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Reconstructing non-Markovian open quantum evolution from multiple time measurements
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For a quantum system undergoing non-Markovian open quantum dynamics, we demonstrate a tomography
algorithm based on multitime measurements of the system, which reconstructs a minimal environment coupled
to the system, such that the system plus environment undergoes unitary evolution and that the reduced dynamics
of the system is identical to the observed dynamics of it. The reconstructed open quantum evolution model can be
used to predict any future dynamics of the system when it is further assumed to be time-independent. We define
the memory size and memory complexity for the non-Markovian open quantum dynamics which characterize
the complexity of the reconstruction algorithm.
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I. INTRODUCTION

A quantum system is almost inevitably affected by some
environment, in which case the dynamics has to be described
in the context of an open quantum system [1]. A power-
ful tool to study an open quantum system is the quantum
map (or quantum channel), which is a linear and completely
positive (CP) mapping from a quantum state at a time t0 to
another quantum state at a later time t1, denoted as E1:0 [2,3].
Given a microscopic description for the unitary evolution
of the quantum system plus an environment [4], a reduced
quantum map acting only on the system can be computed
by tracing out the environment. However, the details of the
environment affecting the quantum system may not be clear
a priori, which is usually the case for noisy near-term quan-
tum devices [5–7]. Nevertheless, given experimental access to
prepare an arbitrary initial state of the system and measure
the system later, the unknown quantum map can also be sys-
tematically reconstructed using quantum process tomography
(QPT) [8,9].

However, the quantum map cannot fully characterize the
non-Markovian open quantum dynamics; for example, if we
consider the quantum map between t0 and another time t2 > t1
in the non-Markovian case, the equality E2:0 = E2:1E1:0 does
not hold in general [10,11]. In other words, to characterize the
quantum dynamics between t0 and any time t , one may have
to perform a QPT separately for each t , which is of course
undesirable. In such situations, a natural question to ask is:
given preparation and measurement accesses to the underlying
quantum system, can we build a model which fully charac-
terizes the non-Markovian open quantum dynamics of it (for
example, to predict the quantum state at arbitrary times)?

The first step to answer this question is to give an infor-
mationally complete description of the non-Markovian open
quantum dynamics. For this purpose, we look at the classical

*guochu604b@gmail.com

stochastic process as a reference, which describes a sequence
of random variables Xk:0 = X0X1 · · · Xk (the starting time in lit-
eratures is usually chosen as −∞ since one is often concerned
with the stationary stochastic process, but here we choose it
to be 0 for correspondence with the quantum case) [12]. A
Markovian stochastic process can be fully characterized by
the transition matrix, P(Xk|xk−1), with xk−1 a specific state at
time k − 1. In comparison, a non-Markovian stochastic pro-
cess should be characterized by the conditional probabilities
on the all the possible histories: P(Xk|xk−1:0), where xk−1:0 =
{x0, . . . , xk−1} denotes a specific history. Given these facts,
the connection between a quantum process and a classical
stochastic process can be easily drawn as follows. The quan-
tum state ρk at time step k is similar to the random variable
Xk . The quantum map Ek:k−1 is similar to the transition matrix
since it is the current state ρk conditioned on the last prepa-
ration of the input quantum state, denoted as Pk−1, which can
thus be written as Ek:k−1 = ρk (Pk−1). Given these correspon-
dences, it is clear that to fully characterize the non-Markovian
quantum dynamics, a mapping ρk (�k−1:0) corresponding to
P(Xk|xk−1:0) is still needed, which is the current state ρk condi-
tioned on a sequence of history quantum operations �k−1:0 =
{�0, . . . , �k−1} at k different times {t0, . . . , tk−1}. Since each
quantum operation � j can be implemented by a measurement
M j followed by a preparation P j [13], this mapping can also
be denoted as ρk (Pk−1:0,Mk−1:0). The last expression actu-
ally closely resembles a special instance of classical stochastic
process, the transducer with memory, which models a system
that emits a random variable Yj (which corresponds to M j)
given an input random variable Xj−1 (which corresponds to
P j−1) at each time j (in the meantime some “hidden mem-
ory state” changes which corresponds to the collapse of the
quantum state upon measurement) and is fully characterized
by the conditional probability P(Yk|Xk−1:0,Yk−1:0) [12]. The
mapping ρk (�k−1:0) is exactly a k-step process tensor as dis-
covered recently, which is a linear and CP mapping from a
sequence of quantum operations �k−1:0 to the output quantum
state ρk; moreover, the process tensor represents the most
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generic quantum measurements one could possibly perform
on a quantum system [14,15].

