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Sign switching of superexchange mediated by a few electrons in a nonuniform magnetic field
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Long-range interaction between distant spins is an important building block for the realization of a large
quantum-dot network in which couplings between pairs of spins can be selectively addressed. Recent exper-
iments on the coherent oscillation of logical states between remote spins facilitated by intermediate electron
states were the first step for large-scale quantum information processing. Reaching this ultimate goal requires
extensive studies on the superexchange interaction in different quantum-dot spatial arrangements and electron
configurations. Here, we consider a linear triple quantum dot with two antiparallel spins in the outer dots forming
the logical states while varying numbers of electrons in the middle dot form a mediator, which facilitates the
superexchange interaction. We show that the superexchange is enhanced when the number of mediating electrons
increases. In addition, we show that forming a four-electron triplet in the mediator dot further enhances the
superexchange strength. Our work can be a guide to scale up the quantum-dot array with controllable and dense
connectivity.
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I. INTRODUCTION

Early studies of semiconductor quantum-dot qubits, both
experimental [1–24] and theoretical [25–37], mostly fo-
cused on interactions between neighboring electron spins.
Approaches to harness nonproximal exchange interaction
between distant spins are critical for achieving efficient non-
local quantum operations, as increased connectivity leads to
smaller quantum circuit depth [38]. Current implementations
of long-range interaction between spins include capacitive
coupling [14,39–42], photon-mediated interactions [43–51],
and electron shuttling [52–57]. The former two schemes in-
troduce coupling to the charge degree of freedom; hence,
they are prone to decoherence by charge noise [14,40,47],
while the latter method requires a relatively complex op-
eration and coordination of the gate voltages to perform
electron shuttling adiabatically [55]. An alternative method
to have exchange interactions between remote spins is to
enable a virtual exchange through a mediator, termed su-
perexchange [38,58–63]. Current experimental progress has
demonstrated coherent superexchange interaction with the
mediator being an empty [61], singly occupied [58], or mul-
tielectron [60] quantum dot. Among different superexchange
coupling schemes, implementing a multielectron quantum dot
or dot chain is of interest because it has been shown theoreti-
cally that a larger number of electrons occupying the mediator
leads to stronger superexchange interaction [64]. In addition,
current works mostly focus on a spinless multielectron me-
diator [59,60,62,64], leaving the effect of the nonzero spin
state formed in the mediator or a larger number of electrons
occupying the mediator unanswered. In this paper, we explore,
using configuration-interaction (CI) calculations, the effect
on the superexchange in a linear triple-quantum-dot (TQD)
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system with the mediator occupied by two or four electrons.
Specifically, we compare three different cases for the mediator
(summarized in Fig. 1): Case (i) is a spinless two-electron
state. Case (ii) is a spin-1 four-electron state. Case (iii) is a
spinless four-electron state. We have found that in contrast
to the spinless two-electron mediator, which yields positive
superexchange energy, the spinless four-electron mediator re-
sults in negative superexchange, with stronger magnitude.
Furthermore, if a larger perpendicular magnetic field is ap-
plied to the outer two dots in a TQD device compared to the
inner dot, for a spin-1 four-electron mediator, the superex-
change, denoted as J , is negative for a moderate magnetic field
but switches to a positive value for a much larger magnetic
field, with J in the the former case yielding a larger magnitude
than the latter.

This paper is organized as follows: In Sec. II, the model
and methods are provided. In Sec. III A, we evaluate the two-
and four-electron systems in the mediator dot for different
perpendicular magnetic field strengths, including the energy
and total spin of the ground state. In Sec. III B, we present
and compare the values of superexchange energy for different
types of mediators, as shown in Fig. 1. We summarize our
results in Sec. IV. The Appendixes give more details on the
leakage estimation for the superexchange mediated by a triplet
state (Appendix A), explicit expressions of the eigenstates
written in the Slater determinants formed by Fock-Darwin
orbitals (Appendix B), and additional results for zero external
magnetic field (Appendix C).

II. MODEL AND METHODS

We consider an N-electron system described by the
Hamiltonian

H =
N∑

j=1

h j +
∑
j<k

e2

ε|r j − rk| , (1)
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FIG. 1. Three different electron configurations studied in this
work. Case (i): Two electrons in the mediator (middle dot) form a
singlet (S = 0), where S is the total spin. Case (ii): Four electrons
in the mediator form a triplet (S = 1). Case (iii): Four electrons in
the mediator form a singlet (S = 0). J is the superexchange energy
between distant spins in the outer dots.

with the single-particle Hamiltonian h j being

h j =
(−ih̄∇ j + eA j

c

)2

2m∗ + V (r j ) + g∗μBB j · S j, (2)

where r j = x j x̂ + y j ŷ indicates the position of the jth electron
with spin S j experiencing a perpendicular magnetic field B j =
Bĵz. A j is the vector potential corresponding to B j , and m∗ is
the effective mass, taken to be 0.067 electron mass in GaAs. In
this work, V (r) describes the confinement potential of a TQD,
modeled as (see Fig. 2)

V (r) =

⎧⎪⎨
⎪⎩

1
2 m∗ω2

L(r − RL)2 x < −x′
0,

1
2 m∗ω2

M(r − RM)2 + � −x′
0 < x < x′

0,
1
2 m∗ω2

R(r − RR)2 x > x′
0.

