shows the dephasing-robust wave-
forms and FFs for the first three roots of J0 with λ/2π =
0.1 MHz. For all roots, the amplitude FFs are spectrally
concentrated about λ. The high-pass nature of the dephas-
ing FF with λ as the low-frequency cutoff is also evident
for all roots. Interestingly, the high-frequency support of
FZ (ω, T ) beyond λ differs between the roots with the sec-
ond nonzero harmonic at 2λ being considerably smaller for
the second and third roots. Importantly, as evidenced by
the low-frequency support of FZ (ω, T ) for the DPSS wave-
forms and the absence of low-frequency support of FZ (ω, T )
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FIG. 4. The higher-order dephasing filter function Gz(ω,ω′, T )
for the dephasing-robust (a) and Slepian (b) waveforms with λ =
0.10 MHz and T = 100 μs. The unwanted peak at (0, λ) in the
bottom-left corner of the Slepian FF demonstrates a sensitivity to
a combination of low-frequency and static dephasing, while the
absence of this peak for the dephasing-robust indicates that the
waveforms are robust against higher-order low-frequency dephasing
noise.

for the dephasing-robust waveforms, the three leading-order
roots offer superior suppression of low-frequency dephasing
noise.

While we have thus far focused on the noise filtering
properties of FZ (ω, T ), the strength of the dephasing-
dependent higher order terms in Eq. (24) also depends on
the higher order FF GZ (ω,ω′, T ) defined in Eq. (30). Unlike
FZ (ω, T ), GZ (ω,ω′, T ) forms a two-dimensional surface in
the frequency domain. The higher-order perturbative term
in Eq. (29) illustrates that low-frequency dephasing noise is
suppressed when GZ (ω,ω′, T ) has minimal low-frequency
support over both ω and ω′. Similarly, detuning error is
suppressed when GZ (ω,ω′, T ) = 0 at ω = 0 and ω′ = 0.
Figures 4(a) and 4(b), respectively, show GZ (ω,ω′, T ) gen-
erated by the dephasing-robust waveform in Fig. 2(a) and
the DPSS waveform in Fig. 2(d). To produce these plots,
we evaluated the quadruple integral that defines GZ (ω,ω′, T )
using an efficient iterated fast Fourier transform procedure
described in Appendix E. For the dephasing-robust waveform,
GZ (ω,ω′, T ) is dominated by two peaks at (ω,ω′) = (λ, 2λ)
and (ω,ω′) = (2λ, λ) and has minimal spectral support when
ω, ω′ < λ. Similar to FZ (ω, T ), the modulation frequency λ

acts as a cutoff below which low-frequency dephasing noise
is suppressed. The DPSS waveform, on the other hand, has
more support at low and dc frequency with additional peaks

at (ω,ω′) = (0, λ) and (ω,ω′) = (λ, 0), making it vulnerable
to detuning error when the dephasing noise spectrum has sup-
port at ω ≈ λ. The high-pass nature of GZ (ω,ω′, T ) for the
dephasing-robust waveforms again translates into improved
filtering of low-frequency dephasing noise and detuning error.

IV. APPLICATION TO AMPLITUDE NOISE QNS

The dephasing-robust waveforms closely match the results
of our numerical optimization and, therefore, offer near-
optimal suppression of low-frequency dephasing and detuning
error while at the same time preserving spectral concentration
in the amplitude FF. The high-pass filtering characteristics of
the FFs FZ (ω, T ) and GZ (ω,ω′, T ) ensure that the dephasing-
robust waveforms minimize the dynamical contributions of
both low-frequency dephasing and detuning error. The re-
sulting reduction in dephasing-induced bias ensures that the
tomographic measurement strategy can reliably isolate the dy-
namical contribution of amplitude noise. To quantify the
practical difference this makes for noise characterization, we
numerically simulate amplitude noise QNS in the presence of
low-frequency dephasing noise and detuning errors using both
the dephasing-robust and DPSS waveforms.

To assess the robustness of the waveforms in the presence
of low-frequency dephasing versus detuning, we implement
two different numerical QNS experiments in which the qubit
evolves under amplitude noise and either (1) static detuning
error or (2) low-frequency dephasing. To fairly compare the
performance of the waveforms for a range of modulation
frequencies, we consider a flat amplitude noise spectrum with
a high-frequency cutoff ωh,

S�(ω) =
{

A�, ω � ωh

0, ω > ωh.

Static detuning error is introduced by taking βz(t ) = 	 in the
noise Hamiltonian of Eq. (2). For the dephasing, we simulate
noise with a 1/ f spectrum, characteristic of solid state devices
[41], with both low- and high-frequency cutoffs for efficient
numerical simulation,

Sz(ω) = C

⎧⎪⎨
⎪⎩

Az

ωl
, |ω| � ωl

Az

ω
, ωl < |ω| � ωh

0, |ω| > ωh.

Here, the low-frequency cutoff ωl ensures that the strength
of the dephasing noise is finite at ω = 0 and the dimen-
sionless scale factor C determines the noise strength. In our
simulations, A� = 1.04 × 10−11 rad2/Hz, ωh/2π = 2 MHz,
ωl/2π = 0.01 MHz, and Az = 108 Hz2. While this value of
ωl is large for 1/ f noise in a solid-state device, the resulting
dephasing noise spectrum is still dominated by contributions
at low frequency. To examine the impact of the dephasing
noise strength on the reconstruction, we vary the scale factor
C between 299.1 and 3.18. The resulting 1/e decay time under
free evolution (T ∗

2 ) ranges from 4 μs to 100 μs. The detuning
error 	 varies between 0.01 MHz and 0.19 MHz.

For control, we employ the dephasing-robust and DPSS
waveforms similar to those depicted in Fig. 2 with an
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expanded range of modulation frequencies. Concretely, since typical laboratory control hardware generates piecewise constant
waveforms, we discretize the dephasing robust waveform in Eq. (42) into N increments of duration 	t so the resulting amplitude
waveform is

�(t ) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0, t ∈ [0,	t )

�0 sin(λ	t ), t ∈ [	t, 2	t )
...

...

�0 sin[λ(N − 1)	t], t ∈ [(N − 1)	t, N	t ).

(51)

For the waveform parameters, we use N = 10 000, 	t = 10 ns, and T = N	t = 100 μs. The modulation frequency takes values
λ ∈ {	ω, . . . , L	ω} with 	ω/2π = 0.01 MHz and L = 200. If we use only the dephasing-robust waveforms generated by the
first root of J0, we would need to vary the amplitude �0 so �0/λ ≈ 2.40 for all λ. Instead, we use up to the 159th root of J0,
using larger roots for smaller λ, so�0/2π ≈ 5 MHz for all modulation frequencies.

For the DPSS, we use waveforms of the lowest (k = 0) order combined with sine modulation:

�(t ) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

0, t ∈ [0,	t )

�max v
(0)
1 (N,W ) sin(λ	t ), t ∈ [	t, 2	t )

...
...

�max v
(0)
N−1(N,W ) sin[λ(N − 1)	t], t ∈ [(N − 1)	t, N	t ).

(52)

The k = 0 DPSSs, which are the most spectrally concentrated,
generate a net identity gate when combined with sine modu-
lation since

v(0)
n (N,W ) = v

(0)
N−n(N,W ),

sin(λn	t ) = − sin[λ(N − n)	t],

ensuring
∫ T

0 dt�(t ) = 0. In Eq. (52), �max/2π = 5 MHz,
while the other parameters are identical to the dephasing-
robust waveform, i.e., N = 10, 000, 	t = 10 ns, T = N	t =
100 μs, and λ ∈ {	ω, . . . , L	ω}, with 	ω/2π = 0.01 MHz
and L = 200. We select the bandwidth parameter W of the
DPSS so NW = 1, which creates an amplitude FF concen-
trated in the passband BDPSS(λ) = [λ − 2π/T, λ + 2π/T ],
equivalent to the passband of a dephasing-robust waveform at
modulation frequency λ. Although our simulations use DPSSs
and dephasing-robust waveforms with the same passbands,
the DPSS waveforms are more spectrally concentrated with
a spectral concentration ratio (see Appendix B) of 0.981. The
spectral concentration of the dephasing-robust waveforms is
0.904, for comparison.

