PHYSICAL REVIEW A 106, 022408 (2022)

Construction of general symmetric-informationally-complete—positive-operator-valued
measures by using a complete orthogonal basis

Masakazu Yoshida

-* and Gen Kimura

2,F

'Faculty of Design Technology, Osaka Sangyo University, 3-1-1 Nakagaito, Daito-shi, Osaka 574-8530, Japan
2College of Systems Engineering and Science,
Shibaura Institute of Technology, 307 Fukasaku, Minuma-ku, Saitama-shi, Saitama 337-8570, Japan

M (Received 16 May 2022; accepted 28 July 2022; published 10 August 2022)

A general symmetric-informationally-complete (GSIC)—positive-operator-valued measure (POVM) is known
to provide an optimal quantum state tomography among minimal IC POVMs with a fixed average purity. In this
paper we provide a general construction of a GSIC POVM by means of a complete orthogonal basis (COB), also
interpreted as a normal quasiprobability representation. A spectral property of a COB is shown to play a key role
in the construction of SIC POVMs and also for the bound of the mean-square error of the state tomography. In
particular, a necessary and sufficient condition to construct a SIC POVM for any d is constructively given by
the power of traces of a COB. We give three simple constructions of COBs from which one can systematically

obtain GSIC POVMs.
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I. INTRODUCTION

An appropriate quantum state preparation rapidly increases
in its importance according to the development of applications
in quantum information theory such as quantum computation
and quantum key distribution. An intended quantum effect can
be obtained when quantum states used in such applications
are not disturbed. Therefore, it is important to experimentally
check whether the quantum system is appropriately prepared.
Quantum state tomography provides a way to determine com-
pletely quantum states with their statistical information.

An informationally-complete  (IC)—positive-operator-
valued measure (POVM) [1-4] is suitable for linear
quantum state tomography since any quantum state can
be determined completely by its measurement statistics.
Any IC POVM for a d-level quantum system has at
least d> POVM elements, whence an IC POVM with d?
POVM elements is called minimal. A quantum measurement
represented by a symmetric-informationally-complete (SIC)
POVM [5] is known to be optimal for linear quantum state
tomography [6,7]. However, the existence of SIC POVMs
has been shown in limited dimensions [8—10] and it remains
an open question whether the SIC POVM exists in all
dimensions. For the most up to date information, see, for
example, [11].

A general SIC (GSIC) POVM [12,13] is a generalization of
a SIC POVM. Difterent from a SIC case, POVM elements in
a GSIC POVM are not necessarily of rank 1 and the existence
of GSIC POVMSs has been shown in all dimensions [12,13].
Zhu has shown [14] that a GSIC POVM provides an optimal
measurement for the linear quantum state tomography among
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minimal IC POVMs with a given average purity of a POVM.
Uncertainty relations of GSIC POVMs are studied in differ-
ent contexts such as the entropic uncertainty relation [15],
the uncertainty and complementarity relation using general-
ized Wigner-Yanase-Dyson skew information [16], and the
improved state-dependent entropic uncertainty relation [17].
Entanglement detection using the index of coincidence for
GSIC POVMs as well as its experimental implementation has
also been studied in [18-22].

In this paper we characterize GSIC POVMs by using
a complete orthogonal basis (COB) of the set of Hermi-
tian operators. The conditions of informational completeness,
symmetry, and completeness (normalization) of POVMs are
derived directly from the properties of COBs. We observe
that a spectrum property of COBs plays a key role in the
construction of a SIC POVM and also determines the bound
of the scaled mean-square errors of the minimal IC POVMs
with a given average purity. In particular, any canonically
constructed GSIC POVM is shown to give a SIC POVM
for a qubit system, while for higher-level systems, condi-
tions that yield SIC POVMs are given by the conditions
for the power of traces of a COB. We also provide three
simple constructions of COBs (and hence those of GSIC
POVMs) from any suborthonormal operator basis and also
from a complete set of mutually unbiased bases [23,24]. In-
cidentally, the notion of a COB can be interpreted as the
normal quasiprobability representation (NQPR) studied in
[25]. Hence, our constructions of COBs also serve as those
of NQPRs.

This paper is organized as follows. In Sec. II we review
GSIC POVMs in a slightly wider context. In Sec. III we
introduce a COB and investigate its spectral properties. In
particular, we give a construction of GSIC POVMs by means
of COBs. In Sec. IV we give three constructions of COBs. We
summarize this paper in Sec. V.

©2022 American Physical Society
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II. PRELIMINARIES

Throughout the paper, # is a finite-dimensional Hilbert
space with dimension d > 2 and £(%{) is the d*-dimensional
Hilbert space of linear operators on 7{ with respect to the
Hilbert-Schmidt inner product. For both Hilbert spaces, we
use the Dirac notation with single or double angular brackets
as follows: Inner products on 7{ and £(7{) are denoted by
the angular brackets (¥ |¢) (¥, ¢ € ) and the double angu-
lar brackets (A|B)) = tr ATB[A, B € £(#{)], respectively. The
operator |)(¢| and the superoperator |A))((B| are also used
in a conventional sense, e.g., |A))(B|C := {(B|C)A. The set
of density operators, i.e., positive operators with unit trace, is
denoted by S(H) :={p € LH) | p =2 0,trp = 1}.

