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We propose a fast, robust, and long-distance quantum state transfer (QST) protocol via a splicing Su-
Schrieffer-Heeger (SSH) chain, where the interchain couplings vary with the change in the phase parameter and
the single or splicing SSH chain can be designed by adjusting it. It is found that the existence of a zero-energy
interface state (IFS) not only can improve the speed of QST but also can realize long-distance QST. Furthermore,
we give the phase diagram in the parameter space of the transfer time T and the system’s size N , where
the different regions that can successfully implement QST via a single- or splicing-SSH-chain protocol are
given. Therefore, we can choose the optimal QST protocol by adjusting only the phase parameter for different
transfer times and system sizes. By numerically investigating the resilience of each protocol to static disorder,
we reveal that the splicing-SSH-chain protocol is quite robust to both diagonal and off-diagonal disorders and
clearly outperforms the single-SSH-chain protocol. By considering the environmental influence, rendering the
Hamiltonian non-Hermitian by allowing energy to radiate away, our work shows that the QST protocol assisted
by zero-energy IFS is more robust than previously expected and also outperforms the single-SSH-chain protocol.
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I. INTRODUCTION

The basic task of quantum information processing is con-
structing a quantum network where states can be transferred in
a coherent manner between two nodes [1–3]. In recent years,
great effort has been made to obtain the optimal protocol for
state transfer in a one-dimensional spin- 1

2 chain that provides
a simple and effective platform to implement quantum state
transfer (QST), which can be realized in a variety of phys-
ical systems, including coupled waveguides [4–6], acoustic
cavities [7], diamond vacancies [8], superconducting circuits
[9,10], arrays of quantum dots [11], driven optical lattices
[12], NMR [13], and nanoelectromechanical networks [14].
However, due to the inevitable decoherence of quantum state
and device imperfections, the degree a quantum state can be
transferred with good fidelity will be limited [15,16], which
induces a trade-off between the transfer speed, distance, and
robustness, as increasing one results in a decrease of the others
and vice versa. The quantum speed limit for transferring a
state along a spin chain has been studied for various protocols
[17–23], and the role of different sources of decoherence in
QST protocols and ways to circumvent their impact have been
discussed [24–33], including optimal control by applying an
external parabolic magnetic field [19] and a shortcut to adia-
baticity [32,33].

A very promising platform for the realization of an efficient
QST protocol comes from the Su-Schrieffer-Heeger (SSH)
chain [1,10,34–42], whose most appealing property is that
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they host a zero-energy edge mode which is robust to differ-
ent sources of quantum decoherence due to their topological
protection. Usually, this QST protocol relies on the time
evolution of a specially designed Hamiltonian and requires
very precise control of a tunable coupling parameter such as
robust QST via tunable coupling between adjacent sites [10],
fast and robust QST by next-nearest-neighbor couplings [43],
high-fidelity and long-distance entangled-state transfer via pe-
riodically driven coupling [3], and fast and robust QST via
exponential time-driving coupling [44]. However, these previ-
ous studies have been limited to considering a homogeneous
SSH chain. This is a rather challenging task in experiment, as
the adiabatic change in the coupling strength must be tuned
uniformly. Therefore, the protocol of a splicing SSH chain
may be more easily operated in experiment; in this protocol
two types of localized states can appear according to the
interface position: one is the edge state that appears at the
interface between the chain and vacuum, and the other is the
interface state that appears at the interface between different
chains. Especially, research on the role of the interface state
in the process of QST in such a splicing SSH chain is still
lacking.

In this work, we propose a fast and robust QST protocol
via a splicing-SSH-chain, where the interchain couplings vary
with the change in phase parameter and the single- or splicing-
SSH-chain can be designed by adjusting it. Two types of
zero-energy interface states (IFSs) are presented; the first one
is an even function for the interfaces at odd sites, and the sec-
ond one is an odd function for the interfaces at even sites. It is
found that the existence of zero-energy IFSs not only can im-
prove the speed of QST but also can realize long-distance QST
compared to the single-SSH-chain protocol. Furthermore,

