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We introduce a family of highly symmetric bipartite quantum states in arbitrary dimensions. It consists of
all states that are invariant under local phase rotations and local cyclic permutations of the basis. We solve
the separability problem for a subspace of these states and show that a sizable part of the family is bound
entangled. We also calculate some of the Schmidt numbers for the family in d = 3, thereby characterizing the
dimensionality of entanglement. Our results allow us to estimate entanglement properties of arbitrary states, as
general states can be symmetrized to the considered family by local operations.
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I. INTRODUCTION

Entanglement remains one of the most significant features
that distinguishes quantum theory from a classical description
of our world. It also underpins a wide range of quantum infor-
mation processing tasks, such as quantum key distribution [1],
quantum communication [2], and quantum sensing [3], where
it acts as a resource for increased performance. Detecting,
characterizing, and quantifying the various forms of entangle-
ment present in quantum states is therefore of high practical
relevance as well as of fundamental interest [4], shedding
light on the principles that build our physical world through
the structure of possible correlations between multiple
systems.

While detecting entanglement in pure states shared among
two parties is trivial, there is no infallible method to de-
cide whether an arbitrary (noisy) bipartite state is entangled
[5]. Beyond detecting its presence, it is also important to
identify its character. For instance, entanglement can be of
high dimension, which provides additional advantages such
as noise resistance in entanglement distribution protocols [6]
or increased capacity of quantum communication [7]. Con-
sequently, considerable effort is devoted to creating such
high-dimensional entangled states in experiments [8].

Entanglement may also be bound, that is, a form of en-
tanglement that cannot be distilled into its purest form of
maximal dimensionality by local operations and classical
communication [9], which is the resource required by most
standard applications in quantum information. The obser-
vation that known bound entangled states typically lie in
close proximity to the separable states has led to the belief
that bound entanglement is a “weak” form of entanglement,
thus useless for quantum information processing. Surpris-
ingly though, it has been established that bound entangled
states may still serve as a resource for certain tasks, e.g., for

quantum key distribution and entanglement activation
[10–12]. The exact relation between distillability and di-
mensionality of entanglement is an actively researched open
question [13–17].

In this paper we explore these two features of entanglement
in families of states that obey certain symmetries. Character-
izing the entanglement properties of symmetric families has
two advantages: First, the reduced number of free parameters
makes an otherwise daunting task easier, and second, the
symmetries that generate the family provide a simple method
to obtain lower bounds on the amount of entanglement (mea-
sured either quantitatively or by its dimension) of arbitrary
mixed states, by “twirling” them into the family [18]. In
addition, fully characterizing the set of separable states in
symmetric families can even help in establishing results on
entanglement theory that go beyond that subset of states. A
recent example is the superadditivity of genuine multipartite
entanglement [19], the proof of which relies on having a full
characterization of separable isotropic states [20]. To detect
the undistillability of entangled states, we resort to the positive
partial transpose (PPT) criterion, as entangled states which
meet the PPT criterion are known to be bound entangled
[21,22]. We also look at the Schmidt numbers of the states
in the family, a paradigmatic measure of entanglement dimen-
sionality [23].

With these techniques at hand, we study a highly sym-
metric family of bipartite mixed states with local dimension
d , introduced in Refs. [24–29], fully characterizing the set
of separable states in a subset of this family and thereby
providing a complete characterization of all PPT entan-
gled states for arbitrary d . We then use fidelity-based
Schmidt numbers witnesses, together with a combination
of analytical and numerical methods, to further refine the
characterization of the sets of states with varying Schmidt
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numbers. We show explicit results for d = 3 and d = 4,
although our methodology is extensible to higher local
dimensions. Our results comprise an exceptional example
of a rich family of states arising from symmetries where
their entanglement properties can be described to a very high
degree.

II. BASIC NOTIONS OF ENTANGLEMENT AND
SYMMETRY

Throughout this paper we denote by � a density matrix
that describes a quantum state, which is shared between the
two local parties Alice and Bob. We only consider scenarios
where the dimensions of the local Hilbert spaces are equal
and denote this dimension by d . One central question in quan-
tum information theory is whether or not a quantum state �

is entangled. It is well known that for pure quantum states
one can calculate the Schmidt rank to answer this question.
Pure quantum states are separable if and only if they have
Schmidt rank 1 and thus can be written as |ψ〉 = |ψA〉 ⊗ |ψB〉.
Otherwise they are entangled.

A. Schmidt number

In Ref. [23] the definition of the Schmidt rank is extended
to mixed states and is called the Schmidt number. To deter-
mine if the Schmidt number of a state �, is smaller than or
equal to K , one asks for a decomposition of � into pure states
|ψi〉 where all Schmidt ranks S (|ψi〉) are smaller than or equal
to K . To obtain the Schmidt number of � we therefore need to
solve

S (�) := min
{pi,|ψi〉}

max
i

S (|ψi〉), (1)

where pi and |ψi〉 give valid decompositions of �. Note that if
we insert a pure state � = |ψ〉〈ψ | in the above definition we
end up with the Schmidt rank S (|ψ〉) of that state. We denote
the states that have Schmidt numbers equal to or less than K
by SK . The set of separable states, for example, can be denoted
by S1.

In Fig. 1 there is a schematic overview over these sets and
the set of states with positive partial transpose, which we will
now cover. Note that we depicted the PPT states inside the
states with Schmidt number 2. This is true for dimension d =
3 as it was conjectured in Ref. [13] and proven in Ref. [15].

B. PPT criterion and bound entanglement

The PPT criterion to determine if a quantum state is
separable was introduced in Ref. [22]. In Ref. [21] it was
even shown that for (2 × 2)- and (2 × 3)-dimensional systems
the criterion is sufficient and completely solves the ques-
tion whether a given state of that dimension is entangled or
not. In higher dimensions states can be PPT and entangled
[30]. The PPT criterion states that for a separable state � =∑

i, j,k,l �i, j,k,l |i j〉〈kl| the partial transposition

�TB =
∑

i, j,k,l

�i,l,k, j |i j〉〈kl|

is positive semidefinite.
Positive partial transpose entangled states are particularly

interesting since they are bound entangled, i.e., one cannot
distill maximally entangled, pure singlet states via local op-

FIG. 1. Schematic view of the state space of 3 × 3 systems: The
sets of states with Schmidt number less than or equal to K are convex.
The conjecture from Ref. [13] that for dimension d = 3 there are no
PPT states with Schmidt number 3 was proven in Ref. [15]. Here S1

is the set of separable states.

erations and classical communication (LOCC) from them [9].
Bound entangled states were first described in Ref. [9] and
even today there are a multitude of open problems about
their properties. It is, for example, not known if there are
bound entangled states with a negative partial transpose [31].
Furthermore, it has been researched how these states can be
used in typical quantum information theory tasks. Although
they cannot be directly used for quantum teleportation, it was
shown in Ref. [11] that they can be activated and then perform
these tasks in conjunction with other states.