Let F = (F;)!_, be a discrete POVM on %, ie., F; >0
for any i and ) . | F; =T where [ is the identity operator.
Here F is called an informationally complete POVM if the
statistics of the measurement of F' determine the underlying
quantum state. In other words, F is an IC POVM if for p, o €
S(H), tr Fip =trFio (Vi=1,2,...,n) implies p = 0. One
can show that a POVM is IC if and only if it spans L(H).
(For the readers’ convenience, we give a simple proof for this
fact in Appendix A 1.) An IC POVM is thus called minimal if
n=d>.

A rank-1 POVM F = (F, = [y;)(¥;)L, is called a
symmetric-informationally-complete POVM [5] if it satisfies

wF = |lyil* = aVi,
tr FF; = [(Yily)1> = bVi # j,

where a and b are constants dependent only on the dimension
d. Note that these constants are automatically determined as
a= d—12 and b = m. [This is shown by taking traces over
the equations [ =Y ,F =Y, |¥:) (¢ and T = O, F)*]
Moreover, one can show that a SIC POVM spans £(H) (see
the general argument below) and hence is informationally
complete and minimal. However, the existence of SIC POVMs
for an arbitrary dimension is a long-standing open problem
and has only been shown analytically (or numerically) in
limited dimensions (see, e.g., [11]).

A natural generalization of a SIC POVM is given by relax-
ing the condition for the rank: A POVM (G,-)fl:z1 is called a
general SIC POVM [12,13] if it satisfies

trG? = a' Vi,
tI'GiGj =bVi ?é j,

where @’ and b’ are constants dependent only on d. Different
from a SIC POVM, the existence and the construction of GSIC
POVMs have been shown in all dimensions [12,13].

Here we review some of the properties of a GSIC POVM
by further generalizing the number of POVM elements to be
arbitrary n: G = (G;)_,. First, the parameters a’ and ' are not
independent and satisfy

a’—l—(n—l)b':g. (1)
n

This is seen by observing d = tr [* = tr[(}_; G,-)(Zj G)l=
[} (G} + X_..; GiG))] = nd’ +n(n— 1)b. This also de-

termines the trace of G;:

trGiztrGi(ZG]) =a'+(n—1)b’=;—i. 2)

J

Second, the parameter «’ satisfies

. d
S cad<=. 3)

The first inequality follows from the Schwarz inequality:
=G =Gl <,/utGVurl?= Ja'~/d. However, the

equality implies that G; = %]I and is excluded in order to
keep the IC condition. The second inequality is shown by the
following elementary fact: For any positive operator A > 0,

trA> < (trA)?,

where the equality holds if and only if A is a rank-1 operator.
Applying each G; > 0 shows the second inequality and also,
in the case n = d?, the equality holds if and only if G is a SIC
POVM. Finally, it holds that G is IC if and only if n > d>.
To see this, it is enough to show that G is linearly indepen-
dent [hence n > d? if and only if G spans £(7)]. Suppose
that "7 x;G; = 0 for complex numbers x;. By taking the
trace over the equation and using Eq. (2), one has ), x; = 0.
Next, multiplying G; to > i, x;G; = 0 and taking its trace
shows 0 = )", x;tr G;G; = (¢ — b')x; + b' )", x;. Combining
these results, one gets x; = % > ;x; =0 for all j. Note

here that &' # d’; otherwise (1) implies ¢’ = ’%, violating the

first inequality in (3). In the following, we consider the most
interesting case n = d>.

In the linear quantum state tomography, Zhu [14] revealed
the tomographic significance of GSIC POVMs in the follow-
ing sense. For any IC POVM measurement (IT;)?_;, there
exists a set of operators (©;)!_, with which any density op-
erator p can be writtenas p = >\, p;®;, where p; 1= tr I[1;p
is the probability to get the ith outcome of the POVM (I1;)}_,
under the state p. Let fl.(N ) be the frequency to get the ith
outcome by the individual measurement of (I1;)7_, under N
copies of p. Then a natural estimated state is given by p®™) =
Yo ﬁ(N)(@i. The scaled mean-square error (MSE) £(p) is

defined by the expectation value of the error ””_Nﬂ, where

|- 1> := (-]-) is the Hilbert-Schmidt norm. One can show
that £(p) = Y 1, pi tr ©2 — tr p? [6].

In [14] Zhu showed that, among minimum IC POVMs with
the fixed average purity (discussed below), the maximal scaled
MSE Enax(p) over all pure states (more generally over all
unitary equivalent states) is bounded from below as

(@ -1y

1
Emax(p) = 7 + — —trp*. 4)

o—d d

Here g is the average purity of an IC POVM (I1))L,
defined by

tr H,‘
= , 5
2 Xi:m y (5)

tr [1?

where g = e is the purity of Il;. Interestingly, Zhu

showed that the minimum of (4) is attained if and only if the
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IC POVM is a GSIC POVM. Therefore, one can consider a
GSIC POVM as an optimal measurement among all minimal
IC POVMs with fixed average purity that minimize the scaled
MSE for the worst case scenario of states.