(3)

Note that Eq. (3) defines the confining potential of circular
quantum dots [65]. Here, RL = (−x0, 0), RM = (0, 0), and
RR = (x0, 0) are the minima of the three parabolic wells,
representing three dots labeled L (left), M (middle), and R
(right), respectively. ωL, ωM, and ωR and BL, BM, and BR are
the confinement strengths and the magnetic field at dots L,
M, and R, respectively. The confinement strengths are set as
h̄ωL = h̄ωR = 7.28 meV, h̄ωM = 3.64 meV [64,66], while the
magnetic field varies, which will be explained in the following
sections. The potential cuts, −x′

0 and x′
0, are determined by

FIG. 2. Schematic illustration of the model potential given in
Eq. (3). The dashed lines mark the boundaries between adjacent
potential wells. �η j denotes the jth FD state in dot η, where η ∈
{L, M, R}.

locating the values of x at which the potential values of dots L
and M and dots M and R are equal, respectively, at y = 0.

We use the CI method to solve the multielectron problem,
which involves using a set of predetermined single-electron
wave functions. Several methods to obtain the single-
electron wave functions exist, including the k · p approxi-
mation [67,68], empirical tight binding [69–73], empirical
pseudopotential [74–77], and Fock-Darwin (FD) states [78].
In this work, we use the orthonormalized FD states to approx-
imate the single-electron wave functions in a quantum dot.
The orthonormalized FD states are obtained with Cholesky
decomposition of the overlap matrix formed by the bare FD
states [78]. We denote the jth orthonormalized FD state in
dot η as �η j (see Fig. 2). A rigorous description of the multi-
electron eigenstates requires keeping all the FD states, which
is forbiddingly expensive. In practice, one truncates the num-
ber of FD states in each quantum dot while maintaining the
convergence. Here, we use a cutoff scheme to keep the CI cal-
culation tractable [78]. In this scheme, only the multielectron
Slater determinants whose noninteracting energies are within
the predefined cutoff values are retained. The cutoff values
are defined to be the maximum achievable energy by a Slater
determinant with one electron occupying the highest FD state
while the remaining electrons occupy the ground orbital. We
keep the 10 lowest FD states (corresponding to a principal
quantum number n up to 3) in each dot, as suggested by the
convergence of the ground energies of two- and four-electron
states in a quantum dot (see Fig. 3) and the convergence of
the exchange energy of the two-electron state in an undetuned
double-quantum-dot device (see Fig. 4). The calculations for
the six-electron system are carried out on a high-performance
computing cluster with four hundred eighty 2.2-GHz Intel
Xeon CPUs and 42 GB of memory, where a data point at a
given detuning � typically costs 40 min.

III. RESULTS

A. Multielectron single dot

Superexchange interaction allows the spin exchange be-
tween two antiparallel spins, each of which occupies dot L and
dot R (see Fig. 1). In this work, we evaluate and compare the
superexchange interaction mediated by two- and four-electron
states in dot M (see Fig. 1). Therefore, understanding the total
spin S of the few-electron ground state in dot M in terms
of the magnetic field strength is important in studying the
superexchange interaction [79]. The energy and total spin of
the ground state for a two- and four-electron system in a QD
are discussed in Secs. III A 1 and III A 2, respectively.

1. Two-electron system in a QD

Figure 3(a) shows the ground-state energy of a two-
electron system in a QD as a function of the maximum
principal quantum number n of orbitals kept in the CI cal-
culations. Figure 3(a) shows that, for n � 2, convergence
is reached for the ground-state energy. Also, the explicit
forms of the ground states indicate that the two-electron
states form singlet ground states (S = 0; see Table I). For
example, at B = 0.84 T, the explicit form of the two-electron
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FIG. 3. Ground-state energy of a quantum dot occupied by
(a) two electrons and (b) four electrons versus the maximum prin-
cipal quantum number n of orbitals kept in the CI calculations. The
schematic illustrations of the electron configurations are given in the
bottom left corner. Eref denotes the reference energy.

ground state is

|GS〉 = 0.885|↑M1↓M1〉′
+ 0.233(|↑M2↓M3〉′ + |↑M3↓M2〉′)
− 0.233(|↑M1↓M5〉′ + |↑M5↓M1〉′) + · · · , (4)

where | ↑� j ↓�k 〉′ denotes a two-electron Slater determinant
with a spin-up electron occupying the FD orbital � j while
another spin-down electron occupies the FD orbital �k . In
Eq. (4), the dots (· · · ) indicate other Slater determinants with
smaller magnitudes of coefficients. For low magnetic field
strengths, the experimental results that demonstrate a two-
electron singlet state as the ground state in a QD conform with
the full CI results here [3,10,14,16,24,80–82].

