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Connecting commutativity and classicality for multitime quantum processes
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Understanding the demarcation line between classical and quantum is an important issue in modern physics.
The development of such an understanding requires a clear picture of the various concurrent notions of
“classicality” in quantum theory presently in use. Here we focus on the relationship between Kolmogorov
consistency of measurement statistics—the foundational footing of classical stochastic processes in standard
probability theory—and the commutativity (or absence thereof) of measurement operators—a concept at the
core of quantum theory. Kolmogorov consistency implies that the statistics of sequential measurements on
a (possibly quantum) system could be explained entirely by means of a classical stochastic process, thereby
providing an operational notion of classicality. On the other hand, commutativity of measurement operators is
a structural property that holds in classical physics and its breakdown is the origin of the uncertainty principle,
a fundamentally quantum phenomenon. We formalize the connection between these two a priori independent
notions of classicality, demonstrate that they are distinct in general and detail their implications for memoryless
multitime quantum processes.
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I. INTRODUCTION

Since the inception of quantum theory, various notions of
“classicality” for the states of physical systems and measure-
ments thereof have been put forth, including those based on
the commutativity of observables [1–7] (the breakdown of
which being the origin of Heisenberg’s uncertainty principle
[8–10]), the absence of coherence [11–16] or quantum discord
[17–19], the nonnegativity of the Wigner function [20–24],
the broadcastability of states [25,26], or the objectivism that
emerges through Darwinist arguments [27–31]. Most of these
concepts of classicality are static in the sense that they focus
on properties of quantum states and/or the compatibility of
measurements in situations where there is no dynamics taking
place between them. When extending such considerations to
processes, i.e., physical systems that display nontrivial evolu-
tion and are measured at several points in time, classicality is
often linked to the inability of a process to generate and/or
detect states displaying such aforementioned properties, as
well as certain properties of the resulting multitime statistics
(see, e.g., Refs. [32–35]). Additionally, for the case of sequen-
tial measurements, noncommutativity is the key ingredient
in the generalization of stochastic processes to the quantum
realm [36]. However, besides partial results, the links between
such—a priori inequivalent—notions of classicality (or non-
classicality) remain poorly understood and subject to debate
[37–41], both in static and dynamic scenarios.
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Broadly speaking, existing notions of classicality fall
into one of two categories: Structural ones, i.e., criteria for
classicality based on mathematical properties like the commu-
tativity (of observables) or the coherence of quantum states;
and operational ones, i.e., those based only upon experi-
mentally accessible entities, such as the multitime statistics
obtained from probing an evolving quantum state at different
points in time. While both types of considerations are well
motivated in their own right, the connection between such—
generally inequivalent—structural and operational notions of
classicality has not yet been fully established; in the static
case, it is known only for special cases [1,42–44], and in the
dynamic scenarios that we will focus on such links are known
only when restricting to projective measurements of a fixed
observable [32–35]. Here we establish more general connec-
tions between structural and operational notions of classicality
for the case of a quantum system that undergoes nontriv-
ial dynamics and is probed at multiple points in time with
general instruments. Specifically, we analyze the connection
between the satisfaction of so-called Kolmogorov consistency
conditions—an operational notion of classicality—and com-
mutativity of the operators that “naturally” assume the role of
observables in multitime processes (we motivate and identify
these operators in Sec. III).

Satisfaction of the former criterion implies the existence
of a classical (i.e., described by standard probability theory)
stochastic process that leads to the same statistics as the one
observed when the underlying quantum process is measured
[45]; in other words, although such a process might actu-
ally be quantum in nature, one cannot conclude this from
the collected statistical data alone. Importantly, checking the
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Kolmogorov consistency conditions amounts to a clear oper-
ational notion of classicality that can be tested without any
additional knowledge of the underlying dynamics or physical
theory. For the case of quantum theory restricted to sequential
measurements in a fixed basis, this criterion has been con-
nected to the ability of the dynamics to generate and detect
coherences, both in the Markovian (memoryless) [32,35] as
well as non-Markovian setting [33,34]. Extensions to more
general measurements have remained elusive to date.

On the other hand, (non-)commutativity of observables—
the structural property that we consider here—lies at the core
of quantum theory.1 Intuitively, commutativity of two observ-
ables A and B implies that they are jointly measurable; that
is, given an arbitrary quantum state ρ, the probability of ob-
taining an outcome pertaining to observable B is independent
of whether A was measured before it or not (and vice versa).
This connection between measurement noninvasiveness—
an operational notion of classicality—and commutativity of
observables—a structural notion of classicality—was first
considered by Lüders [1] for the case of projective measure-
ments and later extended to more general scenarios [42–44]
(see also Sec. II), where it was shown that commutativity and
measurement noninvasiveness coincide in many cases. Such
results thereby endow the commutativity of relevant operators
with operational meaning in terms of a notion of classical-
ity based upon measurement noninvasiveness. Importantly,
such a direct connection between these two a priori distinct
concepts can be meaningfully established only under the as-
sumption that there are only two sequential measurements
being considered.

In the multitime setting with nontrivial dynamics between
measurements, it is a priori unclear how Lüders’ results
carry over. In other words, how can one link the structural
property of commutativity with an operationally clear notion
of classicality? The first step to doing so is to determine
what “observables” are the appropriate ones to consider when
checking commutativity. In particular, both the underlying
dynamics in between measurements and the effects of general
measurement instruments must be accounted for in the tempo-
ral setting. While this can be done by combining the chosen
measurements with the dynamics, it is then not necessarily the
commutativity of the bare measurements (i.e., pertaining to
the measurement device itself) per se, but rather the effective
measurements (i.e., those with the dynamics accounted for)
that render the observed statistics “classical” or “nonclassical”
accordingly.

Here we identify the operators that determine the noninva-
siveness of measurements for the case of multiple sequential
measurements with nontrivial intermediate dynamics and an-
alyze the conditions for which the commutativity—or weaker
versions thereof—of said operators corresponds to the satis-
faction of the Kolmogorov consistency conditions (and vice
versa). Our analysis thus connects structural with operational
notions of classicality for multitime dynamics and general
measurement settings. For the special case of two sequential

1This fact notwithstanding, recently, the possibility of noncommu-
tativity in classical physics has been discussed [46].

measurements without intermediate dynamics, our results co-
incide with those of Lüders. However, in general, the situation
presents itself considerably more layered, and a “straightfor-
ward” extension of Lüders’ results is not possible. We show
that commutativity (of the relevant operators) is a stronger
condition than Kolmogorov consistency in general; while the
former implies the latter, the converse is not true. Addi-
tionally, we derive the conditions under which Kolmogorov
consistency implies the vanishing of pertinent commutators
in a restricted—but still multitime—setting and highlight the
ensuing physical implications in order to develop intuition
concerning the interplay of these two notions of classicality.
Finally, we relate our considerations to the well-known case
of projective measurements in a fixed basis—where structural
properties that are equivalent to Kolmogorov consistency have
been identified [35]—and show that, while said structural
considerations follow directly from those we provide for more
general measurement scenarios, even in this special case, it
is difficult to identify generally applicable commutator rela-
tions. All throughout, we provide counterexamples to existing
notions of classicality that serve to help build intuition and
highlight the necessity of certain assumptions (e.g., on the
types of measurements allowed).

Together, our results offer a comprehensive analysis
regarding the connection of structural—yet not directly ob-
servable in many cases—properties of quantum dynamics
and operational—i.e., experimentally accessible—notions of
classicality, and underline the complicated interplay between
dynamics and measurements that arises in the multitime sce-
nario.

This article is organized as follows. We begin by outlining
some preliminary concepts, including the considerations of
Lüders [1] that motivate the examination of commutativity,
and similarly for the Kolmogorov consistency conditions, in
Sec. II. We then explore the link between these two concepts
within the setting of multitime Markovian quantum dynam-
ics throughout Sec. III, where we first derive a commutator
expression whose vanishing is sufficient to imply classical
statistics, before deriving a necessary condition for classical-
ity to imply vanishing commutators of the pertinent operators.
We subsequently connect our work with the special case of
dynamics that do not generate and detect coherences, which
constitutes perhaps the most physically relevant special case
[32–35] that our results apply to. Finally, we conclude with a
discussion and outlook in Sec. IV.

II. PRELIMINARIES

We begin by introducing the relevant concepts for both a
structural and an operational definition of classicality in mul-
titime processes. To this end, first, we recall the connection
between commutativity of observables and noninvasiveness in
the two-time case, in particular the considerations of Lüders
[1].

