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Coherent Ising machine with quantum feedback: The total and conditional master equation methods
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We give a detailed theoretical derivation of the master equation for the coherent Ising machine. This is a
quantum computational network with feedback, that approximately solves NP-hard combinatoric problems,
including the traveling salesman problem and various extensions and analogs. There are two possible types
of master equation, either conditional on the feedback current or unconditional. We show that both types can be
accurately simulated in a scalable way using stochastic equations in the positive-P phase-space representation.
This depends on the nonlinearity present, and we use parameter values that are typical of current experiments.
While the two approaches are in excellent agreement, they are not equivalent with regard to efficiency. We find
that unconditional simulation has much greater efficiency, and is more scalable to large sizes. This is a case where
too much knowledge is a dangerous thing. Conditioning the simulations on the feedback current is not essential
to determining the success probability, but it greatly increases the computational complexity. To illustrate the
speed improvements obtained with the unconditional approach, we carry out full quantum simulations of the
master equation with up to 1000 nodes.
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I. INTRODUCTION

The coherent Ising machine (CIM) is a type of compu-
tational device which operates in a fundamentally different
way from both classical and gate-based quantum computers.
It has been known for a while that there is a wide variety of
computationally challenging (NP-complete or NP-hard) [1,2]
problems that can be mapped onto the Ising model. This is a
simple model consisting of binary variables, usually identified
with spins in a magnetic material which interact both locally
and nonlocally to give a Hamiltonian model whose ground
state is the solution to the computational problem. Originally,
the model corresponded to spins interacting with an external
magnetic field and with each other through spin-spin cou-
pling. Since a true Ising model using physical spins is difficult
to manipulate experimentally, the CIM aims to simulate it,
using continuous variables in a nonequilibrium setup whose
steady state closely resembles the Ising model. The largest
experiments of this type [3] use a measurement-feedback
strategy [4].

We compare two different techniques of simulating the
measurement-feedback CIM using the positive-P phase-space
representation [5,6], which is an exact mapping of quan-
tum dynamics to stochastic equations. Phase-space simulation
using the positive-P representation provides a convenient,
scalable way to simulate the nonlinear system dynamics
of some types of complex, dissipative quantum systems
without the need to make approximations. Except for rare
cases with very low losses, where nonvanishing boundary
terms are present, this method gives quantitative predictions.
We show that there is no need to make any approxima-
tions of the system equations [7–9]. However, simulating
the system dynamics is complicated by the homodyne

measurement used for feedback, which causes a partial
collapse of the system wave function according to the mea-
surement outcome.

The measurement outcome is partly determined by quan-
tum noise at the measurement site. As a result, the quantum
dynamics follows a conditional master equation due to the
noisy outcome of the measurement feedback. Here we derive
the multimode conditional master equation as a stochastic
equation in the Stratonovich calculus. The operator associ-
ated with the wave-function collapse leads to terms which do
not correspond to a conventional Fokker-Planck equation in
a phase-space representation, and a weighted simulation is
required [10]. It is also possible to consider an average over
the feedback, giving an unconditional master equation. Both
types of equation can be exactly simulated with the positive-P
phase-space method, and we show that they lead to identical
success rate predictions.

The original gedanken experiment [11–13] used laser
pulses impinging on multiple degenerate parametric oscilla-
tors (DPOs) [6,14], realized by a nonlinear medium in an
optical cavity. At a certain pump strength, each DPO becomes
a bistable system, with quantum states that are associated with
the binary variables of the Ising model, and can be coupled to
each other. Hence, an ideal DPO-based CIM is a true quantum
system, with transient states that are like a Schrödinger cat
state of the form |α〉 + | − α〉 [15–17], when losses are very
low. Therefore, it has the potential to be subject to quantum
enhancement, which may contribute to steering the system
into the desired steady state, approximately equivalent to an
Ising ground state. The significance of such effects is still sub-
ject to investigation. There are also other types of realization
of the CIM via electronic or digital circuits that simulate the
dynamics in a classical regime [18].
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In the first practical realizations of the CIM the DPO itself
was a localized pulse stored in an optical fiber loop [19,20].
Effective spin-spin interactions are obtained using an optical
delay-line (ODL)-CIM that redirects part of the time-delayed
signal back into the fiber loop, allowing different pulses to
interact. While this architecture has many advantages, its
principal disadvantage is that it is difficult to scale up to
include large numbers of spins. Due to the close similarity
of superconducting and optical parametric amplifiers, it may
be feasible to realize this type of device in a superconducting
waveguide. Much stronger quantum effects are known in such
cases [21], and quantum tunneling is possible [22–24].

A different version of the CIM, commonly called a
measurement-feedback or MFB CIM, was developed a few
years later [3,4,25–27]. Here, the signal state is observed via
a homodyne detector and the feedback strength is calculated
electronically based on the measurement. A feedback signal is
then generated from the pump pulse and fed back into the loop
after a variable time delay. This architecture has the great ad-
vantage of being very well suited for the simulation of systems
of a large number of Ising spins. It has been demonstrated
most impressively in a recent experiment of a measurement-
feedback-type CIM involving 100 000 spins [3].

Phase-space approaches have proved the only practical,
scalable way to treat large quantum networks. These are based
on earlier multimode quantum field simulations [28–30], and
have already been used to analyze Gaussian boson sampling
quantum computers [31]. Equations based on an approximate
phase-space approach are known for an ODL-CIM [13,32]
and for an MFB-CIM architecture [4]. These use a modi-
fied Wigner representation [33], which truncates third- and
higher-order derivatives in the corresponding Fokker-Planck
equation. Exact positive-P equations of motion [5] that do not
require truncation are given both for the ODL [32,34] and for
the MFB-type CIM [35]. A scheme for weighted phase-space
simulations involving the conditional master equation of a
MFB-type CIM is known [25]. Discrete-time descriptions of
the MFB-type CIM have been published [26,36], which use a
simplified Gaussian phase-space representation [37].

The term scalable refers here to the polynomial-time so-
lution of the CIM simulations for the given parameters and
feedback method. There is no evidence of sampling error
limitations, but the observed efficient sampling may not hold
for stronger couplings, or different feedback regimes. We
do not claim that our method can accurately solve NP-hard
problems in a polynomial time, which is generally regarded as
impossible on a digital computer. However, these simulations
provide a useful way to quantitatively understand the physics
and expected performance of this quantum technology. Ap-
proximate but fast quantum hardware solutions of these types
of problem can be extremely useful in practical applica-
tions. There can still be an experimental “quantum advan-
tage” if classical polynomial-time simulation is slower than
experiment.

In this article, after reviewing the topic of quantum
measurement-feedback systems in general, we present two
ways in which the system quantum dynamics can be simulated
using exact phase-space techniques. These correspond to the
conditional and unconditional master equations approaches.
Full conditional simulation leads to an ensemble of weighted

trajectories through which the quantum master equation con-
ditioned on the feedback currents can be simulated [10]. It is
a relatively complex method due to the fact that it requires a
careful rebalancing of the weight distribution to prevent nu-
merical instabilities from exponential growth in the weights.
Alternatively, the full unconditional master equation can be
treated using unweighted stochastic trajectories, which yields
ensemble averages of quadrature measurements.

We compare the simulation outcomes and performance
of the two methods. They agree with each other extremely
well in modeling success rates of the feedback CIM. From a
computational point of view, we find that the unconditional
method is greatly preferred. As it requires computing and
rebalancing weights, the conditional algorithm is more com-
plex. This approach also requires orders of magnitude more
stochastic trajectories to give accurate predictions. The large
speed improvement in unconditional simulations is especially
important in light of the large size of recent measurement-
feedback-type CIM experiments.

II. THE COHERENT ISING MACHINE

A. The Ising model

The Ising model was formulated almost a century ago
[38,39] to model ferromagnetism and related phenomena. It is
a very simple theory, consisting of discrete variables σi, indi-
cating the nuclei’s magnetic spins. These are oriented either
“up” or “down,” corresponding to σ = ±1. The spins now
interact with each other through spin-spin interaction and with
an external magnetic field. The Ising model Hamiltonian is

H = −
∑
i, j

Ji jσiσ j −
∑

i

hiσi, (2.1)

where J is the coupling matrix and h is proportional to the
possibly inhomogeneous magnetic field strength.