2. Four-electron system

Experiments have shown that the total spin of a four-
electron ground state in a QD varies depending on the
magnitude of the external magnetic field. At a low magnetic
field strength, the ground state of a four-electron system in a
QD is a triplet, S = 1 [80,81]. In contrast, at a larger magnetic
field strength, the four-electron ground state switches to a
singlet, S = 0 [80,81].

Figure 3(b) shows the ground-state energy of a four-
electron system in a QD as a function of the maximum

FIG. 4. Lowest singlet (blue circles) and triplet (red squares)
eigenvalues and the corresponding exchange energy versus the
maximum principal quantum number n of orbitals kept in the
CI calculation. The parameters are interdot distance x0 = 28 nm,
h̄ω0 = 7.28 meV, and B = 0.21 T. The results show that the nearest-
neighbor exchange energy Jnn (black diamonds) converges for n � 3.

principal quantum number n of orbitals kept in the CI cal-
culations. Figure 3(b) shows that, for n � 3, convergence is
reached for the ground-state energy. In addition, the explicit
forms of the ground states indicate that, for B � 0.42 T, the
ground state is a triplet state (S = 1), while for B � 0.84 T,
the ground state is a singlet state (S = 0; see Table I). In
particular, at B = 0.21 T, the ground state is a triplet state,
whose explicit form is

|GS〉
= 0.576(|↑M2↓M3↑M1↓M1〉′ − |↑M3↓M2↑M1↓M1〉′)

+ [0.204(|↑M1↑M3↓M2↓M5〉′ − |↑M1↑M2↓M3↓M5〉′)
+ 0.204(|↑M3↑M5↓M1↓M2〉′ − |↑M2↑M5↓M1↓M3〉′)
+ 0.016(|↑M2↑M3↓M1↓M5〉′ − |↑M1↑M5↓M2↓M3〉′)]
+ · · · , (5)

where | ↑� j ↓�k ↑�m↓�n〉′ denotes a four-electron Slater deter-
minant with two spin-up electrons occupying FD orbitals � j

and �m and two spin-down electrons occupying FD orbitals
�k and �n. On the other hand, at B = 0.84 T, the ground state

TABLE I. Ground-state configuration of a quantum dot occupied
by two electrons (2e) and four electrons (4e) based on the cutoff
scheme with varying magnetic field. S indicates a singlet, and T
indicates a triplet. The confinement energy of the quantum dot is
h̄ω0 = 3.64 meV. Ten orbitals (up to n = 3) are retained for the single
quantum dot in the CI calculation.

Ground-state configuration

B (T) 2e 4e

0 S T
0.21 S T
0.42 S T
0.84 S S
1.06 S S
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TABLE II. Eigenstates of the low-energy subspace formed by six electrons when four electrons in dot M form a triplet ground
state or a singlet ground state. | ↑� j ↑�k ↓�m↓�n 〉 (| ↑� j ↓�k 〉| ↑�m↓�n 〉) denotes a six-electron Slater determinant | ↑� j ↑�k ↓�m↓�n↑M1↓M1

〉 (| ↑� j ↓�k ↑�m↓�n↑M1↓M1〉), where electrons occupy the orbitals � j . To simplify the notation, the spins in the core orbital �M1 are dropped.
Note that the orbital �η j denotes the jth lowest orbital in dot η and should be perceived as a linear combination of FD orbitals �η j . The explicit
expressions of the eigenstates written in FD orbitals are given in Eq. (B1). The S2 column shows the eigenvalues of the operator S2.

Label S2 Eigenstates

|T OT I〉 0 2| ↑M2↑M3↓R1↓L1〉 + 2| ↑R1↑L1↓M2↓M3〉 − (| ↑R1↓L1〉 − | ↑L1↓R1〉)(| ↑M2↓M3〉 − | ↑M3↓M2〉)
|SOSI〉 0 (| ↑R1↓L1〉 + | ↑L1↓R1〉)(| ↑M2↓M3〉 + | ↑M3↓M2〉)
|SOT I〉 2 (| ↑R1↓L1〉 + | ↑L1↓R1〉)(| ↑M2↓M3〉 − | ↑M3↓M2〉)
|T OSI〉 2 (| ↑R1↓L1〉 − | ↑L1↓R1〉)(| ↑M2↓M3〉 + | ↑M3↓M2〉)
|T O