The conditional probability P(Xk|xk−1:0) and the process
tensor ρk (�k−1:0) fully characterize a classical stochastic pro-
cess and a quantum process, respectively. However, these
descriptions alone are not efficient since the possible histories,
namely, xk−1:0 and �k−1:0, grow exponentially with k. In the
classical case, this problem is solved by constructing a predic-
tive model from the observed data P(Xk|xk−1:0) (ideally using
only a finite k). The ε-machine is an outstanding predictive
model [16], which also belongs to the broader class of hidden
Markov models. Briefly, instead of storing all the P(Xk|xk−1:0)
for any k, the ε-machine divides the histories xk−1:0 into
disjoint classes, denoted as ε(xk−1:0). Each class is referred
to as a causal state and represents all the histories that give
the same current state, that is, P(Xk|xk−1:0) = P(Xk|x′

k−1:0) for
all x′

k−1:0 ∈ ε(xk−1:0). In the quantum case, a natural predic-
tive model exists, which is referred to as the open quantum
evolution (OQE) model and is defined as follows: the system
interacts with an (unknown) environment, such that the system
plus environment undergoes unitary evolution and that the
observed non-Markovian quantum dynamics is the reduced
dynamics of the system after tracing out the environment.
However, it is currently unknown how to reconstruct an OQE
model based on experimentally measurable quantities (the
process tensor), such that the non-Markovian quantum dy-
namics of the system is fully characterized.

This gap is filled in this work. We first present an effi-
cient algorithm for process tensor tomography, the complexity
of which grows exponentially with the memory complexity
(which will be defined later), but only linearly with k. On top
of that, we show that the hidden OQE model can be further
reconstructed with little overhead. Briefly, this work gives
a systematic and efficient way to reconstruct the quantum
predictive model (OQE), which encodes all the information
about the non-Markovian quantum dynamics. The algorithm
is demonstrated with numerical examples.

II. THE PURIFIED PROCESS TENSOR

Before presenting the main results of this work, we will
first briefly review the process tensor framework [15] and
define the purified form of the process tensor (PPT), which
will be useful for the later proofs.

The quantum map has been a conventional and powerful
tool to study open quantum dynamics, which can be obtained
from all the possible two-time measurements, namely, prepar-
ing an arbitrary initial state and then performing quantum
state tomography (QST) at a later time. However, in the non-
Markovian case the quantum map alone cannot accurately
predict the future dynamics, which is essentially because that
the non-Markovian quantum dynamics cannot be fully char-
acterized using two-time measurements only. Nevertheless,
the two-time measurement can be naturally generalized to
multiple times; namely, one performs k quantum operations
at k different times from t0 to tk−1, denoted as �k−1:0, and
then performs a QST at time tk to obtain the final quantum
state ρk of the system. Similar to quantum map, the mapping
from �k−1:0, denoted as ρk (�k−1:0), to ρk is defined as the
k-step process tensor. Since arbitrary non-Markovian quantum

FIG. 1. (a) Demonstration of a three-step process tensor under a
hidden OQE model, for which U is the unitary evolutionary operator
for the system plus the environment, and |ψSE 〉 is the system-
environment initial state. i j and oj are the jth input and output
indices, respectively. (b) The matrix product state representation of
the purified process tensor, for which the environment is not traced
out in the end. (c) The quantum circuit implementation of the pu-
rified process tensor as a many-body pure state, where |�〉 is the
maximally entangled state. The process tensor is obtained by tracing
out the environment index. ρE

j in (b) and (c) denotes the jth effective
environment state in Eq. (15).

dynamics can be understood as the reduced dynamics from the
coupling to some environment, the process tensor could also
be more explicitly defined based on the hidden OQE model
as [15]

ρk (�k−1:0) = trE
(
Uk:k−1�k−1 · · ·U1:0�0ρ

SE
0

)
, (1)

where ρSE
0 is the system-environment (SE) initial state and

U j: j−1 is the SE unitary evolutionary operator from time step
j − 1 to j, namely, U j: j−1ρ

SE = Uj: j−1ρ
SEU †

j: j−1 with Uj: j−1

a unitary matrix. We further assume ρSE
0 to be a pure state:

ρSE
0 = |ψSE 〉〈ψSE |. This assumption does not lose any gener-

ality since if ρSE
0 is a mixed state; one can purify it by adding

external degrees of freedom and enlarging U accordingly. The
process tensor is demonstrated in Fig. 1(a). Based on Eq. (1),
it has been shown that the process tensor is a linear and
CP mapping [15], which immediately inspires a tomography
algorithm for the process tensor similar to the standard QPT:
one prepares �k−1:0 with each � j selected from an informa-
tionally complete set and then performs QST on the output
quantum state [17]. For system size d , the total number of
configurations grows as d4k+2 (since each � j lives in a linear
space of size d2 × d2 and ρk lives in a space of size d × d),
which will soon become unfeasible for relatively small k, and
as a result the largest experiment for process tensor tomogra-
phy to date uses k � 3 [18–20]. In the following we will also
denote the k-step process tensor as ϒk:0 for brevity.
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The PPT can be defined similar to Eq. (1), but without
tracing out the environment index in the end, which is shown
in Fig. 1(b). We can see that the PPT is similar to a pure
quantum state and can be naturally written as a matrix product
state (MPS):