2469-9926/2022/106(2)/022419(9) 022419-1 ©2022 American Physical Society

https://orcid.org/0000-0003-2913-8858
https://orcid.org/0000-0003-1347-825X
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.106.022419&domain=pdf&date_stamp=2022-08-19
https://doi.org/10.1103/PhysRevA.106.022419


HUANG, TAN, ZHONG, AND ZHU PHYSICAL REVIEW A 106, 022419 (2022)

FIG. 1. Schematic diagram of different SSH chains. (a) Splicing
SSH chain, where the coupling strengths of the four subchains are
set as Jn = Jn,0 for n ∈ [1, N1 − 1], Jn = Jn, π

2
for n ∈ [N1, N1 + N2 −

1], Jn = Jn,π for n ∈ [N1 + N2, N − N4 − 1], and Jn = Jn, 3π
2

for n ∈
[N − N4, N − 1]. (b) Single SSH chain, where the coupling strength
equably is set as Jn = Jn,0 for n ∈ [1, N − 1].

we give the phase diagram in the parameter space of the
transfer time T and the system size N . The different regions
that can successfully implement QST are revealed via the
single- or splicing-SSH-chain protocol. Therefore, we can
choose the optimal QST protocol by adjusting only the phase
parameter in the coupling. By numerically investigating the
resilience of each protocol to static disorder, we reveal that
the splicing-SSH-chain protocol is quite robust to both diago-
nal and off-diagonal disorders and obviously outperforms the
single-SSH-chain protocol. We further consider the environ-
mental influence by rendering the Hamiltonian non-Hermitian
by allowing energy to radiate away, and it is shown that the
QST protocol assisted by zero-energy IFSs is more robust than
previously expected and also outperforms the single-SSH-
chain protocol. Our proposal may provide an experimentally
friendly way to achieve QST.

The rest of this article is organized as follows. In Sec. II,
we present QST protocols assisted by zero-energy IFSs. We
introduce the Hamiltonian of the system together with the
corresponding protocols in Sec. II A and then discuss the
energy spectrum, zero-energy states, speed of the transfer, and
phase diagram in Secs. II B and II C. In Sec. III, we analyze
the impact of on- and off-diagonal disorder. In Sec. IV, we
study the effect of the environment on the behavior of each
protocol. Finally, we give a conclusion in Sec. V.

II. QST PROTOCOLS ASSISTED BY ZERO-ENERGY
INTERFACE STATES

A. Model

We start by considering a splicing SSH chain describing
a spin- 1

2 chain acting as a data bus for transferring a quan-

tum state. The Hamiltonian describes N spins, N = ∑4
i=1 Ni,

which are spliced by four conventional SSH models with site
numbers N1, N2, N3, and N4 [see Fig. 1(a)]. To realize QST via
a topology protected zero-energy IFS, here, we consider N to
be an odd number and Ni − Nj = 0 or ±1. When we restrict
ourselves to the one-excitation subspace, that is, all spins point
down but one, the Hamiltonian can be written as

H =
N−1∑
n=1

Jn(|n〉〈n + 1| + H.c.) +
N∑

n=1

Bn|n〉〈n|, (1)

with

Jn =

⎧⎪⎪⎨
⎪⎪⎩

Jn,0 for n ∈ [1, N1 − 1],
Jn, π

2
for n ∈ [N1, N1 + N2 − 1],

Jn,π for n ∈ [N1 + N2, N − N4 − 1],
Jn, 3π

2
for n ∈ [N − N4, N − 1].

(2)

Here, Jn,ϕ = g0 + g1 cos(nπ + θ − ϕ) is the nearest-neighbor
coupling strength between the nth and (n + 1)th sites, where
ϕ and θ respectively represent the initial phase and adia-
batic parameters. It is worth noting that, because the coupling
strength can periodically change Jn,ϕ = Jn,ϕ+2π , our system
can be spliced by arbitrary numbers of SSH models by setting
different coupling strengths Jn,ϕ (see the Appendix). The basis
|n〉 denotes that the nth site of the chain is excited, corre-
sponding to the Fock state |0102 · · · 1n · · · 0N 〉. Bn denotes a
local magnetic field applied at each site. Because an arbitrary
value of the magnetic field corresponds to a global shift on
the energy spectrum, without loss of generality, we choose
Bn = 0 in our work. Our system also can be reduced to a
single SSH chain by setting coupling strength Jn = Jn,0 for
n ∈ [1, N − 1] [see Fig. 1(b)]. The aim of the protocol we
consider is to transfer a single site excitation from the first site
|1〉 to the last site |N〉 of the chain by adiabatically controlling
the parameters θ during the dynamical evolution. The quantity
that determines how faithfully the transfer has occurred is the
fidelity, which in our case can be defined as