± T I
±〉 2 | ↑M2↑M3↓R1↓L1〉 − | ↑R1↑L1↓M2↓M3〉

|T OT I〉(2) 6 | ↑M2↑M3↓R1↓L1〉 + | ↑R1↑L1↓M2↓M3〉 + (| ↑R1↓L1〉 − | ↑L1↓R1〉)(| ↑M2↓M3〉 − | ↑M3↓M2〉)

is a singlet state, whose explicit form is

|GS〉 = 0.807|↑M1↓M1↑M2↓M2〉′
+ 0.266(|↑M1↓M5↑M2↓M2〉′ + |↑M5↓M1↑M2↓M2〉′)
+ 0.234(|↑M2↓M8↑M1↓M1〉′ + |↑M8↓M2↑M1↓M1〉′)
+ · · · . (6)

The results of the full CI calculations presented above con-
form with the experimental results described in the previous
paragraph [80,81].

B. Multielectron-mediated superexchange J

In this section, we present the results of the superexchange
energy J for different cases: In Sec. III B 1, J mediated by a
four-electron triplet state in dot M is discussed. In Sec. III B 2,
J mediated by a four-electron singlet state in dot M is dis-
cussed. In Sec. III B 3, in comparison with the results in
Secs. III B 1 and III B 2, J mediated by a two-electron singlet
state in dot M is discussed.

We denote the electron occupation of the ground state in
each dot as (nL, nM, nR), where nL (nM, nR) indicates the
number of electrons in dot L (M, R). For descriptive pur-
poses, we denote the ground-state configurations formed by
nM electrons in dot M as |SnM〉 and |TnM〉 for the singlet and
triplet states, respectively. The superexchange energies J are
evaluated at the detuning, �, such that the number of electrons
in dot M is nM. For illustrative purposes, throughout this
paper, we plot negative J as dashed lines and positive J as
solid lines.

For a TQD device with six electrons in the (1,4,1) region,
two cases exist for the four-electron state in dot M. As sug-
gested by the results based on a single dot (Table I), at weak
magnetic fields (B � 0.42 T), we would expect four electrons
in dot M to form a triplet ground state |T4〉. In this case, as will
be discussed in Sec. III B 1, the superexchange interaction is
mediated by a four-electron triplet state in dot M [see case
(ii) in Fig. 1]. On the other hand, at larger magnetic fields
(B � 0.84 T), the electrons form a singlet ground state |S4〉.
Therefore, as will be discussed in Sec. III B 2, the superex-
change interaction is mediated by a four-electron singlet state
in dot M [see case (iii) in Fig. 1].

For a four-electron system in a TQD device, in the (1,2,1)
region, two electrons in dot M form a singlet ground state
|S2〉. Therefore, as will be discussed in Sec. III B 3, the

superexchange interaction between two spins in dot L and dot
R is mediated by a two-electron singlet state in dot M [see
case (i) in Fig. 1].

1. Superexchange interaction mediated by a four-electron
triplet state in dot M [case (ii) in Fig. 1]

Table II shows the six eigenstates spanning the low-energy
subspace of a six-electron system with Sz = 0 in the (1,4,1)
region [see Eq. (B1) for explicit expressions of the eigenstates
written in FD orbitals]. As discussed in Sec. III A 2, when a
weak magnetic field is applied at dot M (BM � 0.42 T), four
electrons in dot M form a triplet ground state. In this case,
four of the six eigenstates with triplet ground states in dot M
yield the lowest energies, i.e., |T OT I〉, |SOT I〉, |T O

± T I
±〉, and

|T OT I〉(2).
When four electrons in dot M form a triplet state |T4〉, we

denote the logical states of a single-triplet qubit formed by
two antiparallel spins in dot L and dot R as∣∣̃S〉 = (|↑R1↓L1〉 + |↑L1↓R1〉)|T I〉,∣∣T̃ 〉 = (|↑R1↓L1〉 − |↑L1↓R1〉)|T I〉 (7)

and the leakage states as∣∣T̃+
〉 = |↑R1↑L1〉

∣∣T I
−
〉
,

∣∣T̃−
〉 = |↓R1↓L1〉

∣∣T I
+
〉
, (8)

where

|T I〉 = (|↑M2↓M3〉 − |↑M3↓M2〉)|↑M1↓M1〉,∣∣T I
+
〉 = |↑M2↑M3〉|↑M1↓M1〉,∣∣T I

−
〉 = |↓M2↓M3〉|↑M1↓M1〉. (9)