A. Lüders’ theorem: Commutativity and noninvasiveness

As a preliminary example concerning the connection be-
tween structural and operational notions of classicality, we
consider the simplest case: The sequential measurement of
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two observables A and B on a state ρ without intermedi-
ate evolution. Let {�(a)} and {�(b)} be projectors onto the
eigenspaces of A and B, respectively, with eigenvalues {a} and
{b}. The probability to first measure outcome a and then b is
given by

P (b, a) = tr(�(b)�(a)ρ�(a) ) = tr(ρ�(a)�(b)�(a) ). (1)

In classical physics, future statistics are unaffected by whether
or not a previous measurement was conducted2 (when that
previous measurement outcome is not recorded, i.e., averaged
over). Here we employ the term “classical” in a somewhat
colloquial sense, as pertaining to the macroscopic world; be-
low, we properly define what we mean exactly by “classical”
throughout this article. Consequently, if the above situation
were classical, then∑

a

P (b, a) = P (b, �a) (2)

would hold, where P (b, �a) denotes the probability to obtain
outcome b if the first measurement was not performed. Note
that, crucially, the above equation compares two distinct ex-
periments: One in which the system is consecutively measured
at two times (yielding outcomes a and b, l.h.s.); the other in
which no measurement is made at the first time (indicated by
the slash and yielding only outcome b at the second time,
r.h.s.). In quantum mechanics, Eq. (2) (or generalizations
thereof; see Sec. II B) fails to hold in general, since quantum
measurements are invasive. As a consequence, not performing
a measurement is distinguishable from measuring and averag-
ing over outcomes.

One example where Eq. (2) can be satisfied in the quan-
tum setting, independently of ρ, is when [�(a),�(b)] = 0
for all a, b (which is equivalent to [A, B] = 0), since then∑

a �(a)�(b)�(a) = �(b) (where we have used �(a)�(a) =
�(a) and

∑
a �(a) = 1), and thus∑

a

P (b, a) =
∑

a

tr(�(a)�(b)�(a)ρ) = tr(�(b)ρ) = P (b, �a).

(3)

If the above is satisfied, then—just like in classical physics—
all information is contained in the two-point probability
distribution P (b, a) in the sense that both single-time dis-
tributions P (a) and P (b) can be obtained from it by
marginalization; the process is thereby fully characterized.
Consequently, throughout this article, we call classical those
experimental situations that satisfy this property, i.e., that
yield probabilities which can all be obtained from a sin-
gle multitime probability distribution via marginalization (see
Sec. II B for a rigorous discussion). In this case, we say that
said probability distributions for different subsets of times
are consistent. Importantly, this notion of classicality amounts
to measurement noninvasiveness: Whether or not a measure-
ment has been performed at a given time has no bearing on
the outcome probabilities at different times if the statistics

2Importantly, this independence of measurement statistics from
previous outcomes generally holds only on average, i.e., it does not
imply P (b|a) = P (b), but merely P (b) = ∑

a P (b, a).

are classical. Thus, commutativity of observables A and B
in a two-point measurement scheme implies classicality of
the statistics (the converse is also true, but not obvious; see
below), establishing a direct link between a structural notion
(commutativity of operators) of classicality and an operational
definition (measurement noninvasiveness) thereof.

More generally, instead of performing sharp measurements
of an observable, an experimenter could first probe the state ρ

with a general instrument, described by a set of Kraus oper-
ators {K (a)}, where each K (a) corresponds to a measurement
outcome a, and subsequently perform a POVM {Q(b)}, each
element of which corresponds to an outcome b. The two-point
statistics are then given by

P (b, a) = tr(Q(b)K (a)ρK (a)†) = tr(ρK (a)†Q(b)K (a) )

=: tr(ρK(a)†[Q(b)]). (4)

Here K (a) and Q(b) respectively play analogous roles to �(a)

and �(b) in the previous example. Now, setting K†[•] :=∑
a K(a)†[•], we see that noninvasiveness of the first measure-

ment amounts to the satisfaction of

tr(ρK†[Q(b)]) = tr(ρ Q(b) ) ∀ b. (5)

If the above must hold for all states ρ, then noninvasiveness is
equivalent to

K†[Q(b)] = Q(b) ∀ b. (6)

This criterion has been connected to commutation relations by
Lüders, yielding the following theorem:

Theorem 1 (Lüders [1,42]). Let K† be defined as above
and let Q be a positive semidefinite operator. If all Kraus
operators K (a) are Hermitian, then K†[Q] = Q is equivalent
to [K (a), Q] = 0 ∀ a.

Since some of our proofs below follow a similar line of rea-
soning, we recall the proof of this theorem from the literature
(see, e.g., Ref. [42]).

Proof. First, it is easy to see that [K (a), Q] = 0 ∀ a implies
K†[Q] = Q. To see the converse, let |ϕ〉 be an arbitrary vector
in the Hilbert space H that Q is defined on. Suppose that
K†[Q] = Q, and decompose Q = ∑

μ λμPμ with λ1 > λ2 >

· · · with {Pμ} being mutually orthogonal projection operators.
It follows that

λ1‖P1 |ϕ〉 ‖2 = 〈P1ϕ|QP1ϕ〉 = 〈
P1ϕ|K†[Q]P1ϕ

〉
=

∑
a

〈K (a)P1ϕ|Q|K (a)P1ϕ〉

� λ1

∑
a

〈
K (a)P1ϕ|K (a)P1ϕ

〉
= λ1

∑
a

〈
K (a)†K (a)P1ϕ|P1ϕ

〉
= λ1‖P1 |ϕ〉 ‖2, (7)

where we have used λ11 − Q � 0 for the first inequality and∑
a K (a)†K (a) = 1 for the last equality. From the above, we

see that 〈
K (a)P1ϕ|(λ11 − Q)|K (a)P1ϕ

〉
= ‖(λ11 − Q)1/2K (a)P1 |ϕ〉 ‖2 = 0 (8)
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holds, and we thus have

QK (a)P1

∣∣ϕ〉 = λ1K (a)P1

∣∣ϕ〉
, (9)

implying that K (a) leaves the λ1 eigensubspace invariant. This
means that K (a)P1 = P1K (a)P1, and since K (a) is assumed to
be Hermitian, it follows that [K (a), P1] = 0 for all a. Now we
set Qμ = Qμ−1 − λμ−1Pμ−1 and Q0 = Q, and repeat the same
steps as above with Q2 and P2 and so on. This iteration then
leads to the fact that [K (a), Pμ] = 0 for all a and μ. Hence
[K (a), Q] = 0 as claimed.

Since K†[Q(b)] = Q(b) is equivalent to noninvasiveness of
the first measurement, Theorem 1 says that noninvasiveness
for arbitrary initial states ρ is equivalent to commutativity of
the Kraus operators of the first measurement and the POVM
elements of the second one, if all Kraus operators are Hermi-
tian (which is, e.g., the case for projective measurements of
two observables).

We emphasize that Hermiticity of the Kraus operators is
crucial for the derivation of Theorem 1, and without this
assumption, it no longer holds in general. This can be seen
by considering a counterexample provided in Ref. [44]:

Example 1. Let the POVM elements {Q(1), Q(2)} be given
by

Q(1) = 1

2

⎛⎝2 0 0
0 0 0
0 0 1

⎞⎠, Q(2) = 1

2

⎛⎝0 0 0
0 2 0
0 0 1

⎞⎠,

and the Kraus operators by

K (1) = 1

2

⎛⎝√
2 0 −1

0 0 0
0 0 0

⎞⎠,

K (2) = 1

10

⎛⎝0 0 0
0 −√

10 2
√

10
0 0 0

⎞⎠,

K (3) = 1

2

⎛⎝0 0 0
0

√
2 0

0 0 0

⎞⎠, K (4) = 1

20

⎛⎝0 0 0
0 4

√
10 2

√
10

0 0 0

⎞⎠,

K (5) = 1

2

⎛⎝√
2 0 1

0 0 0
0 0 0

⎞⎠.

For this setup, it is straightforward to see that both Q(1)

and Q(2) are invariant under
∑5

a=1 K (a)† • K (a), i.e., the mea-
surement is noninvasive overall and therefore the resulting
statistics are classical, but, for example, [K (5), Q(1)] �= 0.
Consequently, classicality of statistics and commutativity
of the Kraus operators are generally inequivalent notions.
Nonetheless, the direct connection between commutativity
and measurement noninvasiveness in quantum mechanics, i.e.,
that provided by Lüders’ theorem, has subsequently been ex-
tended to more general (e.g., non-Hermitian) Kraus operators
in certain circumstances [42–44]. �

Importantly for our purposes, Theorem 1 identifies the
relevant operators whose commutation relations are related to
noninvasiveness. As a first step, in what follows we will in-
vestigate which operators play the roles of K (a) and Q(b) in the

multitime—i.e., more than two consecutive measurements—
case.