|ϒk:0〉 =
∑

ok:0,ik−1:0,αk−1:0

Bo0
α0

Bi0,o1
α0,α1

· · · Bik−1,ok
αk−1,αk

× |αk〉|ok:0, ik−1:0〉, (2)

where ok:0 = {o0, . . . , ok} and similarly for ik−1:0 and αk−1:0.
i j , o j are the “physical indices” which correspond to par-
ticular choices of basis for P j and M j , respectively, andα j

is the “auxiliary index” corresponding to a choice of basis
for the environment after the jth step. The site tensor Bo0

α0
=

〈o0, α0|ψSE 〉 is a redefinition of the SE initial state, while
B

ij−1,i j
α j−1,α j with j � 1 is simply a redefinition of the unitary

matrix Uj: j−1. It is often convenient to view each site tensor of
the PPT as a list of matrices Bij−1,o j , which are labeled by the
physical indices i j−1, o j and act on the auxiliary index (envi-
ronment) only (Bo0 is a list of vectors). The bond dimension
of an MPS is defined as the size of each auxiliary index α j ,
which characterizes the size of each site tensor. The MPS
representation in Eq. (2) is naturally right-canonical since
each site tensor satisfies the right-canonical condition [21,22]

∑

i j−1,o j ,α j

B
i j−1,o j
α j−1,α j

(
B

ij−1,o j

α′
j−1,α j

)∗ = δα j−1,α
′
j−1

, (3)

where we have used the unitary property of Uj: j−1. The pro-
cess tensor can be obtained from the PPT by

ϒk:0 = trE (|ϒk:0〉〈ϒk:0|) =
∑

αk

〈αk|ϒk:0〉〈ϒk:0|αk〉. (4)

It has been shown that the process tensor ϒk:0 for an environ-
ment with size D can be written as a matrix product density
operator (MPDO) with bond dimension D [15]. Moreover,
Eq. (4) shows that the process tensor is a very special MPDO;
for example, given the PPT |ϒk:0〉 with bond dimension D,
one can obtain the process tensor ϒk:0 as an MPDO with
bond dimension D by Eq. (4). However, an MPDO with bond
dimension D in general can not be purified into the form of
PPT with the same bond dimension [23–26]. This speciality
of the process tensor is central to the efficient tomography
algorithm we propose for it, which will be shown later.

Interestingly, the PPT can also be implemented using the
quantum circuit shown in Fig. 1(c) (we note that in the original
definition of the quantum circuit SWAP gates have been used
since physically only the quantum system corresponding to
the index o0 may directly interact with the environment [15]),
which converts the PPT defined at multiple times into a multi-
qubit many-body quantum state. This can be seen by verifying
the outcome of each gate operation simultaneously acting on
o j and the environment index

U |�〉 = U |α〉 1√
d

d∑

j=1

| j〉i| j〉o = 1√
d

d∑

j=1

| j〉i(U |α〉| j〉o)

= 1√
d

∑

β,k, j

U j,k
α,β |β〉|k〉o| j〉i, (5)

which is indeed the jth site tensor of the PPT up to a factor
1/

√
d (here the state | j〉 with subscript i or o means that it

corresponds to the input or output index). Thus the output
of the quantum circuit in Fig. 1(c) without tracing out the
environment is exactly the PPT up to a factor (1/

√
d )k . We

also note that the quantum circuit in Fig. 1(c) is actually a
way to prepare a given MPS on a quantum computer, known
as the sequentially generated multiqubit state [27].

III. EFFICIENT OQE RECONSTRUCTION ALGORITHM

In the following we will first present an efficient algorithm
to reconstruct the PPT based on experimental measurements,
and then we show that the OQE can be reconstructed based
on the obtained PPT with little or no additional effort. Since
the process tensor is simply related to the PPT [see Eq. (4)],
it can also be straightforwardly computed based on the
obtained PPT.

The quantum circuit implementation of the (purified)
process tensor as a many-body quantum state immediately
motivates us to apply the techniques used for many-body
QST for process tensor tomography. It has been shown that
for pure or fairly pure (a mixed quantum state which can be
written as the sum of a few pure states [28]) quantum states
there exist efficient tomography algorithms with guaranteed
convergence, which scales only linearly with the system
size [29–31]. These algorithms, however, do not work for a
generic MPDO since the latter could easily represent highly
mixed quantum states even with a very small bond dimension
(1, for example). Nevertheless, as we have pointed out, the
process tensor is a very special MPDO, and we will show that
it allows efficient tomography if one assumes that the size of
the unknown environment is bounded by some integer D (also
see Refs. [32,33] for a heuristic tensor network-based machine
learning algorithm to directly reconstruct the process tensor as
an matrix product operator).