F = |〈N |ψ (T )〉|2, (3)

where |ψ (T )〉 denotes the final state, obtained by numerically
solving the time-dependent Schrödinger equation for H, and
T corresponds to the transfer time of the quantum state.

In the case of a single SSH chain, the zero-energy edge
states protected by topology can be exploited as a topologi-
cally protected quantum channel to realize the QST [10,44];
the main reason is that the positions of the zero-energy edge
state are exchanged due to the change in the coupling strength.
However, the realization of uniformly adjusting the coupling
strength for a long SSH chain still remains a challenge in
experiment. Therefore, the splicing SSH chain is an even
more practical system, which may be able to induce diverse
zero-energy states, including a zero-energy edge state (EGS),
zero-energy extended state (ETS), and zero-energy IFS. As
we will show, the zero-energy IFS can assist in long-distance
QST.

B. Energy spectrum and zero-energy states

To show QST assisted by the zero-energy IFSs, we con-
sider the energy spectrum and corresponding zero-energy
states under different coupling strengths by adjusting the
parameter θ . A typical example is displayed in Fig. 2
by choosing total lattice sites N = 41, g0 = g1 = 1, and
(N1, N2, N3, N4) = (10, 10, 10, 11). An inspection of the en-
ergy diagram shows that the zero-energy states always exist
and are threefold degenerate for some fixed parameters θ .
As the parameter θ changes, three different zero-energy
states can transform each other, and the zero-energy state
is nondegenerate in the parameter space 0.7π � θ � 1.8π

[see Figs. 2(a) and 2(b)]. For the sake of clarity, we give
the corresponding zero-energy eigenstates for the parameters
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FIG. 2. Energy spectrum under the open boundary condition for
an odd-sized splicing SSH chain. (a) Energy E vs the phase pa-
rameter θ . (b) Enlargement of the rectangular region in (a). (c)–(f)
Zero-energy states corresponding to θ = 0, 0.5π, 1.25π and 2.5π ,
respectively. The other parameters are chosen to be g0 = g1 = 1,
N = 41, and (N1, N2, N3, N4) = (10, 10, 10, 11).

θ = 0, 0.5π, 1.25π , and 2.5π in Figs. 2(c)–(f). It is shown
that the zero-energy EGS and ETS can coexist for θ =
0, 0.5π , and 2.5π , zero-energy IFSs can occur only for θ =
1.25π , and the positions of zero-energy EGSs can be ex-
changed for θ = 0 and 2.5π , which can provide an optimal
QST protocol by adiabatically changing the parameter θ .

To study the influence of zero-energy IFSs on QST using
the splicing-SSH-chain, we consider the distribution of zero-
energy IFSs for different splicing forms to keep the total chain
length (N = 41) unchanged in Fig. 3, where the gray dash-
dotted lines correspond to the interface positions in the chain.
Overall, we found that the distribution of zero-energy IFSs
mainly includes two types; the first one is an even function of
the splicing interface when the interface is at odd sites, and the
second one is an odd function of the splicing interface when
the interface is at even sites. The position of the occurring
zero-energy IFS is at the first interface for θ = 0.75π , the
second interface for θ = 1.25π , and the third interface for
θ = 1.75π .

Usually, in the process of QST for the case of a single-SSH-
chain, in order to remain in the zero-energy eigenstate without
exciting other eigenstates, one has to increase the transfer time
T to ensure the adiabatic approximation. However, due to the
decoherence of the quantum state under the evolution process,
the large transfer time T will not only affect the feasibility of
the experiment but also greatly reduce the transfer efficiency.
Next, we will illustrate how to reach high-fidelity QST for
small transfer time by using zero-energy IFS.