Before doing so, we first note that Theorem 1 (and its
extensions) are restricted in their realm of application. First,
they are limited to only two sequential measurements with no
intermediate evolution.3 Additionally, the (potential) equiv-
alence between K†[Q(b)] = Q(b) and classicality requires
noninvasiveness for all states ρ. As we will discuss, in the
multitime scenario, one is not always guaranteed to have ac-
cess to a full basis of quantum states at each interrogation time
of interest. Consequently, in the multitime case, the relation
between compatible statistics and the commutativity of some
appropriate operators presents itself as a more layered issue
than in the static or two-time cases, even when the Kraus
operators of performed measurements are limited in a similar
way to the assumptions of Theorem 1.

We now move to consider the operational notion of non-
invasiveness in the multitime case, namely the Kolmogorov
consistency conditions, which are naturally suited to analyzing
the classicality (or not) of general quantum processes. We will
see that Lüders’ considerations amount to a special case of
Kolmogorov consistency, before moving on to develop mul-
titime “Lüders-type” theorems, in the sense that they connect
noninvasiveness of measurements to the vanishing of a set of
pertinent commutator expressions.

B. Kolmogorov consistency and noninvasiveness

In Eq. (2) we provided an experimentally accessible notion
of noninvasiveness—and thus classicality—for two sequential
measurements. The natural way to extend this definition to the
multitime case is as follows. Suppose that an agent probes a
physical system at n discrete points in time, recording the cor-
responding joint probability distribution P(mn, . . . , m1) over
possible outcomes {mn, . . . , m1} observed at the respective
(strictly decreasing) times {tn, . . . , t1} [see Fig. 1(a)]. Note
that, as a part of the definition, we consider the sequence of
times at which the system is measured as fixed and given,
and throughout we use the shorthand subscript notation mi to
denote a measurement at time ti with outcome mi. Importantly,
analogous to the two-time case discussed above, for any clas-
sical stochastic process, the recorded probability distribution
is guaranteed to satisfy the Kolmogorov consistency conditions
[47], illustrated in Figs. 1(b) and 1(c):

P(mn, . . . ,��mi, . . . , m1)

=
∑

mi

P(mn, . . . , mi, . . . , m1) ∀ i , (10)

where, again, the “crossed-out” outcome notation indicates
that no measurement was performed at the corresponding time
(ti in the above equation). Evidently, Eq. (10) is a multitime
generalization of the two-time scenario considered in Eq. (2).
The distribution on the l.h.s. corresponds to what an experi-
menter observes if they do not perform any interrogation at

3This is, technically, not a strong restriction, since any intermediate
dynamics could be absorbed into the Kraus operators or POVM
elements.
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FIG. 1. Schematics of physical processes considered in this ar-
ticle. An unknown process (turquoise) is probed at different times,
here {t1, t2, t3, t4}, and the resulting joint probability distribution
P(m4, m3, m2, m1) is recorded (a). From the four-time distribu-
tion obtained, one could compute a three-time joint distribution
by marginalizing over the outcomes at a given time (b) We de-
pict the case in which the outcomes at time t2 are marginalized
over, yielding the probability distribution

∑
m2

P(m4, m3, m2, m1)
for times t1, t3, and t4. In contrast, the three-time joint probability
P (m4, m3,��m2, m1), as shown in (c), is obtained by not performing
a measurement at t2. In general, this is a different experiment than
the one of (b) and therefore leads to a different probability dis-
tribution. However, if the process is classical—and the employed
measurements are noninvasive—then the joint probabilities of the
experiments depicted in (b) and (c) coincide [see Eq. (10)].

time ti, whereas on the r.h.s. the full statistics is recorded and
then marginalized over at time ti. As in the two-time case, Kol-
mogorov consistency states that there is no difference between
not having performed a measurement and measuring but av-
eraging over all possible outcomes at any time, corresponding
to a sensible notion of classicality in terms of measurement
noninvasiveness: For classical stochastic processes, measure-
ments simply reveal a preexisting property of the system,
in line with the assumptions of macroscopic realism used,
e.g., in the derivation of Leggett-Garg inequalities [48]. This
property fails to hold for quantum processes, since quantum
measurements generically alter the state of the system being
measured [49].

We emphasize that a breakdown of Kolmogorov consis-
tency does not necessarily imply that the probed process at

hand is nonclassical per se. For instance, in the theory of
classical causal modeling [50], where invasive interrogations
can be implemented (e.g., by first measuring the value of some
property and then setting it to some other value) in order to
potentially infer causal influence, the recorded statistics gen-
erally do not satisfy the Kolmogorov consistency conditions
[45]. Nonetheless, testing the validity of Eq. (10) provides a
theory-independent, operational procedure to decide on the
noninvasiveness of interrogations. In particular, satisfaction
of the Kolmogorov consistency conditions implies that there
exists a—potentially exotic—classical stochastic process that
can reproduce the observed statistics. To do so, said classical
stochastic process merely needs to correctly recreate the full
joint probability distribution P (mn, . . . , m1), and, due to sat-
isfaction of the Kolmogorov conditions, it then also correctly
recreates all joint probability distributions for any subset of
times, thereby fully characterizing the process from an opera-
tional standpoint. Thus, we will interchangeably use the terms
“Kolmogorov consistency,” “measurement noninvasiveness,”
and “classicality.”

Recently, in Refs. [32–35], the implications of the satis-
faction of the Kolmogorov consistency conditions for general
multitime processes (including those with memory) that are
probed by means of pure projective measurements have been
characterized, thus connecting the operational, experimentally
accessible notion of classicality with certain properties of the
underlying quantum dynamics, namely their ability to gener-
ate and detect coherence or discord with respect to the chosen
measurement basis (we discuss the relationship of these re-
sults with our present work in Sec. III D). Here we allow
for general measurements and phrase our results in terms
of commutation relations (i.e., in the spirit of Lüders’ theo-
rem), rather than in terms of the coherence- or discord-related
properties of the underlying quantum maps that engender the
observed statistics.

C. Multitime statistics from (Markovian) quantum processes

To make the relation between commutation relations and
noninvasiveness in quantum theory more concrete and iden-
tify the relevant operators, we now examine how observed
statistics are related to the underlying dynamics of a quantum
process. In order to collect joint statistics at times t1, . . . , tn,
at each time ti an experimenter probes the system of inter-
est with an instrument, Ji = {K(mi )

i }, which is a collection
of completely positive (CP) maps that sum up to a com-
pletely positive and trace-preserving (CPTP) map, i.e., Ki :=∑

mi
K(mi )

i is a CPTP map [51]. Each CP map K(mi )
i corre-

sponds to a possible outcome mi and captures the state change
of the system upon measurement. For simplicity, we assume
that every element K(mi )

i can be represented by a single Kraus
operator, i.e., K(mi )

i [ρ] = K (mi )
i ρK (mi )†

i . In between these mea-
surements (e.g., between ti and ti+1), the system of interest
undergoes nontrivial dynamics, possibly interacting with an
environment, described by CPTP maps �i+1:i. While, in
principle, both the dynamics of the system, as well as the mea-
surements themselves could be correlated in time, throughout,
we focus on Markovian (i.e., memoryless) dynamics and
uncorrelated measurements. Consequently, the only possi-
ble correlations of the observed measurement statistics are
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then caused by the interplay between the the measurement
maps and the dynamical maps (as we will elaborate upon
below).4

Concretely, assuming the dynamics to be Markovian and
the measurements uncorrelated, then the maps �i+1:i are mu-
tually independent and act on the system alone (see Fig. 2).
Any statistics observed by probing (in an uncorrelated man-
ner) a Markovian process can be computed via the quantum
regression formula [55–57]:

P(mn, . . . , m1|Jn, . . . ,J1)

= tr
(
K(mn )

n ◦ �n:n−1 ◦ · · · ◦ �2:1 ◦ K(m1 )
1 [ρ]

)
, (11)

where all maps act on the system alone. It is important
to note that the statistics observed depend on both the
CP maps K(mi )

i implemented by the experimenter and the
generally uncontrollable dynamics of the process given by
the CPTP maps {�i:i−1}. Whether or not the measured
statistics satisfies the Kolmogorov consistency conditions
thus depends on the complex interplay between measure-
ments and intermediate dynamics. With Eq. (11) at hand,
we can now identify the relevant operators and commu-
tation relations concerning the satisfaction of Kolmogorov
conditions.

