
PHYSICAL REVIEW A 106, 022407 (2022)

Representation of the fermionic boundary operator

Ismail Yunus Akhalwaya,1,2,* Yang-Hui He,3,4,5,6,† Lior Horesh ,7,‡ Vishnu Jejjala,8,§

William Kirby ,9,10,‖ Kugendran Naidoo ,8,¶ and Shashanka Ubaru7,#

1IBM Research Africa, Johannesburg 2000, South Africa
2School of Computer Science and Applied Mathematics, University of the Witwatersrand, Johannesburg, WITS 2050, South Africa

3London Institute for Mathematical Sciences, Royal Institution, London W1S 4BS, United Kingdom
4Department of Mathematics, City, University of London, London EC1V 0HB, United Kingdom

5Merton College, University of Oxford, Oxford OX1 4JD, United Kingdom
6School of Physics, NanKai University, Tianjin 300071, China

7Mathematics of AI, IBM Research, T. J. Watson Research Center, Yorktown Heights, New York 10598, USA
8Mandelstam Institute for Theoretical Physics, School of Physics, NITheCS, and CoE-MaSS,

University of the Witwatersrand, Johannesburg, WITS 2050, South Africa
9Department of Physics and Astronomy, Tufts University, Medford, Massachusetts 02155, USA

10IBM Quantum, IBM Research, T. J. Watson Research Center, Yorktown Heights, New York 10598, USA

(Received 24 April 2022; accepted 27 July 2022; published 10 August 2022)

The boundary operator is a linear operator that acts on a collection of high-dimensional binary points
(simplices) and maps them to their boundaries. This boundary map is one of the key components in numerous
applications, including differential equations, machine learning, computational geometry, machine vision, and
control systems. We consider the problem of representing the full boundary operator on a quantum computer.
We first prove that the boundary operator has a special structure in the form of a complete sum of fermionic
creation and annihilation operators. We then use the fact that these operators pairwise anticommute to produce
an O(n)-depth circuit that exactly implements the boundary operator without any Trotterization or Taylor-series
approximation errors. Having fewer errors reduces the number of shots required to obtain desired accuracies.

DOI: 10.1103/PhysRevA.106.022407

I. INTRODUCTION

Quantum computers are capable of performing certain lin-
ear algebraic operations in exponentially large spaces and
promise to achieve significant asymptotic speedups over
classical computers [1,2]. In recent years, several quantum
algorithms have been proposed to leverage the potential of
quantum computing [3–8]. These algorithms achieve polyno-
mial to exponential speedups over the best-known classical
methods. However, most of these methods require large-scale
fault-tolerant quantum computers in order to challenge the
classical methods in practice.

The realization of fault tolerance in quantum computers
is likely at least several years away. Present-day quantum
computers are referred to as noisy intermediate-scale quantum
(NISQ) [9] devices and are too small to implement error cor-
rection but too large to simulate classically [10]. Development

*IsmailA@za.ibm.com
†hey@maths.ox.ac.uk
‡lhoresh@us.ibm.com
§vishnu@neo.phys.wits.ac.za
‖william.kirby@ibm.com
¶9006597F@students.wits.ac.za
#Shashanka.Ubaru@ibm.com

of algorithms that achieve quantum advantage for useful tasks
on NISQ devices is a critical next step for the field [9–12].

Boundary operators (also known as boundary maps) are
among the most important computational primitives used
for the representation and analysis of differential equa-
tions [13–15], finite-element methods [16,17], graph and
network analysis [18–20], computational geometry [21,22],
machine vision [23,24], control systems [25,26], and more.
They are also used to bridge the gap between discrete
representations, such as graphs and simplicial complexes,
and continuous representations, such as vector spaces and
manifolds. The graph Laplacians (including higher-order
combinatorial Laplacians) can be constructed using the
boundary operator [27,28]. Laplacians of graphs and hyper-
graphs play an important role in spectral clustering [29],
a computationally tractable solution to the graph partition-
ing problem that is prevalent in applications such as image
segmentation [30], collaborative recommendation [31], text
categorization [32], and manifold learning [33]. Finally, graph
Laplacians are crucial in graph neural network architectures
[34–36], a recent set of neural network techniques for learning
graph representations.