Instead of directly reconstructing the process tensor, we
will reconstruct the PPT instead, which can be done with
tomography of the output quantum state of the quantum circuit
in Fig. 1(c). At first sight this seems impossible due to the
existence of the environment index in the circuit, which is
assumed to be not directly accessible. However, as will be
shown, we could freely select a particular environment basis
in the end since it does not affect the process tensor (the PPT
itself is not directly experimentally measurable and could be
dependent on the environment basis). Following Ref. [29], and
assuming that the unknown environment has a size bounded
by D, one can apply a disentangling quantum circuit onto the
(unknown) PPT and get

O f · · · O1O0|ϒk:0〉 = |0〉 f :0 ⊗
∑

s

λs|as〉|bs〉E , (6)

with κ = 
logd2 (D)� + 1, f = k − κ + 1, and k the total
number of time steps (sites). |0〉 f :0 means the product state
of |0〉 for site 0 and |00〉 for sites 1 to f . Oj is the jth disen-
tangling gate acting on κ sites from j to j + κ − 1, defined
as [29]

Oj =
d2−1∑

r=0

d2(κ−1)−1∑

r′=0

|r〉1 ⊗ |r′〉κ:2〈φrd2(κ−1)+r′+1|κ:1, (7)
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FIG. 2. Demonstration of the efficient purified process tensor
tomography algorithm for a four-step purified process tensor, where
we have assumed that the environment size D � d4. The unitary
gate Oj is the jth disentangling operator in Eq. (7). |as〉 is the sth
eigenstate of the reduced density matrix on the last two sites, and λs

is the square root of the corresponding eigenvalue.

where |r〉1 denotes the computational basis for site j and
|r′〉κ:2 the computational basis from sites j + 1 to j + κ − 1,
and |φl〉 denotes the lth eigenstate of the reduced density
matrix (reduced process tensor) ϒ j+κ−1: j obtained by local
QST of sites j to j + κ − 1 after the previous gate operations
O0 to Oj−1 have been applied (the |φl〉s are sorted accord-
ing to the eigenvalues from large to small). |as〉 and λ2

s are
the eigenstates and eigenvalues of ϒk:k−κ+1, which can be
obtained by local QST of the last k − κ sites after all the
gate operations have been applied. |bs〉E is a set of unknown
orthogonal states for the environment. Since we can arbitrarily
change the environment basis without any observable effects
(the environment will be traced out when computing the pro-
cess tensor or any observables), we can simply choose |bs〉E

as the computational basis, denoted as |s〉E . Therefore the
quantum state on the right-hand side of Eq. (6) is fixed, and we
can easily obtain the PPT as an MPS on a classical computer
by applying the inverse of the disentangling quantum circuit
onto this state, namely,

|ϒk:0〉 = O†
0O†

1 · · · O†
f |0〉 f :0 ⊗

∑

s

λs|as〉|s〉E . (8)

This purified process tensor tomography algorithm requires
k − κ + 2 local QSTs on κ sites, as demonstrated in Fig. 2;
therefore the complexity of this algorithm is O((k − κ + 2) ×
d2κ ) (the complexity of the intermediate gate operations is
ignored).

From Eq. (2), the hidden OQE model can be straightfor-
wardly obtained once we have obtained the MPS for a k-step
PPT. In principle one only needs to prepare the obtained MPS
into the right-canonical form, and then the site tensors will
naturally reveal the hidden OQE model; that is, the first site
tensor is the SE initial state and the rest are the SE unitary
evolutionary operators. However, in general a site tensor sat-
isfying the right-canonical condition does not guarantee that
it is a unitary matrix as in Eq. (2) up to the factor 1/

√
d [the

unitary property of the site tensor implies the right canonical
condition in Eq. (3) but the reverse is not true]; the latter is
only guaranteed by the physics: the obtained MPS has to result
from some hidden OQE model since it is the most general
description of an open quantum dynamics [1]. In practice,
if one loses some precision during the PPT tomography, this
property will not exactly hold. Nevertheless, we could enforce
a unitary SE evolutionary operator for each time step by an ad-
ditional maximally likelihood estimation (MLE). Concretely,
one can first find the unitary matrix Ũj: j−1 closest to each

B
ij−1,o j
α j−1,α j obtained from the PPT tomography (this step is not

necessary but could be helpful to obtain a good starting point
for the next step), then one can further optimize each Ũj: j−1

by minimizing the loss function

loss(Ũ1:0, . . . , Ũk:k−1) = ||ϒ̃k:0〉 − |ϒk:0〉|2, (9)

where | · |2 means the square of the Euclidean norm. |ϒk:0〉
means the PPT obtained from tomography and |ϒ̃k:0〉 is the
predicted PPT obtained by substituting all Ũj: j−1 into Eq. (2).
We note that the MLE procedure is purely done on a classical
computer.