Apart from its usefulness in explaining ferromagnetism,
the Ising model has another interesting feature: a wide variety
of computationally challenging (NP-complete or NP-hard)
problems can be mapped onto it via changing the coupling
matrix and investigating the corresponding ground state. As an
example, consider the so-called max-cut problem (see Fig. 1).
The problem statement is as follows:

Given an undirected graph G = (V, E ) where V = {vi} is
the set of vertices and E = {ei} is the set of edges and a
weight function w : E → R+, find the bipartition (cut) into
sets V = U � W with the highest sum of “weights along
the cut line,” that is, maximize f ≡ ∑

i w(ei ), where ei =
{u,w}, u ∈ U,w ∈ W .

The way to map this problem onto the Ising model is to
identify each vertex with a certain spin. The interaction matrix
is set to the negative of the weights between the nodes (zero if
there is no edge) and the external magnetic field is set to zero.
The spin states then indicate whether a vertex belongs to set
U or W . Upon inspecting the system Hamiltonian, one finds
that

H = −
∑
i, j

Ji j + 2
∑

(i, j)∈�

Ji j

= C + 2
∑

(i, j)∈�

Ji j, (2.2)
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FIG. 1. Example of a max-cut problem. The red line indicates
a proposed decomposition (“cut”) into two graphs. The problem
consists of bisecting the given graph while maximizing the sum of
weights along the cut.

where � is the set of indices (i, j) such that vi ∈ U, v j ∈ W
or vice versa. Since the total sum of weights C = −∑

i, j Ji j is
fixed, minimizing H will maximize the sum of “cut” weights
(since Ji j � 0 by construction).

Due to the absence of Zeeman terms, the mapping be-
tween the max-cut problem and the Ising model is possibly
the most natural and well-known one; however, a plethora of
other interesting and computationally challenging ones can be
mapped to the Ising model in a similar well.

It is perhaps surprising, given how ubiquitous systems that
are described by the Ising model are in nature, that it could
theoretically be used to facilitate solving all these compu-
tational problems. In light of this, is it possible to build a
(special-purpose) computational machine, in which the calcu-
lation is “carried out” by magnetic spins and their interactions
with each other and with an external magnetic field?

For such a machine, one would have to be able to (i)
accurately set the interaction matrix J and external magnetic
field hi to arbitrary values; (ii) significantly reduce or miti-
gate the influence of external perturbations, such as thermal
fluctuations; and (iii) accurately determine the spin states at
the end of the “computation phase.” These requirements alone
already pose significant challenges if one attempted to use
the magnetic spins of single atoms for which the Ising model
was original formulated. Additionally, it might be desirable to
control the initial state of the system as well as have some sort
of mechanism to increase the chance of the system evolving
into its ground state instead of a local minimum, which would
constitute additional challenges.

B. CIM architectures

In the setup of the coherent Ising machine, a nonlinear
material is embedded in a ring cavity. Instead of using mul-
tiple DPOs to represent the different spin states, the DPO is
operated (pumped) in a pulsed way such that all spin states
of the system are represented by the same DPO at different
times. This means, for an Ising model with N spins, the
DPO will represent the spin states σ1 during the first pulse,

(a)

(b)

FIG. 2. Two different CIM architectures. (a) The optical delay
lines type of the CIM. Here, the feedback is generated by redirecting
part of the signal pulses through optical lines adjusted in length to
match up with different pulses at the injection coupler site. (b) The
measurement-feedback architecture, where the pulses are measured
by a homodyne detector. The measurement is digitized and the
feedback is calculated via an FPGA. Based on the calculation, an
output pulse is generated which is redirected into the ring cavity.
Here, “O.c.” and “I.c.” stand for “Output coupler” and “Injection cou-
pler,” respectively. Redrawn, following the original published figure
in [40].

σ2 during the second pulse, etc., eventually representing σN ,
before representing σ1 again in the next pulse.

The obvious missing ingredient is the interaction between
spins, as specified by the J matrix as well as with the external
magnetic field hi. There are, as of the writing of this article,
two ways by which this is achieved (see Fig. 2).

The first one is through optical delay lines [19]. Here, a part
of the signal is extracted with an output coupler, amplified
by a phase-sensitive amplifier and led through a number of
optical lines before being fed back into the ring cavity with
an injection coupler. These optical lines are adjusted in length
such that two different optical pulses are produced when the
delayed signal is fed back into the cavity. Within the delay
lines, the signal is adjusted through amplification and phase
shift to match the corresponding element of the J matrix.

In the second scheme [4], a part of the signal is contin-
uously measured via a homodyne detector. The appropriate
feedback signal is then calculated electronically. Based on
this, the feedback signal is generated separately through an
intensity modulator and a phase modulator acting on the laser
beam which feeds the pump pulse. The injected signal is fed
back into the ring cavity. The calculation of the feedback sig-
nal is carried out via a field-programmable gate array (FPGA)
to minimize computation times. It might seem counterintuitive
to use electronic circuitry, here an FPGA, for the calculation
of the feedback signal—after all, is not the goal of the co-
herent Ising machine to design a computational device based
on physical processes other than (semiconductor) electronics?
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FIG. 3. Schematic figure of a degenerate parametric oscillator on
resonance. Through parametric down-conversion taking place inside
the optical cavity, absorption of a single pump photon results in two
signal photons with half its frequency.

However, the FPGA only computes a part of the problem,
namely, the magnitude of the interaction strength, while the
rest of the computation still happens “inside” the ring cavity.
On the other hand, the measurement-feedback-based CIM
architecture has significant advantages over the optical delay
lines architecture as well.

The main advantage of the optical delay lines architec-
ture is very fast operating times since no complicated logical
gates, such as an FPGA, are involved in the calculation of
the feedback strength. However, for an Ising model with N
spins and a dense J matrix, up to N − 1 optical delay lines are
required. Hence, there are inherent limitations on scalability.
Conversely, for the measurement-feedback architecture, the
FPGA poses a bottleneck in operating time. At the same time,
the system can be scaled up to include a large number of
spin states very easily due to the absence of optical delay
lines, which was demonstrated recently by an experiment of
a CIM involving 100 000 spin states [3]. Additionally, the
measurement-feedback scheme provides greater flexibility,
which makes it possible to simulate more exotic systems,
such as Ising-like models that include interactions between
three or more spins, and sophisticated protocols to increase
the likelihood of reaching the ground state.

In this paper, we obtain a complete quantum description
and a way of simulating the measurement-feedback type of
the CIM.

In the measurement-feedback architecture, the signal states
are continuously measured. Based on the measurement re-
sult, an FPGA calculates the appropriate feedback based on
the Ising model terms. Based on this calculation, a separate
signal is created and injected into the cavity. Due to the
continuous homodyne measurement that the signal states are
subject to, the wave function experiences a continuous par-
tial state collapse conditional on the measurement outcome.
This makes the formulation of the system equations for the
MFB-type CIM a more complex task compared to the ODL ar-
chitecture, as it involves the theory of measurement-feedback
quantum systems. In the following sections we first describe
a simple model of the individual DPO components, and a
general approach describing how to couple these via quantum
measurement-feedback theory.

III. DEGENERATE PARAMETRIC OSCILLATOR

In place of physical spins, the coherent Ising machine
uses a degenerate parametric oscillator (see Fig. 3) [6,41]. In
present experiments each DPO is a multimode, pulsed system
due to its traveling-wave nature [29,42]. However, to simplify

the theory, it is common to use a single-mode intracavity
model. This treats each DPO as a single supermode, which
is often valid classically [43,44], although a full multimode
treatment is required to treat all quantum noise effects, even
in mode-locked systems [45,46]. While simpler than current
fiber-optic experiments, the single-mode model treats the most
important features. It could in principle be implemented more
precisely in future experiments.

A. Single-mode DPO theory

As discussed above, we regard the CIM as a network
of single-mode DPOs. Each is essentially a χ (2) nonlinear
medium embedded in an optical or microwave cavity. It is
driven (pumped) by a laser at frequency ωp. Due to the non-
linear medium, parametric down-conversion can occur, which
leads to the creation of two photons with frequencies ωs and
ωi. Subsequently, we assume that ωi = ωs = ωp/2 and that
the cavity is resonant to both ωp and ωs. How can a nonlinear
medium inside an optical cavity then take the place of a
discrete magnetic spin?

In order to understand this, we first consider a DPO driven
by a pump field with induced amplitude Ep, which is subject
to a decay rate γp, while photons created through parametric
down-conversion, which we subsequently call the signal field,
are subject to a decay rate γs. The DPO Hamiltonian is

HDPO = ih̄
κ

2

[
ap(a†

s )2 − a†
pa2

s

] + ih̄
[
Epa†

p − E∗
pap

]
, (3.1)

where ap and as are the pump and signal field operators,
respectively, and κ is a nonlinearity parameter of the medium.
Before using a more complete quantum description later, we
first consider the evolution of the system in a classical pic-
ture. For this, we first write down the Heisenberg-Langevin
equations for the expectation values of ap and as, with the
definitions that α = 〈as〉 and αp = 〈ap〉.