III. CHARACTERIZATION OF THE GSIC POVM
BY A COMPLETE OPERATOR BASIS

In the following we consider the real Hilbert space of the
set of all Hermitian operators k. = {A € £(H) | A = AT}. Let
us start by introducing a useful operator basis for .

Definition 1. An operator basis (A,-);’il for K is called a
complete orthogonal basis if it satisfies (a) suborthonormality
(AA;) = dla,,- and (b) completeness ) ;A; = 1.

See Appendix B for examples. Note that the normaliza-
tion constant 5 in (a) is automatically determined by (b). By
completeness, one has trA; = tr A; (Z Aj) = 1 . If there is a

positive element A; > 0 for some i, 3 = trAl2 < (trA )2 = d,,
contradicting d > 2. Therefore, any element A; of a COB
cannot be positive and the minimum eigenvalue of each A;
is strictly negative. Here we define an important value for
a COB,

A= !
1442t
where
T .= max {|m,| | m; the minimum eigenvalue of A;}.
i=1,2

i=1,2,...,

Proposition 1. The value A* satisfies

1
A< . (6)
Vd+1
The upper bound is saturated if and only if all A; have the
(d—l)ﬂ/d+1+1

same ei genvalues:

1= d‘z < 0 with multiphcity d—1.

This is shown by the following lemma.
Lemma 1. Letx; (i =1,2,...,d)bed > 2-tuples of areal
number in descending order with constraints (a) > . x; = L

> 0 with multiplicity 1 and

d

and (b) ), xi2 = 5. Then the minimum x; < 0 and satisfies

VJd+1-1
lxa| = — a2 @)
The bound is saturated if and only if (8) and (9) hold
14+d—DJ/d+ 1
X = 7 ; ®)
—d+1

X2,X3,...,xd:T- (9)

See Appendix A 2 for the proof.
Proof of Proposition 1. Note that the inequality (6) is
equivalent to

Vd+1-1
T>T

However, this is shown to hold by applying Lemma 1 to each
eigenvalue of A; (noting that trA; = I and trA? = 1). The
equality condition also follows directly from one for (7) in
Lemma 1. |

Now we provide a construction of a GSIC POVM by show-
ing the connection between a GSIC POVM and a COB.
Theorem 1. For any COB (4; ) “,and A € (0, A*],

Gi =2, + (1 —/\)d—2 (10)

forms a GSIC POVM. Conversely, for any GSIC POVM
(G; )l , with constants @' and ', (4; ) ", given by (10) with

A=A+1-bd3 L forms a COB.

Proof. Letting (A,-)i=1 be a COB and 2 € (0, 1*], we show
that (Gi),ﬁi of the form (10) is a GSIC POVM. The complete-
ness y_; G; = I follows from that of (4;);. Next G; is positive
if and only if Am; + (1 — )i)d% > 0, where m; is the minimum
eigenvalue of A;. Since m, < 0 as mentioned above, the condi-
tion is equivalent to 5 T d2| > M. This holds since A € (0, A*],
so we have G; > 0. Moreover the symmetric property of (G;);
follows as

r GG, _tr{AA +1 -1 “)\A F(1— 1)3—2}

5 (1 —)\)x
= A trA,-Aj—i—TtrA,-
Al =2) (1 = 2)>?
e vt T
8 1—=22
==
FERE

Hence, (G;); is a GSIC POVM with the constants

, A2+1—A2 Y 1— 22 an
a = — —_—, = .
d d3 d?
Conversely, letting (G;); be a GSIC POVM with constants a’

and &', we show that A; := %(Gi — ld_f 1) forms a COB with

tr]

1-bd3 = =1 [recalling the relation (1) where
n=d?]. Using the symmetry trG;G; = a'8;j + (1 — §;;)b/
and tr G; = =, we have
1 1—A 1—A
tI'AiAj=ﬁtI' G—T]I Gj_T]I
1 / / / 2(1 - )‘) (1 - )")2
:ﬁ{(a—b)Sij'i'b_ PE + PR

2
- %{(a/ =08+~ 1 d3)\ } - %5%
Finally, the completeness of (A;); follows from that of (G;);.
]

Theorem 1 shows that any GSIC POVM including a SIC
POVM can be constructed by a COB which is rather easy
to construct (see the next section). Note that another con-
struction of a GSIC POVM was given in [13]. However, their
construction needs two asymmetrical expressions, thereby it
unnecessarily breaks a symmetry of a GSIC POVM in appear-
ance. In contrast, our construction (10) consists of a single
expression; hence it does not introduce any redundant asym-
metry.

Before giving its construction, let us discuss the relation
between a SIC POVM and a COB. Although there is freedom
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for the choice of A € (0, A*], the extreme choice A = A* plays
a crucial role in constructing SIC POVMs. In the following
we call such construction a canonical constructlon Note that,
by (11) (G;); is a SIC POVM, ie., d = dz, if and only if

A= W Therefore, Proposition 1 leads to the following

proposition.