To reconstruct the amplitude noise spectrum, we use an
inversion approach similar to Ref. [32]. By discretizing the
overlap integral in Eq. (17) into increments 	ω up to the
maximum frequency L	ω, we obtain

〈
a(1)

1 (T )2
〉 ≈ 1

π

L∑

=1

∫ (
+ 1
2 )	ω

(
− 1
2 − 1

2 δ
,1 )	ω

dω F�(ω, T ) S�(ω)

≈ �F�(T ) · �S�, (53)

where �F�(T ) and �S� are L-dimensional vectors with elements

[ �F�(T )]
=1 = 1

π

∫ 3
2 	ω

0
dωF�(ω, T ),

[ �F�(T )]
>1 = 1

π

∫ (
+ 1
2 )	ω

(
− 1
2 )	ω

dωF�(ω, T ),

[�S�]
 = S�(
	ω) (54)

for 
 ∈ {1, . . . , L}. Note that the integration region defining
the first element of �F� in Eqs. (54) is larger than the subse-
quent regions to ensure it encloses the peak of the amplitude
FF centered at λ = 	ω. Equation (53) shows that measuring
the 〈a(1)

1 (T )2〉 generated by the waveforms at each modulation
frequency λ ∈ {	ω, . . . , L	ω} produces a linear system that
can be inverted to obtain �S�. Since S�(ω) is non-negative,
the reconstruction problem is an instance of non-negative
least-squares regression, which is solvable through standard
numerical techniques.

In Fig. 5, we use this reconstruction technique to com-
pare the performance of the dephasing-robust and DPSS
waveforms in the presence of detuning error of variable
strength. The accuracy of the DPSS reconstruction in Fig. 5(b)
clearly degrades as the strength of the detuning error in-
creases. In contrast, the dephasing-robust reconstruction in
Fig. 5(a) remains relatively accurate. The difference in per-
formance between the two waveforms is directly related to
the higher order terms that bias the tomographic measure-
ment strategy in Eq. (31), as we demonstrate in Fig. 6.
Recall that the tomographic measurement strategy approx-
imates the variance 〈	a(1)

1 (T )2〉 as a linear combination
of survival probabilities, P ≡ 1

2 [1 + P (↑1, T ) − P (↑2, T ) −
P (↑3, T )]. Figure 6(a) shows that for the DPSS waveforms,
〈	a(1)

1 (T )2〉 and P diverge as the detuning error increases.
For the dephasing-robust waveforms, 〈	a(1)

1 (T )2〉 and P are
closely matched over the range of detuning errors. This
occurs because the dephasing-robust waveforms reduce the
magnitudes of the higher-order detuning-dependent terms as
compared to the DPSS, as shown in Figs. 6(c) and 6(d).
While the dephasing-robust waveforms successfully mitigate
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FIG. 5. Amplitude noise QNS with detuning errors of different magnitudes. Reconstructions of the amplitude noise spectrum are depicted
for the dephasing-robust waveforms (a) and the DPSS waveforms (b) in the presence of detuning errors ranging from 	 = 0.01 MHz (light
pink) to 0.19 MHz (dark purple).

FIG. 6. Contributions to the survival probability in Eq. (24) with detuning error of various strengths for the DPSS (a), (c) and dephasing-
robust waveforms (b), (d). Both the DPSS and dephasing-robust waveforms have modulation frequency λ/2π = 1.00 MHz with all other
parameters identical to those used for the reconstructions in Fig. 5. Plots (a) and (b) show the discrepancy between P ≡ 1

2 [1 + P (↑1, T ) −
P (↑2, T ) − P (↑3, T )] (orange, solid line) and I�(T ) (blue, dot-dashed line) for the DPSS waveform and the dephasing-robust waveform,
respectively. The discrepancy is determined by the higher-order dephasing-dependent contributions to Eq. (24), which are plotted in (c) for
the DPSS waveform and in (d) for the dephasing-robust waveform. The higher-order amplitude term I�(T )2 is plotted as green solid circles,
the amplitude-dephasing cross term 1/3 · I�(T )IZ (T ) is plotted as red hollow circles, and the remaining contributions including higher-order
dephasing and statistical jitter are plotted as dashed purple lines. For the dephasing-robust waveform, the 1/3 · I�(T )IZ (T ) contribution is
exactly canceled because the dc component of the dephasing FF vanishes, i.e., FZ (0, T ) = 0.
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FIG. 7. Amplitude noise QNS with variable strength dephasing. Reconstruction of the amplitude noise spectrum using the dephasing-robust
waveforms (a) and the DPSS waveforms (b) in the presence of dephasing noise with T ∗

2 times ranging from 4−100 μs (dark purple to light
pink).

the higher-order detuning-dependent terms, the amplitude
noise-dependent term I�(T )2 is one of the few higher-order
contributions that remains. This term largely accounts for the
slight difference between the reconstruction and true ampli-
tude noise spectrum in Fig. 5(a).

Figure 7 compares the performance of the dephasing-
robust and DPSS waveforms in the presence of low-frequency
dephasing noise of variable strength. The reconstruction is
carried out for dephasing noise with a range of T ∗

2 times
differing by over an order of magnitude, with smaller T ∗

2
indicating stronger noise. Due to bias from low-frequency
dephasing, the DPSS reconstruction deviates from the true
amplitude noise spectrum for the lowest T ∗

2 times. Interest-
ingly, the Slepian reconstruction also exhibits more errors
at higher modulation frequencies. Because of their filtering
properties, the dephasing-robust waveforms produce an esti-
mate of the amplitude noise spectrum that remains relatively
accurate for all strengths of dephasing noise and modulation
frequencies. Note, however, that the DPSS reconstruction is
only qualitatively affected by the dephasing noise when the
T ∗

2 time is extremely short relative to the experiment duration
of T = 100 μs. As such, we conclude detuning error is more
detrimental to amplitude noise QNS than pure 1/ f dephasing
noise.

While this analysis focuses on the relationship between
the strength of dephasing noise or detuning error and the
higher-order terms that bias amplitude noise QNS, it is im-
portant to note that the strength of the amplitude noise
plays an important role as well as the interplay between
dephasing and detuning. Recall that Eq. (31), which shows
the higher-order corrections to the tomographic measure-
ment strategy, demonstrates a negative multiplicative bias,

I�(T )IZ (T )/3, dependent on FZ (ω, T ) as well as a positive
additive bias dependent on GZ (ω,ω′, T ). The observation that
the DPSS waveforms underestimate the true amplitude noise
spectrum in Figs. 5(b) and 7(b), as well as the relative size of
I�(T )IZ (T )/3 in Fig. 6(c), indicate that the negative bias was
the dominant source of error in these simulations. As the nega-
tive bias is proportional to I�(T ), we expect it to introduce the
same proportionate error for a wide range of amplitude noise
strengths. The additive bias due to GZ (ω,ω, T ), in contrast,
would become more significant for weaker amplitude noise
strengths. Additionally, because certain terms contributing to
the additive bias in Eq. (30) are only nonzero when both de-
phasing noise and detuning errors are present, we may observe
different qualitative effects in this scenario. These effects are
likely to be much less impactful for the dephasing-robust
waveforms because the dc components of GZ (ω,ω′, T ) are
largely suppressed, as shown in Fig. 4.