To give an initial intuition about the behavior, we start
by assuming that expectation values factorize coherently,
〈a†

s ap〉 = α∗
s αp and 〈a2

s 〉 = α2
s , which gives

d

dt
αs = −γsαs + κα∗

s αp,

d

dt
αp = Ep − γpαp − 1

2
κα2

s . (3.2)

One finds three steady-state solutions for Eqs. (3.2):

αs = 0,

αp = Ep/γp, (3.3)

as well as

αs = ±
√

2

χ

[
Ep − γpγs

κ

]
,

αp = γs

κ
. (3.4)

A second-derivative test reveals that Eqs. (3.3) contain
the only stable steady-state solution for Ep < Ep,th, with Ep,th

called the threshold pump strength defined as Ep,th = γsγp

κ
,

whereas for Ep > Ep,th, Eqs. (3.3) are an unstable solution
and Eqs. (3.4) are both stable solutions. In the coherent Ising
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machine, the two distinct solutions of the DPO operated in
the above-threshold regime take the place of the discrete spin
states.

B. Quantum dynamics in phase space

The CIM is operated in a pulsed way with time-multiplexed
spin states. It nevertheless lends itself to a description of
multiple DPO states interacting simultaneously. This has an
enormous Hilbert space. Conventional number state expan-
sions cannot be used in these cases, due to the exponentially
large basis set. It is therefore essential to use a probabilistic
approach in phase space. This has been used in a number of
very large-scale quantum simulations [31,47].

Here, we want to analyze the phase-space dynamics of the
system in detail. Before looking at the multispin case, we will
summarize known results for the single-DPO system [6]. We
consider the scenario where the DPO is driven by an induced
pump rate of Ep and the pump and signal field are subject to a
decay rate of γp and γs, respectively. The system evolution is
described by the quantum master equation

d

dt
ρ = γpD[ap]ρ + γsD[as]ρ + 1

ih̄
[HDOPO, ρ]. (3.5)

The nonunitary evolution or mode damping is described
by the superoperator D[c]ρ ≡ 2cρc† − (c†cρ + ρc†c), which
treats loss through the mirrors of the DPO model cavity,
or more general types of loss in the CIM experiment. The
above equation is now studied through its equivalent positive-
P phase-space representation [5]. This represents the density
matrix through an exact expansion in terms of general off-
diagonal coherent-state projectors,

ρ =
∫

P(α,β)
|α〉〈β∗|
〈β∗|α〉 d2αd2β . (3.6)

The positive-P representation is chosen here over other
representations first because it is strictly non-negative, has a
probabilistic interpretation, and exists for all quantum states.
It also results in a second-order Fokker-Planck equation (FPE)
with positive-definite diffusion that has a corresponding
stochastic process. This is achieved without the necessity to
remove (truncate) higher-order derivative terms, which is im-
portant because equations with higher-order derivatives do not
have a stochastic equivalent.

Mapping Eq. (3.5) to the positive-P representation using
standard operator identities [6] yields

dP

dt
=

{
γp

(
∂

∂αp
αp + ∂

∂βp
βp

)
+ γs

(
∂

∂αs
αs + ∂

∂βs
βs

)

− κ
∂

∂αs
(αsβp) − κ

∂

∂βs
(βpαs)

+ ∂

∂αp

(κ

2
α2

s − Ep

)
+ ∂

∂βp

(κ

2
β2

s − Ep

)

+ κ

2

[
∂2

∂α2
s

αp + ∂2

∂β2
s

βp

]}
P, (3.7)

where α ≡ (αs, αp) and similarly for β.
Although this equation has a diffusion term which

is not positive definite, the nonorthogonal nature of the

coherent-state expansion allows one to obtain an equiva-
lent, positive-definite FPE, which can then be mapped into
equivalent stochastic equations. Equation (3.7) can be ex-
pressed through its corresponding set of stochastic differential
equations (SDEs), which are

d

dt
αs = (−γsαs + καpβs) + √

καpξ1,

d

dt
βs = (−γsβs + καsβp) + √

κβpξ2,

d

dt
αp = Ep − γpαp − κ

2
α2

s ,

d

dt
βp = Ep − γpβp − κ

2
β2

s . (3.8)

The equations at this stage can be interpreted as either
Stratonovich or Itô SDEs, since there is no difference between
the main two types of stochastic calculus [48] for these equa-
tions. The terms ξ1 and ξ2 are independent delta-correlated
Gaussian noises, so that

〈ξi(t )ξ j (t
′)〉 = δi jδ(t − t ′). (3.9)

Usually, the pump field decay rate is much higher than the
signal field decay rate, which merits the adiabatic approxi-
mation that d

dt αp = d
dt βp = 0. Assuming this, and defining

χ (α) = κEp

γp
− κ2

2γp
α2, the above SDEs reduce adiabatically

[49] to a simpler Itô-type SDE:

d

dt
αs = (−γsαs + χ (αs)βs) +

√
χ (αs)ξα,

d

dt
βs = (−γsβs + χ (βs)αs) +

√
χ (βs)ξβ . (3.10)

Based on this, one can reconstruct an adiabatic quantum
master equation and find that

dρ

dt
= 1

ih̄
[Hs, ρ] +

[
γsD[as] + κ2

4γp
D

[
a2

s

]]
ρ, (3.11)

where Hs ≡ ih̄ κεp

2γp
[(a†

s )2 − a2
s ] . It is also possible to carry out

the adiabatic elimination from the master equation, giving an
identical result [50].

The terms of Eqs. (3.10) illustrate the different physical
processes happening simultaneously in the DPO cavity. The
first term corresponds to linear decay, the second term to linear
gain due to driving, and the third term to nonlinear gain satura-
tion. The additional stochastic terms are due to quantum noise.
However, individual trajectories do not necessarily correspond
to individual experimental outcomes. From the expansion of
Eq. (3.6), we see that averages over many trajectories are
required to reconstruct even a single quantum state. Hence
there is no general one-to-one correspondence between trajec-
tories and experimental outcomes. Yet, due to the macroscopic
nature of the ground state of the CIM, and the microscopic
coherent state variance, we conjecture that one can regard the
sign of the final coherent state output at any one site as giving
the spin orientation at that site. This is confirmed, at least
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for the current parameter values, by comparisons between the
conditional and unconditional results for our simulations.

C. Relationship with neural networks

Before analyzing the CIM in a comprehensive, fully quan-
tum physical description, we briefly want to point out its
relation to neural networks. To do this, we take Eqs. (3.10)
and make a number of modifications. These simplify the equa-
tions to a classical model, which takes us very far away from
the world of quantum physics:

(a) We completely ignore the nondeterministic terms ξα ,
ξβ . In other words, instead of a stochastic differential equa-
tion, we are looking at a completely deterministic ordinary
differential equation.

(b) We assume that α = β, thus reducing the DPO to a
single equation of motion.

(c) We assume our phase-space variables are strictly real
valued.

Further, we consider a set of N DPOs, corresponding to N
spins in an Ising model. Additionally, each DPO experiences
an additional term that drives the signal mode. This term
corresponds to the signal injected by the optical delay lines or
the feedback signal in the measurement-feedback architecture
and is proportional to the interaction term in the Ising model
Hamiltonian, via a proportionality factor ζ . For simplicity, we
assume the external magnetic field (Zeeman term) to be zero.

Putting these assumptions together gives

dαi

dt
= ζ

∑
j

Ji jα j +
(

κEp

γp
− γs

)
αi − κ2α3

i

2γp
. (3.12)

Let us compare the above equation with the concept of a
neural network. A neural network broadly speaking consists
of the following ingredients [51,52]:

(1) The first is a number of units, sometimes referred to as
“cells,” carrying a real value. These units can be arranged in
multiple layers, in which case the network is referred to as a
deep neural network, though other arrangements are possible
as well.

(2) The second is a connection between the units across
different layers or units in general.

(3) The thrid is a nonlinear output function associated with
each unit. Though this might seem like an optional detail, it is
actually a crucial component. Without nonlinearities, the net-
work would be reduced to a linear function of its input values,
regardless of its number of layers and internal complexity.