In certain cases one may assume that the influence of the
environment on the system does not change with time; that is,
there exists an OQE model with a constant evolutionary oper-
ator for any time step. Under this assumption, one can again
first obtain a Ũ that is closest to some B

ij−1,o j
α j−1,α j with a large j,

and then obtain the optimal OQE model by minimizing the
loss function

lossc(|ψ̃SE 〉, Ũ , Ũ E ) = |Ũ E |ϒ̃k:0〉 − |ϒk:0〉|2, (10)

where |ψ̃SE 〉 is a parameterized pure SE initial state [cor-
responding to Ũ1:0 in Eq. (9)], and |ϒ̃k:0〉 is obtained by
substituting |ψ̃SE 〉 and Ũ into Eq. (2). Ũ E is a parameterized
unitary matrix acting on the environment only and is added to
compensate the specific choice of basis for the final environ-
ment in Eq. (8). Ũ E is not needed in Eq. (9) since it can be
absorbed into Ũk:k−1.

A toy model

To demonstrate the reconstruction algorithm for the PPT
and the hidden OQE, we consider a simple toy model in
which a quantum system with Hilbert space size d is coupled
to an environment with size D. The SE unitary evolutionary
operator is assumed to be

U = e−i(ISE +ηHSE ), (11)

where ISE is the identity matrix and HSE is a random Hermi-
tian matrix generated by the normal distribution. We consider
a separable SE initial state for briefness:

|ψSE 〉 = |ψS〉 ⊗ |ψE 〉, (12)

where |ψS〉 and |ψE 〉 are both randomly generated.
Concretely, we consider d = 2, D = 5, and η = 0.1 in our

numerical simulation. Our reconstruction algorithm runs in
two stages. In the first stage we use the efficient PPT tomog-
raphy algorithm to reconstruct the k-step PPT based on the
quantum circuit implementation of the PPT in Fig. 1(c), and
in the second stage we further minimize the loss function in
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Eq. (10) based on the obtained PPT to reconstruct the OQE
model. It turns out that in the second stage k = 3 is enough for
us to accurately reconstruct the OQE model, thus we focus on
reconstructing the three-step PPT in the first stage (for which
there are four sites in total). For D = 5 we have κ = 3; as
a result in the first stage we need to do two three-site QSTs
to get ϒ0:2 and ϒ1:3, plus a final two-site QST to get ϒ2:3.
The detailed procedures are shown as follows. First, we obtain
ϒ0:2 by a local QST of the 0th to 2nd sites; we diagonalize
ϒ0:2 and find that it only has five nonzero eigenvalues. With
the information of the nontrivial eigenpairs of ϒ0:2, we can
construct a unitary operator O0 according to Eq. (7), which
acts on the 0th to 2nd sites. Then applying O0 onto the PPT
(the output of the quantum circuit in Fig. 1(c)], the 0th site
will be disentangled with the rest of the sites and we do a
local QST of the one to three sites in the next to get ϒ1:3.
With ϒ1:3 we can compute O1. By applying O0 and O1 onto
the PPT, we disentangle the 0th and 1st sites from the rest and
then we do a local QST on the 2nd to 3rd sites to obtain ϒ2:3.
Diagonalizing ϒ2:3, we obtain λs and |as〉 as shown in Fig. 2.
After that, the PPT |ϒ0:3〉 is simply obtained as an MPS using
Eq. (8). We note that in the PPT tomography algorithm the
exact value of D does not have to be known beforehand; it can
be determined by counting the number of nonzero eigenvalues
of ϒ0:2 and ϒ1:3 instead.

The site tensors in the obtained |ϒ0:3〉 are in general site-
dependent even if they are generated by a time-independent
unitary operator U . To enforce a site-independent Ũ we can
further minimize the loss function in Eq. (10) in the second
stage [the simplification caused by a separable SE initial state
as in Eq. (12) is that we do not need to consider |ψ̃SE 〉 in
Eq. (10), since we can simply choose |ψE 〉 = |0E 〉 for the
environment and system index o0 is separable from the rest
of the PPT]. In particular, we gradually increase k from 1 to
3 in Eq. (10), and the optimal Ũ obtained for smaller k is
used as the initial guess for minimization with larger k. Once
we obtain the final optimal Ũ , we know all the information
of the non-Markovian quantum dynamics [we can compute
any k-step process tensor by substituting Ũ into Eq. (1)]. As
an example, we compute the four-site reduced process ten-
sors ϒ̃ j+3: j and compare them with the exact ones computed
by substituting U directly into Eq. (1), which are shown in
Fig. 3. We can see that Ũ obtained with k = 3 already predicts
ϒ̃ j+3: js, which are in excellent agreement with the exact ones.