V. CONCLUSION

In this paper, we used a combination of numerical and
analytical methods to determine a family of control wave-
forms that enable accurate spectroscopy of amplitude control
noise in the presence of strong, low-frequency dephasing
noise and detuning errors. These waveforms are unique in that
they suppress low-frequency dephasing noise and detuning
errors while simultaneously producing a spectrally concen-
trated amplitude FF. To establish the mechanism through
which dephasing and detuning can bias estimates of the
amplitude noise spectrum, we extended the theoretical frame-
work of Refs. [23,27] to include both zero-mean noise and
higher order perturbative terms. This higher order perturbative

022425-13



MALONEY, ODA, QUIROZ, CLADER, AND NORRIS PHYSICAL REVIEW A 106, 022425 (2022)

analysis enabled us to formulate an objective function quan-
tifying the dynamical contribution of dephasing and cast the
task of minimizing dephasing-dependent bias as an optimal
control problem. Our numerical optimization utilized tech-
niques based on linear programming to scalably incorporate
realistic constraints on control waveforms, such as limitations
on the maximum amplitude. The numerically optimized wave-
forms closely matched the family of analytic dephasing-robust
waveforms. Analysis of the primary and higher-order dephas-
ing FFs verified that the dephasing-robust waveforms filter
the dynamical contributions of low-frequency dephasing noise
and detuning error.

In numerically simulated amplitude noise QNS experi-
ments, the filtering properties of the dephasing-robust wave-
forms enabled accurate characterization of amplitude noise in
the presence of low-frequency dephasing noise and detuning
errors. In the case of detuning errors, the dephasing-robust
robust waveforms offered significant improvement over exist-
ing protocols based on DPSS waveforms. For 1/ f dephasing
noise, on the other hand, the performance of dephasing-robust
and DPSS waveforms was comparable for all but the lowest
T ∗

2 times we considered. The performance gains offered by the
dephasing-robust waveforms in the presence of a combination
of detuning error and dephasing noise, or dephasing noise
with a spectrum other than 1/ f , is an area of future study.

Another extension of this paper involves our linear
programming-inspired optimization procedure. The wave-
form and amplitude constraints that our method scalably
incorporates are relevant to a broad range of laboratory control
hardware and more general optimal control problems. Imme-
diate applications include filter design for noise mitigation and
QNS in other settings with bounded-strength controls.
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APPENDIX A: MEASUREMENTS

1. Survival probabilities

Consider an experiment in which the qubit is prepared in
|↑i〉 and evolves under the rotating frame Hamiltonian H (t ) =
HN (t ) + Hctrl(t ) from t = 0 to t = T . At time T , the qubit is
measured projectively in the |↑i〉, |↓i〉 basis, with |↑i〉, |↓i〉
denoting the +1, −1 eigenstates of σi, respectively. If this
experiment is repeated, the expected fraction of experiments
in which |↑i〉 is measured is given by the survival probability,

P (↑i, T ) = 〈〈↑i|U (T )|↑i〉2〉, (A1)

where 〈·〉 is the ensemble average over realizations of the
dephasing and amplitude noise. If the amplitude wave-
form in Eq. (9) generates an identity gate over time t ∈
[0, T ], the rotating frame and toggling frame propagators
at time T are equivalent, i.e., U (T ) = Uc(T )Ũ (T ) = Ũ (T ).
By substituting U (T ) = Ũ (T ) in Eq. (A1) and using the
parametrization of Ũ (T ) in terms of the error vector �a(T ) ≡
[a1(T ), a2(T ), a3(T )] in Eq. (7), we obtain

P (↑i, T ) = 〈〈↑i|Ũ (T )|↑i〉2〉 = 〈〈↑i|e−i�a(T )·�σ | ↑i〉2〉. (A2)

2. Derivation of Eq. (23) with higher order terms

Evaluating the survival probabilities in Eq. (A2) for i ∈ {1, 2, 3} and taking a Taylor expansion to fourth order in the error
vector components produces

P (↑1, T ) =
〈

a2(T )2 + a3(T )2 + 2a1(T )2 + [a2(T )2 + a3(T )2] cos[2
√

a1(T )2 + a2(T )2 + a3(T )2]

2[a1(T )2 + a2(T )2 + a3(T )2]

〉

= 1 − 〈a2(T )2〉 − 〈a3(T )2〉 + 1

3
[〈a2(T )4〉 + 〈a3(T )4〉 + 〈a2(T )2a1(T )2〉 + 〈a3(T )2a1(T )2〉 + 2〈a2(T )2a3(T )2〉],

(A3)

P (↑2, T ) =
〈

a1(T )2 + a3(T )2 + 2a2(T )2 + [a1(T )2 + a3(T )2] cos[2
√

a1(T )2 + a2(T )2 + a3(T )2]

2[a1(T )2 + a2(T )2 + a3(T )2]

〉

= 1 − 〈a1(T )2〉 − 〈a3(T )2〉 + 1

3
[〈a1(T )4〉 + 〈a3(T )4〉 + 〈a2(T )2a1(T )2〉 + 〈a3(T )2a2(T )2〉 + 2〈a3(T )2a1(T )2〉],

(A4)

P (↑3, T ) =
〈

a1(T )2 + a2(T )2 + 2a3(T )2 + [a1(T )2 + a2(T )2] cos[2
√

a1(T )2 + a2(T )2 + a3(T )2]

2[a1(T )2 + a2(T )2 + a3(T )2]

〉

= 1 − 〈a2(T )2〉 − 〈a1(T )2〉 + 1

3
[〈a2(T )4〉 + 〈a1(T )4〉 + 〈a2(T )2a3(T )2〉 + 〈a3(T )2a1(T )2〉 + 2〈a1(T )2a2(T )2〉].

(A5)

From the Magnus expansion of the error propagator, Ũ (T ) = e−i
∑∞

m=1 M (m) (T ), we can determine a perturbative expansion of
the error vector by projecting the terms of the Magnus expansion into the Pauli basis so �a = ∑∞

m=1 �a(m)(T ), where a(m)
i (T ) =
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Tr[σiM (m)(T )] ∼ T m for i ∈ {1, 2, 3}. The first two terms in the error vector expansion have components

a(1)
i (T ) = 1

2
Tr

{
σi

∫ T

0
dt H̃ (t )

}
, (A6)

a(2)
i (T ) = − i

4
Tr

{
σi

∫ T

0
dt
∫ t

0
dt ′ [H̃ (t ), H̃ (t ′)]

}
. (A7)

By taking ai(T ) = a(1)
i (T ) + a(2)

i (T ) + . . . and keeping terms up to order T 4 in Eqs. (A3)–(A5), we find

1
2 [1 + P (↑1, T ) − P (↑2, T ) − P (↑3, T )]

= 〈
a(1)

1 (T )2
〉 + 2

〈
a(1)

1 (T )a(2)
1 (T )

〉 + 〈
a(2)

1 (T )2
〉 − 1

3

[〈
a(1)

1 (T )4
〉 + 〈

a(1)
2 (T )2 a(1)

1 (T )2
〉 + 〈

a(1)
3 (T )2 a(1)

1 (T )2
〉]

= 〈
	a(1)

1 (T )2
〉 + 〈

a(1)
1 (T )

〉2 + 2
〈
a(1)

1 (T )a(2)
1 (T )

〉 + 〈
a(2)

1 (T )2
〉 − 1

3

[〈
a(1)

1 (T )4
〉 + 〈

a(1)
2 (T )2 a(1)

1 (T )2
〉 + 〈

a(1)
3 (T )2 a(1)

1 (T )2
〉]
.