We can recognize all of these ingredients in Eq. (3.12).
The variables αi take the place of the network units. The∑

j Ji jα j term represents the connection between units while
the remaining terms represent a third-order nonlinearity. Since
there are no layers here and the units are connected to each
other, Eq. (3.12) is most akin to a recurrent neural network
(RNN) architecture.

Equation (3.12), though it is an incomplete description of
the system since it does not take into account the quantum
nature of the coherent Ising machine, can nevertheless be a
useful tool to analyze the convergence properties that can be
expected.

Equation (3.12) follows the potential function

φ(αi ) = −ζ
∑
i, j

Ji jαiα j − 1

2

(
κEp

γp
− γs

)∑
i

α2
i

+ κ2

8γp

∑
i

α4
i . (3.13)

The exact shape of the energy landscape strongly de-
pends on J. The configuration that classically solves the Ising
problem constitutes the energetic minimum; however, differ-
ent configurations can (and typically do) manifest as local
minima, which poses obstacles in determining the ground
state. Stochasticity terms originating from quantum effects
and from environment interactions will contribute to exploring
the energy landscape. However, like a true Ising model, it is
possible and quite probable for the system to evolve into a
local minimum, which is not necessarily the global optimal
minimum. The likelihood of this is not only determined by
the Ising problem itself, but also by the minimization strategy
that is employed.

A simple minimization strategy consists in linearly ramp-
ing up the pump rate Ep. Similar to the single DPO, which
experiences a bifurcation when Ep reaches Ep,th, minima in the
energy landscape in Eq. (3.13) will appear or become more
pronounced with higher Ep. In comparison to a single DPO,
the pump strength at which local minima appear is usually
lower for a network of coupled DPOs. For a more gradual
increase in Ep, the local minima appear more slowly which
makes the minimization a more adiabatic one, which in turn
increases the likelihood of finding the global minimum for
the price of an overall longer simulation time. Once a certain
pump strength is reached, the system experiences a so-called
freeze-out, from which the spin states do not change any more.
This effectively marks the end of the simulation process.

Besides this simple strategy, more sophisticated ones exist
as well, which can result in a higher likelihood of reaching the
ground state.

IV. QUANTUM FEEDBACK CIM

A. Measurement-feedback theory

The framework of measurement-feedback systems was de-
veloped in the early 1990s [53–58] and is based on earlier
theories of measurement [59]. We will review the basic con-
cepts first before applying them to the CIM.

We start by considering a quantum system described by the
density matrix ρ subject to the evolution

d

dt
ρ(t ) = Lρ(t ), (4.1)

where L includes both unitary and nonunitary terms.

B. Quantum stochastic measurement equations

Next, suppose that a continuous quantum measurement of
an Hermitian operator c + c† is carried out, which in this case
is the output field proportional to the quadrature X̂ = a + a†.
The measurement outcome at time t is determined not only by
the state ρ(t ), but also by the quantum noise that is introduced
in the measurement process and cannot be eliminated by an
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improved measurement apparatus. The system state ρ(t ) par-
tially collapses based on the measurement outcome. Because
the measurement outcome is not predictable, due to quantum
noise, the state of ρ at time t + dt is not predictable either.

The measurement outcome and the evolution of ρ become
intertwined. To make this problem more tractable, one intro-
duces the conditional state ρc(t ) and measurement outcome
Ic(t ). Here, conditional refers to a specific realization of the
quantum measurement noise. As well as generating a directly
measured outcome, the measurement changes the quantum
state, in a process described by the generalized theory of
measurement effects and operations [59,60].

Assuming a detector with perfect efficiency is used, these
are obtained in this case [54] as

d

dt
ρc(t ) = [L + ξ (t )H[c]]ρc(t ) . (4.2)

Here ξ (t ) is the fluctuating part of the feedback current:

Ic(t ) = 〈c + c†〉c(t ) + ξ (t ), (4.3)

while 〈c + c†〉c(t ) ≡ Tr[(c + c†)ρc(t )], and ξ (t ) is a Gaussian
delta-correlated noise as in Eq. (3.9). The superoperator H[·],
which describes the effects of the measurement and ensures
preservation of the trace of ρc, is called the innovation opera-
tor, and is defined as

H[c]ρ ≡ cρ + ρc† − Tr[cρ + ρc†]ρ . (4.4)

The term ξ (t ) represents the quantum measurement noise.
Equation (4.2) is to be understood as an Itô-type SDE, but
with operator rather than c-number stochastic variables.

C. Itô and Stratonovich equations

For use in simulating conditional feedback, we will use
the equivalent Stratonovich master equation. These have the
advantage that they satisfy the standard rules of calculus,
and are generally simpler to integrate. The theory of this
equivalence is well understood [48]. A generic multivariate,
m-dimensional Markovian stochastic process has an Itô-type
equation

d

dt
X(I ) = A(X) + B(X)ξ(t ) , (4.5)

where A is an m-dimensional vector, B is an (m × n)-
dimensional matrix, and ξ is an n-dimensional noise corre-
lated according to Eq. (3.9). The corresponding Stratonovich-
type stochastic differential equation can be found via

d

dt
X(S) = A(X) + C(X) + B(X)ξ(t ) . (4.6)

Here, C(X) is called the Stratonovich correction term,
where

Ci(X) = −1

2

∑
k, j

∂Bik

∂Xj
(X)Bjk (X). (4.7)

For complex stochastic vectors, one can generalize this by
expanding in real and imaginary parts or by using Wirtinger
calculus. Although Eq. (4.2) is an operator equation, the
above transformation rule can be applied by considering the
quantum operators, including the density operator, as large

matrices. This way, one finds a Stratonovich correction term
as in Eq. (4.6).

Hence, for complex stochastic matrices Xi j , if μ = (i, j)
and ν = (i′, j′), one obtains

Cμ = −1

2

∑
k,ν

[
Bνk

∂

∂Xν

+ B∗
νk

∂

∂X ∗
ν

]
Bμk . (4.8)

In the cases treated here, since H[c]ρc is analytic in ρ, there
is no extra Wirtinger term from the conjugate derivative. The
resulting Stratonovich correction corresponding to the single-
mode measurement operator H[c]ρ is

CH[c]ρc = 〈c + c†〉cH[c]ρc − 1
2H[c2]ρc + 〈c†c〉ρc − cρcc†.

(4.9)

Although reported previously [61], this result is not well
known, and we give the complete proof in the Appendix.
Hence, the equivalent Stratonovich-type master equation is
therefore obtained as

d

dt
ρc = [L + ξ (t )H[c] + CH]ρc(t ) . (4.10)

For our purposes, the operator c is proportional to the operator
a of the DPO signal state, which corresponds to homodyne
detection. It is important to note that since a measurement of
c is taking place, there needs to be a loss term D[c] included in
the operator L. For example, if a homodyne detection is being
carried out, the operator D[a] is required to account for the
fact that part of the signal leaves the cavity for the detector.

Realistically, the detector will have limited detection effi-
ciency. This can be accounted for by “splitting up” the fraction
of the signal which enters the detector into a fraction which
decays without being detected and a fraction which decays
while being detected. This will be demonstrated shortly when
the measurement-feedback scheme is applied to the CIM.

D. Feedback master equations

We now wish extend the system so that it includes a
feedback which is applied to ρc based on the measurement
Ic(t ). The feedback is expressed by a superoperator K which
depends on the feedback mechanism. This may be defined as
a unitary operator via Kρ ≡ [K, ρ], where K is an arbitrary
operator. We further limit ourselves to the case where the feed-
back superoperator is a linear function of the measurement
result Ic(t ).

Between the measurement of the system state and the
application of feedback, there is always some delay time
τ . For example, in the case of our MFB CIM, there is the
propagation time between the photodetector, the FPGA, and
the signal generator as well as the calculation time of the
FPGA. Hence, in a precise description, the feedback operator
would be proportional to a retarded measurement operator,
i.e., Ic(t − τ )Kρ(t ). To simplify things, we want to take the
limit of τ → 0.

A naive approach to incorporate the feedback would then
be simply to add a feedback term Ic(t )Kρc(t ) to Eq. (4.2) to
get

d

dt
ρc(t ) = [L + ξ (t )H[c] + Ic(t )K]ρc(t ) . (4.11)
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However, this approach poses a conceptual problem, and
this equation will not be used. Even in the limit τ → 0, any
feedback based on a specific measurement happens after the
state collapse of the wave function in relation to this mea-
surement outcome. When formulating Eq. (4.11), we have not
done anything to take this causal delay into account.