-1
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FIG. 3. The distribution of the zero-energy IFS. (a)–(d) The
chain length of the splicing SSH chain is designed as
(N1, N2, N2, N4) = (11, 10, 10, 10), (10,11,10,10), (10,10,11,10),
and (10,10,10,11), where the red, black, and blue zero-energy IFSs
can be obtained at θ = 0.75, 1.25, and 1.75, respectively. The other
parameters are chosen to be g0 = g1 = 1, N = 41.

C. Speed of the transfer and phase diagram

Now let us examine in more detail the QST protocol that
we described in the last section and provide numerical ev-
idence supporting our claims. To do this, we consider the
initial state of the system to be prepared in the zero-energy
eigenstate, which is localized on the first site of the chain. In
Figs. 4(a) and 4(b), we give the QST protocols for the splicing
interface at even and odd sites by adiabatically changing the
parameter θ from 0 to 2.5π in time T . We can see the QST
from the leftmost end to the rightmost end of the chain can
be perfectly realized regardless of whether the interface is at
even sites or odd sites with the transfer time T = 500 and
total chain length N = 41. To make a comparison in terms of
the speed of the transfer, we plot the fidelity as a function of
the transfer time for different protocols [see Fig. 4(c)]. Obvi-
ously, the transfer efficiency of splicing-SSH-chain protocols
is much larger than that of the single-SSH-chain protocol.
In addition, depending on the distribution of the zero-energy
IFSs, the transfer efficiency of QST for the interface at even
sites also is slightly better than that of the interface at odd
sites when T � 200. The main reason is that the amplitude
distribution of the zero-energy interface state involving the
odd function, which is located on both sides of the splicing
interface, is wider than the amplitude distribution of the even
function, as shown in Fig. 3.

The QST depends not only on the transfer time T but
also on the total length of the chain. We also consider the
fidelity to vary with the total chain length N for a fixed
transfer time (see Fig. 5). It is found that the advantage of
the splicing-SSH-chain protocol is mainly reflected in the
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FIG. 4. (a) and (b) QST via splicing-SSH-chain protocols for the
interface at even and odd sites. (c) The fidelity as a function of the
transfer time for different protocols, where the black dashed line and
red solid line correspond to the splicing-SSH-chain protocols of the
interface at even and odd sites and the blue solid line corresponds to
the single-SSH-chain protocol. The other parameters are chosen to
be g0 = g1 = 1, N = 41.

long-distance QST because a nontrivial trade-off exists be-
tween the total chain length and the splicing path for a given
value of transfer time (see the Appendix). If we define the fi-
delity F > 0.99, this means the quantum state is considered to
be successfully transferred. For a fixed transfer time T = 200,
the single-SSH-chain can successfully implement QST when
total chain lengths are N < 15, while the splicing-SSH-chain
cannot implement QST. However, the longest chain length of
single SSH chain for successful QST is N = 17, while the

0

1
(a)

Single chain
Splicing chain

5 13 21 29 37 45 53 61

0

1
(b)

FIG. 5. The fidelity as a function of the total chain length N for
a fixed transfer time (a) T = 200 and (b) T = 500, where blue and
black dash-dotted lines correspond to the results of the single and
splicing SSH chains, respectively. The other parameters are chosen
to be g0 = g1 = 1.

FIG. 6. Phase diagram of the quantum state transfer in the param-
eter space (T, N ). (a) The result of the splicing SSH chain. (b) The
result of the single SSH chain. (c) The total phase diagram derived
from (a) and (b), where the parameter space can be divided into four
regions. The other parameters are chosen to be g0 = g1 = 1.

longest chain length of splicing SSH chain is N = 33, which
approaches double length compared with the case of single
SSH chain [see Fig. 5(a)]. For comparison, we also consider
the longer transfer time T = 500 in Fig. 5(b), where the
longest chain length that can successfully implement QST is
elongated. For the single-SSH-chain, the longest chain length
for successful QST increases from N = 17 to 27, �N = 10.
For the splicing-SSH-chain, the longest chain length for suc-
cessful QST increases from N = 33 to 55, �N = 22. This
means that for the splicing-SSH-chain, the total chain length
that can successfully implement QST also increases faster
along with the increase of transfer time T , compared to the
case of single-SSH-chain. In addition, for a fixed total chain
length and a given value of transfer time, one also can improve
the efficiency of QST by using optimal splicing path (see the
Appendix).