C. Computable cross norm or realignment criterion

Another important separability criterion is the computable
cross norm or realignment (CCNR) criterion [32,33]. For the
set of linear operators in the local Hilbert space HA there exist
local orthogonal bases GA

k . The mentioned orthogonality is
with respect to the Hilbert-Schmidt scalar product, i.e.,

Tr
(
GA

k GA
j

) = δk, j ∀k, j ∈ {1, . . . , d2}, (2)

where d = dim(HA). An example of a local orthogonal basis
would be the generators of SU(d ) appropriately normalized,
together with the normalized identity matrix.

Now, by performing a singular value decomposition in
operator space, any density matrix � can be written as

� =
∑

k

λkGA
k ⊗ GB

k . (3)

The CCNR criterion states that if � is separable, then
∑

k λk �
1.

In the formulation from Refs. [33,34] the criterion states
that separable states � obey

Tr
[√

R(�)†R(�)
]
� 1, (4)

where R(�) denotes the realigned matrix given by R(�) =∑
i, j,k,l �i j,kl |ik〉〈 jl|. Using this criterion, it is often possible

to prove that a state is entangled although it is PPT.
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D. Entanglement quantification

A frequent question in quantum information theory is
how strong the entanglement between particles in a certain
state is [5]. Such entanglement quantification is important,
because one often thinks of entanglement as a kind of
useful resource for certain tasks in quantum information
processing.

Here we concentrate on the entanglement measure named
linear entropy Elin [35]. For pure states it is defined as

Elin(|ψ〉) = 2
[
1 − Tr

(
�2

A

)]
, (5)

where the second term Tr(�2
A) is the purity of the reduced state

�A = TrB(|ψ〉〈ψ |). We extend this definition to mixed states
with the convex-roof extension

Elin(�) = inf
{pk ,|ψk〉}

∑
k

pkElin(|ψk〉〈ψk|), (6)

where the infimum is calculated over all decompositions of �.
A closely related entanglement measure is the concurrence,
where one considers the square root of the expression in
Eq. (5). For two qubits there is an analytical formula for the
concurrence [36]. For larger Hilbert spaces the computation of
the convex-roof expansion is often a difficult task. In Ref. [37]
a method based on semidefinite programming was developed
to compute these entanglement measures. This was utilized in
Ref. [24] to calculate the linear entropy for a family of bound
entangled qutrit states. For a pure state |ψ〉 ∈ HA ⊗ HB with
ψ jk := 〈 j k|ψ〉 the formula

Elin =
∑
jklm

|ψ jkψlm − ψ jmψlk|2 (7)

was derived for the linear entropy in Refs. [38,39].

E. Symmetries

Consider maps of the form

� �→
∑

k

pk (Uk ⊗ Vk )�(U †
k ⊗ V †

k ), (8)

where Uk and Vk are unitaries acting on the respective local
Hilbert spaces. This operator defines an LOCC protocol, since
the unitaries Uk and Vk act locally and with classical commu-
nication one can arrange to apply, for example, Uj ⊗ Vj with
some probability p j . Since this map corresponds to an LOCC
protocol, we know that it only can decrease entanglement. The
families of symmetric states we are interested in are states that
are invariant under some of the above maps. Then if one has
some insight into the entanglement properties for the family
of symmetric states, one can obtain a lower bound for the
entanglement of a general state. This is because the twirling
map

T (�) =
∫
G

dgg�g† (9)

maps general states to states which are invariant under the
group of symmetries G ⊆ {U ⊗ V |U,V ∈ U (H)}. Twirling

can be viewed as averaging over the symmetries G and be-
haves like the maps in Eq. (8). This discussion shows that to
get insight into the entanglement of the whole state space it
is a good idea to study various families of symmetric states,
where each family is determined by a group of symmetries G.
Multiple families of symmetric states have already been re-
searched. The Werner states [40] and the isotropic states [20]
are well known examples of such families. Other families that
fulfill this property and have been extensively studied include
the graph-diagonal states [41–43] and the Greenberger-Horne-
Zeilinger diagonal states [44–48].

III. INTRODUCTION OF THE FAMILY
OF STATES EXPLORED

Now we consider states with the following symmetries.
(a) First are simultaneous cyclic permutations of the basis

elements of both parties, i.e., |i j〉〈kl| �→ |i ⊕ n, j ⊕ n〉〈k ⊕
n, l ⊕ n| with n ∈ {1, . . . , d − 1}. For dimension d = 3, ex-
emplary matrices Uk and Vk from Eq. (8) that correspond to
this symmetry are

U1 ⊗ V1 =
⎛
⎝0 0 1

1 0 0
0 1 0

⎞
⎠⊗

⎛
⎝0 0 1

1 0 0
0 1 0

⎞
⎠. (10)

(b) Second are simultaneous local phase rotations
of the form S(ϕ1, ϕ2, . . . , ϕd−1) = exp(i

∑
j ϕ jg j ) ⊗

exp(−i
∑

j ϕ jg j ), where ϕ1, . . . , ϕd−1 are real parameters
and g j are the generators of SU(d) that are diagonal matrices.
For d = 3 this yields

U (φ1, φ2) ⊗ V (φ1, φ2) =
⎛
⎝e2π iφ1 0 0

0 e2π iφ2 0
0 0 e−2π i(φ1+φ2 )

⎞
⎠

(11)

⊗
⎛
⎝e−2π iφ1 0 0

0 e−2π iφ2 0
0 0 e2π i(φ1+φ2 )

⎞
⎠, (12)

with real phases φ1, φ2 ∈ R. The last diagonal entry is chosen
in a way that the determinant is 1. This can be done, since
global phases have no physical meaning.