In fact, with the definition of Ic(t ), Eq. (4.11) indicates that
the wave-function collapse happens simultaneously with the
feedback. In the following sections, we describe the theory
that solves this problem.

The correct expression for the feedback equation can be
found following a derivation in [53]. Here, the action of the
feedback is accounted for via an exponential term that acts
from the left on the remaining terms. This ensures the cor-
rect operator ordering between K and H, consistent with the
fact that feedback necessarily follows after the wave-function
collapse or measurement process.

We describe the general approach here, and use it to obtain
a conditional master equation for one mode, which will be
generalized in the next section. We use the definition of Ic(t )
and express the feedback as well as Eq. (4.1) in differential
form to get

ρc(t + dt ) = exp[〈c + c†〉c(t )K · dt + K · dW ]

×[1 + (L · dt + dW · H[c])]ρc(t ), (4.12)

where dW is the noise increment of ξ (t ) in time dt , that is,
ξ (t ) = dW/dt .

One now expands the exponential in Eq. (4.12) to second
order, expands the product, and disregards terms of order
O(dt3/2) and above. We use the prescription that dW 2 ∼ dt .
The approach given here omits details that are given in the
original literature [54,62]. This leads to an Itô equation,

d

dt
ρc(t ) = 1

dt
[ρc(t + dt ) − ρc(t )]

= Lρc(t ) + K(cρc(t ) + ρc(t )c†)

+
{

1

2
K2 + ξ (t )[H[c] + K]

}
ρc(t ). (4.13)

Like Eq. (4.2), Eq. (4.13) is an Itô-type stochastic dif-
ferential equation. As an alternative approach of obtaining
Eq. (4.13), Eq. (4.2) can be transformed into its corresponding
Stratonovich form. Following the procedure described in the
Appendix, which takes account of all the Stratonovich correc-
tions, one obtains under certain restrictions for the form of the
superoperators H and K that

d

dt
ρ (S)

c =
[
L + 〈c†c〉 − 1

2
H[cc] + Ic(H[c] + K)

]
ρc − cρcc†,

(4.14)

where Ic(t ) is given by Eq. (4.3).
Equations (4.13) and (4.14) describe the evolution of the

system for a given measurement noise outcome ξ (t ). How-
ever, in many cases we are not interested in what happens for a
specific noise realization, but rather what happens over a range
of many noise realizations. In such cases we can average the
Itô master equation over the infinitely many outcomes for ξ (t )
to obtain 〈 d

dt ρc(t )〉ξ (t ) = d
dt 〈ρc(t )〉ξ (t ).

Defining ρ ≡ 〈ρc(t )〉ξ (t ), the average over this type of Itô
stochastic equation has the effect of simply removing the
noise terms, due to linearity and the nonanticipating nature
of Itô calculus [48]. Therefore, this yields a much simpler
equation:

d

dt
ρ = Lρ + K(cρ + ρc†) + 1

2
K2ρ . (4.15)

E. Master equation for multiple nodes

We now consider a CIM with N DPOs (spin states). We
assume the adiabatic approximation and label the spin states
a1, . . . , aN , dropping the index s. The right-hand side (RHS)
of Eq. (3.11), applied to all modes ai, is equivalent to Lρ(t )
in the framework outlined above. We now introduce a sec-
ond channel through which the signal decays with rate γm.
The fraction of the signal that decays through this channel
is observed by a homodyne detector with perfect efficiency.
This way, a homodyne detector with limited efficiency can
be described by declaring that the fraction not picked up by
the detector decays through the channel already present in
Eq. (3.11). Thus, we have to add another set of diffusive terms
γmD[ai].

With γ ≡ γs + γm, these can be combined to yield γD[ai].
The operator subject to the innovation operator H[·] is√

2γmai. Thus, without the feedback, we obtain the total mas-
ter equation

d

dt
ρ = 1

ih̄
[Hs, ρ] +

∑
i

{
γD[ai]ρ + κ2

4γp
D

[
a2

i

]
ρ

}
ρ

+
∑

i

H
[√

2γ ai
]
ρ

≡ Lρ +
∑

i

H
[√

2γ ai
]
ρ , (4.16)

where

Hs = ih̄
κεp

2γp

∑
i

[
(a†

i )2 − a2
i

]
. (4.17)

This treats many modes in parallel, with measurement as well,
but there is no feedback included at this stage.

We now extend the framework outlined so far to include
several modes including feedback. The interaction matrix J is
typically denser than a permutation matrix; in other words, a
measurement outcome for one mode ai will generally produce
feedback in several modes among a1, . . . , aN proportional to
Ji1, . . . , JiN . As a result, Eq. (4.12) becomes

ρc(t + dt ) = exp

[∑
i

Ki

∑
j

Ji j[〈c j + c†
j 〉cdt + dWj]

]

×
[
ρc +

(
L · dt +

∑
j

dWj · H[c j]

)
ρc

]
,

(4.18)

where time-dependent functions on the RHS are evaluated at
(t ), and Ki is the superoperator that generates feedback for the
ith mode.
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After expanding Eq. (4.18) and retaining all terms of order
O(dt ), O(dW ), and O(1), one finds

d

dt
ρc = Lρc +

∑
i j

Ki[Ji j (c jρc+ρcc†
j )]+

1

2

∑
i, j,k

Ji jJikKiKkρc

+
∑

i

ξi(t )

[
H[ci] +

∑
j

Ji jK j

]
ρc . (4.19)

This is an Itô conditional master equation, which needs to be
solved relative to every noise realization. Consider a single
entry Ji j from the interaction matrix J. We want the feedback
to induce the signal ζJi j (a jρ + ρa†

j ) into the ith mode. With
the definition of c j = √

2γmaj , we find that

Kiρ = ζ√
2γm

[a†
i − ai, ρ] . (4.20)

Using the techniques from Sec. IV D, the Stratonovich
form of Eq. (4.19) is found to be

d

dt
ρ (S)

c = Lρ (S)
c +

∑
i j

KiJi j〈c j + c†
j 〉

+
∑

i

ξi(t )

[
H[ci] +

∑
j

Ji jK j

]
ρ (S)

c

+
∑

i

CH[ci]ρ
(S)
c (4.21)

with CH given in Eq. (4.9).
For the Itô form, given in Eq. (4.19), averaging over the

noise outcomes simply removes the last term in Eq. (4.19),
and yields

d

dt
ρ = Lρ +

∑
i

Ki

∑
j

Ji j (c jρ + ρc†
j )(t )

+1

2

∑
i, j,k

Ji jJikKiKkρ . (4.22)

Finally, we have all ingredients for a full description of the
MFB-type CIM. Substituting all definitions, we get the total
quantum master equation

dρ

dt
=

∑
i

(
κεpi

2γp

[
(a†

i )2 − a2
i , ρ

] + γD[ai]ρ

+ κ2

4γp
D

[
a2

i

]
ρ + ζ

∑
j

Ji j[a
†
i − ai, a jρ + ρa†

j ]

+ ζ 2

4γm

∑
j,k

Ji jJik[a†
i − ai, [a†

k − ak, ρ]]

⎞
⎠. (4.23)

Such total master equations have been numerically solved
then compared to experiment in much simpler cases of laser
cooling through feedback [63]. In these studies, comparison to
the full conditional master equation was generally not carried
out, due to the computational and experimental complexity of
recording and storing the full measurement history for each
feedback realization.

F. Total phase-space simulations

Even though very much simpler than the conditional mas-
ter equation, the total master equation, Eq. (4.23), is still
insoluble analytically, as far as we know. Treating it with
orthogonal state expansions is exponentially hard with large
numbers of modes, as in the CIM. It has only been carried out
for small Hilbert spaces, usually involving state truncation as
well [63].

Despite this, it can be simulated via phase-space methods,
using the positive-P representation. This solves the exponen-
tial hardness problem through probabilistic sampling. These
techniques are known to be successful in a number of sim-
ilar cases with large bosonic Hilbert spaces [47]. There is a
known limitation, however. For low losses, high nonlineari-
ties, and long time evolution, boundary term errors can break
the stochastic equivalence [7,9]. While this can be treated
using stochastic gauge methods [64], this is not required for
typical CIM parameters.