In contrast to previous single-SSH-chain protocols with the
interchain couplings varied in time [3,10,44], our proposed
scheme of the splicing-SSH-chain has greater advantages for
experimental detection of QST. First, this scheme does not
require a homogeneous chain. Second, this scheme also does
not require the adiabatic change in the coupling strength to
be uniform. Therefore, zero-energy IFSs in the splicing-SSH-
chain may provide an experimentally friendly way to achieve
QST. To this end, we show the phase diagram of the QST in
parameter space (see Fig. 6). The yellow areas indicate that
the QST can be successfully implemented, and the blue areas
indicate the QST fails. Obviously, the parameter space can be
divided into four regions according to different phase bound-
aries. In region I, the QST can be successfully implemented
only via a single-SSH-chain. In region II, the QST can be
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FIG. 7. The average fidelity as a function of the disorder strength
ws for different protocols and forms of disorder. The black dotted
lines and red solid lines correspond to the results of the splicing SSH
chain in which the splicing interfaces are at even and odd sites, and
the blue solid lines are the results obtained via the single SSH chain.
The other parameters are chosen to be g0 = g1 = 1, N = 25, and
T = 800.

successfully implemented via a single- or splicing-SSH-chain.
In region III, the QST can be successfully implemented only
via the splicing-SSH-chain. In region IV, the QST cannot be
implemented via a single- or splicing-SSH-chain. Therefore,
depending on the different design schemes, we can choose the
optimal QST protocol by adjusting only the phase parameter
in the coupling. Our proposed protocol is experimentally more
feasible than some previous protocols [3,43,44].

III. DISORDER ANALYSIS

Due to a manufacturing error that arises during experi-
mental implementation, perfect modulation of the coupling
strength is impossible. In this section, we now examine the
robustness of the QST by introducing disorder both in the
couplings and in the magnetic field and discuss its effect on
fidelity. Generally, the disorder in the coupling is addressed as
off-diagonal disorder, while the disorder in the magnetic field
is addressed as diagonal disorder. The way each disorder real-
ization is imposed on the system’s parameters is as follows:

Jn → Jn(1 + δJn),

Bn → Bn + δBn. (4)

Here, δJn and δBn acquire random real values uniformly dis-
tributed in the interval (−ws,ws), in which ws corresponds to
the disorder strength. When δJn and δBn remain fixed during
the time evolution, we call them static off-diagonal and di-
agonal disorder, respectively. For each sample we calculate
fidelity F as a function of disorder strength ws and then
obtain the average fidelity F̄ (ws) by taking the average over
all samples, F̄ (ws) = 1

M

∑M
i=1 F , where the total number of

samples is M = 200 in our calculation.

In Fig. 7, for different protocols and forms of disorder, we
plot the average fidelity as a function of ws for total chain
length N = 25. For the sake of comparison, we choose a set
of parameters from region II in Fig. 6(c), where the QST can
be successfully implemented via single or splicing SSH chains
when ws = 0. We can clearly see that, in the presence of the
disorder (diagonal and off-diagonal) the protocols of splicing
SSH chains have strong robustness, whose average fidelities
always are F̄ → 1 for 0 � ws � 0.8 regardless of whether
disorder is diagonal or off-diagonal, while the average fidelity
of the single-SSH-chain protocol is F̄ → 1 for 0 � ws � 0.4,
as shown in Figs. 7(a) and 7(b). In addition, the robustness
against disorder of the splicing-SSH-chain protocol in which
the interfaces are at odd or even sites is almost the same. To
sum up, the splicing-SSH-chain protocol is quite robust to
both diagonal and off-diagonal disorders and clearly outper-
forms the single-SSH-chain protocol.