III. MULTITIME DYNAMICS: KOLMOGOROV
CONSISTENCY AND COMMUTATIVITY

To identify the relevant commutation relations, let us
rewrite Eq. (11) entirely in terms of Kraus operators:

P(mn, . . . , m1|Jn, . . . ,J1)

=
∑
�2...�n

tr
[
K (mn )

n L(�n )
n:n−1 · · · L(�2 )

2:1 K (m1 )
1 ρK (m1 )†

1 L(�2 )†
2:1

· · · L(�n )†
n:n−1K(mn )†

n

]
, (12)

where we have set �i:i−1[•] = ∑
�i

L(�i )
i:i−1 • L(�i )†

i:i−1.
In order to connect this equation to noninvasiveness of a

measurement at a time ti, we split the above expression into
three parts (using the cyclicity of the trace): One that corre-
sponds to the state immediately prior to the measurement, one
corresponding to the measurement itself, and one correspond-
ing to everything that happens after the measurement at said
time of interest. Specifically, setting R(�i,mi−1 )

i:i−1 := L(�i )
i:i−1K (mi−1 )

i−1 ,
we see that the premeasurement (subnormalized) state at time

4These assumption may not be fulfilled in the real experiments, and
going beyond them leads to interesting phenomena. For instance,
conducting two consecutive measurements with the same detector
might lead to statistical correlations between the two outcomes be-
yond what arise from the measured process itself [52,53]; on the
other hand, additional memory in the process can, e.g., result in
the violation of Leggett-Garg-type inequalities in classical processes
[54]. Our assumptions amount to the—physically reasonable—case
of independent measurement devices and a temporal spacing of mea-
surements that is much larger than the typical timescales at which
memory effects decay.

FIG. 2. Multitime probing of a Markovian quantum process. A
quantum process without memory on a discrete set of times t1, . . . , tn

can be described by an initial state ρ of the system and a collection
of independent CPTP maps {�i:i−1} that act on the system alone
between neighboring times (blue). At each time ti, we envisage an
agent probing the process and observing a measurement outcome
mi, with the postmeasurement state feeding forward (yellow). Such a
probing is represented by a CP map K(mi )

i at each time.

ti is given by

ρ̃i(mi−1:1)

:=
∑
�2...�i

R(�i,mi−1 )
i:i−1 · · · R(�2,m1 )

2:1 ρR(�2,m1 )†
2:1 · · · R(�i,mi−1 )†

i:i−1

(13)

for i � 2 (with ρ̃1 := ρ). Note that ρ̃i(mi−1:1) depends upon
all measurement outcomes mi−1:1 := (mi−1, . . . , m1) up to ti,
and its trace corresponds to the probability to observe said
sequence of outcomes,

P (mi−1, . . . , m1|Jm−1, . . . ,J1) = tr[̃ρi(mi−1:1)]. (14)

On the other hand, grouping all postmeasurement operators
together, we can define the positive semidefinite operator

Qi(mn:i+1)

:=
∑

�i+1...�n

L(�i+1 )†
i+1:i R(�i+2,mi+1 )†

i+2:i+1 · · · R(�n,mn−1 )†
n:n−1 K (mn )†

n

× K (mn )
n R(�n,mn−1 )

n:n−1 · · · R(�i+2,mi+1 )
i+2:i+1 L(�i+1 )

i+1:i . (15)

With this, the multitime statistics of Eq. (12) can be expressed
succinctly as

P(mn, . . . , m1|Jn, . . . ,J1)

= tr
[̃
ρi(mi−1:1)K (mi )†

i Qi(mn:i+1)K (mi )
i

]
=: tr

[̃
ρi(mi−1:1)K(mi )†

i [Qi(mn:i+1)]
]
. (16)

Intuitively, ρ̃i is the time-evolved (subnormalized) state that is
to be measured at time ti, while Qi corresponds to the effect
of each measurement outcome after ti (all the way up until
some fixed final time tn), with the dynamics of the process
in between accounted for, i.e., “rolled back” in time to ti,
when the measurement described by K(mi )†

i occurs.5 With this,
setting K†

i [•] := ∑
mi
K(mi )†

i [•], Kolmogorov consistency is
equivalent to

tr
[̃
ρi(mi−1:1)K†

i [Qi(mn:i+1)]
] = tr[̃ρi(mi−1:1)Qi(mn:i+1)],

(17)

5For a slightly different perspective on how one could model se-
quential measurements, see, e.g., Ref. [58].
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which can be expressed as a commutator expression via∑
mi

tr
[̃
ρi(mi−1:1)K (mi )†

i [K (mi )
i , Qi(mn:i+1)]

] = 0 (18)

for all ti and all outcomes {m1, . . . , mi−1, mi+1, . . . , mn}.
Formally, apart from the dependence on past and future out-
comes, the above equation coincides with Eq. (5), which
states the Kolmogorov consistency conditions for two se-
quential measurements without intermediate dynamics. This
seemingly implies that there should be a direct relation be-
tween commutation relations of the involved operators in
Eq. (18) and classicality of the observed statistics. How-
ever, we now discuss some important differences between
classicality for two-time vis-à-vis multitime processes and
subsequently demonstrate that there is no “straightforward”
extension of Lüders’ theorem to the multitime setting, except
under rather restrictive assumptions.

A. Two-time vs multitime classicality

There are a number of major differences between the two-
and multitime scenario. First, in the two-time case, assuming
that measurement noninvasiveness holds for arbitrary initial
states ρ, one can conclude that satisfaction of the Kolmogorov
consistency conditions is equivalent to K†[Q(b)] = Q(b). On
the other hand, in the multitime case, even when assuming
that the Kolmogorov consistency conditions hold for arbi-
trary initial states (i.e., those at time t1), one is no longer
guaranteed that the system states span a full basis at every
later time ti. To see this, consider the natural case of mea-
surements being performed in the computational basis, i.e.,
K(mi−1 )

i−1 [ρ] = 〈mi−1|ρ|mi−1〉 |mi−1〉〈mi−1|. Then the state ρ̃i

immediately prior to the measurement at time ti—independent
of that at the beginning of the experiment—is proportional to
�i:i−1[|mi−1〉〈mi−1|] and so the set of states {̃ρi} can at most
span a d-dimensional space, which cannot coincide with the
d2-dimensional space spanned by all quantum states. Conse-
quently, in the multitime case, Kolmogorov consistency is—in
contrast to the two-time scenario—manifestly not equivalent
to

K†
i [Qi(mn:i+1)] = Qi(mn:i+1). (19)

In particular, satisfaction of the above equation for all i is suf-
ficient for satisfaction of Kolmogorov conditions—as can be
seen by direct insertion into Eq. (17)—but not necessary (see
below). Nonetheless, the formulation of Eq. (18) informs us
that the commutation relations [K (mi )

i , Qi(mn:i+1)], or variants
thereof, are the relevant ones to investigate with respect to
satisfaction of Kolmogorov consistency conditions.

Note that if all CP maps {K(mi )
i } and all intermediate dy-

namics {�i:i−1} are invertible (the former is a choice, while
the latter is generally true for Markovian dynamics [59]), then
one is guaranteed a full basis of states at each time ti provided
that the very initial state is arbitrary; this implies that the Kol-
mogorov consistency conditions are then indeed equivalent
to satisfaction of Eq. (19), even in the multitime scenario.
In this case, one can, in the spirit of Theorem 1, establish
a direct connection between measurement noninvasiveness
for all input states and the vanishing of the commutator
[K (mi )

i , Qi(mn:i+1)] (provided some additional assumptions are

met, e.g., Hermiticity of the Kraus operators K (mi )
i —we will

revisit these assumptions and the issue of requiring a full
basis in Sec. III C). However, with respect to the choice of
instruments in particular, this restriction is rather strong and
would (as mentioned above) fail to cover the most natural
scenario of measurements in a fixed basis.

Additionally, independent of the fact that at ti one does
not have access to a full basis of states, when considering
general quantum measurements in multitime processes, in-
formation can be transmitted through the system alone, and
thus measurement statistics can be correlated over multiple
points in time, even for Markovian processes probed with an
independent measurement sequence. Thus, in the multitime
scenario, one must deal with entire sequences of outcomes—
for example, Qi(mn:i+1) is an operator that pertains to the
entire sequence of future outcomes—instead of just outcomes
at single or neighboring times. As we discuss in detail in
Sec. III D, this added complexity cannot be circumvented
as soon as general measurements are considered, and con-
sequently all of our results will be phrased with respect to
operators that generally correspond to measurement outcomes
at multiple different points in time.

We now detail how Eq. (19) has to be modified in order
to yield a direct relation between commutativity of pertinent
operators and the classicality of the observed statistics in a
multitime experiment.