Using the standard rules, Eq. (4.23) translates to the
Fokker-Planck equation

dP

dt
=

{∑
i

[
∂αi (γαi − χ (αi )βi ) + ∂2

αi
χ (αi )

]
+

∑
i

[
∂βi (γ βi − χ (βi )αi ) + ∂2

βχ (βi )
]

+ f 2
∑
i, j,k

Ji jJik (∂αi + ∂βi )(∂αk + ∂βk )

−
∑
i, j

(∂αi + ∂βi )ζJi j (α j + β j )

}
P , (4.24)

where f = ζ/
√

2γm, and P ≡ P(α1, β1, . . . , αN , βN ).
Translating this to a set of stochastic differential equa-

tions yields

α̇i = [εi − γαi + βiχ (αi )] +
√

χ (αi )ξ
α
i + f

∑
j

Ji jξ j,

β̇i = [εi − γ βi + αiχ (βi )] +
√

χ (βi )ξ
β
i + f

∑
j

Ji jξ j,

(4.25)

with the definitions that

χ (α) ≡ κ

γp

[
εp − κ

2
α2

]
,

εi = ζ
∑

j

Ji j (α j + β j ) . (4.26)

The equations above are also Itô stochastic equations, al-
though the noise terms correspond to the total quantum noise
in the system itself. Stratonovich equations, which are more
tractable numerically, are then obtained by the mapping of
γ → γ ′ ≡ γ − κ2/4γp [6]. This allows one to use more ro-
bust and accurate numerical techniques [65].
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G. Conditional phase-space simulations

In Eq. (4.25), the measurement noise has been aver-
aged over, thus removing it from the equations. Because of
this, it allows for a very efficient numerical simulation of
the CIM. In addition to the total master equation given by
Eq. (4.23), we would also like to simulate the conditional
master equation with the measurement noise present. We
expect that simulating the conditional master equation for
different realizations of the measurement noise and averaging
the simulation outcome will produce results consistent with
those obtained from the total master equation.

While a conditional master equation approach is not the
most efficient one, there are nevertheless good reasons to
pursue it. For one, it allows us to carry out a consistency check
between the conditional and total master equations. At the
same time, there might be situations where (at least partial)
knowledge of the measurement noise exists, for example when
the measurement outcome is recorded. Furthermore, there are
cases for which a total master equation might not be found
as easily. One such case is where the finite time delay is to
be taken into account explicitly. In a phase-space simulation,
this could mean applying feedback based on the system state
and measurement noise from one or more time steps ago.
Also, a total master equation may not be found as easily if
the feedback is not strictly proportional to the measurement
outcome.

In our derivation of the total master equation, we have
made the assumption that the feedback is proportional to the
measurement outcome immediately after the collapse of the
wave function. This enabled us to find Eq. (4.19), where terms
of second order in ρc (through the trace operator included in
H) only appear multiplied with the measurement noise. By
averaging over measurement noises, we removed this term
and obtained a fully deterministic master equation which is
strictly linear in ρ. If the feedback is not proportional to the
measurement outcome Is(t ), averaging over the measurement
noise would most likely result in a master equation with
higher-order terms in ρ (through the trace operator), which
is forbidden [66].

We now attempt to formulate a set of phase-space equa-
tions with which to simulate the conditional master equation.
The most obvious approach would be to apply the famil-
iar chain of transformations “quantum master equation →
Fokker-Planck equation → stochastic differential equations”
to Eq. (4.19) as we did for Eq. (4.23). However, there are
several problems with Eq. (4.19) when it comes to finding a
corresponding Fokker-Planck equation: First, there is a noise
term ξ (t ), which means the master equation itself is a stochas-
tic equation. A Fokker-Planck equation is a deterministic
partial differential equation. Furthermore, a Fokker-Planck
equation has only first- and second-order derivative terms with
respect to its phase-space variables. Equation (4.19) would
clearly lead to nonderivative terms due to the operator H[ci].
Lastly, due to the expectation value in H[ci], the correspond-
ing equation describing the phase-space distribution would
result in an integro-differential equation, another difference
from a conventional Fokker-Planck equation.

Hush et al. [10] investigated the question how a Fokker-
Planck-like equation with these features can be simulated
efficiently using stochastic samples. They consider a general

equation of the form

dP =
{(

−
∑

i

∂iAi + 1

2

∑
i, j

∂iCi j∂i′Ci′k + ι − 〈ι〉
)

dt

+
∑

j

(
−

∑
i

∂iBi j + ν j − 〈ν j〉
)

dW (s)
j

}
P, (4.27)

where P ≡ P(x, dW(s)(t ), t ), while x and dW(s) are vectors
of (phase-space) variables and noise increments, respectively.
The terms A, B, C, ι, and ν are (vector-, matrix-, and
scalar-valued) functions which may depend on x as well as
the distribution P. Unlike the stochastic equations we have
considered so far, Eq. (4.27) is understood to be in the
Stratonovich calculus, indicated by the superscript (s).

Hush et al. demonstrated that Eq. (4.27) can be treated us-
ing a set of Stratonovich-type stochastic differential equations
with the addition of a weight variable ω(t ). The full set of
stochastic equations is

dxi = Aidt +
∑

j

Bi j (x, t )dW (s)
j +

∑
k

Cik (x, t )dV (s)
k ,

(4.28)

dω

ω
= ι(x, t )dt +

∑
j

ν j (x, t )dW (s)
j , (4.29)

where both dW (s) = dW (s)(t ) and dV (s) = dV (s)(t ) are
Stratonovich-type noise increments. However, there is a pro-
found difference between these two noise terms. The dV
terms originate from second-order derivatives in Eq. (4.27)
just like for a conventional Fokker-Planck equation. As such,
they are independently drawn for every stochastic sample that
is simulated. In contrast, the dW terms correspond to the
measurement noise in Eq. (4.27) and are drawn once per time
step for the entire stochastic ensemble. Due to the nature of
the dV terms, they are called “fictitious” noises, while the dW
terms are called “real” noises.

Any observables f (x) based on the conditional equa-
tions are obtained via

f (x) ≡ E[ω f (x)]/E[ω] . (4.30)

Here E[·] indicates the average with respect to stochastic
trajectories.

While the above method in principle will provide the cor-
rect predictions, it is obvious from Eq. (4.29) that the noises
are likely to cause numerical instabilities due exponential
decay and growth. In order to make the simulations more
tractable, there are three additions that can be made to the
conventional Monte Carlo simulation algorithm of Eqs. (4.28)
and (4.29).

The first and most important addition is a technique called
breeding. Its purpose is to “even out” the distribution of
weights by cloning the highest-weighted trajectories into two
copies with half their original weight while simultaneously
removing trajectories with extremely low weight. More pre-
cisely, the breeding algorithm consists of the following steps:

(1) Find the trajectory index i with lowest weight ωmin.
Calculate the ratio r between lowest weight and average
weight r ← ωmin/〈ω〉. If r is less than a cutoff ratio εthr,breed,
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continue with the next steps. Otherwise, do nothing (termi-
nate).

(2) Find the trajectory index j with highest height ωmax.
Replace the ith trajectory by jth trajectory, i.e., xi ← x j . Set
the weights of both trajectories to half of ωmax, i.e., ωi ←
ωmax/2, ω j ← ωmax/2.

(3) Go back to step 1.
We have found that the breeding algorithm works best

when executed after every time step in the stochastic in-
tegration. When running the stochastic integration, we are
recording the number of “breed” events, that is, the number
of times step 2 is executed.

Another addition which improves numerical stability is to
normalize the weights, i.e., ω ← ω/〈ω〉. In our simulations,
this is done following the breeding algorithm.

Lastly, instead of simulating the weights ω themselves, we
are using the transformed weights ω′ = log(ω). This leads to
a differential equation for the transformed weights:

dω′ = ι(x(t ), t )dt +
∑

j

ν j (x(t ), t )dW (s)
j (t ). (4.31)

In order to apply the above method to the coherent
Ising machine, it is necessary to reconsider the issue of
feedback, the reason being that Eq. (4.27) is a Stratonovich-
type stochastic equation, whereas so far we have treated
measurement-feedback systems entirely in the Itô scheme.
Note that for measurement-feedback systems, the choice of
integration scheme has a subtle effect on the interpretation of
the feedback noise as will be shown shortly.

After mapping the Stratonovich-type master equa-
tion given in Eq. (4.21) to the positive-P representation,
which results in a Fokker-Planck-like equation, one can
apply the weighted integration scheme. This results in the
Stratonovich-type stochastic differential equations

α̇i =
[
εi +

(
κ2

4γp
− γ

)
α2

i + βiχ (αi )

]
+

√
χ (αi )ξ

α
i ,

β̇i =
[
εi +

(
κ2

4γp
− γ

)
β2

i + αiχ (βi )

]
dt +

√
χ (βi )ξ

β
i ,

ω̇ = γm

∑
i

(αi + βi )(2〈αi + βi〉 − (αi + βi ))

+
√

2γm

∑
i

(αi + βi )ξ
r
i , (4.32)

where

εi = ζ
∑

j

Ji j

(
〈α j + β j〉 + ξ r

i√
2γm

)
. (4.33)

Here, ξα
i and ξ

β
i correspond to “fictitious” noises while ξ r

i
correspond to measurement (“real”) noises.