The boundary operator also plays a critical role in topo-
logical data analysis (TDA), as a linear operator that acts on
a given set of simplices and maps them to their boundaries.
TDA is a powerful machine learning and data analysis tech-
nique used to extract shape-related information of large data

2469-9926/2022/106(2)/022407(9) 022407-1 ©2022 American Physical Society

https://orcid.org/0000-0001-6350-0238
https://orcid.org/0000-0002-2778-1703
https://orcid.org/0000-0002-9351-4240
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.106.022407&domain=pdf&date_stamp=2022-08-10
https://doi.org/10.1103/PhysRevA.106.022407

ISMAIL YUNUS AKHALWAYA et al. PHYSICAL REVIEW A 106, 022407 (2022)

sets [22,37–39]. TDA permits representing large volumes of
data using a few global and interpretable features called Betti
numbers [37]. Classical algorithms for TDA and Betti-number
calculations are typically computationally expensive. In [7],
Lloyd et al. proposed a quantum algorithm for TDA, and
this algorithm provably achieves exponential speedup over
classical TDA algorithms under certain conditions, as shown
in [40]. However, their quantum TDA (or QTDA) algorithm
requires fault tolerance due to the need for a full quantum
phase estimation (made worse by the embedded and repeated
use of Grover’s search). More recently, Ubaru et al. [41]
devised a QTDA algorithm that is more amenable to NISQ
implementation. The algorithm requires only an O(n)-depth
quantum circuit and thus has the potential to be an early use-
ful NISQ algorithm that provably (up to weak assumptions)
achieves exponential speedup.

In [41], the (generalized) boundary operator B is rep-
resented in a novel tensor form, as a complete sum of
fermionic creation and annihilation operators.1 Then, the
standard technique of applying a Hermitian operator on a
quantum computer is implemented, namely, executing the
time-evolution unitary e−itB for short time t and “solving”
for the second term of the Taylor series (−itB). The time
evolution is approximated by Trotterization [43–45]. Using
this technique, with certain gate cancellations, an O(n)-depth
circuit representation can be obtained for the boundary op-
erator [41]. However, both the Taylor-series expansion and
Trotterization steps accrue errors and require many shots to
accurately simulate B.

In this paper, we first present a proof of correctness of
the fermionic representation of the boundary operator given
in [41,42]. Next, we use a technique developed in [10,46]
(where it is called unitary partitioning) to exactly express
the full Hermitian boundary operator as a unitary opera-
tor that has an efficient O(n)-depth construction in terms
of quantum computing primitives. This short depth circuit,
without evolution and Trotterization, analytically implements
the boundary operator, allowing for far fewer measurement
shots than the standard Hermitian-evolution technique (see
Sec. IV). This can be instrumental in many downstream ap-
plications such as QTDA [7,41], cohomology problems [42],
quantum algorithms for finite-element methods [17], solving
partial differential equations [14,15,47], and potential quan-
tum algorithms for machine vision and control systems.

II. THE BOUNDARY OPERATOR AND ITS
FERMIONIC REPRESENTATION

In this section, we first introduce the concept of boundary
operators in the context of computational geometry and TDA.
We then discuss the fermionic creation and annihilation oper-
ators and present a fermionic representation for the boundary
operator along with a proof establishing its correctness.

1In [42], the connection between supersymmetric many-body sys-
tems and the (co)homology problem is discussed, and independent
of our work, the same fermionic annihilation operator representation
for the (co)boundary map is introduced.

A. Computational geometry

In [7], Lloyd et al. introduced a quantum algorithm for
topological data analysis (QTDA). Simplices are represented
by strings of n bits. Each bit corresponds to a vertex, with zero
indicating exclusion and one indicating inclusion. Hence, on
the quantum computer, the usual computational basis directly
maps to simplices. There are 2n computational basis vectors,
one for each unique n-bit binary string, written |sk〉, where
k indicates the number of vertices in the simplex (i.e., the
number of ones in the binary string).2 In general, the quantum
state vector (of length 2n) can be in a superposition of these
basis vectors. Core to the QTDA algorithm is the restricted
boundary operator, defined by its action on k-dimensional
simplices (among n vertices, hence the superscript (n) in the
following):

∂
(n)
k |sk〉 =

∑
l

(−1)l |sk−1(l)〉, (1)

where |sk〉 represents a simplex and |sk−1(l)〉 is the simplex
of one dimension less than |sk〉 with the same vertex set
(containing n vertices) but leaving out the lth vertex counting
from the left.

1. Fleshing out the restricted boundary operator

It helps to rewrite (1) without the use of index l , which
hides some algorithmic steps, because l presupposes that the
locations of the ones are known (i.e., which vertices are in
a given simplex, e.g., l = 0 refers to the first 1 in the string
reading from left to right). We rewrite using index i:

∂
(n)
k |sk〉 =

n−1∑
i=0

δsk [i],1(−1)
∑n−1

j=i+1 sk [j]|sk−1(i)〉, (2)

where we now choose to locate each bit counting from the
right starting with index 0. Here we introduce the notation
sk[i] to represent the ith bit of the string. We keep |sk−1(i)〉
to mean what Lloyd et al. meant (except now i is any bit
index), namely, |sk〉 with the ith vertex set to zero. Crucially,
all references to l have been replaced, including the implicitly
required knowledge of the location of the last 1 (the sum
across i simply runs from 0 to n − 1). In the Appendix, we
illustrate this definition with explicit examples.

