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Long-range entanglement in quantum dots with Fermi-Hubbard physics
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The range of entanglement in quantum dots, under the effect of the Coulomb interaction and the system’s size,
is investigated. As ququart systems, naturally described by the Fermi-Hubbard model, we show that quantum dots
supply long-range entanglement up to the third neighbor. In conjunction with that and using the lower bound of
concurrence, we show that the Coulomb interaction can be adjusted to create and increase entanglement between
distant parties as well. A rigorous description of the pairs is given in terms of a local half-filled state associated
with each pair with an electron number N = 2 and a spin S = 0. A thorough study of this state provides a proper
explanation related to the pairwise entanglement, namely, its amount and its behavior under the effect of the
Coulomb interaction together with the system’s size. In addition, we show that the confinement state of quantum
dots is genuinely four-partite entangled with a maximum amount for the smallest size L = 4.
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I. INTRODUCTION

As a swiftly expanding and cross-disciplinary topic, quan-
tum entanglement has been a subject of various studies that
have attracted many leading theorists and experimentalists
from physics, computer science, and electronic engineering in
recent years. Mostly due to its nonlocal [1] connotation, this
primarily intriguing feature of quantum mechanics is regarded
as a precious resource and a key ingredient in many striking
achievements that have been witnessed in the past decade in
quantum communication and information processing [2–4].

Over the past several years, there has been a heightened
interest in quantum many-body systems in favor of quantum
information and vice versa [5]. This interest has been trig-
gered as a consequence of the imperative need to enhance
the understanding of the physics of many-body systems for
the purpose of operating the basic unit of quantum informa-
tion, i.e., the qubit, as well as for building scalable devices
designed to implement quantum information tasks in a very
accurate and controlled way. Among the most scalable and
time-coherent platforms, dedicated to implement quantum
information schemes, are quantum dot (QD) systems [6–8].
Quantum dots are semiconductor nanocrystals, often referred
to as artificial atoms, where the carriers’ motion is quantized
in all the spatial directions giving rise to discrete energy
levels (quantum confinement effect). Semiconductor QDs are
naturally described by the Fermi-Hubbard (FH) model in the
low-temperature and strong-Coulomb-interaction regime [9].
This property provides a simplified framework for the under-
standing of the behavior of QDs. As a matter of fact, the FH
model is a simple approach that describes interacting spin-
1
2 fermions in many-body systems. The Coulomb repulsion
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interaction governing the fermions in this approach is one of
the physical effects that dominates the electronic properties
of QD systems [10]. Hence, a better understanding of the
Hubbard physics allows an accurate experimental tunability
of the electron numbers in each quantum dot, as well as other
parameters, using gate voltages [9].

The ground state of the FH model is considered as a natural
source of entanglement. Moreover, a closer look at the nature
of entanglement in the FH models ground state may reveal
itself powerful to enhance the information transfer in quantum
communications. Indeed, the quantum states of such a model
are ququart states (d = 4), giving rise to an enlarged Hilbert
space. This could provide a larger information capacity and an
increased noise resilience [11] which could strongly promote
the use of this model to carry out quantum information tasks.
Nonetheless, increasing the dimension paves the way to the
well-known issue of entanglement quantification for mixed
states in higher-dimensional systems. In view of this fact,
many questions are still open in the FH model and little is
known about the details of entanglement, such as the behavior
of pairwise entanglement as well as the range of entanglement
in the weak-interaction regime. In this regard, a particular
lower bound of concurrence (LBC) has been recently sug-
gested [12], providing a good estimation of mixed states’
bipartite entanglement in higher dimensions. Using this mea-
sure, we will show, for instance, that in the weak-interaction
regime, the pairwise entanglement increases with the growth
of the Coulomb interaction in contrast to the local entangle-
ment [13,14].

In general, the most natural way of creating a large
amount of entanglement between two or more parties, in
low-dimensional systems, requires the presence of strong cor-
relations. In most qubit systems with short-range interactions
and with periodic boundary conditions, the entanglement be-
tween a pair of particles declines rapidly with distance and
could vanish even for distances larger than two sites such as
the case of the Ising model with a transverse field [15]. It can
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also be restricted only to nearest neighbors in the Heisenberg
model [16]. From the point of view of quantum information,
an even more appealing goal would be the ability to create a
large amount of entanglement between distant and generally
not directly interacting constituents. This can be conveniently
exploited for an efficient implementation of spin-chain-based
quantum information schemes [17,18]. Moreover, it has been
shown that the ground state of some spin chains with open
boundary conditions and finite correlation length can supply
large values of end-to-end entanglement between the end sites
of the chain [19]. In the present paper a characteristic case
of an open array with size L = 4 will provide an important
end-to-end entanglement where the range of entanglement
extends to the third neighbor, while for L > 4 the range can be
created and extended to the second and third neighbors under
the effect of the Coulomb interaction.