V. NUMERICAL RESULTS

Three different types of simulation were carried out to
illustrate and compare the methods. While the coherent state
expansion means that one can only rigorously compare the
averages over many trajectories, in fact the method is even
more powerful than this. Since the final state has a macro-

scopic distinction between “spin up” and “spin down,” one
can also compare the actual distributions of the final results,
and this will correspond to the corresponding experimental
distributions due to their macroscopicity.

A. Small-scale pump ramps

An experiment is considered with N = 16 degenerate para-
metric oscillators. The interaction matrix J corresponds to the
one-dimensional (circular) antisymmetric Ising model, that is,
Ji j = −1 if |i − j| = 1 or |i − j| = N − 1, Ji j = 0 otherwise.

The system parameters are γs = 1.0, γm = 0.1, γp = 10,
and κ = 0.1. NT = 500 × 103 time steps and Ns = 8192
stochastic samples were used for the integration.

The pump strength was linearly increased from εp = 0 to
εp = 2εp,th with εp,th = γ γp

κ
, where γ ≡ γs + γm during the

integration time.
The integration was carried out for the total master equa-

tion as well as the conditional master equation with the
weighted scheme explained previously using a stochastic RK4
integration scheme. For the weighted scheme, the weight re-
balancing (breeding) algorithm was carried out after each time
step using a breeding threshold of εth = 10−4.

The simulation was repeated for three different integration
times and nine different values for the feedback parameter ζ .

A success rate is defined as the fraction of instances
for which the simulated system ascertains the Ising model
ground state. Here, the ground state is given by the degener-
ate states (+,−, . . . ,+,−) and (−,+, . . . ,−,+), where the
spin states are given by the sign of the mode’s x quadrature. In
the case of the total master equation, the success rate can be
calculated by considering all Ns individual trajectories. Here,
20 independent simulations with Ns trajectories were used to
determine the error of the mean, which is negligibly small.
For the case of the weighted simulations, this is considerably
more resource intensive, demonstrating the clear superiority
of the total master equation method. Here, the entire stochas-
tic ensemble is needed to determine a mode’s x quadrature
according to Eq. (4.30). The experiment is repeated 200 times
in order to determine the success probability. However, there
are not enough data to determine the error of the mean. The
results are shown in Fig. 4.

In the case of the total master equation for an interaction
strength of ζ = 0.12, the probability density for the Ising
model Hamiltonian is recorded, which is defined as

H = −
∑
i, j

si(Ji j )s j , (5.1)

where si indicates the corresponding spin state given by the x
quadrature of the ith DPO mode, that is,

si ≡ sgn(Re(αi + βi )) . (5.2)

The probability density is shown in Fig. 5.

B. Small-scale pump and feedback ramps

A second experiment is considered with the system param-
eters given above. Here, a different minimization strategy is
employed. Where in the first experiment, the pump strength
was linearly increased during the simulation time, now the
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FIG. 4. Success probabilities for the CIM with N = 16 sites and
linearly increased pump field, as a function of the (constant) feedback
strength ζ for three different integration times. The results were
obtained using the conditional (weighted) integration scheme (abbre-
viated with “w” in the legend) and the total master equation method
(abbreviated with “t” in the legend).

pump strength as well as the feedback parameter ζ are linearly
increased to 2εp,th and ζ = ζmax, respectively. As with the first
experiment, 20 independent simulations were used in the case
of the total master equation simulations to estimate the error
of the mean, while 200 independent repetitions were used to
estimate the success probability in the case of the conditional
(weighted) method. This is shown in Fig. 6.

We note the greatly improved success rate at large feedback
strengths, indicating the sensitivity of the CIM to different
ramp strategies. As before, there is excellent agreement be-
tween the conditional and unconditional methods.

FIG. 5. Probability density of the Ising model Hamiltonian for
the CIM with N = 16 sites and linearly increased pump field with
a constant feedback strength of ζ = 0.12 for three different in-
tegration times. The results were obtained using the total master
equation method and are based on 6144 stochastic trajectories.

FIG. 6. Success probabilities for the CIM with N = 16 sites and
linearly increased pump field and feedback strength, as a function
of the maximum feedback strength ζmax for three different integra-
tion times. The results were obtained using both the conditional
(weighted) integration scheme (abbreviated with “w” in the legend)
and the total master equation method (abbreviated with “t” in the
legend).

C. Large-scale pump ramps

Lastly, we consider an experiment consisting of N = 1000
parametric oscillators, using a linear pump ramp. Due to its
large size, only the much faster unconditional simulations
were run.

As outlined in Sec. II A, an Ising model can be identi-
fied with a (weighted, undirected) graph with the interaction
matrix J corresponding to the adjacency matrix and weight
function, respectively. Here, the interaction matrix is chosen
so that it corresponds to a random graph generated using the
following set of rules:

(i) Each of the N (N−1)
2 edges has nonzero weight with a

probability of p and zero weight with a probability of 1 − p.
Here, p = 0.1.

(ii) A nonzero weight is either +1 or −1 with equal prob-
ability.

In other words, J is a symmetric 1000 × 1000 matrix with
main diagonal entries equal to zero off-diagonal entries equal
to zero with probability 1 − p, +1 with probability p

2 , and −1
with probability p

2 .
The interaction matrix is generated once and used for all

quantum trajectories of the stochastic simulation.
The system parameters are γs = 1.0, γm = 0.1, γp = 10,

κ = 0.1, NT = 10 × 103, ζ = 0.1, and Tmax = 10. The pump
strength is linearly increased from εp = 0 to εp = 3εp,th dur-
ing the integration time. Due to the exponential complexity
of the problem, precise knowledge of the ground state of the
system considered here is likely impossible. Hence, instead of
the success probability for finding the ground state, the Ising
model interaction Hamiltonian is considered.

The simulation was carried out using a total of NS =
102 400 stochastic trajectories with interaction strength of
ζ = 0.05. They took about 12 hours on 40 state-of-the-art
GPUs running in parallel on a computer cluster. The resulting
probability density for a given outcome of the interaction
energy is given in Fig. 7, while Fig. 8 shows the evolution of
the mean interaction energy as a function of simulation time.
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FIG. 7. Probability distribution for the outcome of the Ising
model interaction Hamiltonian for a graph consisting of 1000 nodes
with a connectivity of 10%.

Since our purpose here is to demonstrate the scalability
of the unconditional method, we did not optimize the ramp
strategy. However, as can be seen above, it is likely that an
optimized ramp strategy would give a narrower distribution
and a higher success rate, which is clearly desirable in finding
the best solution.

VI. CONCLUSION

The coherent Ising machine is a promising, novel tech-
nology with potential applications in a number of areas. An
advantage over classical computers for a specific problem has
been claimed [3], although the role of quantum effects remains
unclear. Unlike many candidates for gate array-type quantum
computers, the CIM can be operated at room temperature and
has very stable states. For the measurement-feedback archi-
tecture, the size of the CIM can be scaled up quite easily.
While it is likely that quantum effects only play a minor role
if at all in contemporary realizations of the CIM, entering a
regime for which these become relevant could possibly lead to

FIG. 8. Evolution of the mean Ising model interaction Hamilto-
nian for a graph consisting of 1000 nodes as a function of simulation
time. Here, vertical lines indicate the standard deviation, obtained
using NS = 102 400 stochastic trajectories.

even better performance due to quantum tunneling and other
effects.

In such a regime, precise and reliable simulation methods
are required to better understand the role of quantum effects.
We have derived two different methods, both utilizing the gen-
erally nonapproximate positive-P phase-space representation.
The conditional, weighted method allows for the simulation
of a single instance or run of a given measurement-feedback
CIM. It fully “captures” the effect of the partial state col-
lapse induced by the homodyne measurement process. The
total master equation allows for the simulation of an average
over a large number of independent runs of the CIM. Here,
the state collapse operator is removed from the master equa-
tion through the averaging process. Though the two methods
are quite different in the way they have been derived and in
terms of their numerical implementation, we have demon-
strated that they are in good agreement for the CIM considered
here.