Proposition 2. A GSIC POVM canonically constructed by
a COB (i.e., A = A*) is a SIC POVM if and only if any one
of the following conditions is satisfied: (a) The upper bound
of A* in (6) is saturated, (b) T = ‘/ﬁ L holds, and (c) all A;

have the same eigenvalues: ”(d+ ydt

1 and % < 0 with multiplicity d — 1.

The following result shows that any canonical construction
ind = 2 gives a SIC POVM.

Proposition 3. For d = 2, a canonical construction always
gives a SIC POVM.

Proof. Let (A;)}_, be a COB. The eigenvalue equa-
tion for each A; reads 0 = det(m] —A;) = m?> — (trA;))m +

> (0 with multiplicity

%{(trAi)2 — trA?}. Therefore, trA; = trA2 1 implies that
all eigenvalues of A; are the same m = 1i4f satlsfymg con-
dition (c) in Proposition 2. |

Note, however, that not all canonical constructions in the
case d > 3 give SIC POVMs since higher contributions of
trA? (3 < n < d) appear in the eigenvalue equations. How-
ever, we have the following proposition.

Proposition 4. For any d > 3, the necessary and sufficient
conditions for a canonical construction to give a SIC POVM
are systematically derived: To be specific, the conditions are

31
trA} = 3 for d =3, rA} = 5523+ 15V/5) and rA} =

a5 (77 +15V/5) for d = 4, etc.

Proof. By using Newton’s identity (see, e.g., [26]), one can
derive the characteristic equations for A; bearing in mind the
constraints trA; = trAi2 = % For example, for d = 3,

204

s 1 5, 1 54trA} — 8
O=det(ml —A;)) =m 3m 9m 6 .
Therefore, by condition (c) in Proposition 2 for d = 3, the
necessary and sufficient condition for a canonical construction
to give a SIC POVM is that all A; satisfy tr A? = m One can
obtain the conditions similarly for any d. ]
The following proposition gives the physical meaning of
the parameter A of a canonically constructed GSIC POVM in
the context of quantum state tomography.
Proposition 5. The average purity of a GSIC POVM con-
structed by a COB is given by po= 5{(d2 — DA% +1}. The
maximal scaled MSE for the GSIC POVM satisfies

a>-11 1 )

Emax () = Tﬁ‘i‘g—trp
2 _

2

1 o,
(1+d)+3—tr,0 )

The inequality is saturated if and only if the upper bound of
A* in (6) is saturated, which implies that the GSIC POVM is a
SIC POVM.

Proof. A direct computation of (5) for a GSIC POVM
shows = d?d’; hence, by (11), one obtains p= 1{(d*> —
1)A? + 1}. The first equality is the direct application of Zhu’s

result (4). The second inequality follows from (6) and A €
(0, A*]. Finally, the last statement is shown by Proposition 2.
]

Hence, the larger the parameter A, the less the maximal
scaled MSE &Enax(p) and a SICPOVM (A = A* = W) gives
the minimal Epax (0).

Finally, we remark that a COB (4;); was used by Zhu [25]
as a NQPR where a quantum state p is represented by a (possi-
bly negative) quasiprobability u;(p) = tr A;p. The negativity
of a COB (A)); is naturally defined by

N({A;}) := max N(p),
PES(H)

where N(p) := d max{0, — min; u;(0)}. Theorem 1 in [25]
shows a bound of the negativity where the bound is saturated
if and only if a POVM corresponding to the NQPR is a SIC
POVM. In this context, Zhu also observed essentially the same
results as Propositions 1 and 2 because one can readily show
that

1
= SN({AD. (12)

See Appendix A 3 for the proof. Note that combination of the
relation (12) and Proposition 5 for the canonically constructed
GSIC POVM yields the following relation between the maxi-
mal scaled MSE for the GSIC POVM and the negativity:

2

—1 2 | 2
Emax(p) = [1 +dN({A1})] + E —trp

d? —

1 1 )
> (1+d)+3—tr,o.
In the next section we give several constructions of COBs
for the construction of GSIC POVMs, which also serve as a
construction of NQPRs in Zhu’s context.

IV. CONSTRUCTIONS OF A COMPLETE
ORTHOGONAL BASIS

In this section we provide several constructions of COBs.
The general ideas of Constructions 1 and 2 are explained in
Appendix B in more general settings. Construction 3 is based
on the ideas developed in [27,28].

Construction 1. With any orthonormal basis (Ti)?:zal for
L(H), where Ty = % [i.e., a generator of su(d )], and any

orthogonal d* x d? real matrix O = [0;;1¢"~ " satisfying

1 .
00]‘:3 (J=0,1,...,d —1),
d*—1
ZO,,T (i=0,1,....,d>—1)

is a COB.

Note that both (7;) and O are easily prepared, e.g., by
using Gram-Schmidt orthogonalization starting from [ and
(1,1,...., D e Rdz, respectively. Importantly, any COB can
be obtained through this construction. See Appendix B for
details in more general settings.