In this study we focus on finite-size systems as appropriate
systems for numerical treatment that can be extrapolated to
larger-size lattices. Furthermore, they are easily controlled
and manipulated experimentally in nanotechnological appli-
cations. A pivotal analysis of our results will be presented in
terms of a local half-filled state (LHFS) describing each pair
with two electrons. A complete knowledge about the LHFS
and its associated probability will provide primary details
regarding the amount of entanglement and its behavior under
the effect of the Coulomb interaction as well as the system’s
size. The principal cornerstones of our work are presented in
Sec. II: The one-dimensional FH model, which provides an
adequate approach for the description of QD systems, and the
LBC as a measure of pairwise entanglement. The aforemen-
tioned measure allows us in Sec. III to reveal the range of
entanglement as well as the behavior of pairwise entangle-
ment, which proves to be distinct from that of the well-known
local entanglement. Focusing on the smallest size that we
simulated, L = 4, a detailed explanation of the pairwise en-
tanglement properties is presented in Sec. IV, showing the
presence of two competing effects responsible for the increase
in pairwise entanglement: The mixing effect and the inherent
effect associated with the LHFS. A summary, conclusions,
and perspectives for future work are presented in Sec. V.

II. MODEL AND FORMALISM

A. Fermi-Hubbard model

An array of QDs can be modeled by the one-dimensional
FH approach [9,20]. Assuming that the hopping is bounded
by the nearest-neighbor lattice sites, the simplest expression
of the Hamiltonian corresponding to the model [21] is formu-
lated as

H = −t
∑

i,σ

(c†
i,σ ci+1,σ + c†

i+1,σ ci,σ ) + u
∑

i

ni,↑ni,↓, (1)

where c†
i,σ and ci,σ are the creation and annihilation fermionic

operators, respectively, attached to site i with spin σ = {↑,↓}
(indicating spin-up or spin-down electron), and niσ = c†

i,σ ci,σ

is the corresponding number operator. In addition, t is the
hopping amplitude, associated with the tunneling of elec-
trons between the neighboring sites, whereas u is the on-site
electron-electron Coulomb interaction. To describe the QDs,

a simple approximation is to regard each dot as having one va-
lence orbital (s orbital) with a single energy level; accordingly,
each QD is able to hold up to two electrons with opposite spins
in compliance with the Pauli exclusion principle. Thereby
electrons have four possibilities in occupying a single site:
|0〉, |↑〉, |↓〉, and |↑↓〉 (standing for no electron, one electron
having a spin up, one electron having a spin down, and two
electrons, respectively).

When the repulsion interaction u within the sites is too
strong compared to the hopping amplitude t , the tunneling
of electrons is blocked, leading to a clear observation of
the quantum confinement effect in the FH model. This is
analogous to the creation of potential barriers between the
sites, which prevent electrons from moving outside. Exper-
imentally, such barriers can be produced by modulating the
potentials using gate electrodes in order to control the tun-
neling of electrons between quantum dots [9]. Indeed, from
an experimental point of view, one of the commonly stud-
ied and experimentally employed quantum dot devices are
GaAs/AlGaAs semiconductor heterostructures that grow by
molecular-beam epitaxy. Into the interface between GaAs and
AlGaAs, free electrons are strongly confined in one direction,
which thus induces a two-dimensional electron gas (2DEG).
By locally depleting the 2DEG, using metal gate electrodes
on the surface of the heterostructure, the electrons can now be
well confined in the remaining two dimensions. The control
of FermiHubbard parameters is reached by adjusting the po-
tential landscape in the 2DEG through gate electrodes. These
gates include plunger gates and barrier gates that are designed
to tune the single-particle energy offsets, the chemical po-
tential of individual dots, the tunnel couplings (t) between
two dots as well as the on-site (u) and the intersite Coulomb
interaction energies.

In typical structures [9,20,22], u is of the order of a few
meV and t is tunable by gate voltages from t ∼ 0 to t ∼
100 μeV. In addition, quantum dot systems can be cooled
down to a few tens of mK, which ensures the thermal energy
to be significantly lower than the other energy scales of the
system (kT � t � u). In the following we will consider the
dimensionless quantity U = u/t as the main parameter in
the model.

B. Lower bound of concurrence

The absence of a proper measure of entanglement for
systems beyond the 2 × 2 and 2 × 3 dimensions forces us
to settle for a measure of the lower bound of entangle-
ment instead of analytical exact results. Some operational
lower bounds of the concurrence for any dimensional mixed
bipartite quantum states have been presented by using
positive partial transposition and realignment separability cri-
teria [23,24], which can detect some bound entangled states
but not all. These bounds are exact for some special classes
of states. In [25] another lower bound on the entanglement of
formation for bipartite states was presented from a separabil-
ity criterion [26] based on a nondecomposable positive map
which operates on state spaces with even dimension, N � 4,
leading to a class of nondecomposable optimal entanglement
witnesses. In [27] a derived lower bound of concurrence based

022421-2



LONG-RANGE ENTANGLEMENT IN QUANTUM DOTS WITH … PHYSICAL REVIEW A 106, 022421 (2022)
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FIG. 1. Lower bound of concurrence (2), associated with the pairs (a) ρ12, (b) ρ23, (c) ρ13, and (d) ρ14, as a function of U for various system
sizes up to L = 12.

on the local uncertainty relation criterion complements and
improves the results shown in [24].