B. No “straightforward” extension of Lüders’ theorem

In Eq. (17) we have expressed satisfaction of Kolmogorov
conditions at an arbitrary time ti in terms of the measurement
map K†

i , the postmeasurement operators Qi(mn:i+1) and the
premeasurement subnormalized states ρ̃(mi−1:1). The close
formal relation of said equation to those that appear in the
two-time scenario, and thus in Lüders’ theorem, informs us
that the commutators [K (mi )

i , Qi(mn:i+1)] play a pivotal role
for the classicality of the observed statistics. As mentioned, it
is easy to see that [K (mi )

i , Qi(mn:i+1)] = 0 implies satisfaction
of Kolmogorov conditions, but the converse is not true (see
Example 3 for a concrete counterexample). Indeed, such a
commutation relation is, at the outset, far too strict a condition
to be necessary for Kolmogorov consistency: It would, for
instance, imply that the measurements are noninvasive for
arbitrary system states at each time, which is not a necessary
requirement for classicality, since for many relevant scenarios,
the possible states ρ̃i before a measurement at time ti do not
span the full space of quantum states. As a result, our aim
is to find weaker commutation relations that still guarantee
the satisfaction of Kolmogorov conditions, and, conversely,
to work out the consequences of Kolmogorov conditions on
the commutation relations of the relevant operators. Here we
begin with the former direction.

Recall that satisfaction of Kolmogorov consistency con-
ditions is given by Eq. (17). As we have emphasized, this
does not necessarily imply that K†

i [Qi] = Qi and is thus not
equivalent to [K (mi )

i , Qi] = 0. Following the logic of Theorem
1, one might then suspect that

tr
[̃
ρi(mi−1:1)[K (mi )

i , Qi(mn:i+1)]
] = 0, (20)

i.e., commutativity of the measurement operators with respect
to ρ̃i(mi−1:1) is equivalent to the satisfaction of Kolmogorov
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conditions at time ti—at least for the case of Hermitian Kraus
operators K (mi )

i . However, this is not the case, as the following
example shows:

Example 2. Let the premeasurement state (for some his-
tory of outcomes, which we renormalize and suppress for the
sake of conciseness) be given by ρ̃i = 1

2 (1 + σz ) followed by
a measurement described by Kraus operators K (±)

i = 1
2 (1 ±

σx ) and let the postmeasurement part (for some sequence of
future outcomes) be encoded in the operator Qi(±) = 1

2 (1 ±
σz ). This situation can, e.g., arise in a two-step process without
intermediate evolution, where the measurement with Kraus
operators {K (±)

1 } is made at t1, the premeasurement state is

prepared as ρ̃1 = 1

2
(1 + σz ) and at t2 the observable σz is

measured with outcomes ±, corresponding to the postmea-

surement operators Q1(±) = 1

2
(1 ± σz ). We observe that (for

future outcome +) we have tr[̃ρ1[K (±)
1 , Q1(+)]] = 0 but

tr

[
ρ̃1

( ∑
m1=±

K (m1 )†
1 Q1(+)K (m1 )

1 − Q1(+)
)]

= tr
[
ρ̃1

(
K†

1[Q1(+)] − Q1(+)
)]

= 1

2
�= 0, (21)

implying that the Kolmogorov consistency conditions are
not satisfied even though commutativity with respect to ρ̃1

[i.e., Eq. (20)] holds and all involved Kraus operators are
Hermitian. �

We emphasize that even though we explicitly consider only
two measurements here, the considered scenario is indeed
a multitime one; in contrast to the scenario envisioned by
Lüders, we do not assume the states before the first measure-
ment at t1 to span a full basis, which is an implicit assumption
of the two-time setting with arbitrary initial preparations.
This, in turn, can be understood as the premeasurement
state ρ̃1 being the result of a previous measurement with a
fixed outcome (or sequence thereof), making the scenario of
the example a genuine multitime one of which we explic-
itly investigated only the two times t1 and t2. The fact that
Kolmogorov conditions are not satisfied despite the weak
commutativity of Eq. (20) holding then signifies that in the
multitime scenario, one requires a stricter commutation re-
lation for the involved operators in order to obtain classical
statistics.

Although the weak commutation relation with respect
to ρ̃i(mi−1:1) is not restrictive enough, the following theo-
rem informs us that absolute commutativity with respect to
ρ̃i(mi−1:1) is indeed sufficient to guarantee the satisfaction of
Kolmogorov conditions:

Theorem 2. Let P(mn, . . . , m1|Jn, . . . ,J1) be a joint
probability distribution obtained from Eq. (11), i.e., by prob-
ing a Markovian process. If absolute commutativity

tr
[̃
ρi(mi−1:1)

∣∣ [K (mi )
i , Qi(mn:i+1)]

∣∣] = 0 (22)

holds at all times ti and for all possible mi−1:1, mi and
mn:i+1, where |X | :=

√
X †X , then P(mn, . . . , m1|Jn, . . . ,J1)

satisfies the Kolmogorov consistency conditions [given ex-
plicitly in Eq. (18)].

Proof. For simplicity, we will omit the explicit arguments
of the involved operators throughout the proof. We first show
that Eq. (22) implies tr[̃ρi K (mi )†

i [K (mi )
i , Qi]] = 0. To this end,

we note that Eq. (22) implies∣∣ [K (mi )
i , Qi]

∣∣ ρ̃i = 0, (23)

since both ρ̃i and | [K (mi )
i , Qi] | are positive semidefinite.

Now let us employ the polar decomposition [K (mi )
i , Qi] =

V (mi )M (mi ), where V (mi ) is unitary and M (mi ) = | [K (mi )
i , Qi] | �

0, i.e., M (mi )ρ̃i = 0. With this, we obtain

tr
[̃
ρiK

(mi )†
i [K (mi )

i , Qi]
] = tr

[
K (mi )†

i V (mi )M (mi )ρ̃i
] = 0.

(24)

By summing this expression over mi, Eq. (18)—and thus
satisfaction of the Kolmogorov consistency conditions—is
recovered.

Theorem 2 informs us that absolute commutativity with
respect to the state of the system at each time is sufficient
for classicality of the observed statistics. However, in contrast
to the two-time scenario, this requirement is not necessary
for classicality—even in the case where the involved Kraus
operators are Hermitian. To see this, consider the following
example:

Example 3. We employ Example 2 with a change in the

(renormalized) premeasurement part to ρ̃1 = 1

2
(1 + σy) but

still followed by a measurement K (±)
1 = 1

2
(1 ± σx ) and the

postmeasurement parts are encoded in the operators Q1(±) =
1

2
(1 ± σz ). We observe that—for these choices—Kolmogorov

consistency holds,

tr
{
ρ̃1

[ ∑
m1=±

K (m1 )†
1 Q1(±)K (m1 )

1 − Q1(±)
]}

= 0,

since
∑

m1=± K (m1 )†
1 Q1(±)K (m1 )

1 − Q1(±) = ±σz

2
, which

is trace orthogonal to ρ̃1. However, we find that

|[K (±)
1 , Q1(±)]| = 1

4
leading to

tr
[̃
ρ1

∣∣[K (±)
1 , Q1(±)]

∣∣] = 1

4
�= 0.

Consequently, this example shows that classical statistics in
a multitime experiment do not imply absolute commutativ-
ity with respect to the state of the interrogated system over
time, even when all Kraus operators are Hermitian (which
is the case here). In turn, since absolute commutation with
respect to ρ̃i is weaker than commutativity itself, this makes
the considered case also an example of a situation where
satisfaction of Kolmogorov consistency conditions does not
imply [K (mi )

i , Qi(mn:i+1)] = 0, as mentioned at the beginning
of this section. �

While not being equivalent to satisfaction of the Kol-
mogorov consistency conditions, absolute commutativity with
respect to the state ρ̃i guarantees classical statistics and, in
contrast to the much stronger standard commutativity con-
dition, does not necessarily imply Kolmogorov consistency
independent of the sequentially measured system states, mak-
ing it a more relevant consideration for the envisaged scenario.
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Regarding this connection between commutativity
and classicality, two remarks are in order. On the
one hand, if ρ̃i is full rank, then it is easy to see
that tr[̃ρi(mi−1:1)|[K (mi )

i , Qi(mn:i+1)]|] = 0 implies
[K (mi )

i , Qi(mn:i+1)] = 0, thus equating the assumption of
absolute commutativity with respect to ρ̃i to the (rather
strong) assumption of standard commutativity. However, the
states ρ̃i do not necessarily have to be full rank. This holds
true, e.g., for the case of pure projective measurements in a
fixed basis on a qutrit and intermediate dynamics that map
only to the (lower dimensional) space that is spanned by
{|0〉 , |1〉}. In turn, this makes the assumption of Theorem
2 strictly weaker than full commutativity, while still being
strictly stronger than commutativity with respect to ρ̃i [i.e.,
satisfaction of Eq. (20)], which, as we have seen, is not
sufficient to guarantee classical statistics.