The next construction only uses a generator of su(d); hence
it is more economic and concrete than the first construction at
the cost of losing generality.
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Construction 2. Let (T) "1 be an orthonormal basis
for £(H) with Ty = [ Construct an orthonormal basis

(S; )d -1 by the Gram-Schmidt orthogonalization of the set

> T,,Tl,...,sz,l} starting from the first entry. Then
d>—1
A; = J_Z(S|T T, (i=0,1,....,d> 1)
is a COB.

Note that we can obtain an explicit formula for this con-

struction as
d?—1
Ty — T;
y I(o Zf(/) )

A= dlf( = Z FOIT) + (@ — t)f(z)T)

(i=1,2..., -1,

. d
where = .
Fa) (d*=jld*—(j—1)]

The canonical construction (10) for d = 2 using the stan-
dard Pauli matrices gives the SIC POVM

Ap =

Go— L(—v6+3 —1+2i
T n\c1-v2i V6+3 )
1/1 1

GIZZ(I 1>7

G - L 3 —1-22i
2T 2\ 14+ 2v2i 3 :
G L Vo+3 -1+
3= —1-V2i —v6+3)

For a general d > 3, we can also compute the COB using the
generalized Gell-Mann matrices

7 [im imeh - e<m)
ﬁﬂ”) (m| — m)(n]) (n > m),

Ty = —F/—— n|n+1)(n+1|>

k)(
ny/n+1 (Zl
n=12,...,d - 1), (13)

and Ty, = JLJ I. We have numerically computed 7 of the
COB and plotted A* in Fig. 1. Except for d = 2, A* is less
than the maximum value ﬁ, so the corresponding GSIC
POVMs are not SIC POVMs.

The third construction is based on the complete sets of
mutually unbiased bases (MUBs) and mutually unbiased stri-
ations (MUSs) [23,24]. Let us first give a short review of those
concepts.

Two orthonormal bases (ONBs) (|wi))l‘.’=1 and (|¢i));1=1 for
‘H are called mutually unbiased if |(y;|¢;) |2 = }1 for all i, j.
The set of ONBs (|J, i>)f'1:1 J=1,2,...,m)is called mutu-
ally unbiased if any pair of the bases is mutually unbiased:

o 1
[, il0 ) = 8508 + 3(1 —8;0).

+)\*
0.5} < 1NVd+1

0.3F

0.1F t

+ + N

2 3 4 5 6 7 8 9 10 d
FIG. 1. Value A* of COBs made by Construction 2 and the opti-

1
mal value JaT

The maximum number of MUBs is known to be d + 1 and the
set of MUBs with d + 1 elements is called complete. Similar
to the problem of SIC POVMs, the existence of the complete
set of MUBs for all d is still open.

Next let M denotes a set with the cardinality #(M) =
which we label as M = {1, 2, ..., d?}. A subset of M is called
a line. A set of d lines (L; )“’ 1(L C M) is called striations
of M if #(L; N L;) = d§;; holds. Since #(M) = d?, the set
of striations (L,A)l?l=1 forms a partition of M. Two striations
(L,-);.’l= , and (K,-);i=1 are called mutually unbiased striations if
#(L; N K;) = 1 for all i, j [27]. The set of striations (L"),
J =1,2,...,m)is called mutually unbiased (or the orthog-
onal Latin squares) if any pair of the striations is mutually
unbiased:

#(L NLY) = dspdi + (1 = 85p).

The maximum number of MUSs is known to be d + 1 and the
set of MUSs with d + 1 elements is called complete.

With these similarities between MUBs and MUSs in
mind, Wootters showed the following. Let (Ai)f’i1 be a COB,
(L)L, a complete set of MUSs of M, and (|J, i))Z_, a set of
ONBs forH (J =1,2,...,d + 1). If the equation

MLl =Y AV,

keL)

holds, then the set of bases (|/, i));jz1 is a complete set of
MUBs.

The following result shows the converse is also true and
gives a construction of a COB by using complete sets of
MUBs and MUSs.

Construction 3. Let  (|J,i)L, and (L)L, (=
1,2,...,d+1) be complete sets of MUBs and MUSs.

Define the function s : {1, 2, . ..,dz} x{1,2,...,d+ 1} —>
{1,2,...,d} by s(k,J) :=1i such that k € LEJ). Notice that
such a function uniquely exists since (ij))f’=1 for each J

forms a partition of {1, ..., d?}. Then

1 d+1
Ay = Z(; |7, s(k, D), sk, )| — H) (14)

k=1,2,...,d%

is a COB, as is shown below.
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Following [28], we introduce a vector |®,,) :=|J,i) ®
|7, i) on 4 ® M where [) := > {il¥)]i) denotes the com-
plex conjugate vector with respect to a (fixed) ONB (|i>)
Let |W) :=

Then it is easy to see that |V) =
any J. Let

[ Zl 1 li) ® |i) be a maximally entangled state
[Zl VL) ® |, ) for

d+1

Z 1Py sky) — W)

Then one can show that |l€) is a unit vector and (P J,i|l€) =
\/%78”(1(, 7)- Moreover, one can show ) _; |k) (k| = I by the com-

pleteness conditions for MUBs and MUSs; hence {|l€)}f2:1
forms an ONB for H ® H (see [28] for details).