The superexchange energy J is defined as the energy differ-
ence between |̃S〉 and |T̃ 〉, which is evaluated at the value of �

such that nM = 4. When the applied magnetic field is uniform
across the TQD, the logical and leakage states are highly
mixed, resulting in severe leakage (see Table II). Following
the proposal for a pair of exchange-coupled singlet-triplet
qubits [83–86], the leakage can be suppressed by applying dif-
ferent magnetic fields on the outer and inner dots, i.e., |�B| =
|BL/R − BM| > 0. The nonuniform magnetic field splits the
energies of |T̃+〉 and |T̃−〉 away from the energy of |T̃ 〉 [see
Fig. 5(a)]. We found that for parameters relevant to this work,
leakage into |T̃±〉 is smaller than 10−3 for BL/R − BM � 0.42 T
[see Fig. 5(b); see Appendix A for the definition of leakage].
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FIG. 5. (a) Schematic illustration of increased splittings between
triplet states when the applied magnetic fields on outer dots are
stronger, BL/R > BM. (b) Leakage η as a function interdot distances
x0 for BL/R = 3BM (blue squares) and BL/R = 5BM (red circles). A
magnetic field of strength BM = 0.21T is applied at dot M. The
definition of leakage is provided in Appendix A.

As an example, for x0 = 80 nm and BL,R = 5BM, full CI
results indicate that the first and second excited eigenstates are
the logical triplet state |T̃ 〉 and singlet state |̃S〉, respectively.
Written explicitly, the logical eigenstates are

|T̃ 〉 = (|↑R1↓L1〉′ − |↑L1↓R1〉′)
×{[0.396(|↑M2↓M3↑M1↓M1〉′ − |↑M3↓M2↑M1↓M1〉′)]
+ [0.139(|↑M1↑M2↓M3↓M5〉′ − |↑M1↑M3↓M2↓M5〉′)
+ 0.139(|↑M2↑M5↓M1↓M3〉′ − |↑M3↑M5↓M1↓M2〉′)
+ 0.011(||↑M1↑M5↓M2↓M3〉′− ↑M2↑M3↓M1↓M5〉′)]}
+ · · · , (10a)

|̃S〉 = (|↑R1↓L1〉′ + |↑L1↓R1〉′)
×{[0.402(|↑M2↓M3↑M1↓M1〉′ − |↑M3↓M2↑M1↓M1〉′)]
+ [0.141(|↑M1↑M2↓M3↓M5〉′ − |↑M1↑M3↓M2↓M5〉′)
+ 0.141(|↑M2↑M5↓M1↓M3〉′ − |↑M3↑M5↓M1↓M2〉′)
− 0.011(|↑M1↑M5↓M2↓M3〉 − |↑M2↑M3↓M1↓M5〉′)]}
+ · · · , (10b)

where | ↑� j ↓�k 〉′| ↑�m↑�n↓�o↓�p〉′ denotes a six-electron
Slater determinant | ↑� j ↓�k ↑�m↑�n↓�o↓�p〉′ formed by six

FIG. 6. Superexchange energy J versus magnetic field applied on
outer dots (L and R) BL/R for a six-electron system. A magnetic field
of strength BM = 0.21T is applied at dot M. The inset indicates that
the superexchange interaction is mediated by a four-electron triplet
state in dot M. Dashed lines represent negative values, and solid lines
represent positive values.

electrons occupying the FD orbitals �l . In Eq. (10), the linear
combinations of four-electron Slater determinants in the curly
brackets define a triplet state in dot M.

Figure 6 shows the values of J as a function of BL,R

for various interdot distances x0. As expected, the value of
|J| decreases when the interdot distance increases. Interest-
ingly, the value of J exhibits a nontrivial behavior when the
strength of BL/R changes. For small BL/R, J is negative, while
its magnitude decreases as BL/R increases. Beyond a certain
threshold value of BL/R, J switches sign, becoming positive,
and increases as a function of BL/R. After it reaches a peak

FIG. 7. Absolute value of the superexchange energy J as a func-
tion of interdot distance x0 for a four-electron system (black circles)
and a six-electron system. The values of J for a six-electron system
are divided into four cases based on the electron configurations in
the middle dot and the magnetic field on outer dots BL/R: case 2,
four-electron singlet |S4〉 (gray squares); case 3, four-electron triplet
|T4〉 and BL/R = 3BM (blue triangles); case 4, four-electron triplet |T4〉
and BL/R = 5BM (red diamonds); case 5, four-electron triplet |T4〉 and
BL/R � BM (red stars). A summary of the different cases is provided
in Table IV. Dashed lines represent negative values, and solid lines
represent positive values.
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FIG. 8. (a) Four-electron triplet-mediated J vs x0 for BL/R − BM = 0.84 T. The values of J for BM = 0.21 T (blue squares) are extracted
from Fig. 6. (b) Four-electron triplet-mediated J vs x0 for BL/R � BM. The values of J for BM = 0.21 T (blue squares) are extracted from Fig. 6
for �B = BL/R − BM = 2.75 T (2.33, 1.50, 1.27 T) for x0 = 70 nm (75, 80, 85 nm). The values of J for BM = 0 T are evaluated for the same
values of �B. (c) Two-electron singlet mediated J vs x0 for BL = BM = BR. Dashed lines represent negative values, and solid lines represent
positive values.

value, it decreases again but maintains its positive value. The
values of J in Fig. 6 are obtained for BM = 0.21 T. Switching
to the case in which BM = 0 does not change the main results
in an important way [see Figs. 8(a) and 8(b); see Appendix C
for details].