In [12] the authors derived an analytical lower bound of
concurrence for arbitrary bipartite quantum states by decom-
posing the joint Hilbert space into many (2 ⊗ 2)-dimensional
subspaces, which does not involve any optimization proce-
dure and gives an effective evaluation of entanglement. This
lower bound was recently extended to an arbitrary N-partite
state [28,29] which detects quantum entanglement of some
states better than some separability criteria. For an arbi-
trary bipartite system of dimension d × d , the concurrence
C(ρi j ) [12] satisfies

τ2(ρi j ) = d

2(d − 1)

d (d−1)/2∑

α

d (d−1)/2∑

β

C2
αβ � C2(ρi j ), (2)

where

Cαβ = max
{
0, λ

(1)
αβ − λ

(2)
αβ − λ

(3)
αβ − λ

(4)
αβ

}
. (3)

In our case, ρi j is the pairwise density matrix of a four-level
system (i.e., ququarts); for concreteness we take i < j. Here
λ

(m)
αβ are the square roots of the nonzero eigenvalues of the non-

Hermitian matrix ρi j ρ̃(i j)αβ such that λ
(m)
αβ > λ

(m+1)
αβ for m = 1,

2, 3, or 4 and

ρ̃(i j)αβ = (Gα ⊗ Gβ )ρ∗
i j (Gα ⊗ Gβ ). (4)

Here Gα is the αth element of the group SO(d ) spanned by
d (d−1)

2 generators and Gβ is defined similarly since the two
subsystems have the same dimension d .

The left-hand side of the inequality in (2) can be effectively
computed, providing thus a solid lower bound of concurrence
and entanglement. Although being deficient in granting all the
details about the amount of entanglement, this LBC imparts
precious information that is not obtainable otherwise. The
efficiency of the LBC is manifested in the fact that it can detect
mixed entangled states with a positive partial transpose [28]
and that for fully separable multipartite state it is equal to zero.

III. RANGE OF ENTANGLEMENT AND SIZE EFFECT

In this section we analyze the pairwise entanglement be-
havior, under the effect of the Coulomb interaction U in a
finite-size array of QDs, formally described by the FH model.
Furthermore, the range of entanglement under the system’s
size effect is investigated. This will establish the peculiarities
of this type of entanglement compared to the single-site en-
tanglement. Figure 1 gives us some insight in this regard. An

initial increase of U in the weak-coupling regime could give
rise to an appreciable growth in the pairwise entanglement,
in contrast to the local entanglement that decays instantly
with U [13,14]. Since entanglement is a crucial ingredient for
quantum information tasks, any improvement or increase in
this resource will make a prominent contribution in quantum
information. In this regard, U proves its potency in increasing
and, more importantly, creating entanglement within the pairs
and this will play a significant role in the direction that em-
ploys spin chains as quantum channels [30]. The calculations
were done by exact diagonalization of the Fermi-Hubbard
model [31,32].

A. Pairwise entanglement and size effect

In terms of the system’s size, Fig. 1 shows that as the
system grows in size, the pairwise entanglement C(ρi j ) decays
for all the pairs ρi j (i < j) with j even but increases instead for
all the pairs where j is odd. Generally, this can be interpreted
by the fact that the pairs at the borders ρ12 and ρL−1,L, with
ρ12 = ρL−1,L by mirror reflection symmetry, are less corre-
lated with the remaining sites according to the monogamy
of entanglement as they have to conserve the higher amount
of entanglement. This is especially shown for the smallest
size L = 4, where in this case C(ρ12) is the highest quantity,
as shown in Fig. 1(a). However, with the increase of the
size, the influence of the other sites becomes increasingly
important; consequently, the pairwise entanglement C(ρ12)
and C(ρL−1,L ) at the borders, with j even, decays with the
system’s size.

Since the pairs at the borders have an even j, their nearest
pairs, i.e., ρ23 and ρL−2,L−1 (with ρ23 = ρL−2,L−1 due to the
mirror reflection symmetry), necessarily have an odd index
j. Considering, for instance, the fact that C(ρ12) decays as L
grows, the monogamy of entanglement in this case forces the
quantum correlations, on one hand between sites 1 and 3 and
on the other hand between 2 and 3, to be increased instead and
this is the reason why the pairwise entanglement C(ρ13) and
C(ρ23), in Fig. 1, grows with L. The same reasoning, based on
the monogamy of entanglement, explains the increase of the
pairwise entanglement C(ρi j ) with j even and the decrease of
C(ρi j ) for j odd, with the increase of the size L of the system.