(A8)

Because they contain odd moments of β�(t ), the second and third terms vanish when the amplitude noise is zero mean. In this
case, we recover Eq. (24) from the main text.

3. Explicit expressions of the terms in Eq. (A8)

The second term in Eq. (A8) arises when the amplitude noise has a nonzero mean. Its form follows in a straightforward
manner from Eq. (11):

〈
a(1)

1 (T )
〉2 = 1

4

[∫ T

0
dt �(t ) 〈β�(t )〉

]2

= μ2
�

4

[∫ T

0
dt �(t )

]2

. (A9)

Because the mean of a stationary process is time independent, we have taken μ� ≡ 〈β�(t )〉 in the last line.
The third term in Eq. (A8), which depends on a third order moment of β�(t ) and βz(t ), is also nonvanishing when the

amplitude noise has nonzero mean. Using the Gaussianity and independence of β�(t ) and βz(t ), we can factorize the third-order
moment into a product of one- and two-point correlation functions:

〈β�(t1)βz(t2)βz(t3)〉 = 〈β�(t1)βz(t2)〉〈βz(t3)〉 + 〈β�(t1)βz(t3)〉〈βz(t2)〉 + 〈βz(t2)βz(t3)〉〈β�(t1) − 2〈β�(t1)〉〈βz(t2)〉〈βz(t3)〉
= 〈βz(t2)βz(t3)〉〈β�(t1)〉.

Using this expression and Eq. (A7) to evaluate a(2)
1 (T ), we find

〈
a(1)

1 (T )a(2)
1 (T )

〉 = μ�

2

[∫ T

0
dt1 �(t1)

] ∫ T

0
dt2

∫ t2

0
dt3 sin[�(t2) − �(t3)]〈βz(t2)βz(t3)〉. (A10)

The remaining higher-order terms in Eq. (A8) depend on fourth-order moments of β�(t ) and βz(t ). Like the third-order
moment above, the fourth-order moments factor into products of one- and two-point correlation functions. For i1, i2, i3, i4 ∈
{�, z}, an arbitrary fourth moment can be written as

〈βi1 (t1)βi2 (t2)βi3 (t3)βi4 (t4)〉 = 〈βi1 (t1)βi2 (t2)〉〈βi3 (t3)βi4 (t4)〉 + 〈βi1 (t1)βi3 (t3)〉〈βi2 (t2)βi4 (t4)〉
+ 〈βi1 (t1)βi4 (t4)〉〈βi3 (t3)βi2 (t2)〉 − 2〈βi1 (t1)〉〈βi2 (t2)〉〈βi3 (t3)〉〈βi4 (t4)〉. (A11)

From this expression, we can determine the higher order terms in the frequency domain.
Consider the fifth, sixth, and seventh terms on the right-hand side of Eq. (A8), which depend on �a(1)(T ) and can be written as

〈
a(1)

i (T )2 a(1)
j (T )2

〉 = ∫ T

0
dt1

∫ T

0
dt2

∫ T

0
dt3

∫ T

0
dt4 yi(t1)yi(t2)y j (t3)y j (t4) [〈βi(t1)βi(t2)〉〈β j (t3)β j (t4)〉

+ 〈βi(t1)β j (t3)〉〈βi(t2)β j (t4)〉 + 〈βi(t1)β j (t4)〉〈βi(t2)β j (t3)〉 − 2〈βi(t1)〉〈βi(t2)〉〈β j (t3)〉〈β j (t4)〉], (A12)

where i ∈ {1, 2, 3} and j = 1.
When i �= j, the independence of β�(t ) and βz(t ) implies that the last three terms cancel, leaving

〈
a(1)

i (T )2 a(1)
j (T )2

〉
i �= j =

∫ T

0
dt1

∫ T

0
dt2

∫ T

0
dt3

∫ T

0
dt4 yi(t1)yi(t2)y j (t3)y j (t4) 〈βi(t1)βi(t2)〉〈β j (t3)β j (t4)〉 (A13)

=
∫ T

0
dt1

∫ T

0
dt2

∫ T

0
dt3

∫ T

0
dt4 yi(t1)yi(t2)y j (t3)y j (t4) [〈	βi(t1)	βi(t2)〉〈	β j (t3)	β j (t4)〉

+ 〈	βi(t1)	βi(t2)〉〈β j (t3)〉〈β j (t4)〉+〈βi(t1)〉〈βi(t2)〉〈	β j (t3)	β j (t4)〉+ 〈βi(t1)〉〈βi(t2)〉〈β j (t3)〉〈β j (t4)〉].
(A14)
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When β j (t ) = β�(t ) is zero mean, this expression reduces to

〈
a(1)

i (T )2 a(1)
j (T )2

〉
i �= j

=
∫ T

0
dt1

∫ T

0
dt2

∫ T

0
dt3

∫ T

0
dt4 yi(t1)yi(t2)y j (t3)y j (t4) [〈	βi(t1)	βi(t2)〉 + 〈βi(t1)〉〈βi(t2)〉]

× 〈	β j (t3)	β j (t4)〉.
From Eqs. (11)–(13) and (15), we then find〈

a(1)
1 (T )2a(1)

2 (T )2
〉 + 〈

a(1)
1 (T )2 a(1)

3 (T )2
〉

=
∫ T

0
dt1

∫ T

0
dt2�(t1)�(t2)〈	β�(t1)	β�(t2)〉

∫ T

0
dt3

∫ T

0
dt4 sin �(t3) sin �(t4)

[〈	βz(t3)	βz(t4)〉 + μ2
z

]

+
∫ T

0
dt1

∫ T

0
dt2�(t1)�(t2)〈	β�(t1)	β�(t2)〉

∫ T

0
dt3

∫ T

0
dt4 cos �(t3) cos �(t4)

[〈	βz(t3)	βz(t4)〉 + μ2
z

]

=
{

1

2π

∫ ∞

−∞
dω S�(ω)F�(ω, T )

}{
1

2π

∫ ∞

−∞
dω

[
Sz(ω) + 2πμ2

z δ(ω)

][ ∣∣∣∣
∫ T

0
dteiωt sin �(t )

∣∣∣∣
2

+
∣∣∣∣
∫ T

0
dteiωt cos �(t )

∣∣∣∣
2 ]}

=
{

1

2π

∫ ∞

−∞
dω S�(ω)F�(ω, T )

}{
1

2π

∫ ∞

−∞
dω

[
Sz(ω) + 2πμ2

z δ(ω)

]
FZ (ω, T )

}
= I�(T )IZ (T ), (A15)

as given in the main text.
When i = j = 1, on the other hand, we have

〈
a(1)

1 (T )4
〉 = ∫ T

0
dt1

∫ T

0
dt2

∫ T

0
dt3

∫ T

0
dt4 �(t1)�(t2)�(t3)�(t4)

[〈β�(t1)β�(t2)〉〈β�(t3)β�(t4)〉

+ 〈β�(t1)β�(t3)〉〈β�(t2)β�(t4)〉 + 〈β�(t1)β�(t4)〉〈β�(t3)β�(t2)〉 − 2μ4
�

]
=

∫ T

0
dt1

∫ T

0
dt2

∫ T

0
dt3

∫ T

0
dt4 �(t1)�(t2)�(t3)�(t4)

{ 〈	β�(t1)	β�(t2)〉〈	β�(t3)	β�(t4)〉

+ 〈	β�(t1)	β�(t3)〉〈	β�(t2)	β�(t4)〉 + 〈	β�(t1)	β�(t4)〉〈	β�(t2)	β�(t3)〉 + [〈β�(t1)β�(t2)〉
+ 〈β�(t1)β�(t3)〉 + 〈β�(t1)β�(4)〉 + 〈β�(t2)β�(t3)〉 + 〈β�(t2)β�(t4)〉 + 〈β�(t3)β�(t4)〉]μ2