IV. ENVIRONMENTAL EFFECT

For QST, environment-induced decoherence is an im-
portant issue. In the following, we consider the effect of
environment on QST. For the environment, we consider that
it mainly affects the first and last sites of the chain [45,46].
Then we add non-Hermitian on-site terms on the first and last
sites,

H =
N−1∑
n=1

Jn(|n〉〈n + 1| + H.c.) − iγ (|1〉〈1| − |N〉〈N |), (5)

where γ is the gain or loss parameter. If we now inject an
initial wave function ψ (0) into the chain, it will evolve as
ψ (T ) = ψ (0)e−iH(θ )t (we have set h̄ = 1). Due to the losses
in the environment and the fact that all sites in the chain are
coupled, we expect |ψ (t )|2 to decrease over time. However,
if the lossless zero-energy IFS also exists in the chain, for
system sizes larger than the exponential confinement of the
zero-energy edge state, the loss of a wave function injected at
the edge state will be heavily suppressed. This loss suppres-
sion manifests in the propagator e−iH(θ )t through the existence
of the imaginary components of the complex energies of the
zero-energy IFS and EGS exponentially approaching zero
with increasing system size.

This exact behavior of the energy of the system is observed
in Fig. 8, which shows the real and imaginary energies as
a function of the phase parameter θ . It is found that the
imaginary components of the complex energies of the total
system are complementary about θ = 1.25; namely, the imag-
inary component is greater than zero for θ < 1.25, while it
is less than zero above θ > 1.25 and vice versa. Crucially,
the imaginary component of the zero-energy IFS is close to
being purely real. This means that one can still implement
QST assisted by zero-energy IFSs. In order to clarify the
influence of the non-Hermitian term on QST, we give the
fidelity as a function of the parameter γ in Fig. 9. We can
see the splicing-SSH-chain protocol is also robust to the weak
loss and clearly outperforms the single-SSH-chain protocol,
and this robustness quickly increases with the system size, as
shown in Figs. 9(a) and 9(b).
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FIG. 8. Complex energies of the odd-sized splicing-SSH-chain
as a function of the phase parameter θ . The other parameters are
chosen to be g0 = g1 = 1, N = 41, γ = 0.02, and (N1, N2, N3, N4) =
(10, 10, 10, 11).

V. CONCLUSIONS

In this work we have investigated a fast, robust, and long-
distance QST protocol that employs a splicing-SSH-chain to
act as a quantum channel for transferring single-site excita-
tions. We propose two types of zero-energy IFSs that can
increase the efficiency of the transfer in terms of speed; the
first one is an even function for the interfaces at odd sites,
and the second one is an odd function for the interfaces at
even sites. To sustain our claim, we made a comparison with

0

1 (a)

0 0.01 0.02 0.03 0.04
0

1 (b)

Single chain
Splicing chain

FIG. 9. The fidelity as a function of the parameter γ for a fixed
total chain length and transfer time, (a) N = 41, T = 500 [region III
in Fig. 6(c)] and (b) N = 25, T = 800 [region II in Fig. 6(c)], where
blue and black dash-dotted lines correspond to the results of the
single and splicing SSH chains, respectively. The other parameters
are chosen to be g0 = g1 = 1.

the single-SSH-chain protocol. It was found that the existence
of zero-energy IFSs not only can improve the speed of QST
but also can realize long-distance QST. Furthermore, we gave
the phase diagram in the parameter space of the transfer
time T and the system size N . The different regions that can
successfully implement QST were revealed via the single-
or splicing-SSH-chain protocol. Therefore, we can choose
the optimal QST protocol by adjusting only the coupling
strength Jn,ϕ , where the single- or splicing-SSH-chain can be
designed by adjusting the phase parameter ϕ. We studied the
effect of diagonal and off-diagonal disorder on QST. It was
revealed that the splicing-SSH-chain protocol is quite robust
to both diagonal and off-diagonal disorders and clearly outper-
forms the single-SSH-chain protocol. We further considered
the environmental influence by rendering the Hamiltonian
non-Hermitian by allowing energy to radiate away; it was
shown that the QST protocol assisted by zero-energy IFSs is
more robust than previously expected and also outperforms
the single-SSH-chain protocol. Our work may provide an
experimentally friendly method for QST.
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APPENDIX: OPTIMAL SPLICING PATH FOR QUANTUM
STATE TRANSFER