In this section, for practical purposes, the results of full CI
calculations are obtained by assuming different (discontinu-
ous) magnetic field strengths at different dots, i.e., BL = BR 	=
BM (see Fig. 2). In experiments, the application of different
magnetic field strengths at different dot centers is achieved
by employing a proximal micromagnet, which generates a
continuous magnetic gradient across the QDs. Together with
an external magnetic field, the magnetic gradient gives rise to
a nonuniform magnetic field at the dot centers such that BL =
BR > BM. Therefore, away from the dot centers, the presence
of the continuous magnetic gradient gives rise to changes in
the confinement lengths of the FD orbitals lB [87]. However,
taking into account the changes in lB would result in an
intractable calculation path since that requires a purely numer-
ical integration on all the single- and two-particle operators,
i.e.,

∫
�∗

j h�k and
∫

�∗
j�

∗
k (e2/ε|r1 − r2|)�m�n, respectively.

In addition, for the parameters of concern, the changes in
lB away from the dot centers are minute and can be safely
neglected. Therefore, we expect that the features will be
qualitatively similar if the changes in lB from the continuous
magnetic gradient are included in the CI method.

2. Superexchange interaction mediated by a four-electron
singlet state in dot M [case (iii) in Fig. 1]

When a larger uniform magnetic field is applied across
the TQD device, the lowest logical subspace is free of
leakage since four electrons in dot M form a singlet ground
state |S4〉. The logical states are shown in Table III. In this
case, the superexchange interaction is mediated by a four-
electron singlet |S4〉 in dot M.

Gray squares in Fig. 7 show the values of superexchange
interaction mediated by |S4〉 in dot M. J is evaluated at the
value of � such that nM = 4. As an example, for x0 = 80 nm
and BL = BM = BR = 0.86 T, full CI results indicate that the
ground and first excited eigenstates are the logical triplet state
|T 〉 and singlet state |S〉, respectively. Written explicitly, the

logical eigenstates are

|T 〉 = ∣∣T OSI
〉

= (|↑R1↓L1〉′ − |↑L1↓R1〉′)
× [0.560|↑M2↓M2〉′|↑M1↓M1〉′
− 0.182(|↑M1↓M5〉′ + |↑M5↓M1〉′)|↑M1↓M1〉′]
+ · · · , (11a)

|S〉 = ∣∣SOSI
〉

= (|↑R1↓L1〉′ + |↑L1↓R1〉′)
× [−0.560|↑M2↓M2〉′|↑M1↓M1〉′
+ 0.182(|↑M1↓M5〉′ + |↑M5↓M1〉′)|↑M2↓M2〉′]
+ · · · , (11b)

where | ↑� j ↓�k 〉′| ↑�m↓�n〉′| ↑�o↓�p〉′ denotes a six-electron
Slater determinant | ↑� j ↓�k ↑�m↓�n↑�o↓�p〉′ with six elec-
trons occupying the FD orbitals �l . In Eq. (11), the linear
combinations of four-electron Slater determinants in the
square brackets define a singlet state in dot M.

We compare the values of J mediated by |S4〉 with other
cases in the next section.

TABLE III. Eigenstates of the subspace formed by six elec-
trons when four electrons in dot M form a singlet ground state.
| ↑� j ↓�k 〉| ↑�m↓�n↑�o↓�p〉 denotes a six-electron Slater determi-
nant | ↑� j ↓�k ↑�m↓�n↑�o↓�p〉, where electrons occupy the orbitals
� j . Note that the orbital �η j denotes the jth lowest orbital in dot η

and should be perceived as a linear combination of FD orbitals �η j .
The explicit expressions for the eigenstates written in FD orbitals
are given in Eq. (11). The S2 column shows the eigenvalues of the
operator S2.

Label S2 Eigenstates

|SOSI〉 0 (| ↑R1↓L1〉 + | ↑L1↓R1〉)| ↑M1↓M1↑M2↓M2〉
|T OSI〉 2 (| ↑R1↓L1〉 − | ↑L1↓R1〉)| ↑M1↓M1↑M2↓M2〉
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TABLE IV. Summary of the different cases in Fig. 7. |SnM 〉
(|TnM 〉) denotes the singlet (triplet) ground state formed by nM elec-
trons in dot M.