� − 5μ4
�

}
. (A16)

If the amplitude noise is zero mean, the last line in this expression vanishes, producing

〈
a(1)

1 (T )4
〉 = ∫ T

0
dt1

∫ T

0
dt2

∫ T

0
dt3

∫ T

0
dt4 �(t1)�(t2)�(t3)�(t4) [〈	β�(t1)	β�(t2)〉〈	β�(t3)	β�(t4)〉

+ 〈	β�(t1)	β�(t3)〉〈	β�(t2)	β�(t4)〉 + 〈	β�(t1)	β�(t4)〉〈	β�(t3)	β�(t2)〉]

= 3
∫ T

0
dt1

∫ T

0
dt2�(t1)�(t2)〈	β�(t1)	β�(t2)〉

∫ T

0
dt3

∫ T

0
dt4�(t3)�(t4)〈	β�(t3)	β�(t4)〉

= 3

[
1

2π

∫ ∞

−∞
dωS�(ω)F�(ω, T )

]2

= 3 I�(T )2,

as given in the main text.
Next, we consider the fourth term on the right-hand side of Eq. (A8), which depends on a(2)

1 (T ). Using Eq. (A11) to evaluate
the higher order moment and taking 〈βz(t )〉 = μz for stationary noise, we obtain

〈
a(2)

1 (T )2
〉 = ∫ T

0
dt1

∫ t1

0
dt2 sin[�(t1) − �(t2)]

∫ T

0
dt3

∫ t3

0
dt4 sin[�(t3) − �(t4)] 〈βz(t1)βz(t2)βz(t3)βz(t4)〉

=
∫ T

0
dt1

∫ t1

0
dt2 sin[�(t1) − �(t2)]

∫ T

0
dt3

∫ t3

0
dt4 sin[�(t3) − �(t4)]

[〈βz(t1)βz(t2)〉〈βz(t3)βz(t4)〉

+ 〈βz(t1)βz(t3)〉〈βz(t2)βz(t4)〉 + 〈βz(t1)βz(t4)〉〈βz(t2)βz(t3)〉 − 2μ4
z

]
=
∫ T

0
dt1

∫ t1

0
dt2 sin[�(t1) − �(t2)]

∫ T

0
dt3

∫ t3

0
dt4 sin[�(t3) − �(t4)]

{〈	βz(t1)	βz(t2)〉〈	βz(t3)	βz(t4)〉

+ 〈	βz(t1)	βz(t3)〉〈	βz(t2)	βz(t4)〉 + 〈	βz(t1)	βz(t4)〉〈	βz(t2)	βz(t3)〉 + [〈βz(t1)βz(t2)〉 + 〈βz(t1)βz(t3)〉
+ 〈βz(t1)βz(4)〉 + 〈βz(t2)βz(t3)〉 + 〈βz(t2)βz(t4)〉 + 〈βz(t3)βz(t4)〉]μ2

z − 5μ4
z

}
. (A17)
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If the dephasing noise is zero-mean, the final line vanishes and we have

〈
a(2)

1 (T )2
〉
μz=0 = 1

(2π )2

∫ T

0
dt1

∫ t1

0
dt2 sin[�(t1) − �(t2)]

∫ T

0
dt3

∫ t3

0
dt4 sin[�(t3) − �(t4)]

×
[ ∫ ∞

−∞
dω eiω(t1−t2 )S(ω)

∫ ∞

−∞
dω′ eiω′(t3−t4 )S(ω′) +

∫ ∞

−∞
dω eiω(t1−t3 )S(ω)

∫ ∞

−∞
dω′ eiω′(t2−t4 )S(ω′)

+
∫ ∞

−∞
dω eiω(t1−t4 )S(ω)

∫ ∞

−∞
dω′ eiω′(t2−t3 )S(ω′)

]
.

Collecting like terms produces

〈
a(2)

1 (T )2
〉
μz=0 = 1

(2π )2

∫ ∞

−∞
dω

∫ ∞

−∞
dω′ GZ (ω,ω′, T ) Sz(ω)Sz(ω′),

where

GZ (ω,ω′, T ) =
∫ T

0
dt1

∫ t1

0
dt2 sin[�(t1) − �(t2)]

∫ T

0
dt3

∫ t3

0
dt4 sin[�(t3) − �(t4)][eiω(t1−t2 )eiω′(t3−t4 )

+ eiω(t1−t3 )eiω′(t2−t4 ) + eiω(t1−t4 )eiω′(t2−t3 )].

When the dephasing noise is nonzero-mean, the terms in the final line of Eq. (A17) make a contribution,

〈
a(2)

1 (T )2
〉
μz �=0 = μ2

z

∫ T

0
dt1

∫ t1

0
dt2 sin[�(t1) − �(t2)]

∫ T

0
dt3

∫ t3

0
dt4 sin[�(t3) − �(t4)]

[〈βz(t1)βz(t2)〉

+ 〈βz(t3)βz(t4)〉 + 〈βz(t1)βz(t3)〉 + 〈βz(t2)βz(t4)〉 + 〈βz(t1)βz(t4)〉 + 〈βz(t2)βz(t3)〉 − 5μ2
z

]
= μ2

z

∫ T

0
dt1

∫ t1

0
dt2 sin[�(t1) − �(t2)]

∫ T

0
dt3

∫ t3

0
dt4 sin[�(t3) − �(t4)]

[〈	βz(t1)	βz(t2)〉

+ 〈	βz(t3)	βz(t4)〉 + 〈	βz(t1)	βz(t3)〉 + 〈	βz(t2)	βz(t4)〉 + 〈	βz(t1)	βz(t4)〉 + 〈	βz(t2)	βz(t3)〉 + μ2
z

]
= μ2

z

2π

∫ ∞

−∞
dω

∫ ∞

−∞
dω′

∫ T

0
dt1

∫ t1

0
dt2 sin[�(t1) − �(t2)]

∫ T

0
dt3

∫ t3

0
dt4 sin[�(t3) − �(t4)][eiω(t1−t2 )eiω′(t3−t4 )

+ eiω(t1−t3 )eiω′(t2−t4 ) + eiω(t1−t4 )eiω′(t2−t3 )]

[
Sz(ω)δ(ω′) + Sz(ω′)δ(ω) + 2πμ2

z

3
δ(ω)δ(ω′)

]

=
∫ ∞

−∞
dω

∫ ∞

−∞
dω′ GZ (ω,ω′, T )

[
μ2

z

2π
Sz(ω)δ(ω′) + μ2

z

2π
Sz(ω′)δ(ω) + μ4

z

3
δ(ω)δ(ω′)

]
. (A18)

By taking 〈a(2)
1 (T )2〉μz=0 + 〈a(2)

1 (T )2〉μz �=0, we recover Eq. (29) in the main text.

APPENDIX B: SLEPIAN (DPSS) SEQUENCES AND
SPECTRAL CONCENTRATION

For a detailed treatment of the Slepian or DPSSs and
their applications in classical signal processing and spec-
tral estimation, see Refs. [25,26,38]. We briefly summarize
material from these references here. The DPSSs {v(k)

n } ≡
{v(k)

0 , . . . , v
(k)
N } are a family of N , length-N sequences that are

solutions to a N × N Toeplitz matrix eigenvalue equation:

N−1∑
m=0

sin 2πW (n − m)

π (n − m)
v(k)

m = λk (N,W ) v(k)
n . (B1)

Here, k ∈ {0, . . . , N − 1} indexes the order of the DPSS and
W < 1/2 is a bandwidth parameter related to spectral con-
centration in the frequency domain. The frequency domain
representations of the DPSS, known as the discrete prolate

spheroidal wave functions, depend on the DTFT of the DPSS:

U (k)(N,W ; ω) = εk

N−1∑
n=0

v(k)
n eiω[n−(N−1)/2]	t .