On the other hand, the states ρ̃i at time ti are the re-
sult of a state preparation at the initial time, followed by a
sequence of measurements and intermediate dynamics. As-
suming that a full basis of initial states can be prepared (as
is assumed in the two-time scenario envisioned by Lüders),
then it is—in principle—possible that, for each sequence of
outcomes, the corresponding states ρ̃i also span a basis at each
time ti. In this case, satisfaction of Kolmogorov conditions at
ti would exactly coincide with K†

i [Qi(mn:i+1)] = Qi(mn:i+1)
[see Eq. (17)] and, following the same reasoning that led to
Lüders’ Theorem 1, we would be able to recover the equiv-
alence between classical statistics and the vanishing of the
commutators [K (mi )

i , Qi(mn:i+1)] = 0. In this sense, it might
seem artificial to investigate the case where states at each
time do not span a full basis, which, as we will see, leads
to a more layered relationship between commutativity and
classicality. However, this latter case exactly mirrors many
physically relevant scenarios (like, e.g., the case of sequential
projective measurements).

This inequivalence between commutation relations and
classicality naturally raises the question: What further as-
sumptions, in addition to classicality of statistics, must be
satisfied in order to ensure commutation relations of the rele-
vant operators?

C. Commutativity as a notion of classicality: When is
Kolmogorov consistency sufficient for Lüders-type theorems?

In this section we investigate under which conditions sat-
isfaction of Kolmogorov consistency implies the vanishing
of pertinent commutator expressions. Unlike the previous
sections, here—just like in the scenario considered by
Lüders—we have to restrict the Kraus operators of the prob-
ing instruments to be Hermitian in order to establish a clear
connection between Kolmogorov consistency and vanishing
commutators.

As mentioned previously, a key element that makes the
multitime setting substantially different to the two-time one is
that one is no longer guaranteed a full basis of quantum states
at each time. Nonetheless, below we outline a condition that
ensures that the set of possible states at each time (conditioned
on previous outcome sequences) essentially forms a basis
with respect to any subsequent measurements (additionally
accounting for the intermediate dynamics). Analogously to

the case considered by Lüders, our argument requires Her-
miticity of the measurement Kraus operators; we leave the
analysis of sufficient conditions regarding more general mea-
surements in this setting for future work. The conditions that
we detail below consequently ensures a connection between
Kolmogorov consistency and commutativity in the multitime
setting (for Hermitian Kraus operators). Importantly, just like
in the case of Lüders, under the additional assumptions we
make, commutativity and classicality are equivalent.

To establish the connection between Kolmogorov consis-
tency and commutation relations, consider the set of possible
premeasurement states at some time (say, ti) of interest. As
mentioned, we can follow a Lüders-type argument if these
states form a basis with respect to the postmeasurement op-
erators Qi. Formally, we can express this by letting S be a set
of initial states ρ and Hi be the span of the union of the images
of all possible premeasurement sequences up until time ti:

Hi := span⋃
mi−1:1

∑
�2...�i

R(�i,mi−1 )
i:i−1 · · · R(�2,m1 )

2:1 SR(�2,m1 )†
2:1 · · · R(�i,mi−1 )†

i:i−1 , (25)

for i � 2, i.e., Hi is the span of all attainable states ρ̃i(mi−1:1)
at time ti. Furthermore, we take the union of all possible
projections for the postmeasurement operators to define:

Fi := span
⋃

mn:i−1

{
Pμ : Qi(mn:i−1) =

∑
μ

λμPμ

}
, (26)

where, for technical reasons, we will assume nondegener-
acy of Qi (see the proof of Theorem 3). Demanding that
the premeasurement states form a basis with respect to the
postmeasurement operators now amounts to the requirement
Fi ⊆ Hi. As it turns out, together with the satisfaction of
Kolmogorov consistency, this implies that tr[PμK†

i [Qi]] =
tr[PμQi] ∀μ, which suffices to prove that the pertinent com-
mutation relations hold (under the assumption that all Kraus
operators pertaining to the measurement map K† are Hermi-
tian):

Theorem 3. Let P(mn, . . . , m1|Jn, . . . ,J1) be a joint
probability obtained from Eq. (11), i.e., by probing a
Markovian process. Assume that P(mn, . . . , m1|Jn, . . . ,J1)
satisfies the Kolmogorov consistency conditions [given ex-
plicitly in Eq. (18)] for all initial state ρ in S and for every
measurement time ti and that Qi(mn:i+1) is nondegenerate for
all mn:i+1. If all Kraus operators K (mi )

i are Hermitian for all mi

and

Fi ⊆ Hi, (27)

then the commutation relations hold,

[K (mi )
i , Qi(mn:i+1)] = 0, (28)

for all postmeasurement sequences mn:i+1 and all mi.
Before providing the proof of Theorem 3, we emphasize

that the converse trivially holds (even without any assump-
tions), since commutativity [i.e., Eq. (28)] directly implies the
satisfaction of Kolmogorov consistency.

Proof. From the assumption Eq. (27), one can see that
for a given postmeasurement sequence mn:i+1 and for any
premeasurement sequence mi−1:1, there exists an initial state
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ρ in S leading to ρ̃i(mi−1:1) = Pμ for any Pμ defined via
Qi(mn:i−1) = ∑

μ λμPμ. In other words, Kolmogorov con-

sistency in the form of Eq. (17) leads to tr[PμK†
i [Qi]] =

tr[PμQi] ∀μ.
Now, using the same arguments as those of the proof of

Theorem 1, one sees that tr[PμK†
i [Qi]] = tr[PμQi] for μ = 1

leads to ∑
m

〈
K (mi )

i ϕ1

∣∣(λ11 − Qi )K
(mi )
i ϕ1

〉
=

∑
m

∥∥(λ11 − Qi )
1/2K (mi )

i |ϕ1〉
∥∥2 = 0, (29)

where we set P1 =: |ϕ1〉〈ϕ1| and made use of the fact that
λ11 − Qi � 0. In other words, (λ11 − Qi )1/2K (mi )

i P1 = 0 or

QiK
(mi )
i P1 |ϕ〉 = λ1K (mi )P1 |ϕ〉 (30)

for arbitrary states |ϕ〉 , i.e., K (mi )
i leaves the λ1 eigen-

subspace invariant. Thus, due to nondegeneracy of Qi,
we have K (mi )

i P1 = P1K (mi )
i P1 and assuming that the K (mi )

i

are Hermitian, we observe that [K (mi )
i , P1] = 0. Again,

we set Q(μ)
i = Q(μ−1)

i − λμ−1Pμ−1 and Q(0)
i = Qi. Since

[K (mi )
i , P1] = 0, the expression tr[P2K†

i [Qi]] = tr[P2Qi] can
be reduced to tr[P2K†

i [Q(2)
i ]] = tr[P2Q(2)

i ], and then it follows
that [K (mi )

i , P2] = 0 (by invoking the same previous argument
but replacing Qi and P1 with Q(2)

i and P2, respectively). Iterat-
ing this argument—as in the proof of Theorem 1—we obtain
that K (mi )

i Pμ = PμK (mi )
i Pμ for all m and μ, i.e., K (mi )

i leaves
all eigensubspaces of Q invariant. Then [K (mi )

i , Qi(mn:i+1)] =
0 for all postmeasurement sequences mn:i+1 and all mi as
claimed.

We emphasize that—as in the case of Lüders’ theorem—
this logic can fail to hold if the K (mi )

i are not Hermitian (as can
already be explicitly seen by considering Example 1).

For illustration of the above theorem, let us consider the
following example.

Example 4. Recall the scenario of Example 2. We modify
it to be a three-step process with measurements in the σz

basis at the first and third time, while at the second time, a
measurement in the σx basis is carried out. In addition, let
the dynamics between the first and the second measurement,
as well as between the second and the third measurement,
be given by a Hadamard gate H , with H |0/1〉 = |±〉 and
|±〉 = 1/

√
2(|0〉 ± |1〉).

We focus on time t2 as the measurement time of in-
terest (i.e., the time for which we analyze Kolmogorov
consistency). For an arbitrary initial state ρ, the measure-
ment at t1 leads to the set of possible postmeasurement
states ρ̃1 ∈ {|0〉〈0| , |1〉〈1|}, where we omit potential sub-
normalization. These states will then evolve to H ρ̃1H =
ρ̃2 ∈ {|+〉〈+| , |−〉〈−|}. Thus, at time t2, we have H2 =
span{|+〉〈+| , |−〉〈−|}.