B. Range of entanglement

From the point of view of the distance effect, since intu-
itively the presence of direct and strong correlations provide
great amounts of entanglement, the adjacent sites [Figs. 1(a)
and 1(b)], for instance, should reveal a larger amount of
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entanglement compared to the distant sites [Figs. 1(c) and
1(d)] at U = 0. Indeed, the previous behavior is in agreement
with the monogamy of entanglement which broadly stipulates
that if two systems are strongly entangled with each other,
then each of them cannot be entangled very much with other
systems. In addition to that, when increasing U while staying
in the weak-coupling regime, the entanglement (LBC) grows
considerably for the adjacent sites but insubstantially for the
distant sites (except for ρ14 when L = 4). After reaching
a maximal value, the LBC diminishes asymptotically to a
nonzero value for nearest-neighbor sites and to zero for distant
sites.

One of the most important aspects characterizing spin
chain systems is their ability to distribute entanglement be-
tween distant parties. In this regard it is clearly shown in
Fig. 1(d) that at U = 0, the range of entanglement extends
to the third-neighbor site for the smallest size system L = 4,
while for 4 < L < 10 the range of entanglement is restricted
to the nearest-neighbor sites. Nevertheless, it is created and
extended again to the third-neighbor site with an optimal
choice of U in a specific interval, whereas with the size growth
L � 10 the range of entanglement is restricted to the second
neighbors again in a specific interval of U (Fig. 1). Beyond
that the pairwise entanglement vanishes for distances larger
than single neighboring site when U takes large values.

Finding an appropriate interpretation for the increase in
pairwise entanglement as a function of U in the weak-
coupling regime can seem to be rather complicated as the
question concerns the larger sizes. To circumvent this initially,
in the next section our study will be based on the smallest size
system L = 4, where a detailed explanation of the aforemen-
tioned pairwise entanglement behavior can be easily analyzed
and afterward generalized to larger system sizes.

IV. ENTANGLEMENT AND LOCAL HALF-FILLED STATE

A. Local entanglement

For a chain with open boundary conditions, due to a lack
of translational invariance, the local entanglement (referring
to the entanglement of a given site with the rest of the chain)
is not expected to be the same for each site i. However,
the mirror reflection symmetry translates into the constraint
E (ρi ) = E (ρL−i+1), where E (ρ) = −Tr(ρ log2 ρ) is the von
Neumann entropy and

ρi = vi|0〉〈0| + si↑|↑〉〈↑| + si↓|↓〉〈↓| + di|↑↓〉〈↑↓|, (5)

with

di = Tr(ni↑ni↓ρi ) = 〈ni↑ni↓〉, si↑ = 〈ni↑〉 − di,

si↓ = 〈ni↓〉 − di, vi = 1 − di + si↑ + si↓. (6)

For the FH model at half filling, 〈ni↑〉 = 〈ni↓〉 = 1
2 and si↑ =

si↓ = si = 1
2 − di. Consequently, the corresponding von Neu-

mann entropy is

E (ρi ) = −2di log2 di − 2
(

1
2 − di

)
log2

(
1
2 − di

)
. (7)

It can be seen from Fig. 2 for L = 4 [Fig. 2(a)] and L = 12
[Fig. 2(b)] that while behaving similarly under the effect of
U , the amount of local entanglement at the end sites, E (ρ1) =
E (ρL ), is less than that in the inner sites, E (ρi ) with 1 < i <

(a)

(b)

FIG. 2. Local entanglement (a) E (ρ1) = E (ρL ) and E (ρi ) with
1 < i < L [Eq. (7)] at the ends and the middle of the chain, respec-
tively, as a function of U for system size (a) L = 4 and (b) L = 12.
The inset in (a) shows the effect of U on the single- and double-
occupation probabilities si and di, respectively, at the end sites (i =
1, 4) and the middle sites (i = 2, 3).

L. It is quite clear that at U = 0 the electrons can move freely
in the array in such a way that each site has the same probabil-
ity of being singly occupied si, doubly occupied di, or empty
vi. Focusing on the smallest size L = 4, this is confirmed from
the inset in Fig. 2(b), where at U = 0, si = di = 1

4 , thus ex-
plaining why the E (ρi ) at the ends and the inner sites have the
same value. With increasing U the local entanglement at the
ends exhibits a faster decrease compared to the entanglement
in the middle of the chain E (ρ1) = E (ρ4) < E (ρ2) = E (ρ3).
This can be easily explained following the same reasoning
mentioned previously by noticing in the inset in Fig. 2(a) that
as the repulsion interaction increases the sites at the ends favor
the single occupancy (s↑ or s↓) more than the sites in the
middle and therefore the correlations created at the end sites
tend to degrade faster with the increase of U . The same be-
havior is consistently applied to large sizes. Nevertheless, the
sites in the middle retain the same amount of entanglement,
as shown in Fig. 2(b), considering the fact that the effect of
the borders becomes negligible as we move away from the
ends. Consequently, the occupation probabilities si and di in
this case becomes equal for all the middle sites, thus resulting
in equal amounts of entanglement.