We note that as a proof of principle demonstration of
the reconstruction algorithm we have not considered the
imperfections during the PPT tomography. The BFGS algo-
rithm [34] is used to minimize the loss function in Eq. (10)
in the second stage, and automatic differentiation is used to
compute the gradient efficiently [35].

IV. MEMORY SIZE AND MEMORY COMPLEXITY

In the following we will define the memory size and
memory complexity for the non-Markovian open quantum
dynamics, which are directly related to the complexity of
reconstructing the PPT and the hidden OQE model. These
two quantities also characterize the quantum process defined
in Eq. (1) and are deeply related to the ε-machine.
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FIG. 3. Demonstration the tomography algorithm for recon-
structing the hidden OQE model. The x axis is the time step j. The
y axis is the infidelity I = 1 − F (F (ρ, σ ) = tr2(

√√
ρσ

√
ρ ) is the

quantum fidelity between two mixed states ρ and σ ) between the re-
duced four-step process tensor ϒ j+3: j computed from the exact OQE
model, and ϒ̃ j+3: j predicted from the reconstructed OQE model. The
black solid and dashed lines correspond to the results obtained by
minimizing the loss function in Eq. (10) with k = 2, 3 respectively.
The non-Markovian open quantum dynamics of the system is gener-
ated by a hidden OQE model with the unitary evolutionary operator
U in Eq. (11) (with d = 2, D = 5, η = 0.1) and the SE initial state
in Eq. (12).

Before introducing these two concepts, we first note that it
has been shown that a classical stochastic process can also be
simulated by the OQE model on a quantum computer, referred
to as the q-simulator [36]. The q-simulator is a more efficient
description of the classical stochastic process in that the envi-
ronment size in a q-simulator could be exponentially smaller
than the number of causal states in the ε-machine [37,38].
Moreover, the q-simulator has a one-to-one correspondence
with an infinite MPS (iMPS) representation [39]. (In the clas-
sical case one is often interested in the stationary stochastic
process, which would be described by an iMPS; a nonstation-
ary stochastic process will correspond to a finite MPS instead
as considered in this work.)

Drawing the similarity to the q-simulator and the iMPS
representation for the classical stochastic process, we define
the memory size of a quantum process after time step j,
denoted as D j , as the Schmidt rank of the PPT in Eq. (2) at
the jth bond (the leg corresponding to α j):

D j = dim(α j ), (13)

which is the size of the minimal environment at the jth bond
which generates the next evolution. We also define the mem-
ory complexity of a quantum process after the jth time step as
the quantum Rényi entropy of the PPT [39]

Cγ

j = 1

1 − γ
log2

[
tr
(
ϒ

γ

j:0

)]
. (14)

The memory complexity defined in Eq. (14) can also be
interpreted as the entanglement entropy of an effective envi-
ronment state ρE

j after time step j, which carries all the history
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information before (and include) the jth time step. Concretely,
ρE

j is defined recursively as

ρE
j = ←−

Tj
(
ρE

j−1

) =
∑

i j−1,o j

(Bij−1,o j )†ρE
j−1Bij−1,o j , (15)

with ρE
0 = trS (ρSE

0 ) and Tj the jth transfer matrix of the PPT:

Tj = ∑
i j−1,o j

(Bij−1,o j )∗ ⊗ Bij−1,o j [21,22].
←−
Tj denotes the ac-

tion of Tj on a state from the left. Matrix multiplication is
understood for the environment indices in Eq. (15). Since the
PPT in Eq. (2) is right-canonical, ρE

j is related to ϒk: j+1,E

(the reduced density matrix of |ϒk:0〉 corresponding to sites
j + 1 to k, plus the environment αk) by an isometry (since
each B

ij−1,o j
α j−1,α j is an isometry from the Hilbert space HE to

HE ⊗ HS ⊗ HS). As a result ρE
j has the same entanglement

entropy as ϒk: j+1,E (thus also the same as ϒ j:0 since ϒ j:0 and
ϒk: j+1,E are the two bipartition reduced density matrices of
the PPT |ϒk:0〉, which is a pure state). Therefore the memory
complexity in Eq. (14) also measures the entropy of ρE

j . The
importance of ρE

j can be further seen by considering a “local”
measurement M j (written as a matrix Moj ,o′

j
)

tr(M jϒ j:0 ) = 〈ϒ j:0|M j |ϒ j:0〉 =
∑

i j ,o j ,o′
j ,α j−1,α

′
j−1,α j

ρE
α j−1,α

′
j−1

B
ij−1,o j
α j−1,α j Moj ,o′

j

(
B

ij−1,o′
j

α′
j−1,α j

)∗
, (16)

where “local” means that we perform preparations and mea-
surements at all the previous time steps before j (instead of
doing nothing) but average over them. From Eq. (16) we can
see that to compute a local observable at time step j, all one
needs from the past is ρE

j−1. In other words, ρE
j−1 contains all

the history information and fully determines the future quan-
tum process and thus naturally corresponds to the distribution
of the causal states in the ε-machine.