Since a measurement in the σz-basis is performed at t3,
the postmeasurement part at t2 amounts to the corresponding
projectors, “rolled back” by means of the evolution �

†
3:2[•] =

H • H , i.e., we have Q2(0/1) ∈ {|+〉〈+| , |−〉〈−|}. With this,

we observe that

F2 = H2

and thus the condition of Eq. (27) holds. Likewise, for the
measurement K (±)

2 , the Kolmogorov consistency condition
reads

tr

[
ρ̃2

( ∑
m

K (m)†
2 [K (m)

2 , Q2(0/1)]

)]
= 0. (31)

where m ∈ {+,−}. We can calculate the commutativity ex-
pression of Eq. (28) explicitly:[

K (±)
2 , Q2(0/1)

] = [|±〉〈±| , |±〉〈±|] = 0. (32)

�
The inclusion property of Eq. (27) is a rather strong re-

quirement, which—as we have seen in Example 4—can be
checked for and satisfied in particular cases. However, it can
fail to hold for many experimentally relevant situations that
yield classical statistics (like, e.g., measurements in a fixed
basis; see Example 6 below). Additionally, one would ideally
like to deduce similar conditions that apply to arbitrary (e.g.,
non-Hermitian) measurements at the expense of potentially
weakening the vanishing commutator expression; so far, such
results have proved elusive. As a consequence, in the mul-
titime setting, the relation between observed classicality and
the commutation of pertinent operators presents itself much
more layered than in the two-time case considered by Lüders
and must seemingly be decided on a case-by-case basis.

We now finish our discussion of Markovian classical multi-
time processes by discussing why, even though the underlying
process is memoryless, it is, in general, necessary to consider
the full history (future) of outcomes mi−1:1 (mn:i+1) with re-
spect to each time ti, and not just the preceding (subsequent)
ones mi−1 (mi+1). The latter (i.e., considering only outcomes
at ti−1 and ti+1 for each time ti) can be done for the special
case of projective pure measurements in a fixed basis, which
leads to an equivalent formulation of classicality in terms
of non-coherence-generating-and-detecting maps. However,
as we will see in the following section, a direct connection
between such dynamics to pertinent commutation relations is
generally not obvious.

D. Markovian processes and NCGD dynamics

Up to this point, we have investigated the conditions under
which Kolmogorov consistency of observed statistics and the
vanishing of pertinent commutator expressions—i.e., struc-
tural properties pertaining to the dynamics and measurement
scheme—are related in the multitime setting. Crucially, we
see that Kolmogorov consistency concerns a deep interplay
between the choice (and assumptions) of measurements and
the underlying dynamics that depends on entire sequences of
measurement outcomes.

On the other hand, for the Markovian case we consider,
recent work has demonstrated a one-to-one connection be-
tween Kolmogorov consistency and the (in)ability for pairs of
neighboring dynamical maps �i:i−1 (describing the open evo-
lution of Markovian process) to generate and detect coherence
with respect to a fixed basis determined by the measurement
scheme [32–35]. Specifically, these works showed equiva-
lence between classical statistics and the set of so-called
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non-coherence-generating-and-detecting (NCGD) dynamics,
i.e., maps that can create coherences, but those coher-
ences cannot be “detected” by the subsequent dynamics [see
Eq. (36) for a proper definition]. While this criterion can be
phrased entirely in terms of dynamical maps pertaining to
neighboring times, our work has required the consideration of
entire measurement sequences of past mi−1:1 and future mn:i+1
outcomes in general, instead of simply adjacent ones.

At the outset, this necessity seems to be overkill, since,
intuitively, the statistics measured at each time of a Markovian
process should depend only upon the most recent outcome,
and not on the entire history. We now return to elucidate
why, even though the underlying dynamics that we study are
assumed to be Markovian, one must indeed consider com-
mutator expressions of the relevant operators corresponding
to entire sequences. The important subtlety to note here is
that general quantum measurements do not break the flow
of information through the measured system, and thus even
though there is no non-Markovian memory (traveling through
an environment), the observed statistics can still be correlated
over multiple times. Put differently, after a general measure-
ment, the state of the measured system is unknown, and might
depend on earlier measurements, even though the underlying
process itself does not exhibit any non-Markovian memory.
Here and in what follows, by “flow of information,” we
mean any dependence of the postmeasurement state on the
measured state, and thus on previous measurement outcomes
or choices of instruments. For instance, a sharp, projective
measurement with outcome m sends ρ to |m〉〈m| and thus
breaks the flow of information since the postmeasurement
state depends only on the observed outcome m, but not on
any previous measurements or manipulations of the measured
state ρ; on the other hand, a POVM with elements {ξ (m)}
that sends ρ �→ ξ (m) ρ ξ (m)† does not break the flow of in-
formation, since the postmeasurement state (i.e., not only the
probability to observe the measurement outcome m) still de-
pends on ρ and in general any previous manipulations thereof.
We emphasize that, throughout, we uniquely use the term
“flow of information” in this sense, with no concrete reference
to technical notions of the term “information” employed in
quantum information science.

Importantly, this point is not critically related to any inher-
ently “quantum” notion regarding the measurement (such as
being a POVM comprising nonprojective, non-Hermitian, or
nonorthogonal elements), but can occur for any measurement
for which an outcome does not fully determine the postmea-
surement state of the system. This can happen in classical
physics for “fuzzy” measurements that coarse grain over dif-
ferent levels [60], and is generally the case for measurements
in quantum mechanics described by CP maps that do not
necessarily break the information flow through the system.
For such measurements, the far past can still have an influence
on the future [60–65]. As a result, measurement invasiveness
might not be detected at the next step, but possibly only further
in the future, and any conditions pertaining to neighboring
dynamical maps alone are insufficient to characterize classi-
cality. To see this explicitly, consider the following example,
which concerns noisy (i.e., not rank 1) orthogonal measure-
ments:

Example 5. Let ρ be the state of a four level system that is
measured at times {t1, t2, t3} by means of projective—but not

rank-1—measurements, i.e., Ji = {K (1)
i = �(12), K (2)

i =
�(34)}, where �(xy) is the projector on the space
spanned by {|x〉 , |y〉}, with x, y ∈ {1, 2, 3, 4}. Now, let the
dynamics in between measurements be given by the Kraus
operators {L(1)

2:1 = |1〉〈1| + |2〉〈4| , L(2)
2:1 = |2〉〈2| + |4〉〈3|}

and {L(1)
3:2 = 1√

2
(|3〉〈1| + |3〉〈2|), L(2)

3:2 = 1
2 (|1〉〈1| − |1〉〈2| −

|2〉〈1| + |2〉〈2|) + |3〉〈3| + |4〉〈4|}, respectively. These
choices of Kraus operators correspond to CPTP maps,
since

∑
�i+1

L(�i+1 )†
i+1:i L(�i+1 )

i+1:i = 1 for i ∈ {1, 2}. It is easy to see
that in this case, the statistics of the measurement at t2 is
independent of whether or not the measurement at t1 was
performed. Overall, the measurement at t1 reduces the initial
state ρ to a block diagonal structure; however, the statistics
at t2 depend only on the diagonal terms of ρ, such that
the invasiveness of the first measurement is not detected.
Specifically, we have

P (m2 = 1,��m1) = ρ11 + ρ22 + ρ44 =
∑
m1

P (m2 = 1, m1),

P (m2 = 2,��m1) = ρ33 =
∑
m1

P (m2 = 2, m1). (33)

As a result, the two-time statistics do not reveal the non-
classicality of the observed statistics, despite the dynamics
being Markovian. However, the invasiveness of the first mea-
surement can be observed via the measurement at time t3.
Concretely, the dynamics between t2 and t3 is such that it
maps off-diagonal terms to diagonal ones, and thus the joint
probability to measure m2 = 1 and m3 = 1 at times t2 and t3
(with no measurement at t1), respectively, is given by

P (m3 = 1, m2 = 1,��m1) = 1
2 (ρ11 − 2Re(ρ14) + ρ22 + ρ44).

(34)

Since the above probability depends on the entry ρ14 of the
initial state ρ, it cannot coincide with the corresponding prob-
ability for the case where a measurement was performed at t1.
As mentioned, the overall action of the measurement at t1 is to
force ρ into a block-diagonal structure, implying in particular
ρ14 �→ 0 if a measurement at t1 is performed. Consequently,
we have∑

m1

P (m3 = 1, m2 = 1, m1) = 1

2
(ρ11 + ρ22 + ρ44)

�= P (m3 = 1, m2 = 1,��m1).

(35)

Accordingly, for the case of general instruments, one in-
deed must consider the full past and full future statistics for
the relevant commutation relations in order to characterize
classicality. �

In the example above, we see that the invasiveness of the
first measurement “skips” a time, i.e., it is not detected at
time t2 but rather only by the measurement at time t3. Such
“skipping” of detectability is not limited to measurement in-
vasiveness and has recently been analyzed with respect to the
activation of hidden quantum memory [66].