Now consider an isomorphism A € L(H) +— Z(A) :=
(I ®A)Y) € H ®H between an operator and a vector. As
(|i))l4=l forms a basis for 7{, it is easy to see that 7 is a
linear bijection between £(7{) and H ® H, and (A|B)) =
d{(Z(A)| Z(B)) for any A, B € £L(#). We define A; € L(H)
k=1,2,...,d*) by

k) = — k=1,2,...,d%. (15)

1.
I(A) = E|k>' (16)

Then the normalization condition holds:

(AxlAr) = d(Z(AD| Z(Ar)) =
Noting that |®,;) = «/EI(|J, i){J,i|), we have (Ail||/, 1)
(i) = d(ZAIZ(J, ), i])) = ﬁ(quh,i) = 18 se)-
So we observe |J,i){J,i|l=d ZZ;«AkHJ» D{J,i|NA, =
ZkeLf” Ak. Then

H—ZUI Jil=>" > A=

i kEL(J)

ZAk.
=1

Hence, the set (A;); is a COB.

Finally, the explicit form of A, is shown as follows. We
have Z(1¢)(¢]) = J=1¢) ® |¢) for any |¢) and Z(I) = |¥).
By using these properties, as well as (15) and (16), one arrives
at the expression (14).

Let us construct a SIC POVM for d =2 using
Construction 3. We employ the sets L(l) ={1,2},
LV = 3,4}, L :={1,3), LY :=(2,4}, L(3) ={1,4},
and L(3) {2,3} as a complete set of MUSs and the
sets of bases (|1, 1) := f(l DT, 1,2) = ﬁ(l,—l)T),
2, 1) := 75(1 N7, 12,2) = [(1 —-)7), and (|3,1):=
(1,0)7,13,2) := (0, 1)) as a complete set of MUBs.

According to the direct computation using (14), a canonical
construction (10) gives the following SIC POVM:

G 1 (1—1—\/_ 1—i )
'T A\ 1+i —1+43)
G 1 (—14+3 1+

PTAB\ -0 1443)

= 4«]/_( —11++{ 1:1;/%)
=750 Ss)

V. CONCLUSION

In this paper we gave the construction of GSIC POVMs
by means of COBs and investigated the condition to give a
SIC POVM by the spectrum property of a COB (Theorem 1).
In particular, for d = 2, any canonically constructed GSIC
POVM is a SIC POVM (Proposition 3), while for d > 3,
conditions for the power of traces of a COB were given to
yield SIC POVMs (Proposition 4). A characteristic value A
of a COB gives the bound of the scaled MSE for the linear
quantum state tomography by using IC POVMs. We then
provided three different constructions of COBs, one of which
shows a relation to MUBs. The constructions serve not only
for GSIC POVMs, but also for NQPRs.

Finally, we offer another idea of construction of COBs,
and hence of GSIC POVMs, based on Zauner’s conjecture for
a SIC POVM [5,29]. Let (D)L, be the tuple of unitary
operators defined by

d—1
Dy = o™ ™k & m)(ml,
m=0
where w = exp(%), (k) is an ONB for 7, and & denotes
the addition modulo d. Then it is believed that there is a nor-
malized fiducial vector |¢) € H with which (|1//]k><l/f]k|)] e
where [ jx) = f Djil¢) is a SIC POVM. Note that (D) ;«

is a faithful projective unitary representation of a group G =
Zy X Zy. More generally, for a group G with the identity e
and the order #(G) = d?, let (Ug)gec be a faithful projective
unitary representation

UUy = c(8, 8y (g, & €G), (17)
with |c(g, ¢)| = 1, which is orthogonal
(UglUyg )y = dgy . (18)

These bases are sometimes called nice error bases [30,31].
Note that the faithfulness is required to guarantee #(U,) = d 2,
By the properties (17) and |c(g, &)| = 1, it is easy to see that
if a fiducial vector satisfies

1
[(@1U)* = —— Vg #e, 19)

d+1

([17|Ug¢)(Ug¢|)g€G forms a SIC POVM. Note that [32] the
orthogonality condition (18) is equivalent to the relation

> ULU] =d(trC)1 ¥C € L(H): (20)
8
hence the completeness of the POVM follows automatically.
Let (U, )gec be a faithful projective unitary representation
of a group G with #(G) = d>. Let A be a Hermitian operator
with tr A2 = 617. Moreover, let A satisfy the condition

trAU;AUg =0Vg#e.
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Then it is easy to see that (A, := UgAUgT)gE(; is a COB: The
orthogonality and the completeness conditions follow from
(19) and (20), respectively. Note also that trA, = % follows
automatically. Such an operator A might be called a fidu-
cial operator. Hence, a construction for both SIC and GSIC
POVMs reduces to the problem of finding a fiducial operator.
We think the problem is interesting even for GSIC POVMs.
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APPENDIX A: PROOFS OF SOME PROPOSITIONS

In this Appendix we give proofs of some propositions and
lemmas.