These states were introduced in Ref. [24] and mainly
studied for dimension d = 3. For a subfamiliy Sentís et al.
[24] explicitly calculated the convex-roof extension of the
linear entropy as well as the concurrence. This is particularly
interesting, because the family contains a sizable part of
bound entangled states. The family is obtained by relaxing
the symmetries from the axisymmetric states in Ref. [49]. The
3 × 3 family of bound entangled states from Horodecki et al.
[11] is also contained in the family.

To address the components of the density matrices �� that
are invariant under these symmetries we use the variables

��
k j,k j =: x( j−k modd )+1, (13)

and for k �= j,

��
kk, j j =: y(k− j modd ). (14)
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For d = 3 we have the matrix

�� =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x1 y2 y1

x2

x3

x3

y1 x1 y2

x2

x2

x3

y2 y1 x1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (15)

In the Appendix, Sec. 1, there is a depiction of the matrix for
arbitrary dimension.

The matrix has to be Hermitian in order to still be a density
matrix. Therefore, the parameters yi need to fulfill yi = y∗

d−i.
From the positive semidefiniteness it follows directly that
xi � 0.

We want to find further conditions for the off-diagonal
parameters so that �� is positive semidefinite. For this we
change the order of the basis vectors so that the resulting
matrix has a circulant block in the upper left corner and the
rest of the matrix is diagonal. For d = 3 we obtain

�� =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x1 y2 y1

y1 x1 y2

y2 y1 x1

x2

x2

x2

x3

x3

x3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (16)

In the upper left corner there is a circulant matrix. Its eigen-
values are given by [50] λ j = x1 +∑d−1

k=1 ykω
jkyk , where ω =

e2π/id is the dth root of unity. Therefore, since λ j � 0 the
parameters for the off-diagonal elements need to fulfill the
inequality

λ j = x1 +
d−1∑
k=1

e2/π i jk/d yk � 0 ∀ j ∈ {0, . . . , d − 1}. (17)

In the following, we show that the physical states obeying
the symmetries form a polytope in the sense that every state
that is contained in it can be written as convex combination of
a finite set of extremal states. These extremal states cannot be
written as a nontrivial convex combination of other states in
the family. We begin by searching for these extremal points or
vertices.

First we note that states where for a k ∈ {2, . . . , d} the
parameter xk = 1

d and all the other parameters are zero are

extremal. To find all vertices with x1 �= 0 we have a closer
look at the eigenvalues of the circulant block.

With the convention y0 := x1 we have

d−1∑
k=0

e2π i jk/d yk = λ j � 0,

d−1∑
j=0

λ j = dy0. (18)

Therefore, we have a polytope in the space of the possible
eigenvalues. Now we can apply the reverse discrete Fourier
transform

yk = 1

d

d−1∑
j=0

λ je
−2π i jk/d (19)

to obtain the off-diagonal parameters of our family again.
Since the reverse discrete Fourier transform is just a lin-
ear operation, we conclude that we have a polytope with
a finite set of vertices. For these new vertices we have
λ j = dy0 = 1 for only one j ∈ {0, . . . , d − 1} and the other
λk are zero. In total we have d + d − 1 = 2d − 1 vertices.
Because we have to enforce the normalization condition, ev-
ery state is determined by 2(d − 1) real parameters. This
is due to the fact that all introduced vertices are already
Hermitian.

One particular vertex corresponds to the maximally entan-
gled state |φ+

d 〉 = 1√
d

∑
i |ii〉. There λ0 is maximal and the

other eigenvalues are zero. The values of the off-diagonal
parameters y j are equal to x1 = 1

d and the other xk are zero.
In later sections we will restrict ourselves to the facet where
|φ+

d 〉〈φ+
d | is the only nondiagonal vertex.

PPT and CCNR criteria for the family

To investigate the entanglement properties of the family
�� we apply the CCNR and the PPT criterion. The partial
transpose of a matrix like �� is block diagonal with 2 × 2
blocks after changing the order of the basis. The PPT cri-
terion states that the determinant of these blocks is, for all
j and k, positive for separable states. So PPT states need to
fulfill

x j−k+1 × xk− j+d+1 − |y j−k|2 � 0 ∀ j, k ∈ {1, . . . , d}, j > k
(20)

⇔ √
x j−k+1 × xk− j+d+1 � |y j−k| ∀ j, k ∈ {1, . . . , d}, j > k

(21)

⇔ √
xi+1 × xd+1−i � |yi| ∀i ∈ {1, . . . , d − 1}. (22)

To search for PPT entangled states, we also calculate the
CCNR criterion to detect entanglement. The realigned matrix
has nonzero entries at the same places as the original density
matrix ��. To calculate its eigenvalues we consider again a
matrix where the basis vectors are ordered such that in the
upper left corner there is a circulant matrix, for which we have
formulas for the eigenvalues. The sum of the absolute value of
all the eigenvalues is

∑
i

|ηi| = d
∑

j

|y j | +
d−1∑
j=0

∣∣∣∣∣
d−1∑
k=0

xk+1e2π ik j/d

∣∣∣∣∣ (23)
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and the CCNR criterion states that for separable states∑
i |ηi| � 1. In order to obtain explicit results from Eqs. (22)

and (23) we only consider certain facets of the polytope.

IV. BLOCH REPRESENTATION OF THE STATES
IN THE FAMILY

The goal of this section is twofold. On the one hand, we
elucidate the relation between the magic simplex [25,28] and
the family of axisymmetric states as well as the facet of the
relaxed axisymmetric states that we will study in detail. On
the other hand, we show that there exists a straightforward
operator decomposition for these states, which is important
for entanglement detection by means of the CCNR criterion.

A. Axisymmetric states as a subset of the magic simplex

The main ingredient needed to discuss the magic sim-
plex is a basis of maximally entangled states in the (d ×
d)-dimensional Hilbert space. Such bases can always be con-
structed [51] (discussed below). The magic simplex then is
the set of all convex combinations of these basis states. It is
characterized by d2 − 1 real parameters, in contrast to the full
state space with d4 − 1 parameters.