Now, ∂
(n)
k ’s action on a single simplex can be split into two

cases depending on whether the last vertex, indexed n − 1, is
in the simplex or not. The absence or presence of this last
vertex is represented by the bit sk[n − 1] being 0 or 1, re-
spectively. If sk[n − 1] = 0, the quantum state corresponding
to this single simplex (call it |sk,0〉) is a single computational
basis state whose binary string has exactly k ones somewhere
in it, except that the leftmost bit is zero. If we write this basis
state as an exponentially long vector, it consists of a column
of 2n−1 bits, only one of which is 1 (at a location whose binary
string consists of those k ones), followed by 2n−1 zeros. This

2There is a difference in convention for how to index the bits of the
binary string. In this paper, we try to be explicit and refer to “counting
from the left” or “right.” For our introduced indices, we always index
from zero.

022407-2

REPRESENTATION OF THE FERMIONIC BOUNDARY … PHYSICAL REVIEW A 106, 022407 (2022)

is similarly the case for |sk,1〉, but with the single 1 appearing
in the second half of the column vector.

If |sk〉 = |sk,0〉 for k � n − 1,

∂
(n)
k |sk,0〉 =

n−1∑
i=0

δsk [i],1(−1)
∑n−1

j=i+1 sk [j]|sk−1(i)〉

=
n−2∑
i=0

δsk [i],1(−1)
∑n−2

j=i+1 sk [j]|sk−1(i)〉

=
(

∂
(n−1)
k 0
0 0

)
|sk,0〉. (3)

If |sk〉 = |sk,1〉 for k � n,

∂
(n)
k |sk,1〉 =

n−1∑
i=0

δsk [i],1(−1)
∑n−1

j=i+1 sk [j]|sk−1(i)〉

= |sk−1(n − 1)〉 + (−1)
n−2∑
i=0

× δsk [i],1(−1)
∑n−2

j=i+1 sk [j]|sk−1(i)〉

=
(

0 P(n−1)
k−1

0 0

)
|sk,1〉 − 1

(
0 0
0 ∂

(n−1)
k−1

)
|sk,1〉, (4)

where P(n−1)
k−1 is the projection onto the computational basis

states of n − 1 qubits whose binary strings contain exactly
k − 1 ones. See how the block-diagonal notation allows us to
remove or leave alone the kth one precisely in the nth position.
In this particular equation, since we act on only |sk,1〉 and
remove the nth vertex, the projection could be replaced by the
identity operator.

B. Fermionic boundary operator

Fermionic fields obey Fermi-Dirac statistics, which means
that they admit a mode expansion in terms of creation and an-
nihilation oscillators that anticommute. Exploiting this fact, it
is convenient to map Pauli spin operators to fermionic creation
and annihilation operators. The Jordan-Wigner transformation
[48] is one such mapping. In this section, we will make use of
it to express the boundary matrix.

The Lloyd et al. restricted boundary operator given in (1)
is not in a form that can be easily executed on a quantum
computer, nor does it act on all orders k at the same time.
In particular, it is a high-level description of the action of
the boundary operator on a single generic k-dimensional sim-
plex with the location of the ones assumed to be known.
Ubaru et al. [41] proposed a novel representation that re-
alizes the full boundary operator as a matrix. Furthermore,
this representation is in tensor-product form composed of
quantum computing primitives that directly map to quantum
gates in the quantum circuit model. To begin, define the oper-
ator

Q+ := 1
2 (σx + iσy) =

(
0 1
0 0

)
. (5)

This allowed Ubaru et al. to suggest writing the full bound-
ary operator in terms of the above operator:

∂ (n) := σz ⊗ . . . ⊗ σz ⊗ Q+

+ σz ⊗ . . . ⊗ σz ⊗ Q+ ⊗ I

...

+ σz ⊗ Q+ ⊗ I ⊗ . . .

+ Q+ ⊗ I ⊗ I ⊗ . . .

=
n−1∑
i=0

ai, (6)

where ai are the Jordan-Wigner [48] Pauli embeddings corre-
sponding to the n-spin fermionic annihilation operators, hence
the title of this paper.3 To be explicit, ai is the antisymmetric
annihilation operator on mode or orbital i (indexed from the
right, starting at zero):

ai := σz ⊗ · · · ⊗ σz︸ ︷︷ ︸
n−(i+1)

⊗ Q+ ⊗ I ⊗ · · · ⊗ I︸ ︷︷ ︸
i

(7)

= σ⊗[n−(i+1)]
z ⊗ Q+ ⊗ I⊗i,

{ai, a†
j} = δi j I

⊗n. (8)

When (6) is realized in matrix form, where the rows’ and
columns’ integer indices (counting from left to right and top
to bottom, beginning at zero) are translated into binary, the
meaning of these strings corresponds exactly to the simplex
strings introduced above. Recall that a one at bit i of the
simplex string (counting from the right, starting from zero)
corresponds to selecting the ith vertex.