1. Spanning property of the IC POVM

First, the following is a well-known fact for the IC POVM
(see, e.g., [4]), but here we provide its simple proof.

Proposition 6. A POVM F = (F;)_, is informationally
complete if and only if F spans £(H).

Proof. Note first that F is informationally complete if and
onlyifforanyC,D € £(H)andany i, tr ;,C =tr ;D = C =
D by noting that any linear operator can be expressed as a
linear combination of density operators.

Let ' = (F;)!_, be an informationally complete POVM.
Assume the contrary, that F does not span £(7{). Then
(spanF)* # {0}. Namely, there is nonzero X € £(7{) such
that for any i, (F;|X)) = tr ;X = 0 = tr(F;0). However, the
IC POVM then implies X = 0, which is a contradiction. The
converse is trivial. ]

2. Proof of Lemma 1

Proof of Lemma 1. Conditions (a) and (b) imply that x; > 0
and x; < 0. To see this, assume the contrary, that x; > 0, so
that all x; > 0. Then (3, x))* — (3, x7) = >_..; xix; > 0.0n
the other hand, by (a) and (b), (3_, x;)* — (3, x) = (3)* —
5 = l;—f < 0. Thus we have a contradiction. A similar argu-
ment (by flipping the sign) shows x; > 0.

N N I
Let aq; := m(d x; — 1). It follows from (a) and (b)
that (a') >, a; = 0 and (b') Y, a? = 2. Similar to the above
2
argument, a; < 0 and one sees |ay| = \/d(f—l(d |xqs] + 1)
= d?|x4| + 1). Proposi-

(note that x; < 0 implies |1 — d%x4]|
tion 1-[I] in [33] shows

2
lag| = dd=1 (A1)

Therefore, we have

2
V2 (d|xal + 1) >

2
Jd@dr—1) dd—1)

from which we obtain (7). By Proposition 1-[III] in [33], (A1)
is saturated, which implies (7) is saturated, if and only if

[2(d = 1)
MEVTL
~ 2

dd—1)

which imply that (8) and (9) hold. |

ar,az,...,dg =

3. Proof of (12)

Proof of (12). We denote by m; the minimum eigenvalue
of A;, which is strictly negative as is shown in the main text.
Clearly, —|my| = my, < tr pA; for any p € S(p). Hence, we
have T = max;{|m;|} = —tr pA; and thus T = max;{|m;|} >
— miny tr pAy. Since the positivity of t trivially holds, this
shows that

%N({Ai}) <t

To prove the converse inequality, let px = |@x) (x| € S(H),
where |¢;) is the unit eigenvector of A corresponding to the
minimum eigenvalue m;. We have, for any k,

min tr ;o = min(gy[Air) < (9lAxdi) =
Therefore, %N({A,-}) > max{0, —min; trA; o} >
—min; trA;pr = —my = |my|. Since this holds for any k%,
we have

éN({Ai}) 2T

APPENDIX B: ORTHOGONAL BASIS WITH A FIXED SUM

Let C be a D-dimensional real inner product space. In this
Appendix we provide two constructions of an orthogonal ba-
sis {|¢S,)}f)0 with constant norms, i.e., (¢;|¢;) = c¢d;; (c > 0),
as well as the fixed sum Zf) 01 |¢;) = |t). Note that automati-

cally ¢ = ”‘” since [[¢? = (X, il X, ¢7) = ;. ¢8ij = cD.
For our purpose of constructing a COB just apply |¢) =1
where K is the real Hilbert space of Hermitian operators,
noting that || I | = v/d and D = d2.

Constmctton 1. With a given [¢), prepare an orthonormal

’ I‘IzH Prepare also an orthogo-

basis {|t,)l o Where [tp) =
nal D x D real matrix O = [O; ]D 10 (i.e., 00T =0T0 =1

such that

1
Opi=—4=Vi=0,1,...,

VD

where [ is the D x D identity matrix. Then

_ e
i) : Zom

gives the desired basis.
Indeed since O is an orthogonal matrix, one has |f;) =

i Z Oijl¢;) so that the condition (B1) implies

=Y VDOujlp;) = 16)).
J j

D —1, B1)

(i=0,1,....D—1) (B2

|t} = llelllzo)
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The orthogonality of |¢;) is also satisfied by the orthogonality
of 0.

Note here that both {|;)}; and O can be easily constructed
by using the Gram-Schmidt orthogonalization starting from
[ty and (1, 1,..., )T € RP, respectively. Note also that, con-
versely, any orthogonal basis {|¢,->}iD: _01 with a fixed sum |¢)
can be constructed in this way [with two alternatives (a) and
(b) below].

(a) Given an arbitrary orthonormal basis {|#;)}; with |ty) =
H ” , there exists an orthogonal matrlx O satisfying (B1) such

that any orthogonal basis {|¢;)}? i:O
constructed by (B2).!
(b) Given an arbitrary orthogonal matrix O satisfying (B1),

there exists {|t;)}; with |tg) = 19 guch that any orthogonal

flell
basis {|¢>,<)}?:_01 with a fixed sum |¢) is constructed by (B2).?