A basis of maximally entangled states can be found by
starting from the standard Bell state in d × d dimensions,

|φ+
d 〉 = 1√

d

d−1∑
j=0

| j j〉. (24)

By applying local unitaries to |φ+
d 〉 we can achieve a complete

basis. To this end, we introduce the unitary Weyl matrices
Z and X (see, e.g., Refs. [52,53]) that act on d-dimensional
Hilbert spaces and have the properties Z| j〉 = ω j | j〉 and
X | j〉 = | j ⊕ 1〉. As mentioned before, ω = e2π i/d and the ad-
dition has to be understood modulo d . Then a full orthonormal
basis {|φkl〉} of maximally entangled states is obtained by
defining

|φkl〉 = Zk ⊗ X l |φ+
d 〉 = 1√

d

d−1∑
j=0

ω jk| j( j ⊕ l )〉, (25)

where 0 � k, l � d − 1. For k = l = 0 we have |φ00〉 ≡ |φ+
d 〉.

The magic simplex, i.e., the convex combinations∑
kl ckl |φkl〉〈φkl | with 0 � ckl � 1 and

∑
kl ckl = 1, is still a

rather complicated object. Therefore, one may consider pecu-
liar families of highly symmetric states that are subsets of the
magic simplex, but are described by fewer parameters. The
first family we consider here are the axisymmetric states [54]
that generalize the isotropic states [20],

�axi = p|φ+
d 〉〈φ+

d | + q�0 + (1 − p − q)�(1) (26)

with 0 � p, q � 1, where

�0 = 1

d − 1

d−1∑
k=1

|φk0〉〈φk0|

= 1

d − 1

d−1∑
k=1

|kk〉〈kk| − 1

d (d − 1)

∑
k �=l

|kk〉〈ll| (27)

and

�(1) = 1

d (d − 1)

d−1∑
k=0,l=1

|φkl〉〈φkl |

= 1

d − 1

d−1∑
l=1

1

d

d−1∑
k=0

|k(k ⊕ l )〉〈k(k ⊕ l )|. (28)

The axisymmetric states are all the mixed states that share the
symmetries of the Bell state |φ+

d 〉 (simultaneous local phase
rotations with opposite sign for the two parties, simultane-
ously exchanging the labels of the levels of the local d-state
systems). They are convex combinations of the three states
given above for all local dimensions d . Evidently, this family
is a subset of the magic simplex. It was shown [54] that there
are no bound entangled axisymmetric states, so in order to
have such states in the family we have to lower the degree of
symmetry.

It turns out that it is sufficient to relax the symmetry under
arbitrary simultaneous level permutations of the two parties
into a cyclic permutation symmetry in order to allow for
bound entanglement. One consequence of this modification
compared to the axisymmetric states is that the state �(1)

in Eq. (28) splits up into d − 1 states �l , l = 1, . . . , d − 1.
Another consequence of the symmetry relaxation is that the
off-diagonal elements may have different moduli as well as
complex phases, as we explained in the preceding section.
We restrict our attention to a subfamily of the relaxed ax-
isymmetric states that evidently lies within the magic simplex.
The peculiar facet that we consider here is the convex hull of
the standard Bell state |φ+

d 〉 and the states �l that result from
splitting up �(1),

��
facet = p|φ+

d 〉〈φ+
d | +

d−1∑
l=1

ql�l , (29)

where p +∑l ql = 1 and

�l = 1

d

d−1∑
k=0

|φkl〉〈φkl |

= 1

d

d−1∑
k=0

|k(k ⊕ l )〉〈k(k ⊕ l )|, l = 1, . . . , d − 1. (30)

B. Bloch representation for a facet of the relaxed
axisymmetric states

Because of their high symmetry it is per se interesting to
study what this means for the Bloch representation of the
states in the family. It will turn out particularly useful for the
application of the CCNR criterion.

As a matrix basis for the Bloch representation we will
choose the (unitary) displacement operators Djk with their
standard definition [53]

Djk = Z jX kω− jk/2. (31)

An important rule for calculations is X kZ j = Z jX kω− jk .
Again we start with the standard Bell state whose Bloch
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representation is given by

|φ+
d 〉〈φ+

d | = 1

d2

d−1∑
a,b=0

Dab ⊗ D∗
ab. (32)

The validity of this equation is readily seen from the general
representation of the SWAP operator valid for any orthonor-
mal matrix basis {Gj}, j = 1 . . . d2, Tr(G†

jGk ) = dδ jk , that is,

SWAP = 1
d

∑
j G j ⊗ G†

j , and the well-known relation SWAP =
d|φ+

d 〉〈φ+
d |TB (cf. Ref. [55]). With the definition (25) we obtain

also the Bloch representations of the other states of the basis
{|φkl〉},

|φkl〉〈φkl | = 1

d2

d−1∑
a,b=0

Dab ⊗ D∗
abω

al+bk . (33)

It is now straightforward to determine the Bloch decomposi-
tion of the remaining extremal states of the facet, Eq. (29). We
find

�l = 1

d2

d−1∑
a=0

Da0 ⊗ D∗
a0ω

al , l = 1, . . . , d − 1. (34)

These results are remarkable because of their simplicity. The
most important property is that the Bloch decomposition of
the axisymmetric states is diagonal in the Weyl basis, which
facilitates direct application of the CCNR criterion: It suffices
to use the absolute values of the Bloch coefficients instead
of the singular values of the operator Schmidt decomposition
(see Sec. II).

V. ENTANGLEMENT ANALYSIS FOR A CERTAIN FACET

We will fully characterize the set of separable states in a
subfamily of �� corresponding to a facet of the polytope. By
adapting the state parameters to those of Sec. III, we obtain
for the states in the facet of the polytope

��
facet := dx1|φ+

d 〉〈φ+
d | +

d−1∑
k=1

xk+1

d−1∑
j=0

| j( j ⊕ k)〉〈 j( j ⊕ k)|,

(35)

which are determined by d − 1 real parameters. A schematic
overview of the facet can be seen in Fig. 2. How one ob-
tains results for the Schmidt numbers will be discussed in
Sec. VI A.