It is worth mentioning that, even though the on-site interac-
tion U is assumed to be the same at all the sites, the situation
becomes equivalent to a chain with Ue > Um [33] for finite
U , where Ue and Um denote the end and the middle on-site
Coulomb interactions, respectively. Generally, the inequality
Ue > Um expresses the fact that the occupation probabilities
associated with the four configurations are not equal for all the
sites. Notably, the occurrence of double occupancy at the end
sites is more disfavored in comparison to that at the middle
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FIG. 3. (a) Probabilities corresponding to the 16 basis states for each pair at U = 0 with L = 4. The basis states with N = 2 and S = 0
are marked by red squares, those with N = {1, 3} and S = ± 1

2 by green triangles, and those with N = {0, 4} and S = 0 and with N = 2 and
S = ±1 by blue circles. Also shown are the probabilities Pk associated with the 42 eigenstates |ψk〉 of (b) ρ12, (c) ρ23 = ρ14, and (d) ρ13. The
PLHFS associated with the LHFS is marked by a red dashed line.

sites. This scenario is different for periodic chains where the
local entanglement for all the sites is the same [13,14].

At U → ∞ the tunneling of electrons is blocked, yielding
thus the confinement state, where each site confines one elec-
tron with spin up or spin down. At this stage the probability
of the different occupation configurations becomes equal at
each site. As a result, the entanglement at each site becomes
the same in the confinement state. Understanding the behavior
of the local entanglement behavior will partly explain the
behavior of the pairwise entanglement discussed hereafter.

B. Pairwise entanglement at U = 0

For the purpose of analyzing the pairwise entanglement
behavior, we have to discuss generally the state characterizing
the pairs at U = 0 and without loss of generality we consider
L = 4. In this case, the half-filled single band array is defined
by a fixed total number of electrons, 4, and a null total spin.
However, the situation is different for the local pairs where a
given (odd or even) number of electrons N = {0, 1, 2, 3, 4}
can be associated with each pair with a specific total spin
S = {−1,− 1

2 , 0, 1
2 , 1}. Henceforth, the state describing each

pair is represented by a mixture

ρi j =
∑

k

Pk|ψk〉〈ψk|, (8)

where {|ψk〉} are the possible states corresponding to a given
number N and a total spin S defined above.

As previously outlined, at U = 0 each site has the same
probability 1

4 to be in one of the four possible states |↑〉,
|↓〉, |↑↓〉, or the vacuum state |0〉. Nevertheless, the different
pairs are described differently and they exhibit dissimilarity
in the occupation probabilities associated with the 16 (42)
basis states of each pair. Note from Fig. 3(a) that the pairs of
neighboring sites located at the ends of the array, ρ12 = ρ34,
have a relatively high probability to be in the states |↑,↓〉,
|↓,↑〉, |↑↓, 0〉, and |0,↑↓〉, i.e., states with N = 2 and S = 0,
compared to other states. The other pairs exhibit a different
behavior and as such it becomes obvious that the pairwise
entanglement cannot be the same between all pairs at U = 0,
contrary to the local entanglement.

It is worth mentioning that all the states |ψk〉 in the
decomposition (8) are degenerate due to particle number con-
servation and spin symmetry, except the state with N = 2 and
S = 0, which is given by (α|↑,↓〉 + β|↓,↑〉 + γ |↑↓, 0〉 +
δ|0,↑↓〉), hereafter referred to as the local half-filled state.

Furthermore, for all the pairs at U = 0, it is the state that
possesses the highest probability in contrast to the others,
as reflected in Fig. 3. Given the fact that the LHFS is the
dominant state as well as a highly entangled state (maximally
entangled for |α| = |β| = |γ | = |δ| = 1

2 at U = 0) in the mix-
ture (8), the behavior of the pairwise entanglement will be
essentially dominated by the LHFS entanglement behavior
itself. Henceforth, in the following the pairwise entanglement
behavior will be explained based on the LHFS.

In Fig. 3(b) it is shown that the pair ρ12 has a very high
probability, which exceeds 0.8, to be in the LHFS. This is
expected because, as we have pointed out, the states |↑,↓〉,
|↓,↑〉, |↑↓, 0〉, and |0,↑↓〉 are the most favored states for
the pair ρ12 [Fig. 3(a)], followed by the pair ρ23 and ρ14

and finally ρ13. As the mixture is generally dominated by the
LHFS, it is evident that the higher the probability of being in
this state, the higher the pairwise entanglement will be. This is
what explains the pairwise entanglement at U = 0 observed in
Fig. 1, where, considering L = 4 for illustrative purposes, the
highest amount of entanglement goes to the pair ρ12 followed
by ρ23, ρ14, and finally ρ13. The same reasoning applies for
L > 4, where the amount of pairwise entanglement C(ρi j )
depends primarily on the quantity PLHFS (the probability of
a pair being in the LHFS) in such a manner that, for a fixed
L, the higher PLHFS is, the higher the pairwise entanglement
C(ρi j ) is and vice versa.