The next construction is not general but uses only one
orthonormal basis and is more concrete.

Construction 2. Prepare an orthonormal basis {|t;)}2)
where |t)) = H ” Construct an orthonormal basis {|s;) iD:_Ol
by the Gram-Schmidt orthogonalization of the set S =
{Is), 1t1), ..., [tp=1)}, where |s) : Z |t;) starting from |[s).

Then, using the unitary operator U = Z £;)(s;l, itis easy
to see that

with a fixed sum |¢) is

llell
i) = —U t B3
i) : /D It:) (B3)

gives a desired orthogonal basis. In particular >olei) =
TEUIs) = 3, |t since |so) = 15 = 75 2; In).

Note that the linear independence of the set S is easily
shown. The choice of the latter D — 1 vectors in S can be
arbitrary from {|t,)} ! However, by the symmetric argument
one can show that the obtained orthonormal basis {|s,>}D
independent of the choice.

One can continue this construction more concretely as
follows. First, the direct computatlon of the Gram-Schmidt
orthogonalization gives |so) = f Z |t;) and

(D - i)|l, Zk;ﬁl 2.. |tk
MOEDIENG 1))
Plugging this into (B3), one arrives at the COB given by

1go) = 14 (|l0 Zf(nm)

OlS

ls;) =

(1<i<D-1).

g) = 140 (|to Zf(j)ltj> + (D~ i)f(i)lti))
j=1

(i=1,2,....,D—1),

. /b
where £(j) = 755001

'As {If;)}; and {|$;)}; are both orthogonal bases, there ex-
ists an orthogonal matrix 0 =1[0j] which connects them: |t;) =
i Z 0,J|¢J Since MH 2185 =) = 5 Z Oyjl¢;), one has
Oyj = D for all j.

NetO =
straightforward to see that |z;)

[O;;] be an onhogonal matrix satisfying (B1). Then it is
=37 Z 0;;1¢;) is the desired basis.

Finally, here are some examples of COBs. Ind = 2, Con-

. . 1
struction 1 using Tp = [ I, T} = [ax, T = 5 T; =
\/%Uz, and

1 1 1 1

2 2 2 2

1 1 _1

2 2 2 2

O=|1 1 _1 _1

2 2 2 2

1 _1 1

2 2 2 2
gives the following COB:

COB:

1_ 1 S S
A1—< 4 22 43 2ﬁ>
= 1 i 1 >
NN I N

3

4 4
A=ly 1)

4 1

1 1 i

A3 —_— (_L“_i_ i 4\/§_ \/5)3

4/3 V6 4

l_{_L _L_F;
A _( 47 22 43 2%)
4=\ _ i 1

43 26 4 22

Construction 3 using L( ) = ={1,2}, L(]) {3, 4}, L(z)
{1,3), L = (2,4}, LY = {1,4}, and L(3) (2,3} and a
complete set of MUBs which consists of the normalized
eigenvectors of the Pauli matrices gives the same COB as in
(B4).

In d = 2, as mentioned in the proof of Proposition 3, all
eigenvalues of A; are the same %ﬁ. Therefore, we observe
A= % which can saturate the upper bound.

In three or more dimensions, the matrix forms of COBs are
more complex. For example, Construction 2 for d = 3 using
the generalized Gell-Mann matrices (13) gives the following
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COB:
_2 =TH3iVT i 1
9 843 6v5  6V7
A = —7-3iV7 1 _ =5i4/15 A
1= 843 9 3042 > 2 =
i1 _sit1S 4
6v/5  6V7 3042 9
1 —T43iv7T L 1
9 8443 NG 9
TN 1 =1-3iV7
Ay = 343 9 01 As= 84/3
1 0 1 [NER
N 9 6 637
1 “T43iVT i 1
9 84/3 6v/5 67
—7-3iV7 1 2 _
Ag = 843 9 V15 . A=
N R 2 1
65  6V7 15 9
4 =T4+3ivT i 1
9 8443 6v5  6V7
A — —7-3iV7 _2 _ —5i4/15 Ao —
8 = 843 9 30v2 | 9=
i _ 1 _5i4/I5 1
6v5  6V7 302 9

1 2 0 1 —1=3iv7T
9 33 9 12V3
2 1 —143iv/7 1
343 9 0 . Az 1243 9 0].
0 o 1 1
9 0 0 5
743V _i/5 1
843 6 67
1
5 0 ;
0 5
1 —7+3iV/7 i1
9 8443 6v/5  6V7
—7-3i/7 1 _15i4/15
844/3 9 30v2 ’
i1 _ —15i4/15 1
65 67 30v/2 9
1 —74+3iv/7 i1
9 843 6v/5 67
—7-3iJ/7 4 _ =5i+/15
843 9 30v2
i1 _5itVIS _2
6v/5  6J7 3042 9

We numerically observed t = 0.291 347 and A* = 0.276 081, which cannot saturate the upper bound 0.5.
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