The previously defined off-diagonal parameters yk are all
set to yk = x1. The normalization relation is still the same:

d
d∑

k=1

xk = 1. (36)

We want to show that in this facet all separable states are con-
vex combinations of �k := 1

d

∑d−1
j=0 | j( j ⊕ k)〉〈 j( j ⊕ k)| and

the state �sep, which is defined such that 1
d2 = x j = y j ∀ j ∈

{1, . . . , d}. The state �sep is part of the family of axisymmet-
ric states in Ref. [49]. There it was shown to be separable.
Another proof is given in Ref. [56] [see Eq. (B5) therein].
Additionally, we show a decomposition into separable states
of �sep in the Appendix, Sec. 2.

facet for d = 4

Separable states of facet

S = 1 edge of axisymmetric family

S = 2 edge of axisymmetric family

S = 3 edge of axisymmetric family

S = 4 edge of axisymmetric family

1

2

3

|φ+
d φ+

d |

sep

FIG. 2. Facet for d = 4. If x2 = x3 = x4 we arrive at an edge
from the axisymmetric states from Ref. [49]. We will prove that all
separable states lie in the purple (dark gray) polytope.

A. Linear entropy as an entanglement criterion

In Ref. [24] a method was described to calculate the linear
entropy of states that are invariant under an entanglement
preserving symmetry. It can be applied as follows. The set
{|φ+

d 〉〈φ+
d |, �1, . . . , �d−1} consists of states that span the facet

we are interested in. They are invariant under the symmetries,
which were used to construct these states. We can parametrize
an arbitrary state as follows:

Tr(��k ) = xk+1 ∀k ∈ {1, . . . , d − 1}
∧ Tr(�|φ+

d 〉〈φ+
d |) = dx1. (37)

A state in the facet σx1,...,xd is uniquely determined by the
parameters x1, . . . , xd . With the theorem from Ref. [24] we
can get a formula for the linear entropy. Explicitly, we have to
do the following steps.

(i) Find a parametrization for all pure states in the span
of σ dependent on the facet parameters x1, ..., xd and other
parameters ξ . Denote these pure states by |ψσ 〉. It follows that
every decomposition of a state σ only uses pure states from
|ψσ 〉.

(ii) Compute the function Ẽlin(x1, . . . , xd ) =
minξ Elin(|ψσ (x1, . . . , xd , ξ )〉), where ξ are the parameters of
|ψσ 〉 that are not facet parameters.

(iii) The function Ẽlin(x1, . . . , xd ) is not necessarily convex.
Compute its convexification Ẽ c

lin(x1, . . . , xd ).
(iv) Then the identity Ẽ c

lin(x1, . . . , xd ) = Elin(σx1,...,xd )
holds.

In the following we construct a subset K of the facet that
includes all separable states. This property would be fulfilled
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if the following were true:

Ẽ c
lin(x1, . . . , xd ) = 0 �⇒ σx1,...,xd ∈ K. (38)

We know that the zero set of the convexified function
Ẽ c

lin(x1, . . . , xd ) is just the convexification of the zero set of
the initial function Ẽlin(x1, . . . , xd ):

{x1, . . . , xd |Ẽ c
lin(x1, . . . , xd ) = 0}

= {x1, . . . , xd |Ẽlin(x1, . . . , xd ) = 0}c. (39)

For now we search for a set that includes all states where
Ẽlin(x1, . . . , xd ) = 0. This can be achieved by finding the
states where Ẽlin(x1, . . . , xd ) > 0 and considering all other
states.

Pure states that build a decomposition of a state in the facet
are of the form

|ψσ 〉 =
√

dx1|φ+
d 〉 +

d−1∑
k=1

√
dxk+1

d−1∑
j=0

ξk, j | j ( j ⊕ k)〉, (40)

where
∑d−1

j=0 |ξk, j |2 = 1 and ξ j,k ∈ C for all k ∈ {1, . . . , d −
1}.

Now by using Eq. (7) we get the formula

Ẽlin(x1, . . . , xd ) = min
ξ

∑
jklm

|ψ jkψlm − ψ jmψlk|2, (41)

where ψlm := |ψ (x1, . . . , xd , ξ )〉lm. The minimization over
the complex phases is simple. For two complex numbers r1eiφ1

and r2eiφ2 , the minimum of |r1eiφ1 + r2eiφ2 |2 is achieved for
φ1 = φ2 + π . Therefore, our minimization problem yields the
same value if we assume all coefficients ξk, j to be real. This
allows us to conclude that, for Ẽlin(x1, . . . , xd ) to be zero, there
has to exist a ξ so that

|ψ jkψlm − ψ jmψlk|2 = 0 ∀ j, k, l, m ∈ {0, . . . , d − 1}
⇔ ψ jkψlm = ψ jmψlk ∀ j, k, l, m ∈ {0, . . . , d − 1}.

(42)

An implication of Eq. (42) is the following:

d∏
l=1

ψll =
d∏

l=1

ψl l⊕m ∀m ∈ {0, . . . , d − 1}. (43)

For example, for d = 3, ψ00ψ11ψ22 = ψ01ψ10ψ22 =
ψ01ψ12ψ20. Inserting the state coefficients from Eq. (40),
we obtain

(
√

x1)d = (
√

dxk+1)d
d−1∏
j=0

ξk, j � (
√

xk+1)d . (44)

Here the inequality
∏d−1

j=0 ξk, j � ( 1√
d

)d was used.1

Since squaring and taking the dth power are both mono-
tonic operations, the inequalities (44) cannot be true (regard-
less of ξ ) if for some k ∈ {2, . . . , d}, x1 > xk . However, since

1Consider the optimization problem max(a1,...,ad )∈Rd+

∏d
i=1ai subject

to
∑

ia
2
i = 1. For d = 2 the solution is straightforward. For higher di-

mensions one can solve this iteratively. The geometric interpretation
is that the hyperrectangle with the largest volume that is contained in
a hypersphere is a hypersquare.

the inequalities (44) are an implication of Ẽlin(x1, ..., xd ) = 0,
we get the true statement

Ẽlin(x1, . . . , xd ) = 0 ⇒ x1 � xk ∀k ∈ {2, . . . , d}. (45)

Therefore, we know that the set of states where the coeffi-
cients have the property x1 � xr ∀r ∈ {2, . . . , d} includes all
the states with facet parameters so that Ẽlin(x1, . . . , xd ) =
0. It is easy to see that the set of states with coefficients
obeying x1 � xk ∀k ∈ {2, . . . , d} coincides with the polytope
spanned by �sep, �1, . . . , �d−1. According to Eq. (39), the
convexification of this subset yields a set that includes all
states where the linear entropy is zero. Since our subset is
already convex, the convexification leaves it invariant. This
shows that all separable states in the facet are convex com-
binations of �sep, �1, . . . , �d−1. However, since we showed
at the beginning that �sep is separable, the converse is also
true and we know that all states in the polytope spanned by
�sep, �1, . . . , �d−1 are separable.