The latter method is several orders of magnitude faster
compared to the conditional one. This comes at the price of
being limited to predictions for an overage over multiple runs
of the CIM. However, one would most likely be interested in
the outcome of a CIM averaged over multiple runs anyway,
making the total master equation method the more useful
choice due to its significantly lower computational demand.
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APPENDIX

Here we derive the form of the Stratonovich corrections for
the feedback master equation. In general there are two terms,
from measurement and from feedback.

Measurement

In the case of measurement, the operator H[c]ρc includes
a mean value term, which means that it is nonlinear in the
density matrix components. This leads to the additional terms
described here. We only treat the single-mode case in this
Appendix, as the multimode case is similar.

Writing out the B matrix for the single-mode case, and
ignoring the k index since k = 1, we note that

B = {H[c]ρc} = cρc + ρcc† − T ρc, (A1)

with the definition that T ≡ ∑
kl [clk + c†

lk]ρkl ≡ ∑
kl tlkρkl =

〈c + c†〉c, provided that
∑

k ρkk = 1.
We now use an orthonormal basis expansion to transform

the conditional density operator ρc into a matrix ρmn. The
matrix derivative of the B matrix with respect to ρmn is given
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by

∂Bi j

∂ρmn
= ∂

∂ρmn

{
cikρk j + ρikc†

k j − ρi j

∑
kl

tlkρkl

}

= {
cimδ jn + δimc†

n j − δimδ jnT − ρi jtnm
}
. (A2)

Therefore, we see immediately that the Stratonovich correc-
tion term CH is given by

CH
i j = −1

2

∑
mn

Bmn
∂

∂ρmn
Bi j

= −1

2

∑
mn

{
cmkρkn + ρmkc†

kn − ρmnT
}

× {
cimδ jn + δimc†

n j − δimδ jnT − ρi jtnm
}
. (A3)

There are 12 terms in this product, and they are listed
below:

(1) cmkρkncimδ jn = cimcmkρk j = (ccρc)i j .
(2) cmkρknδimc†

n j = cikρknc†
n j = (cρcc†)i j .

(3) −cmkρknδimδ jnT = −cikρk jT = −(cρcT )i j .
(4) −cmkρknρi jtnm = −ρi jTr(cρct ).
(5) ρmkc†

kncimδ jn = cimρmkc†
k j = (cρcc†)i j .

(6) ρmkc†
knδimc†

n j = c†
knρikc†

n j = (ρcc†c†)i j .

(7) −ρmkc†
knδimδ jnT = −c†

knρikT = −(ρcc†T )i j .
(8) −ρmkc†

knρi jtnm = −ρi jTr(tρcc†).
(9) −ρmnT cimδ jn = −cimT ρm j = −(T cρc)i j .
(10) −ρmnT δimc†

n j = −T ρinc†
n j = −(T ρcc†)i j .

(11) ρmnT δimδ jnT = ρi jT 2.
(12) ρmnT ρi jtnm = ρi jT (ρmntnm) = T ρi jTr(ρct ).
Combining all these, and returning to an index-free opera-

tor notation, we obtain that

CH = − 1
2

[
ccρc + 2cρcc† + ρcc†c†

− 2T (cρc + ρcc†)

+ ρcT 2 + ρcTr(T ρct − cρct − tρcc)
]
. (A4)

The last term with factors of T is

T 2 + Tr(T ρct − cρct − tρcc†) = 2T 2 − 〈c2 + c†2 + 2c†c〉.
(A5)

Combining terms together, one obtains that

CH = 〈c + c†〉cH[c]ρc − cρcc† + ρc〈c†c〉 − 1
2H[cc]ρc. (A6)

Measurement and feedback

In the case of measurement with feedback, the operator
multiplying the noise is ξ (t )(H + K)ρc, where we will as-
sume that Kρc ≡ [K, ρc] . Writing out the B matrix for the
single-mode case, we notice that

B = BH + BK

= cρc + ρcc† − T ρc + Kρc − ρcK. (A7)

The matrix derivative is
∂Bi j

∂ρmn
= ∂

∂ρmn

{
BH

i j + [Kρc − ρcK]i j

}
= {

BH
i j,mn + Kimδ jn − δimKn j

}
. (A8)

As a result, the total Stratonovich correction is

Ci j = CH
i j + CHK

i j + CKH
i j + CK

i j ,

where CH was obtained already, and we obtain

CHK
i j = −1

2

∑
mn

BH
mn

∂

∂ρmn
BK

i j

= −1

2

∑
mn

{
cmkρkn + ρmkc†

kn − ρmnT
}

× {Kimδ jn − δimKn j}

= −1

2
[K, cρc + ρcc† − ρcT ]i j , (A9)

CKH
i j = −1

2

∑
mn

BK
mn

∂

∂ρmn
BH

i j

= −1

2

∑
mn

[Kρc − ρcK]mn

× {
cimδ jn + δimc†

n j − δimδ jnT − ρi jtnm
}

= −1

2

[
c[K, ρc] + [K, ρc]c†

− T [K, ρc] − ρcTr[[K, ρc]t]
]

i j, (A10)

CK
i j = −1

2

∑
mn

BK
mn

∂

∂ρmn
BK

i j

= −1

2

∑
mn

[K, ρc]mn{Kimδ jn − δimKn j}

= −1

2
[K, [K, ρc]]i j . (A11)

Note that if [c, K] = Q1 and [c†, K] = Q2 with Q1, Q2 ∈ C,
it follows that

CKH
i j = − 1

2

[
Kcρc − cρcK + Kρcc† − ρcc†K + (Q1 + Q2)ρc

− T [K, ρc] − ρcTr[ρc(Q1 + Q2)]
]

i j

= CHK
i j . (A12)

We assume that these restrictions hold below.

Stratonovich master equation

Combining the terms given above, the Stratonovich-type
master equation is

ρ̇Strat
c = Lρc + K(cρc + ρcc†) + 1

2K
2ρc

+ CHρc + 2CHKρc + CKρc

+ ξ (t ) ◦ [H[c] + K]ρc, (A13)

where the relevant corrections are

CHρc = 〈c + c†〉cH[c]ρc − cρcc† + ρc〈c†c〉 − 1
2H[cc]ρc,

CHKρc = − 1
2

[
K, cρc + ρcc† − ρcT

]
,

CKρc = − 1
2 [K, [K, ρc]]. (A14)
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Since we are using the operators

c =
√

2γma, (A15)

K = ζ√
2γm

(a† − a), (A16)

clearly [c, K] = Q1 and [c†, K] = Q2 with Q1, Q2 ∈ C are
satisfied, from which it follows that CHK = CKH, hence

ρ̇Strat
c = Lρc + K(cρc + ρcc†) + 1

2K
2ρc

+ CHρc + 2CHKρc + CKρc

+ ξ (t ) ◦ [H[c] + K]ρc

= Lρc + T [K, ρc] + CHρc

+ ξ (t ) ◦ [H[c] + K]ρc. (A17)

From this, we finally obtain that

ρ̇Strat
c = Lρc + cρcc† − ρc〈c†c〉 − 1

2H[cc]ρc

+ Ic(t ) ◦ [H[c] + K]ρc, (A18)

where

Ic(t ) = ξ (t ) + Tr[ρc(c + c†)] .

Multimode case

The above results can be generalized for a system com-
prised of N modes. In this case, there are N independent
measurement noises ξi(t ). The B matrices are

BH
r = crρ + ρc†

r − Trρ,

BK
r =

∑
s

Jrs(Ksρc − ρcKs), (A19)

with Tr ≡ ∑
kl [cr;lk + c†

r;lk]ρr;kl ≡ ∑
kl tr;lkρr;kl = 〈cr + c†

r 〉.
Note that in the multimode case, the operators are 3-tensors
with the first index indicating the mode. The operators satisfy
cs;ikρr;k j = ρr;i j and Ks;ikρr;k j = ρr;i j which simplifies the cal-
culations.

Analogously to the one-mode case, one finds

CH =
∑

r

〈cr + c†
r 〉H[cr]ρc + crρcc†

r − ρc〈c†
r cr〉

− 1

2
H[crcr]ρc,

CHK = −1
∑

rs

Jrs
[
Ks, crρc + ρcc†

r − ρcTr
]
,

CKH = −1

2

∑
rs

[cr[Ks, ρc] + [Ks, ρc]c†
r

−Tr[Ks, ρc] − ρcTr[[Ks, ρc]tr]],

CK = −1

2

∑
rst

JrsJrt [Kr, [Kt , ρc]]. (A20)
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