Here, εk = 1 (i) for k even (odd).
For a general length-N sequence, {a1, . . . , aN } ≡ {an},

with DTFT ã(ω) = ∑N−1
n=0 aneiω[n−(N−1)/2]	t , spectral concen-

tration in a frequency band B(0) ≡ [−δω, δω] is quantified by
the ratio

CB[{an}] =
∫ δω

−δω
dω |ã(ω)|2∫ ωN

−ωN
dω |ã(ω)|2 ,

where ωN ≡ π/	t is the Nyquist frequency and δω < ωN .
For W = δω	t/2π , the spectral concentration of the kth or-
der DPSS in the band B(0) is given by

CB[{v(k)
n }] =

∫ δω

−δω
dω |U (k)(N,W ; ω)|2∫ ωN

−ωN
dω |U (k)(N,W ; ω)|2 = λk (N,W ),
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where λk (N,W ) is the eigenvalue from Eq. (B1). Of all
length-N sequences, the DPSS of order k = 0 with eigenvalue
λ0(N,W ) ≈ 1 has the maximum spectral concentration in
B(0). The first �NW � DPSS orders are also highly spectrally
concentrated.

For the waveforms we use in amplitude noise QNS, we can
define a similar measure for the spectral concentration of the
amplitude filter in a band B(ω0) ≡ [ω0 − δω, ω0 + δω],

R ≡
∫

B(ω0 ) dω F�(ω, T )∫∞
−∞ dω F�(ω, T )

.

Because the amplitude FF is defined as the continuous Fourier
transform of the amplitude waveform, the bound on the lower
integral is (−∞,∞) rather than (−ωN , ωN ).

APPENDIX C: DETAILS OF NUMERICAL OPTIMIZATION

The dephasing-robust waveforms were originally obtained
numerically through the use of the constrained nonlinear opti-
mization solver Casadi and backend IPOPT [34–36]. Here we
describe how we expressed the problem of filter design with
bounded controls as a scalable numerical optimization prob-
lem. The procedure may be of independent interest for linear
programming optimization problems with a large number of
affine constraints. The true feasible region is defined by the
following set of 2N linear constraints:

±
K∑

k=0

v(k)
m (N,W )

[
�(k)

c cos[ω0m	t] + �(k)
s sin[ω0m	t]

]
� �max, ∀m ∈ {0, . . . , N − 1}. (C1)

For notational convenience, we first define the 2K variables
x(k) and 4KN coefficients a(k)

m by

x(k) = �(k)
c ,

x(k+K ) = �(k)
s ,

a(k)
m = v(k)

m (N,W ) cos[ω0m	t]/�max,

a(k+K )
m = v(k)

m (N,W ) sin[ω0m	t]/�max,

a(k)
m+N = −v(k)

m (N,W ) cos[ω0m	t]/�max,

a(k+K )
m+N = −v(k)

m (N,W ) sin[ω0m	t]/�max.

We now recast the problem into a standard form, which can
be done by dividing each inequality by �max and combining
the coefficients to produce

2K∑
k=0

a(k)
m x(k) � 1 ∀m ∈ {0, . . . , 2N − 1}. (C2)

We are inspired by a classic routine in linear programming
for identifying redundant constraints, which have the defining
property that they can be pruned from the system without
changing the feasible region [42], namely, we attempt to max-
imize the violation of one selected constraint m′, subject to all
the other constraints. The selected constraint is redundant with
respect to the other constraints if and only if the maximum

violation is negative:

max
x(k)

v = −1 +
2K∑

k=0

a(k)
m′ x(k),

s.t. ∀m �= m′
2K∑

k=0

a(k)
m x(k) � 1.

(C3)

If the result of this optimization is a positive number v, then
there exists an assignment x(k) such that

∀m �= m′
2K∑

k=0

a(k)
m x(k) � 1, (C4)

but
∑2K

k=0 a(k)
m′ x(k) > 1. Such an assignment lies outside the

feasible region of the constraint set Eq. (C2), but within the
feasible region of the constraint set Eq. (C4). This proves
that the constraint m′ has an effect on the feasible region if
removed, and is therefore not redundant.

In contrast, if the result of the optimization is a nega-
tive number v, then there does not exist an assignment x(k)

which simultaneously satisfies Eq. (C4) while not satisfying∑2K
k=0 a(k)

m′ x(k) � 1. By applying De Morgan’s laws of formal
logic, this is equivalent to the statement that Eq. (C4) log-
ically implies (

∑2K
k=0 a(k)

m′ x(k) � 1). Therefore, incorporating
the constraint m′ does not remove any points from the feasible
region. As additional constraints can never increase the size
of the feasible region, this proves that the feasible regions of
constraint set Eq. (C2), and constraint set Eq. (C4) are equal.
Therefore, the constraint m′ is redundant with respect to all the
other constraints and can be pruned from the system without
affecting the feasible region. This can be desirable due to the
gain in efficiency of having a problem with fewer constraints.
For the edge cases where the result of the optimization is
zero [positive infinity], then the constraint m′ is redundant (not
redundant), respectively.

We modify this routine to also prune approximately re-
dundant constraints which have a small effect on the feasible
region. The algorithm first creates an overapproximation to
the feasible region whose distance under the L∞ norm (i.e.,
the maximum absolute distance) from the true feasible region
is bounded by ε, and then contracts the overapproximation by
a factor of ε, thus producing an underapproximation to the
true feasible region.

For our target application, all our constraints in our ap-
plications have a natural length-scale because they are affine
constraints with a nonzero constant term. This allows us to
define a small violation in terms of the constant term, namely,
a violation is small if the maximum violation of Eq. (C3) is
less than a chosen ε > 0. This approach would be ill-defined
if we included constraints with no constant term such as

2K∑
k=0

a(k)
m x(k) � 0.

Any violation to this constraint can be made arbitrarily large
or small by simply multiplying a(k)

m ∀ k by a suitable con-
stant >0. This constant rescaling trick cannot be applied to
constraints with a constant term, as the conversion to standard
form would remove any such scaling. As such, the question of
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Algorithm 1. Prune approximatively redundant affine constraints.

Require: ε > 0, affine constraints set C
1: Normalize the affine constraints such that the constant term is 1
2: Randomly shuffle order of constraints
3: active set A ← ∅
4: for each c ∈ C do
5: violation v ← maximize violation of c subject to A � using linear programming subroutine
6: if v > ε then
7: A ← A ∪ c � include non-redundant constraints
8: end if
9: end for

10: Tighten all constraints in A by factor of (1 + ε)
11: Randomly shuffle order of active set A
12: for each c ∈ A do
13: violation v ← maximize violation of c subject to A \ c � using linear programming subroutine
14: if v � 0 then
15: A ← A \ c � prune redundant constraints
16: end if
17: end for
18: return A

whether a violation of this constraint is large or small depends
not on the projective space of equivalent representations of
this constraint but rather on the particular way that the con-
straint is written. Therefore, the notion of a small violation
would be ill-defined.