B. PPT and CCNR criteria for the facet

From Eq. (22) we can directly state the PPT criterion for
the facet

√
xi+1 × xd+1−i � |x1| ∀i ∈ {1, . . . , d − 1}. (46)

Next we look at the CCNR criterion given in Eq. (23) for the
facet

∑
i

|λi| = d (d − 1)x1 +
d−1∑
j=0

∣∣∣∣∣
d−1∑
k=0

xk+1e2π ik j/d

∣∣∣∣∣. (47)

Applying the triangle inequality yields

∑
i

|λi| � d (d − 1)x1 +
∣∣∣∣∣

d−1∑
j=0

d−1∑
k=0

xk+1e2π ik j/d

∣∣∣∣∣
= d (d − 1)x1 +

∣∣∣∣∣dx1 +
d−1∑
k=1

xk+1
1 − e2π ikd/d

1 − e2π ik/d

∣∣∣∣∣
= d (d − 1)x1 +

∣∣∣∣∣dx1 +
d−1∑
k=1

xk+1
1 − 1

1 − e2π ik/d

∣∣∣∣∣
= d (d − 1)x1 + |dx1|
= d2x1. (48)

Therefore, we know that if x1 > 1
d2 the state is entangled

according to the CCNR criterion. By its negation, separability
implies that x1 � 1

d2 , which is in accordance with our result
from the preceding section. We now give an example for some
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PPT entangled states with

x1 � 1

d2
, β ∈ [0, x1], l ∈

{
2, . . . ,

⌊
d

2

⌋}
∀k ∈ {2, . . . , d} \ {l, d − l + 2}

xk = x1, xl = x1 − β, xd+2−l = 1

d
− (d − 1)x1 + β. (49)

We calculate the CCNR criterion for these states,

∑
|ηi| = d (d − 1)x1 + 1

d
+

d−1∑
j=1

∣∣∣∣∣
d−1∑
k=0

xke2π i jk/d

∣∣∣∣∣
= d (d − 1)x1 + 1

d
+

d−1∑
j=1

∣∣∣∣−βe2π i jl/d +
(

1

d
− dx1 + β

)
e2π i j(d+2−l )/d

∣∣∣∣
= d (d − 1)x1 + 1

d
+

d−1∑
j=1

∣∣∣∣e4π i j(1−l )/d

(
1

d
− dx1 + β

)
− β

∣∣∣∣
� d (d − 1)x1 + 1

d
+

d−1∑
j=1

∣∣∣∣
∣∣∣∣e4π i j(1−l )/d

(
1

d
− dx1 + β

)∣∣∣∣− β

∣∣∣∣
= d (d − 1)x1 + 1

d
+ (d − 1)

[(
1

d
− dx1 + β

)
− β

]

= d (d − 1)x1 + 1

d
+ (d − 1)

(
1

d
− dx1

)
= 1, (50)

where we applied the reverse triangle inequality. Since
e4π i j(1−l )/d is not equal to 1 for all j, the inequality is not
tight and thus we know that the state is entangled. Next we
calculate for which values of β the states are PPT. For the
states described in Eq. (49), the inequality (22) reads

x1 �
√

(x1 − β )

(
1

d
− (d − 1)x1 + β

)

=
√

(x1 − β )

(
1

d
− dx1

)
+ x2

1 − β2

⇔ 0 � (x1 − β )

(
1

d
− dx1

)
− β2

⇔ 0 � β2 +
(

1

d
− dx1

)
β −

(
1

d
− dx1

)
x1. (51)

We check for which β the equality is fulfilled:

β± = −
1
d − dx1

2
±
√(

1
d − dx1

)2
4

+
(

1

d
− dx1

)
x1. (52)

For the case that there is a plus sign the solution is positive
(β+) and the state is PPT entangled for β ∈ [0, β+]. The states
can be seen in Fig. 3 for a cross section in d = 4.

In this section we restricted our analysis of entanglement
properties to a facet of the state polytope. We proved that the
state �sep, where all matrix elements have the same value, is
separable. Moreover, we proved that all separable states are
in the polytope spanned by �sep and the vertices that corre-
spond to states with diagonal density matrices. Since the PPT

criterion is easy to compute, we have a full characterization of
the PPT entangled states in the facet.

In the Appendix, Sec. 3, we also give an example of an
entangled state that is not detected by the CCNR criterion.

VI. CHARACTERIZING THE DIMENSIONALITY
OF ENTANGLEMENT

A. Calculation of Schmidt numbers

To get some insight into the dimensionality of entangle-
ment of our states we want to calculate their Schmidt numbers.

FIG. 3. Cross section of the facet in d = 4 in x3 = 1
4d (1 − z) and

x2,4 = 3
4d (1 − z) 1±r

2 , where z and r are fidelity parameters analogous
to those defined in Eqs. (58)–(60).
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In analogy to entanglement witnesses, Schmidt number wit-
nesses play an important role in calculating Schmidt numbers.
In Ref. [23] Schmidt number witnesses were introduced. An
observable W is called a Schmidt witness of class K ∈ N
if and only iff Tr(W ρ) � 0 for all ρ with Schmidt number
smaller than K . One also requires that at least one state with
Schmidt number K is detected, i.e., fulfills Tr(W ρ) < 0. A K
Schmidt witness W1 is called finer than a K Schmidt witness
W2 if W1 detects the same states as W2 and some states in
addition.

It was proven in Ref. [23] that W = K−1
d I − |φ+

d 〉〈φ+
d | is

an optimal K Schmidt witness. We calculate the states in the
facet that are detected by this witness:

Tr(W �) = Tr

[(
K − 1

d
I − |φ+

d 〉〈φ+
d |
)(

a|φ+
d 〉〈φ+

d |

+
d−1∑
k=1

bk

d−1∑
j=0

| j( j ⊕ k)〉〈 j( j ⊕ k)|
)]

= K − 1

d
− Tr(a|φ+

d 〉〈φ+
d |)

= K − 1

d
− a. (53)

Since we are interested in the separable states, which have
Schmidt number 1, we look at the case K = 2. This yields

Tr(W �) � 0 ⇔ 1

d
− a � 0

⇔ 1

d
� dx1 ⇔ 1

d2
� x1, (54)

which is the same bound as the one we already derived above
in Eq. (48).