Case (nL, nM, nR) BL/M/R (T) Ground state
in dot M

1 (1,2,1) BL/M/R = 0.86 |S2〉
2 (1,4,1) BL/M/R = 0.86 |S4〉
3 (1,4,1) BM = 0.21, BL/R = 3BM |T4〉
4 (1,4,1) BM = 0.21, BL/R = 5BM |T4〉
5 (1,4,1) BL/R � BM |T4〉

3. Comparison between two- and four-electro-mediated
superexchange [cases (i), (ii), and (iii) in Fig. 1]

Figure 7 shows the value of superexchange energy J as
a function of the interdot distance for several cases, in-
cluding J mediated by two electrons [black circles, case
(i) in Fig. 1], J mediated by a four-electron singlet [gray
squares, case (iii) in Fig. 1], and J mediated by a four-
electron triplet [blue triangles, red diamonds, and red stars
for different BL/R, case (ii) in Fig. 1]. The data points for
the red stars are extracted from Fig. 6 at the second values
of BL/R which give positive J . The details of the electron
configurations for different cases of J in Fig. 7 are shown in
Table IV.

We first focus on the six-electron system. At smaller x0,
J mediated by a four-electron triplet |T4〉 yields a larger
magnitude than J mediated by a four-electron singlet |S4〉.
In particular, J mediated by |T4〉 with BL/R = 3BM yields an
absolute value that is around one order of magnitude larger
than J mediated by |S4〉 (compare blue triangles, case 3, and
gray squares, case 2, for x0 � 75 nm in Fig. 7). On the other
hand, at large x0 (x0 = 85nm), J mediated by |S4〉 and |T4〉
give comparable |J|.

We next compare J mediated by two-electron and four-
electron states in dot M. Overall, four-electron-mediated J
is stronger than two-electron- (|S2〉) mediated J , except for
the case in which BL,R � BM . In particular, |S4〉-mediated
J is around one order of magnitude stronger than |S2〉-
mediated J , while |T4〉-mediated J at BL/R = 3BM is about
two orders of magnitude stronger. Such a magnetic gradi-
ent, �B = BL/R − BM = 0.42 T = 10 μeV = 2.5 GHz × h,
should be achievable in near-term quantum devices [88]
since a magnetic gradient as high as �B = 1GHz has been
demonstrated [40]. It should be noted that larger J can be
achieved for |S2〉 at much smaller x0 [64]. However, |S4〉
or |T4〉 is not achievable in that regime because for small
interdot distances, the (1,4,1) dot occupation is not well
defined.

IV. CONCLUSIONS

We have shown, using full CI calculations, that in a TQD
device, the variation of the number of electrons in the mediator
has a considerable impact on the superexchange. We have
observed that the magnitude of superexchange decreases as
the interdot distances are increased. We have found that the
four-electron mediator yields a stronger superexchange than
the two-electron mediator for the same interdot distance in
most cases. We have further shown that, in comparison to the
four-electron singlet in the mediating dot, the four-electron
triplet exhibits stronger superexchange, except when the mag-
netic field on the outer dots is much stronger than that on the
middle dot. Our results therefore should facilitate realization
of large-scale architecture with long-range connectivity for a
quantum-dot spin qubit.
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APPENDIX A: LEAKAGE INDUCED OVER t2π

In a uniform external magnetic field, the logical singlet
|̃S〉 = |SOT I〉 and triplet |T̃ 〉 states are highly mixed with the
leakage states, |T̃ 〉+ and |T̃ 〉− (see discussion in Sec. III B 1).
To suppress the leakage into |T̃+〉, |T̃−〉, a larger �B = BL/R −
BM is preferable. Also, we have found that the �B-induced
splittings between |T̃+〉, |T̃−〉, and |T̃ 〉 are not straightforward
when we take into account the changes in the magnetic-field-
induced splittings between the Fock-Darwin (FD) states. To
evaluate the leakage, using the CI results, we first identify the
compositions of |T̃+〉, |T̃−〉, and |T̃ 〉 in terms of the Slater de-
terminant and the corresponding orthonormalized FD states.
Then, we extract the tunneling energies between them by
taking tT̃ ,T̃± = 〈T̃ |H |T̃±〉. Leakage is estimated as

η =
∑

j∈{+,−}
〈T̃j | exp

{
−i

[J

2

(|T̃ 〉〈T̃ | − |SOT I〉〈SOT I|)

+tT̃ ,T̃j

(|T̃ 〉〈T̃j | + H.c.
)]

t2π

}
|T̃ 〉, (A1)

where t2π = 2π h̄/J and J = 〈T̃ |H |T̃ 〉 − 〈SOT I|H |SOT I〉.
The resultant leakage is shown in Fig. 5(b).