Now we can draw the connections between the classical
stochastic process and the quantum process a step further.
We have shown that the process tensor corresponds to the
conditional probability on the histories, and that the OQE
model corresponds to the ε-machine (more precisely the
ε-transducer [40,41]). From the discussions above, we can
further see that the minimal environment corresponds to the
space spanned by all the memory states in the ε-machine and
thus can be interpreted as the memory space. The memory size
(the Schmidt rank of the PPT) is simply the size of the mem-
ory space. The effective environment state ρE

j corresponds
to the (stationary) distribution of the classical causal states.
The memory complexity corresponds to the classical memory
complexity defined as the Rényi entropy of the (stationary)
distribution of the causal states.

Additionally, we have the following theorem for the mem-
ory complexity of a quantum process defined in Eq. (1).

Theorem 1. Assuming that the non-Markovian open quan-
tum dynamics is generated by a hidden OQE model which
is time-independent with an environment size D, and that the
dominate eigenstate of the transfer matrix T is nondegener-
ate, then D∞ = D, Cγ

∞ = log2(D) if ρSE
0 is a pure state, and

D∞ = dD2, Cγ
∞ = Cγ

0 + log2(D) if ρSE
0 is a mixed state with

entanglement entropy Cγ

0 .
Proof. For pure ρSE

0 , it suffices to show that ρE
∞ =

IE/D. For mixed ρSE
0 with purification denoted as |ρSE

0 〉 =∑
s λs|xs〉|ys〉, where |xs〉 is an external orthogonal basis

set, |ys〉 an orthogonal basis set of the environment, and
λs the Schmidt numbers, it suffices to show that ρE ′

∞ =∑
s λ2

s |xs〉〈xs| ⊗ IE/D, where E ′ denotes the enlarged envi-
ronment including the external basis. More details of the
proof can be found in the Appendix. Interestingly, based on
Theorem 1, one could use Cγ

k to detect the memory size Dk

for a quantum process with large enough k, since the former
is experimentally accessible [42,43].

From the above theorem we can see that the complexity
of the PPT tomography (thus also the complexity of the re-
construction algorithm for the hidden OQE model) shown in
Sec. III is bounded by O(kd2D∞) = O(kd22Cγ

∞ ) (for time-
independent U we may be able to reconstruct the OQE model
more efficiently with a very small k, as demonstrated in the
toy model in Fig. 3). The growths of the memory complexity
and the memory size with the time step are shown in Fig. 4,
where the non-Markovian open quantum dynamics of the
system is generated by a hidden OQE model with the unitary
evolutionary operator in Eq. (11), but with the initial states
to be randomly generated pure or mixed states which are not
separable. We can see that both of them converge to their
limiting values as predicted in Theorem 1.

V. DISCUSSION AND CONCLUSION

The foundations of the process tensor framework are laid
in Ref. [15], which (1) provides a formal definition of the
process tensor as a natural generalization of the quantum
map and (2) shows that the process tensor can be written as
a matrix product density operator. Our work provides some

10 20 30 40 50
j

1

2

3

4

5

C1 j

(a)

10 20 30 40 50
j

0

20

40

D j

(b)

FIG. 4. (a) The memory complexity C1
j and (b) the memory

size D j as a function of the time step j. The yellow (upper) and
green (lower) dashed lines are results for pure and mixed system-
environment initial states, respectively, while the yellow (upper) and
green (lower) solid lines are the corresponding theoretical limits. The
unitary evolutionary operator U is generated by Eq. (11) in the same
way as Fig. 3, while the pure and mixed system-environment initial
states are randomly generated and are entangled.

022411-6



RECONSTRUCTING NON-MARKOVIAN OPEN QUANTUM … PHYSICAL REVIEW A 106, 022411 (2022)

major extensions of the process tensor framework, which are
summarized as follows: (1) We propose to work with the
purified process tensor, which can be written as a matrix
product state and is more informative compared to the pro-
cess tensor since the site tensors of the PPT directly reveal
the hidden OQE model (the 0th site tensor corresponds to
the SE initial state and the rest correspond to the discrete
unitary evolutionary operators). (2) We present an efficient
purified process tensor tomography algorithm which scales
linearly with the number of time step k. (3) We draw the deep
connections between the quantum process and the classical
stochastic process by showing the similar role of the hidden
OQE for the quantum process and the ε-machine for the clas-
sical stochastic process; in particular we define the memory
complexity and memory size for a quantum process, which are
in parallel to the corresponding definitions for the ε-machine
and which characterize the complexity of our reconstruction
algorithm. Therefore, this work provides a systematic ap-
proach to fully characterize generic non-Markovian quantum
dynamics based only on experimentally measurable quantities
(multitime measurements), and it could be a useful technique
to study non-Markovian noises on near-term quantum devices.
A promising future research direction could be to study the
non-Markovian memory effects induced by an infinite envi-
ronment based on the purified process tensor.