Because the coupling strength can periodically change
Jn,ϕ = Jn,ϕ+2π , our system can be spliced by arbitrary num-
bers of SSH models by setting different coupling strengths
Jn,ϕ . Of course, more splicing parts can lead to more interface
states, which are conducive to quantum state transfer to a
certain extent. However, for a given total chain length, when
the numbers of splicing parts become big, the length of each
splicing part will be shortened. There may exist an optimal
splicing path for quantum state transfer for a fixed total chain
length N and a given value of transfer time T . Through nu-
merical calculation, we find that if the length of any splicing
part is too short, Ni < 4, the quantum state transfer may be
directly destroyed; the main reason is that the corresponding
zero-energy interface state may be destroyed. In the following,
we will show the nontrivial trade-off between the total chain
length and the splicing path for a given value of transfer time
via two examples.

To show the limit length of each splicing part, we first
consider a short total chain length N = 17. As an example,
for a fixed transfer time T = 500, we give the distribu-
tion of the zero-energy interface state and the corresponding
quantum state transfer for three different splicing paths
(see Fig. 10). We can see that if we choose the splicing
path (N1, N2, N2, N4) = (4, 4, 4, 5), the zero-energy interface
states of the three interfaces that are an odd function of the
splicing interface because the interfaces are at even sites can
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FIG. 10. The distribution of the zero-energy interface state and
corresponding quantum state transfer for three different splic-
ing paths with a fixed total chain length N = 17 and transfer
time T = 500: (a) and (b) (N1, N2, N2, N4) = (4, 4, 4, 5), (c) and
(d) (N1, N2, N2, N4) = (4, 6, 2, 5), and (e) and (f) (N1, N2, N2, N4) =
(4, 2, 2, 9).

be well preserved, and then the quantum state transfer can
also be successfully implemented [see Figs. 10(a) and 10(b)].
If we choose the splicing path (N1, N2, N2, N4) = (4, 6, 2, 5),
the second zero-energy interface state causes deformation be-
cause the length of the third splicing part N3 = 2 is less than
four sites, and then the fidelity of the quantum state trans-
fer also decreases to F < 0.99 [see Figs. 10(c) and 10(d)].
Especially, if we choose the splicing path (N1, N2, N2, N4) =
(4, 2, 2, 9), the first zero-energy interface state obviously is
destroyed because the lengths of the second and third splic-
ing parts N2 = 2 and N3 = 2 are less than four sites, which
directly leads to the failure of quantum state transfer [see
Figs. 10(e) and 10(f)]. To show the constructive effect of more

FIG. 11. The quantum state transfer for two different splic-
ing paths with a fixed total chain length N = 101 and trans-
fer time T = 500: (a) (N1, N2, N2, N4) = (26, 25, 25, 25) and
(b) (N1, N2, N2, N4, . . . , N20) = (6, 5, 5, 5, . . . , 5).

interface states on quantum state transfer, we consider a long
total chain length N = 101. As an example, for a fixed transfer
time T = 500, we give the quantum state transfer for two
different splicing paths (see Fig. 11). We can see that if we
choose the splicing path (N1, N2, N2, N4) = (26, 25, 25, 25),
although the system has four zero-energy interface states,
quantum state transfer fails to occur because the transfer
time is too short [see Fig. 11(a)]. If we choose the splicing
path (N1, N2, N2, N4, . . . , N20) = (6, 5, 5, 5, . . . , 5), the quan-
tum state transfer from the left end to the right end of the chain
can be perfectly realized with the assistance of more interface
states [see Fig. 11(b)]. Therefore, a nontrivial trade-off exists
between the total chain length and the splicing path for a given
value of transfer time; namely, the length of any splicing part
is not less than four sites, Ni � 4. Under this splicing limit,
more zero-energy interface states not only can improve the
speed of quantum state transfer but also can realize long-
distance quantum state transfer for a given transfer time.
Without loss of generality, to show only the constructive effect
of zero-energy interface states on quantum state transfer, we
consider a periodic change in the coupling strength in our
work; namely, our system is spliced by four parts.
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