We will now describe a strategy to approximate the border
between states with maximal Schmidt number and states with
less than maximal Schmidt number. First one searches pure
states that do not have full Schmidt rank and are twirled to
the facet. Then the resulting states after the twirling operation
cannot have full Schmidt number either since twirling is an
LOCC map.

Therefore, we start by looking at the full Hilbert space H ⊗
H and consider how the pure states are mapped by the twirling
operator. Let σ ∈ H ⊗ H and T σ = �. Then

�i;i⊕ j,i;i⊕ j = 1

d

∑
k

σk;k⊕ j,k;k⊕ j ∀i, j ∈ {0, . . . , d − 1},

(55)

�i;i,i⊕ j;i⊕ j = 1

2d

∑
k

(σk;k,k⊕ j;k⊕ j + σk⊕ j;k⊕ j,k;k ). (56)

If the twirling operator maps the state σ to the state �, then we
know that the Schmidt number of σ is greater than or equal to
the Schmidt number of �, since twirling is an LOCC map. For
simplicity, we investigate the problem for dimension d = 3.
In Ref. [24] we have the following parametrization of the pure

FIG. 4. Progress in calculating the Schmidt numbers S of the
states in the facet for d = 3. While witnesses can give a lower bound
on the Schmidt number, showing that a state with nonfull Schmidt
rank is twirled to a state in the facet can give an upper bound.

states that are mapped in the span of ρ�:

|ψσ 〉 = √
z|φ+

d 〉 + √
1 − z

(√
1 + r

2
(a|01〉 + b|12〉

+ c|20〉) +
√

1 − r

2
(e|02〉 + f |10〉 + g|21〉)

)
. (57)

Here z is a facet parameter with respect to |φ+
d 〉, r ∈ [−1, 1],

and the complex parameters a, b, c, e, f , and g fulfill the nor-
malization conditions |a|2 + |b|2 + |c|2 = 1 and |e|2 + | f |2 +
|g|2 = 1. The connection to the previously used parametriza-
tion is

x1 = z

3
, (58)

x2 = (1 − z)(1 + r)

6
, (59)

x3 = (1 − z)(1 − r)

6
. (60)

In the Appendix, Sec. 4, we calculated some upper bounds for
several values of r by choosing the parameters a, . . . , g so that
the coefficient matrix becomes circulant.

The obtained results for the Schmidt numbers in the facet
for dimension d = 3 are schematically summarized in Fig. 4.
For states in the yellow area we still do not know if they have
Schmidt number 2 or 3. The curve between the yellow and the
blue area is given by Eq. (A8) in the Appendix, Sec. 4.

For higher dimensions one can also obtain upper bounds
for the Schmidt number by twirling of pure states without
full Schmidt rank. We start from the parametrization of an
arbitrary pure state that is twirled to the facet, which can be
seen in Eq. (40). We choose ak, j = − 1√

d
so that the coefficient

matrix becomes circulant. Because of this simplification, we
will not find all states with maximal Schmidt number. We
again set the eigenvalue that is a sum of the distinct matrix
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FIG. 5. Calculation of the Schmidt numbers S of the states in the facet for d = 3: (a) states with at least Schmidt number 1 (blue, bottom),
2 (green, middle), and 3 (red, top) ad (b) the blue states in the region at the bottom are 2-unfaithful, while the green ones in the middle are
3-unfaithful. The parametrization is analogous to that in [24]. For 500 × 50 states we calculated (a) SDP1 and (b) SDP2 from Ref. [58].

entries to zero:

√
x1 =

d−1∑
k=1

√
xk+1. (61)

In the Appendix, Sec. 5, we solve this equation for x1.
With this equation we certified for some states that they do

not have full Schmidt rank. For d = 3, we show the resulting
upper bound for Schmidt number 2 states in Fig. 5. Note that
applying Schmidt witnesses, on the other hand, gives lower
bounds on the Schmidt number of the respective states.

Another idea to get insight into the Schmidt numbers is
by calculating the K concurrence from Ref. [57] using the
convex characteristic curve method. If the K concurrence
then vanishes for a particular state we know that its Schmidt
number is smaller than K . However, we realized that this idea
is impractical, since in the analogous formulas like Eq. (41)
for K > 2 one cannot eliminate the complex phases.

B. Computation of semidefinite programming hierarchy

In Ref. [58] a method was presented to estimate Schmidt
numbers that cannot be calculated from pure fidelity Schmidt
witnesses. Pure fidelity Schmidt witnesses can be written as a
linear combination of the identity and a projection onto a pure
entangled state. In Fig. 5 we computed the first semidefinite
programming (SDP) hierarchy. This computation can give a
lower bound on the Schmidt number of a mixed state, whereas
the second SDP hierarchy proposed in Ref. [58] can prove
for a state that its Schmidt number cannot be detected with a
fidelity witness.

As shown in Fig. 5, bound entangled states are not de-
tectable as entangled by the first SDP hierarchy. On the other
hand, the hierarchy detects states as having Schmidt number
3 beyond those detectable by a pure fidelity Schmidt witness
(insets of Fig. 5).

VII. CONCLUSION

In summary, we have discussed the entanglement proper-
ties of a family of highly symmetric, bipartite, mixed quantum
states in arbitrary dimensions, which can be seen as a gener-
alization of axisymmetric states. We were able to solve the
separability problem for a subfamily, including the charac-
terization of bound entanglement, and characterized also the
dimensionality of entanglement for some cases.