In addition to using this property to identify approximately
redundant constraints, we also exploit this property to later
contract the feasible region by rescaling the constant term.
This is used to convert an overapproximation of the feasible
region into an underapproximation in an unbiased manner,
namely, after we have identified a core subset of constraints
M, we then tighten the constraints by a factor of (1 + ε) as
follows:

2K∑
k=0

a(k)
m x(k) � (1 + ε)−1 ∀m ∈ {0, . . . , 2N − 1}. (C5)

The heuristic runtime of Algorithm 1 scales as
O(m f (n, |A|)), where m is the number of linear inequality
constraints, A is the largest active set encountered by
the algorithm, and f (n, m) is the time to solve a linear
programming problem with n variables and m inequality
constraints. Significantly, |A| does not asymptotically depend
on m for well-behaved instances (such as in our use case when
the constraints are continuously parameterized), making the
overall runtime of Algorithm 1 linear in m.

For our application in Sec. III B, the naïve formulation in-
volved a nonlinear program in six variables with 40 000 linear
inequality constraints. After the reduction with ε = 0.10, we
had six variables with 200 linear inequality constraints. This
substantially improved the efficiency of solving the optimiza-
tion problem Eq. (41), which was otherwise intractable to run
at scale.

APPENDIX D: DERIVATION OF THE DEPHASING-ROBUST DEPHASING FF

Recall that the dephasing FF is defined by

FZ (ω, T ) =
∣∣∣∣
∫ T

0
dt cos �(t )e−iωt

∣∣∣∣
2

+
∣∣∣∣
∫ T

0
dt sin �(t )e−iωt

∣∣∣∣
2

, (D1)

where �(t ) = ∫ t
0 ds�(s) is the angle of rotation about σ1 generated by the control. For �(t ) = �0 sin(λt ), the angle rotation

becomes �(t ) = �0(1 − cos λt )/λ. Observe that �(t ), like �(t ), is periodic over τλ ≡ 2π/λ. If the total evolution time is an
integer multiple of τλ, i.e., T = Mτλ, we can use the periodic nature of �(t ) to write the cosine term in Eq. (D1) as

∣∣∣∣
∫ T

0
dt cos �(t )e−iωt

∣∣∣∣
2

=
∣∣∣∣

M−1∑
m=0

∫ (m+1)τλ

mτλ

dt cos �(t )e−iωt

∣∣∣∣
2

=
∣∣∣∣

M−1∑
m=0

e−imωτλ

∣∣∣∣
2 ∣∣∣∣

∫ τλ

0
dt cos �(t )e−iωt

∣∣∣∣
2

. (D2)

Summing the geometric series in the first term produces [16]

∣∣∣∣∣
M−1∑
m=0

e−imωτλ

∣∣∣∣∣
2

= sin2(Mπω/λ)

sin2(πω/λ)
. (D3)
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By substituting this expression into Eq. (D2) and performing a similar calculation on the sine term in Eq. (D1), we find∣∣∣∣
∫ T

0
dt cos �(t )e−iωt

∣∣∣∣
2

= sin2(Mπω/λ)

sin2(πω/λ)

∣∣∣∣
∫ τλ

0
dt cos �(t )e−ikλt

∣∣∣∣
2

, (D4)

∣∣∣∣
∫ T

0
dt sin �(t )e−iωt

∣∣∣∣
2

= sin2(Mπω/λ)

sin2(πω/λ)

∣∣∣∣
∫ τλ

0
dt sin �(t )e−ikλt

∣∣∣∣
2

. (D5)

Subsituting these expressions into Eq. (D1) produces the exact form of the dephasing FF given in Eq. (46) of the main text.
To obtain Eq. (49), the approximate form of the dephasing FF in terms of Bessel functions, we approximate Eq. (D3) as a

frequency comb in the limit of large M [16]:∣∣∣∣
M−1∑
m=0

e−imωτλ

∣∣∣∣
2

= sin2(Mπω/λ)

sin2(πω/λ)

M�1≈ Mλ
∑
k∈Z

δ(ω − kλ). (D6)

When M � 1, cosine and sine terms in Eqs. (D4) and (D5) then take the approximate forms∣∣∣∣
∫ T

0
dt cos �(t )e−iωt

∣∣∣∣
2

≈ Mλ
∑
k∈Z

δ(ω − kλ)

∣∣∣∣
∫ τλ

0
dt cos �(t )e−ikλt

∣∣∣∣
2

, (D7)

∣∣∣∣
∫ T

0
dt sin �(t )e−iωt

∣∣∣∣
2

≈ Mλ
∑
k∈Z

δ(ω − kλ)

∣∣∣∣
∫ τλ

0
dt sin �(t )e−ikλt

∣∣∣∣
2

. (D8)

The integral terms in Eqs. (D7) and (D8) can be written in terms of exponential functions:∫ τλ

0
dt cos �(t )e−ikλt = 1

2

∫ τλ

0
dtei�(t )e−ikλt + 1

2

∫ τλ

0
dte−i�(t )e−ikλt , (D9)

∫ τλ

0
dt sin �(t )e−ikλt = 1

2i

∫ τλ

0
dtei�(t )e−ikλt − 1

2i

∫ τλ

0
dte−i�(t )e−ikλt . (D10)

By substituting τλ = 2π/λ and �(t ) = �0(1 − cos λt )/λ into the positive exponential term, we find∫ τλ

0
dtei�(t )e−ikλt = ei�0/λ

∫ 2π/λ

0
dte−i( �0

λ
cos λt+kλt ) = ei�0/λ

λ

∫ 2π

0
dτe−i( �0

λ
cos τ+kτ ) = ei�0/λeikπ/2

λ

∫ 5π/2

π/2
dτe−i( �0

λ
sin τ+kτ )

= ei�0/λeikπ/2

λ

[∫ 2π

0
dτe−i( �0

λ
sin τ+kτ ) +

∫ 5π/2

2π

dτe−i( �0
λ

sin τ+kτ ) −
∫ π/2

0
dτe−i( �0

λ
sin τ+kτ )

]
.

The last two terms in this expression cancel, leaving∫ τλ

0
dtei�(t )e−ikλt = ei�0/λeikπ/2

λ

∫ 2π

0
dτ e−i( �0

λ
sin τ+kτ ) = ei�0/λe−ikπ/2

λ

∫ π

−π

dτ ei( �0
λ

sin τ−kτ ) = 2πei�0/λe−ikπ/2

λ
Jk

(
�0

λ

)
,

(D11)

where the last equality follows from the integral representation of a Bessel function of the first kind. Performing a similar
calculation on the negative exponential term yields∫ τλ

0
dte−i�(t )e−ikλt = 2πe−i�0/λe−ikπ/2

λ
J−k

(
�0

λ

)
= 2πe−i�0/λe−ikπ/2

λ
(−1)kJk

(
�0

λ

)
. (D12)

By combining Eqs. (D1) and (D7)–(D12), the dephasing FF becomes

FZ (ω, T ) ≈ Mλ
∑
k∈Z

δ(ω − kλ)

[ ∣∣∣∣
∫ τλ

0
dt cos �(t )e−ikλt

∣∣∣∣
2

+
∣∣∣∣
∫ τλ

0
dt sin �(t )e−ikλt

∣∣∣∣
2 ]

= Mλ
∑
k∈Z

δ(ω − kλ)

[
1

2

∣∣∣∣
∫ τλ

0
dtei�(t )e−ikλt

∣∣∣∣
2

+ 1

2

∣∣∣∣
∫ τλ

0
dte−i�(t )e−ikλt

∣∣∣∣
2 ]

= Mλ

(
2π

λ

)2 ∑
k∈Z

δ(ω − kλ)

∣∣∣∣Jk

(
�0

λ

)∣∣∣∣
2

= 2πT
∑
k∈Z

δ(ω − kλ)

∣∣∣∣Jk

(
�0

λ

)∣∣∣∣
2

.