The code for the numerical examples used in this work can
be found at [44].
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APPENDIX: DETAILED PROOF OF THEOREM 1

In case U is assumed time-independent, we have

ρE
j = ←−

T j
(
ρE

0

)
; (A1)

as a result ρE
j will converge to the left dominate eigenstate

of T with the largest eigenvalue [22]. We assume that the
dominate eigenstate of T is nondegenerate, which is similar
to an ergodic requirement on U [39].

First, we will prove that any left eigenstate of T has an
eigenvalue smaller or equal to 1. We will also use a single
index σ j to denote the tuple (i j−1, o j ) for j > 0 for briefness.
For any basis |a〉〈b| of the density matrix of the environment,
we have

|←−T (|a〉〈b|)|2 =
∑

σ,σ ′,α,α′

(
Bσ

a,α′
)∗

Bσ
b,αBσ ′

a,α′
(
Bσ ′

b,α

)∗
. (A2)

Now we define two matrices

X σ,σ ′
a =

∑

α′
Bσ

a,α′
(
Bσ ′

a,α′
)∗

, (A3)

Y σ,σ ′
b =

∑

α

Bσ
b,α

(
Bσ ′

b,α

)∗
, (A4)

which are semipositive and Hermitian matrices by definition.
We can also see that tr(X ) = ∑

α′,σ Bσ
a,α′ (Bσ

a,α′ )∗ = 1 since B

is right-canonical, and the same for Y . Then Eq. (A2) can be
written as

|←−T (|a〉〈b|)|2 = tr(X †Y ) �
√

tr(X †X )
√

tr(Y †Y )

=
√

tr(X 2)
√

tr(Y 2) �
√

tr2(X )
√

tr2(Y )

= tr(X )tr(Y ) = 1, (A5)

where the second step in the first line of Eq. (A5) follows
from the Cauchy-Schwarz inequality, and the inequality in the
second line is due to the semipositivity of X and Y . Equality
holds only if a = b. Thus for any state ρ = ∑

a,b ρa,b|a〉〈b|,
we have

|←−E (ρ)|2 =
∣∣∣∣∣
∑

a,b

ρa,b
←−
E (|a〉〈b|)

∣∣∣∣∣

2

� |ρ|2|←−E (|a〉〈b|)|2 = |ρ|2,

(A6)
and therefore any left eigenvector of T has an eigenvalue that
is not greater than 1.

Second, we show that the maximally mixed state ÎE/D is
both a left and right eigenvector of T with eigenvalue 1. This
immediately follows since Bσ is both left- and right-canonical
(except for the first site, Bo0 , which does not matter for large
time steps). Thus the first part of Theorem 1 is proved.

Now we proceed to prove the second part of Theorem 1 for
mixed system-environment initial state. In this case we need
to first purify the initial state with dD external basis |xs〉 as

∣∣ρSE
0

〉 =
∑

s

λs|xs〉|ys〉. (A7)

Accordingly the site matrix should be enlarged to

Bσ ′ = Bσ ⊗ ISE . (A8)

The enlarged transfer matrix T ′ = ∑
σ ′ (Bσ ′

)∗ ⊗ Bσ ′
is cer-

tainly degenerate. We note that the traceless matrices span
a linear subspace which is orthogonal to the maximally en-
tangled state and that the transfer matrix maps only traceless
matrices to traceless matrices due to trace preservation. Then
since the largest eigenvalue is assumed to be nondegenerate,
all the traceless matrices must have eigenvalues strictly less
than 1. From Eq. (A7), the enlarged effective environment
state ρE ′

0 , which includes the original environment plus the
external basis |xs〉, can be written as

ρE ′
0 =

∑

s,s′
λsλs′ |xs〉〈xs′ | ⊗ trS (|ys〉〈ys′ |). (A9)

Then we have

ρE ′
j = ←−

T ′ j
(
ρE ′

0

) =
∑

s,s′
λsλs′ |xs〉〈xs′ | ⊗ ←−

T ′ j[trS (|ys〉〈ys′ |)].

(A10)
For s = s′, we have trE [trS (|ys〉〈ys′ |)] = 〈ys′ |ys〉 = 0, namely,
trS (|ys〉〈ys′ |) is a traceless density matrix of the environment.
Thus from the previous arguments the state trS (|ys〉〈ys′ |) lives
in a subspace with eigenvalue strictly less than 1, and we have←−
T ′ ∞[trS (|ys〉〈ys′ |)] = 0. As a result, for j → ∞, Eq. (A10)
becomes

ρE ′
∞ =

∑

s

λ2
s |xs〉〈xs| ⊗ IE/D. (A11)

Thus the second part of Theorem 1 has been proved.
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