APPENDIX B: EIGENSTATES OBTAINED FROM CI CALCULATIONS FOR A SIX-ELECTRON SYSTEM
IN THE (1, 4, 1) REGION BL = BM = BR = 0.21 T

For x0 = 75 nm and BL = BM = BR = 0.21 T, the results of CI calculations show that six the lowest eigenstates, written
explicitly as linear combinations of six-electron Slater determinants, are∣∣T OT I

〉 = 0.226(2|↑M2↑M3↓R1↓L1〉′ + 2|↑R1↑L1↓M2↓M3〉′ − |↑L1↑M2↓R1↓M3〉′ − |↑R1↑M2↓L1↓M3〉′
+ |↑R1↑M2↓L1↓M3〉′ + |↑L1↑M3↓R1↓M2〉′)|↑M1↓M1〉′
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+ 0.104(2|↑M1↑M6↓R1↓L1〉′ + 2|↑R1↑L1↓M1↓M6〉′ − |↑L1↑M1↓R1↓M6〉′ − |↑R1↑M6↓L1↓M1〉′
+ |↑R1↑M1↓L1↓M6〉′ + |↑L1↑M6↓R1↓M1〉′)|↑M2↓M2〉′ + · · · , (B1a)∣∣T O

± T I
±
〉 = 0.555(|↑R1↑L1↓M2↓M3〉′ − |↑M2↑M3↓R1↓L1〉)|↑M1↓M1〉′

− 0.127(|↑R1↑L1↓M1↓M4〉′ − |↑M1↑M4↓R1↓L1〉)|↑M3↓M3〉′
+ 0.127(|↑R1↑L1↓M1↓M6〉′ − |↑M1↑M6↓R1↓L1〉)|↑M2↓M2〉′ + · · · , (B1b)∣∣SOT I

〉 = −0.395(|↑R1↑M3↓L1↓M2〉′ + |↑L1↑M3↓R1↓M2〉′ − |↑L1↑M2↓R1↓M3〉′ − |↑R1↑M2↓L1↓M3〉′)|↑M1↓M1〉′
− 0.091(|↑R1↑M4↓L1↓M1〉′ + |↑L1↑M4↓R1↓M1〉′ − |↑L1↑M1↓R1↓M4〉′ − |↑R1↑M1↓L1↓M4〉′)|↑M3↓M3〉′ + · · · ,

(B1c)∣∣T OT I
〉(2) = −0.324(|↑R1↑M3↓L1↓M2〉′ + |↑L1↑M2↓R1↓M3〉′ + |↑R1↑L1↓M2↓M3〉′ + |↑M2↑M3↓R1↓L1〉′

− |↑L1↑M3↓R1↓M2〉′ − |↑R1↑M2↓L1↓M3〉′)|↑M1↓M1〉′
− 0.074(|↑R1↑M4↓L1↓M1〉′ + |↑L1↑M1↓R1↓M4〉′ + |↑R1↑L1↓M1↓M4〉′ + |↑M1↑M4↓R1↓L1〉′
− |↑L1↑M4↓R1↓M1〉′ − |↑R1↑M1↓L1↓M4〉′)|↑M3↓M3〉′ + · · · , (B1d)∣∣SOSI

〉 = −0.519(|↑L1↓R1↑M2↓M2〉′ + |↑R1↓L1↑M2↓M2〉′)|↑M1↓M1〉′
− 0.166(|↑L1↓R1↑M5↓M1〉′ + |↑R1↓L1↑M5↓M1〉′ + |↑L1↓R1↑M1↓M5〉′ + |↑R1↓L1↑M1↓M5〉′)|↑M2↓M2〉′ + · · · ,

(B1e)∣∣T OSI
〉 = 0.520(|↑L1↓R1↑M2↓M2〉′ − |↑R1↓L1↑M2↓M2〉′)|↑M1↓M1〉′

+ 0.166(|↑L1↓R1↑M5↓M1〉′ + |↑R1↓L1↑M5↓M1〉′ + |↑L1↓R1↑M1↓M5〉′ + |↑R1↓L1↑M1↓M5〉′)|↑M2↓M2〉′ + · · · ,

(B1f)

where | ↑� j ↑�k ↓�m↓�n〉′| ↑�o↓�p〉′ denotes a six-electron Slater determinant | ↑� j ↑�k ↓�m↓�n↑�o↓�p〉′ in which three spin-up
(spin-down) electrons occupy the FD orbitals � j , �k , and �o (�m, �n, and �p). In Eq. (B1), the dots (· · · ) denote other Slater
determinants whose coefficients exhibit smaller magnitudes compared to those explicitly shown. The eigenvalue of the operator
S2 for the eigenstate labeled |T OT I〉 (|T O

± T I
±〉, |SOT I〉, |T OT I〉(2), |SOSI〉, |T OSI〉) is 0 (2, 2, 6, 0, 2).

APPENDIX C: SUPEREXCHANGE ENERGY J AT THE ZERO EXTERNAL MAGNETIC FIELD

Figure 8 shows the superexchange energy J evaluated at BM = 0 and BM = 0.21 T. Overall, compared to the case in which
BM = 0.21 T, the magnitude of J is larger for BM = 0. However, the main qualitative behaviors of J , including the order of
magnitude and the sign of J , are the same for both BM = 0 T and BM = 0.21 T.
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