Returning to the size effect on pairwise entanglement
C(ρi j ) for an even or odd index j, discussed in Sec. III, now
the picture is clarified. Actually, in addition to the aforemen-
tioned reasoning, the pairwise entanglement C(ρi j ) follows
the probability PLHFS for an arbitrary system size, for either
even or odd j. Figure 4 displays that for an even index j,
PLHFS decreases with the system size, which is the case for
ρ12 in Fig. 4(a), and this is why C(ρi j ) decreases too with the
increase of the system’s size L for j even. However, for an odd
index j, PLHFS increases instead as L increases, as shown for
the pair ρ23 in Fig. 4(b) and in this case C(ρi j ) increases too
with L.

It is appropriate to note that following the reasoning above,
the pairwise entanglement of the pair ρ14 is greater than ρ13,
which is indeed the situation observed in Fig. 1. At first
glance, this seems nonobvious and contradicts the distance
effect on pairwise entanglement since it is commonly believed
that this later decays rapidly as the distance separating the
particles grows, in most systems with short-range interaction.
However, an easier explanation for this peculiar behavior
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(a)

(b)

FIG. 4. Probability Pk associated with the LHFS as a function of
U with various system sizes L for (a) ρ12 and (b) ρ23.

can be derived in terms of the entanglement monogamy and
Coffman-Kundu-Wootters inequalities [34] through the entan-
glement that is externally shared by a given pair. We will refer
to this type of entanglement as shared entanglement hereafter,
which will be quantified using the von Neumann entropy
E (ρi j ) = −Tr(ρi j log2 ρi j ), where ρi j is the state describing
a pair of quantum dots.

In Fig. 5(a) it is shown that ρ14 is directly linked with sites 2
and 3, making two bonds of direct interactions exactly similar
to the pair ρ23. This is the reason why they externally share
the same amount of entanglement as shown in Fig. 5(b). Fur-
thermore, since they have equal occupation probabilities Pk

at U = 0 [Fig. 3(a)], ρ23 = ρ14, which implies that C(ρ23) =
C(ρ14) at U = 0. This is indeed observed in Figs. 1(b) and
1(d) for L = 4. In contrast, the pair ρ13 makes three direct
interaction bonds with sites 2 and 4 [Fig. 5(b)]. For this rea-
son the pair ρ13 has to externally share the greatest amount
of entanglement E (ρ13) compared to all the other pairs, as
displayed in Fig. 5(b). Hence, according to the monogamy of
entanglement, the pair ρ13 is less entangled in comparison to
ρ14, thus establishing a long-distance entanglement by the pair
ρ14 against ρ13.

The local entanglement E (ρi ) (Fig. 2) and the entangle-
ment E (ρi j ) shared by the pairs [Fig. 5(b)] have a maximal
value at U = 0 because of the rich structure of quantum
correlations present in the system. Once U increases, the
entanglement decreases and here the quantum correlations are
no longer powerful. Nonetheless, the pairwise entanglement
C(ρi j ) could achieve a maximal value at U �= 0. This quantum
picture will be clarified and studied in details in the next sec-
tion, where a rigorous explanation of the behavior of pairwise
entanglement as a function of U will be presented.

(a)

(b)

FIG. 5. (a) Representative scheme showing the direct correlation
bonds between each pair and the remaining sites for L = 4. (b) En-
tanglement E (ρi j ) externally shared by the different pairs for L = 4.

C. Pairwise entanglement in the finite coupling regime

Generally, increasing U allows the pairs to favor more the
LHFS, except for the pair ρ13, which has a strong tendency to
be in a state with N = 2 but S = {−1, 0,+1} as a mixture
that combines the ferromagnetic and the antiferromagnetic
behavior associated with this subsystem. It is defined as ρ =
p
∑3

i=1 |ψi〉〈ψi|, with |ψ1〉 = |↑↑〉, |ψ2〉 = |↓↓〉, and |ψ3〉 =
α|↑↑〉 + β|↓↓〉 + γ |↑↓〉 + δ|↓↑〉. This is clearly shown in
Fig. 3, where the probability associated with the LHFS grows
faster with U compared to the other states in the mixture
characterizing the pairs ρ12, ρ23, and ρ14, whereas for the pair
ρ13, it is the probability p associated with |ψ1〉, |ψ2〉, and |ψ3〉
that increases instead and becomes dominant compared to the
other probabilities.

Evolving into the favored pure LHFS or the mixed state ρ,
while increasing the Coulomb interaction U , each pair ρi j ex-
hibits an increase of its purity, which is again established from
Fig. 3, where the majority of the probabilities Pk vanish. This
is among the prominent factors that could increase the pair-
wise entanglement, as it is widely known that increasing the
degree of mixture decreases the entanglement. In our case we
observe an increase of the entanglement due to the decrease of
the mixture. However, relying solely on this statement is not
enough, because as shown in Fig. 1(d) the pairwise entangle-
ment C(ρ14) decreases instead; therefore, another factor has to
be taken into account. As a matter of fact, the state describing
the pairs is given by ρi j (U ) = ∑

k P(U )|ψk (U )〉〈ψk (U )|, in
which the states |ψk〉, namely, the LHFSs, evolve also with U
at the same time the probabilities Pk evolve. In this regard, we
will show that there are two competing effects that are present
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FIG. 6. The LBC associated with the LHFS (red solid and dotted lines) and with the global state ρi j with a frozen LHFS (blue solid and
dashed lines) for (a) ρ12, (b) ρ23 and ρ14, and (c) ρ13.

in the system: The mixing effect (the effect of the mixture) and
the inherent entanglement effect associated with the dominant
LHFS (the effect of the entanglement corresponding to the
LHFS).