Note that the same approximate dephasing FF can be obtained for the waveform �(t ) = �0 cos(λt ).
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APPENDIX E: HIGHER ORDER FF COMPUTATION

In Appendix A, an equation for the higher-order dephasing FF GZ (ω,ω′, T ) was derived:

GZ (ω,ω′, T ) =
∫ T

0
dt1

∫ t1

0
dt2 sin

[
�(t1) − �(t2)

] ∫ T

0
dt3

∫ t3

0
dt4 sin[�(t3) − �(t4)]

× [eiω(t1−t2 )eiω′(t3−t4 ) + eiω(t1−t3 )eiω′(t2−t4 ) + eiω(t1−t4 )eiω′(t2−t3 )]. (E1)

This formula involves a quadruply nested integral, and it is not obvious how to factor the expression into smaller, more man-
ageable integrals. Directly using this expression to evaluate the higher-order FF at single pair of frequencies ω,ω′ has a runtime
complexity of O(N4), where N is the number of segments in the piecewise-constant waveform. To sample the higher-order FF
at a grid of frequencies (with density proportional to N) has complexity O(N6), which is extremely computationally intensive.
Here we describe a more efficient approach for sampling GZ (ω,ω′, T ) at a grid of frequencies with runtime O(N2 log2(N )2).

First, we use the sum and difference trigonometric identities to rewrite sin [�(t1) − �(t2)] into a (sum of) products:

sin[�(t1) − �(t2)] = sin �(t1) cos �(t2) − cos �(t1) sin �(t2). (E2)

Using this to rewrite Eq. (E1), we get

GZ (ω,ω′, T ) =
∫ T

0
dt1

∫ t1

0
dt2

∫ T

0
dt3

∫ t3

0
dt4[sin �(t1) cos �(t2) − cos �(t1) sin �(t2)]

× [sin �(t3) cos �(t4) − cos �(t3) sin �(t4)][eiω(t1−t2 )eiω′(t3−t4 ) + eiω(t1−t3 )eiω′(t2−t4 ) + eiω(t1−t4 )eiω′(t2−t3 )].

This expression can be expanded into a sum of 12 integrands. For the remainder of this section, we shall focus on the following
subexpression, which has the arguments in the exponentials split according to the groupings t1, t4 and t2, t3 (which we note is
different than the groupings t1, t2 and t3, t4 induced by the bounds on integration). The other subexpressions proceed similarly:

f (ω,ω′) =
∫ T

0
dt1

∫ t1

0
dt2

∫ T

0
dt3

∫ t3

0
dt4 sin �(t1) cos �(t2) sin �(t3) cos �(t4)eiω(t1−t4 )eiω′(t2−t3 ). (E3)

For convenience, we define a helper function H (ω1, ω2), where we emphasize the notational change from (ω,ω′) to (ω1, ω2):

H (ω1, ω2) =
∫ T

0
dt1

∫ t1

0
dt2 sin �(t1) cos �(t2)eiω1t1 eiω2t2 . (E4)

We can now begin to rewrite Eq. (E3):

f (ω,ω′) =
∫ T

0
dt1

∫ t1

0
dt2

∫ T

0
dt3

∫ t3

0
dt4 sin �(t1) cos �(t2) sin �(t3) cos �(t4)eiω(t1−t4 )eiω′(t2−t3 )

=
∫ T

0
dt1

∫ t1

0
dt2

∫ T

0
dt3

∫ t3

0
dt4 sin �(t1) cos �(t2) sin �(t3) cos �(t4)eiωt1 e−iωt4 eiω′t2 e−iω′t3

=
(∫ T

0
dt1

∫ t1

0
dt2 sin �(t1) cos �(t2)eiωt1 eiω′t2

)(∫ T

0
dt3

∫ t3

0
dt4 sin �(t3) cos �(t4)e−iω′t3 e−iωt4

)

= H (ω,ω′) · H (−ω′,−ω).

As such, we see that the arguments in the exponentials depending on different time orderings is no great barrier to factoring
the subexpression into doubly nested integrals. Indeed, all 12 subexpressions in our expanded formula for GZ (ω,ω′, T ) yield
to such decompositions (some using different helper functions). Importantly, decomposing the subexpression in this manner
reduces the complexity from evaluating a single quadruply nested integral to computing two doubly nested integrals, which are
substantially faster to calculate [runtime O(N2) as opposed to O(N4)]. Through this approach, we can compute a single element
GZ (ω,ω′, T ) in runtime O(N2) by computing many doubly nested integrals.

Discrete Fourier transform to efficiently compute higher order FF

We have shown how to compute a single element GZ (ω,ω′, T ) in runtime O(N2) by computing many doubly nested integrals.
Next, we demonstrate how to use the fast-Fourier transform to compute GZ (ω,ω′, T ) for many frequencies at once, with total
runtime O(N2 log2(N )2).

We focus on the computationally relevant discrete Fourier transform (DFT) application, where we discretize the function
�(t ) into a sequence of length N , and the frequencies ω, ω′ at which we evaluate GZ (ω,ω′, T ) are integer multiples of 	ω =
2π/(T N ). It suffices to demonstrate that H (ω1, ω2) can be efficiently computed at all such frequencies simultaneously [in
runtime O(N2)]. Once this has been done, then computing GZ (ω,ω′, T ) is straightforward.
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We begin by rewriting

H (ω1, ω2) =
∫ T

0
dt1

∫ t1

0
dt2 sin �(t1) cos �(t2)eiω1t1 eiω2t2 =

∫ T

0
dt1eiω1t1 sin �(t1)

∫ t1

0
dt2 cos �(t2)eiω2t2 .

Next, we define a few more helper functions:

h(t, ω) ≡
∫ t

0
ds cos �(s)eiωs =

∫ T

0
ds g(t, s)eiωs, where g(t, s) ≡

{
cos �(s) s � t

0 s > t .

Then we discretize time and convert the integrals to finite sums:

H (ω1, ω2) ≡ (	t )2
N−1∑
j1=0

eiω1 j1	t sin �( j1	t )
j1∑

i2=0

cos �( j2	t )eiω2 j2	t , (E5)

h(k, ω) ≡ (	t )
N−1∑
j=0

g(k, j)eiω j	t , (E6)

where g(k, j) ≡
{

cos �( j) j � k

0 j > k.
(E7)

If k is regarded as a fixed parameter, then Eq. (E6) is readily seen to be the discrete fourier transform of g(k, j) in Eq. (E7) with
respect to j. Therefore for each fixed value of t , the DFT is able to compute h(k, ω) for all (discretized) values of ω = m · 	ω

simultaneously in time O(N log2(N )). By repeating this for each (discretized) time t , we are able to compute all values of h(k, ω)
in runtime O(N2 log2(N )2).

After we have precomputed all values of h(t, ω), we express the original helper function H (ω1, ω2) as

H (ω1, ω2) ≡ (	t )2
N−1∑
j1=0

eiω1 j1	t sin �( j1	t )
j1∑

i2=0

cos �( j2	t )eiω2 j2	t ,

= (	t )
N−1∑
j1=0

eiω1 j1	t [sin �( j1	t ) h( j1, ω2)], (E8)

and we see that it can again be regarded as a Fourier transform. Explicitly, we now regard ω2 as a fixed parameter and take
the DFT with respect to t1. This can be computed for all frequencies ω1 in runtime O(N log2(N )) using the DFT. By repeating
this for all values of ω2 [without needing to recompute h(k, ω) from the previous step], we can thus compute H (ω1, ω2) for
all (discretized) frequencies ω1, ω2 in runtime O(N2 log2(N )2). We note that this is almost the same asymptotic complexity as
it takes to compute a single element of H . Thus, by carefully rearranging our original expression we can leverage the DFT to
efficiently compute the higher-order FFs.
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