Such behavior highlights the intricacies involved when
considering quantum processes probed sequentially at mul-
tiple times by general instruments. However, for particular
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types of measurements, the flow of information through the
system is broken, and one can therefore connect classi-
cality to structural properties of the underlying dynamical
maps between only adjacent times. This is, for example, the
case if all measurements are rank-1 projective measurements
in a fixed basis. Then it is easy to see that ρ̃i(mi−1:1) ∝
�i:i−1[|mi−1〉〈mi−1|] and Qi(mn:i+1) ∝ �

†
i+1:i[|mi+1〉〈mi+1|],

where �
†
i+1:i[•] = ∑

�i+1
L(�i+1 )†

i+1:i • L(�i+1 )
i+1:i . With this, Eq. (17)

reduces to

〈mi+1|�i+1:i ◦ �i ◦ �i:i−1[|mi−1〉〈mi−1|]|mi+1〉
= 〈mi+1|�i+1:i ◦ �i:i−1[|mi−1〉〈mi−1|]|mi+1〉 (36)

for all ti and all {mi−1, mi+1}, where �i[ρ] :=∑
mi

〈mi|ρ|mi〉 |mi〉〈mi| is the completely dephasing map
at time ti. Notably, Eq. (36) rephrases satisfaction of the
Kolmogorov consistency conditions in terms of the properties
of adjacent dynamical maps {�i+1:i,�i:i−1} only, thus
allowing for a full characterization of Markovian dynamics
that yield classical statistics when probed in a fixed basis,
as is provided in Ref. [35]. However, this is only possible
since for rank-1 projective measurements, the state of the
system after measurement is known (up to normalization).
Any measurement with this property breaks the information
flow through the system, in the sense that, upon observing a
given outcome, the future outcome statistics of a Markovian
process cannot depend on any previous outcomes, since the
state of the system has been completely reset [61,62,66]. This,
in turn, is what allows one to characterize the classicality
of Markovian processes in terms of neighboring dynamical
maps only, as per Eq. (36). The above example shows why,
in the case of general measurements, one must consider
operators corresponding to the entire future and history when
discussing classicality, even for Markovian processes, as we
have done throughout this article.

Finally, given that for the special case of (rank-1) pro-
jective measurements, NCGD dynamics provides a necessary
and sufficient condition for the classicality of the observed
statistics, and all Kraus operators of the measurements are
Hermitian, one might expect that Lüders-type assertions can
be made with respect to commutation relations of pertinent
operators (like those of Theorems 2 and 3). However, this is
not the case, as the following example demonstrates:

Example 6. Consider a three-step qubit process on times
{t1, t2, t3} with measurements in the computational basis and
intermediate dynamics given by the CPTP maps

�2:1[ • ] = 1

2

(
1 1
i −i

)
•

(
1 −i
1 i

)
and �3:2[ • ] = 1

2

(
1 1
1 −1

)
•

(
1 1
1 −1

)
, (37)

i.e., a rotation from the computational basis to the eigenbasis
of σy between t1 and t2, followed by a Hadamard gate between
t2 and t3. It is easy to see that for measurements in the compu-
tational basis

〈m3|�3:2 ◦ �2 ◦ �2:1[|m1〉〈m1|]|m3〉
= 〈m3|�3:2 ◦ �2:1[|m1〉〈m1|]|m3〉 = 1

2

for all m1, m3 ∈ {0, 1}, and thus the dynamics is NCGD
[since it satisfies Eq. (36)]. However, it satisfies neither the
inclusion property (27) of Theorem 3 nor any of the com-
mutation relations we have discussed throughout this article.
With respect to the former, it is easy to see that H2 =
span{|+i〉〈+i| , |−i〉〈−i|} and F2 = span{|+〉〈+| , |−〉〈−|}
holds, where |±i〉 := 1/

√
2(|0〉 ± i |1〉). Since these are the

spaces spanned by the eigenvectors of σy and σx, respectively,
neither of them is included within the other.

With respect to commutation relations, as mentioned
above, we have ρ̃2(m1) ∝ �2:1[|m1〉〈m1|] and Q2(m3) =
�

†
3:2[|m3〉〈m3|], which implies (up to normalization)

ρ̃2(0/1) = 1
2 (|0〉 ± i |1〉)(〈0| ∓ i 〈1|) =: |i± 〉〈i± | ,

Q2(0/1) = 1
2 (|0〉 ± |1〉)(|0〉 ± |1〉) =: |±〉〈±| . (38)

Together with K (m2 )
2 = |m2〉〈m2|, we then obtain, e.g.,[

K (0)
2 , Q2(0)

] = 1
2 (|0〉〈+| − |+〉〈0|) �= 0, (39)

i.e., commutativity à la Lüders (and Theorem 3) does not
hold. Furthermore, as a consequence of Eq. (39), we have
|[K (m2 )

2 , Q2(m3)]| ∝ 1, such that

tr
[̃
ρ2(m1)

∣∣[K (m2 )
2 , Q2(m3)

]∣∣] = tr[̃ρ2(m1)] �= 0. (40)

Thus, for this example, neither commutativity nor absolute
commutativity with respect to ρ̃2 holds, and no inclusion
property of the relevant spaces is satisfied. �

Overall, we thus see that, even for the simple case of
Markovian dynamics and projective measurements—where
necessary and sufficient conditions for classicality are known
in terms of NCGD dynamics—no commutation relations be-
tween the relevant operators are implied, at least none of the
ones discussed in this paper.

IV. DISCUSSION AND CONCLUSION

Throughout this article, we have analyzed the connection
between classicality and commutativity for Markovian pro-
cesses probed at multiple points in time. In the two-time
setting, it is straight forward to identify the pertinent opera-
tors whose commutativity should be assessed. Using the the
availability of a full basis of input states, one can then proof
an equivalence between commutativity and noninvasiveness,
providing a connection between operational and structural
notions of classicality. In the multitime setting, Kolmogorov
consistency conditions provide an operationally meaningful
notion of classicality; however, it is, a priori, unclear what
the relevant operators are to check for commutativity. Here
we have identified the relevant operators, and our work can
be seen as a multitime extension of Lüders’ theorem. As
discussed, many crucial assumptions of Lüders’ theorem im-
mediately break down (or become too restrictive) in the
multitime setting, e.g., the guarantee of a full basis of system
states at each time. Nonetheless, we have detailed the relevant
operators and commutator expressions that imply a connec-
tion between operational and structural notions of classicality,
putting these distinct notions on a comparable mathematical
footing. We have thus overcome a number of complica-
tions that arise naturally in physically meaningful scenarios,
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including probing open system dynamics over multiple times
with general quantum measurements.

In particular, in Sec. III B, we first exemplified how Kol-
mogorov consistency does not guarantee the vanishing of the
analogous commutator expression to the one Lüders originally
considered and subsequently derived a relevant “absolute”
commutator expression that indeed implies that satisfaction
of Kolmogorov consistency conditions (see Theorem 2). Fol-
lowing this, in Sec. III C, we derived additional assumptions
such that Kolmogorov consistency implies commutativity (see
Theorem 3). Last, in Sec. III D, we connected our results
with existing literature to demonstrate the connection between
commutativity, classicality, and the ability of the dynamics
to generate and detect coherence with respect to sharp mea-
surements in a fixed (but otherwise arbitrary) basis. Along
the way, we showed, by way of numerous (counter-)examples
that the connection between commutativity and classicality
indeed requires more restrictive assumptions in the multitime
case than in the two-time scenario. In turn, this demonstrates
that the consideration of multitime phenomena fundamentally
prohibits “simple” extensions of Lüders’ theorem.

Our results provide a connection between commutation re-
lations and the classicality of the observed statistics. However,
the absence of necessary and sufficient conditions, high-
lighted via the examples of processes that satisfy none, or just
some, of the commutator relations that we identified serve to
demonstrate that in the multitime case, a direct connection be-
tween mathematical and operational notions of classicality is
far more elusive than in the two-time case (even in the simplest
case of projective measurements in a fixed basis). Looking
forward, our work opens the door to a number of interesting
avenues for exploration. Following our general exposition re-
garding the structural implications of operational classicality,

it would first be interesting to identify necessary and sufficient
conditions for the classicality of observed statistics. While
this is a daunting task in general, starting from our consider-
ations, such results might be readily derivable for dynamics
that are particularly relevant to certain physical situations:
Just as NCGD dynamics equates structural properties to Kol-
mogorov consistency, we expect it to be possible to derive
similarly strong correspondences between particular types of
dynamics (e.g., dephasing, depolarizing, thermalizing, etc.)
and the classicality of statistics observed for certain types
of instruments (e.g., measure-and-prepare, unital instruments,
etc.). Since Kolmogorov consistency ensures the existence
of an underlying classical stochastic process that reproduces
the statistics correctly, this would in turn shed light on the
types of noise that can be effectively replaced by classical
environments [67], which would have profound impact on the
fields of optimal quantum control, reservoir engineering, and
the simulation of complex open dynamics.
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