Based on the previous statement, let us return to the discus-
sion of the pairwise entanglement behavior with the increase
of U as plotted in Fig. 1. The two aforementioned effects will
play an important role in explaining the behavior of pairwise
entanglement, as will be shown in the following.

In order to show the effect of the LHFS entanglement on
the global correlations C(ρi j ), we have frozen the evolution
of the LHFS with U (conserving the state as when U = 0)
inside the mixture

∑
k P(U )|ψk (U )〉〈ψk (U )| without freezing

the evolution of its associated probability PLHFS such that
Tr(ρi j ) = 1 is always satisfied. From Fig. 6 it is clear that with
a frozen LHFS, the pairwise entanglement C(ρi j ) increases
and then stabilizes for large values of U . Apparently, this is
due to the decline of the mixing effect shown in Fig. 3, where
a majority of the probabilities Pk vanish with U . In contrast,
with a nonfrozen LHFS, which is the case in Figs. 1(a)–1(c),
the pairwise entanglement C(ρi j ) declines when attaining a
maximum value, which indicates the considerable effect of
the LHFS on pairwise entanglement. In conjunction with that,
the entanglement of the LHFS decreases asymptotically, as
displayed in Fig. 6. Since the LHFS is the dominant state, its
behavior will be dominant, but in the presence of the mixing
effect, its behavior appears after a specific value of U , where
it is noticeable in Fig. 1 that C(ρi j ) decreases asymptotically,
In this case, the inherent effect associated with the LHFS
dominates the behavior of pairwise correlations.

To be specific, from Fig. 4, for small values of U , the
behavior of C(ρi j ) is generally controlled by the decline of the
mixing effect, resulting in a significant increase of the entan-
glement in the adjacent sites such as C(ρ12) and C(ρ23). For
the distant sites the increase of entanglement, which appears
only in small-size systems since the range of entanglement
is limited, starts after an interval of U given the fact that the
degree of mixedness in this case is higher and thus the mixing
effect persists longer. Beyond that, it is the behavior of the
LHFS that becomes the dominant one, where the pairwise
entanglement C(ρi j ) decreases and follows the entanglement
behavior of the LHFS itself. At this stage, with the increase of
U , the system is focused on the LHFS with a high probability.

In contrast, for the pair ρ14 with L = 4 [Fig. 1(d)] the sit-
uation is different, where it is clearly shown that the pairwise
entanglement C(ρ14) decreases instantly with U . The explana-

tion can be further clarified if we look at Fig. 6(b), where the
pairs ρ23 and ρ14 have the same degree of mixture since they
have the same probabilities Pk as a function of U [Fig. 3(c)].
Nonetheless, the evolution rate of the LHFS associated with
ρ14 is considerably faster compared to the LHFS of ρ23. This
is expected as long as the correlations at the end sites decay
faster as opposed to the middle sites against U (Fig. 2). As a
result, the inherent effect associated with the LHFS becomes
the dominant one. In this case the behavior of entanglement
will be overwhelmed by the behavior of the LHFS itself and
here the decline of the mixing effect is no longer able to
increase the pairwise entanglement C(ρi j ) vs the evolution
rate of the LHFS entanglement. Thus the end-to-end pairwise
entanglement generally decreases instantly with U , but this
behavior is expected to be shown only in small-size systems
such as L = 2 and 4, since the long-distance entanglement is
limited in large-size systems.

V. CONFINEMENT STATE AND GENUINE
FOUR-PARTITE ENTANGLEMENT

The Fermi-Hubbard model can accurately describe quan-
tum dots when U tends to infinity. Actually, when the
repulsion interaction U within the sites is strong enough, it
allows the electrons to move away from each other (thus
excluding the sites with double occupancy) and the tunneling
of these electrons between the sites is blocked. The situa-
tion is similar to the creation of potential barriers between
the sites which prohibits the electrons to move outside. This
process displays exactly the quantum confinement effect in
the Fermi-Hubbard sites and as such the state describing
the system is called the confinement state with N = L

2 and
S = 0.

Apparently, systems with different sizes do behave simi-
larly in most cases. In this respect, the stabilization of pairwise
entanglement in the confinement state under the variation of U
is a common property characterizing the various system sizes.
So following the steps in the preceding section, the study of
the confinement state will be restricted to the smallest-size
system L = 4; then some insights can be drawn for larger
sizes.