There are several directions in which our work may be
extended. First, one may study bipartite quantum states with
the given symmetry further. Here it would be desirable to find
bound entangled states far away from the border of separa-
bility or to determine entanglement monotones, such as the
entanglement of formation for the considered family of states.
In addition, the symmetric bound entangled states in our fam-
ily, defined in arbitrary dimensions, comprise a promising test
bed for finding simpler counterexamples to the Peres conjec-
ture, which stated that bound entangled states cannot display
nonlocality. The known counterexamples to date [59–61] are
constructed ad hoc and are not defined through symmetries.
Finding counterexamples that arise more naturally, as our
family of states, could shed more light on whether the original
statement by Peres is true except for specially handcrafted
examples or it is more generally false. Finally, one may con-
sider the multipartite scenario, where states with the given
symmetries can also be defined in a straightforward manner.
Then it would be useful to discuss the different classes of
multiparticle entanglement in this scenario.
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APPENDIX: PROOFS AND CALCULATIONS

1. Form of the density matrix ��

The density matrices �� of states that are invariant under these symmetries can be written in the form

�� =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x1 0 0 yd−1 y2 . . . y1

0 x2 0
0 0 x3

. . . . . .
xd

. . .
xd

y1 x1 yd−1

x2 . . . . . .
xd−1

. . .
xd−1

xd

y2 y1 x1

x2...
. . .

...
. . .

...
. . .

yd−1 x1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(A1)

2. Decomposition into separable states for �sep

To prove that �sep is indeed separable we give a decomposition into separable states. First we define 2d states of the following
form:

|ϕb〉 := 1

d

d−1∑
k=0

(−1)bk eiωk|k〉 ∀b ∈ {0, 1}d . (A2)

We consider states of the form |ϕb〉 ⊗ |ϕ∗
b 〉 to decompose �sep into separable states. The following calculation shows the

decomposition:

1

2π2d

∫
dω

∑
b∈{0,1}d

|ϕb〉 ⊗ |ϕ∗
b 〉〈ϕb| ⊗ 〈ϕ∗

b |

= 1

2π2d d2

∫
dω

∑
b∈{0,1}d

∑
j,k,l,m

(−1)b j+bk+bl +bm eiω( j−k−l+m)| j〉 ⊗ |k〉〈l| ⊗ 〈m|

= 1

2d d2

∑
b∈{0,1}d

∑
j,k,l,m

(−1)b j+bk+bl +bmδ j−k,l−m| j〉 ⊗ |k〉〈l| ⊗ 〈m|

= 1

d2

∑
j,k,l,m

[(δ j,kδl,m + δ j,mδl,k )(1 − δ j,l ) + δ j,lδk,m]δ j−k,l−m| j〉 ⊗ |k〉〈l| ⊗ 〈m|

= 1

d2

∑
j,k,l,m

[δ j,kδl,m(1 − δ j,m) + δ j,lδk,m]δ j−k,l−m| j〉 ⊗ |k〉〈l| ⊗ 〈m|
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= 1

d2

∑
j,k,l,m

[δ j,kδl,m(1 − δ j,m) + δ j,lδk,m]| j〉 ⊗ |k〉〈l| ⊗ 〈m|

= 1

d2

∑
j,l j �=l

| j j〉〈ll| + 1

d2

∑
j,k

| jk〉〈 jk| = �sep. (A3)

3. Example of an entangled state that is not detected by CCNR

Consider the state with

x1 = 1
80 , x2 = x3 = 19

160 . (A4)

Since x3 = 0 < x1 this state is entangled according to the above considerations. However, calculating the formula (23) yields a
value smaller than 1.

4. Determining upper bounds for Schmidt coefficients by looking at pure states with a circulant coefficient matrix

For the general case in Eq. (57) it is difficult to calculate the number of nonvanishing singular values of the coefficient matrix
analytically. Although it is possible to obtain the Schmidt rank numerically (uniformly), randomly sampling the pure states will
almost certainly lead to a state with full Schmidt rank.

However, if we consider states with a = b = c and e = f = g, the coefficient matrix is circulant and one can easily calculate
the eigenvalues. We get a particular easy example if we set 1√

3
= a = b = c = e = f = g. For the case r = 0 we obtain that all

coefficients are equal: √
z

3
=
√

1 − z

6
⇒ z = 1 − z

2
⇒ z = 1

3
. (A5)

Since all entries of the coefficient matrix are equal, the matrix has only one eigenvalue and therefore Schmidt number 1. Further,
the state is indeed twirled to �sep, which was shown to be separable above. Another state we can construct has the parameters
−1√

3
= a = b = c = e = f = g. Since the coefficient matrix is circulant, one of the three eigenvalues is simply the sum over all

different entries of the matrix. To get an upper bound of the Schmidt number of the state σ , we set this particular eigenvalue to
zero for r = 0:

0 =
√

z

3
− 2

√
1 − z

6
⇒ z = 2(1 − z) ⇒ z = 2

3
. (A6)

This result is in agreement with the first Schmidt number witness W2 in Eq. (53) that we applied, because the Schmidt witness
is tangent to the state. Another state we can investigate is at r = 1. We again set the same eigenvalue equal to zero and keep in
mind that the coefficients with

√
1 − r vanish:

0 =
√

z

3
−

√
2

√
1 − z

6
⇒ z = (1 − z) ⇒ z = 1

2
. (A7)

For the r values in between we still can look at a circulant coefficient matrix and set one eigenvalue equal to zero,

0 =
√

z

3
− √

1 − z

(√
1 + r

6
+
√

1 − r

6

)
⇔ √

x1 = √
x2 + √

x3 ⇒ x1 = x2 + x3 + 2
√

x2x3 ⇒ 2x1 = 1
3 + 2

√
x2x3

⇒ x1 = 1
6

(
1 − 3x2 ±

√
3
√

2x2 − 9x2
2

)
, (A8)

where we used the normalization condition x1 + x2 + x3 = 1
3 .

5. States with Schmidt rank less than d

We saw that some states with Schmidt rank smaller than d are characterized by

√
x1 =

d−1∑
k=1

√
xk+1. (A9)

With the normalization condition 1
d =∑d

k=1 xk we get
√

x1 =
√√√√ 1

d
− x1 −

d∑
m=3

xm +
d∑

k=3

√
xk . (A10)
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To solve this for x1 one has to essentially solve some quadratic equation. The solution is

x1 = 1

2

⎡
⎢⎣ 1

d
−

d∑
k=3

xk −
(

d∑
k=3

√
xk

)√√√√4

(
1

d
−

d∑
m=3

xm

)
+
(

d∑
m=3

√
xm

)2
⎤
⎥⎦, (A11)

which is the generalization of (A8) to higher dimensions.
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