For a small-size array of four quantum dots, the confine-
ment state (in the strong-coupling regime) is given by

|ψC〉 = − α(|↓↓↑↑〉 + |↑↑↓↓〉) + β(|↓↑↓↑〉 + |↑↓↑↓〉)

− γ (|↓↑↑↓〉 + |↑↓↓↑〉), (9)
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where α = 1√
6

≈ 0.41, β = 3
√

8639
500 ≈ 0.56, and γ =

√
16 747/3

500 ≈ 0.15. When U takes strong values the pairwise
entanglement associated with the pairs ρ13 and ρ14 vanishes,
but for ρ12 the entanglement stabilizes with an important
value, as seen in Fig. 1. It turns out that when U → +∞
the pairwise entanglement C(ρ23) vanishes too and becomes
equal to C(ρ14). As the LBC is actually just an estimation
of the minimal value of entanglement, the conclusions that
can be drawn from its behavior can be misleading sometimes
and as a consequence have to be taken with much care.
However, in this case, this behavior can be confirmed by
returning to the well-established measures of entanglement
for qubits and using them to get the exact amount of the
different pairwise entanglements contained in |ψC〉. As a
matter of fact, because each dot can be occupied by one
electron with spin ↑ or ↓, the state (9) can now represent the
state of a two-level system. Consequently, the concurrence
(for qubits) [35] is an appropriate measure of the amounts
of pairwise entanglement and gives in this case the values
C(ρ12) = 0.866 and C(ρ23) = C(ρ13) = C(ρ14) = 0.

Returning to the discussion about the shared entanglement,
given the fact that the pair ρ12 is still sharing entanglement
with the system when U → +∞ [Fig. 5(b)], this means
that other kinds of quantum correlations, beyond pairwise
entanglement, are present, namely, the genuine four-partite
entanglement. It turns out that the confinement state |ψC〉 be-
longs to the generic class that represents one classification of
the nine families of the four-qubit pure states defined in [36].
It can be generally written in the computational basis as

|ψG〉 = z0 + z3

2
(|0000〉 + |1111〉) + z0 − z3

2
(|0011〉

+ |1100〉) + z1 + z2

2
(|0101〉 + |1010〉)

+ z1 − z2

2
(|0110〉 + |1001〉), (10)

with z0, z1, z2, z3 ∈ C. For the confinement state |ψC〉
in (9), z0 = −z3 = −α, z1 = β − γ , and z2 = β + γ . The
four-tangle for such a state can be defined and com-
puted as [37–39] τ

(ψC )
1234 = |∑3

i=0 z2
i |2 = |2(α2 + β2 + γ 2)|2 =

1 with i = 0, 1, 2, 3. So the confinement state is maximally
entangled when it comes to the genuine four-partite entangle-
ment.

It is worth noting that the four-qubit Greenberger-Horne-
Zeilinger state belongs also to the same generic family with
z0 = z3 = 1/

√
2 and z1 = z2 = 0, where we have τGHZ

1234 =
|2z2

0|2 = 1.
Thus the Hubbard model’s confinement state is genuinely

multipartite entangled even for larger sizes. An n-partite en-
tangled state is called genuine if and only if the state is not

separable with respect to any m partition (m � n) and this
is confirmed by the fact that entanglement E (ρm/n) in the
Hubbard model has a nonzero value. However, defining the
family class in which the confinement state, as an n-qubit
state, belongs is still an interesting question to be answered
in future works and seems to get complicated as the system
size becomes larger L > 4.

VI. CONCLUSION

In this work we have examined the pairwise entangle-
ment in quantum dot systems, formally described by the
one-dimensional Fermi-Hubbard model. As ququart systems,
the lower bound of concurrence is deemed the appropri-
ate choice to investigate the behavior in the weak-coupling
regime. Namely, it is demonstrated that a proper optimization
of the Coulomb interaction can create entanglement between
quantum dots and even more so help it grow considerably. On
a related note, it was shown that the range of entanglement
extends to the third-neighbor site for a system size of L = 4,
whereas it could be created and extended to the third-neighbor
site by properly adjusting the Coulomb interaction for L > 4.

In addition to that, the size effect was studied and it was
shown that under the size effect the pairwise entanglement
decreases for the pairs ρi j with j even as the size grows,
whereas it increases if j is odd. In this regard, we have pre-
sented a rigorous description of the pairs in terms of the local
half-filled state for each pair with a fixed number of electrons
N = 2 and a spin S = 0. Acquaintance with this state pro-
vides a proper explanation concerning the amount of pairwise
entanglement as well as the behavior of this entanglement
against the Coulomb interaction and the size effect. Finally,
the study of the confinement state in the system demonstrated
the existence of the genuine four-partite entanglement with a
maximum value achieved for L = 4.

Motivated by these results, it would be of interest to study
the genuine multipartite entanglement as well as the family
class in which the confinement state belongs for larger sizes.
Furthermore, it is clear that the Hubbard model provides
an adequate entanglement resource for ququart teleportation;
however, as the size increases the end-to-end entanglement
vanishes, which would allow us to study in future works
some mechanisms to circumvent this by producing long-range
entanglement in the Fermi-Hubbard model, thus allowing us
to reach maximum teleportation fidelity.
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