The first key result we need to show is as follows:
Theorem 1. The full boundary operator as defined in (6) is

a sum over the restricted boundary operators over simplices of
each dimension as defined in Sec. II A 1 as follows:

∂ (n) =
n∑

k=1

∂
(n)
k . (9)

Remark 1. A simple sum (as opposed to a direct sum)
can be used because the Lloyd et al.’s definition of ∂k has
already been extended to a common vertex space of size n.
The rewriting constructs the full boundary operator in one
step, and the individual ∂k do not feature at all. Indeed to
recover the ∂k one would need to project into the appropriate
space, which is a required step in implementing QTDA on
quantum computers [41]. Index i of the ai fermionic operators
indicates which qubit out of n is acted upon by Q+ (counting
from the right) and has nothing to do with ∂k (and is why there
is no k dependence).

3While this suggests that only the Jordan-Wigner mapping of
fermionic operators does the job, it does open the question of whether
other embeddings (e.g., Bravyi-Kitaev [49]) could also play a role,
perhaps via translation between the different embeddings. More
tantalizingly, since we have recast simplicial homology in terms of
these fermionic operators, it would be interesting to explore other
geometric structures under this light.

022407-3

ISMAIL YUNUS AKHALWAYA et al. PHYSICAL REVIEW A 106, 022407 (2022)

Proof. The proof proceeds by induction, so we will first set
up a recurrence relation.

a. Recurrence relation. Equation (6) is amenable to effi-
cient quantum circuit construction, as we show in Sec. III.
However, first, we need to prove that Eq. (6) is valid and
correctly implements Lloyd et al.’s high-level description (9).
The easiest way to prove Eq. (9) is by noticing that the left-
hand side satisfies the following recurrence relation and then
connecting the recurrence relation to the right-hand side of
(9):

∂ (n) = Q+ ⊗ I⊗(n−1) + σz ⊗ ∂ (n−1),

∂ (1) = Q+. (10)

It helps to write (10) in block-diagonal form,

∂ (n) =
(+∂ (n−1) I⊗(n−1)

0 −∂ (n−1)

)
, (11)

and think about the action of ∂ (n) in terms of ∂ (n−1).
The operator ∂ (n−1) acts on vectors of size 2n−1, while ∂ (n)

acts on vectors of size 2n. The vector of size 2n can be seen
as two halves of size 2n−1. The top half consists of simplices
where the nth vertex is not in the simplex. The bottom half
corresponds to a “copy” of the n − 1 space, but now with
the nth vertex selected. For example, edges in the upper half
become triangles in the lower half since the nth vertex is
added. The top left block of ∂ (n) in (11) is ∂ (n−1), acting on
the “top half” simplices, where the nth vertex is not selected
(sk[n − 1] = 0 and k has to be strictly less than n) and returns
simplices (the boundaries) in the top half (since taking the
boundary can never add the nth vertex). The top right block
I⊗(n−1) acts on simplices in the bottom half (sk[n −1] = 1) and
returns simplices in the top half, which corresponds to sim-
ply removing the nth vertex and leaving everything else the
same (hence the identity operator). Finally, the bottom right
block acts on simplices in the bottom half (sk[n − 1] = 1) and
returns simplices in the bottom half, corresponding to those
returned by taking the boundary operator acting on the first
n − 1 vertices and leaving the nth vertex selected. The bottom
returned vertices need to be multiplied by −1 because acting
on the first n − 1 vertices by ∂ (n−1) does not factor in the extra
−1 from the nth vertex in definition (2).

b. Inductive proof of simplex action. We now prove (9) via
induction. The base case, ∂ (1) = ∂

(1)
1 , clearly implements the

Lloyd et al. definition because it takes the single vertex vector
to the null vector as required. Now we assume ∂ (n) for n � 1
implements the sum of restricted boundary operators (9) up to
n and use that to show that ∂n+1 correctly implements the sum
up to n + 1, i.e., that

∂ (n+1) =
n+1∑
k=1

∂
(n+1)
k . (12)

From (11), the left-hand side of (12) is

∂ (n+1) =
(

∂ (n) I⊗(n)

0 −∂ (n)

)
, (13)

and from the inductive assumption (9), this becomes

∂ (n+1) =
(∑n

k=1 ∂
(n)
k I⊗n

0 −∑n
k=1 ∂

(n)
k

)
. (14)

The right-hand side of (12) contains terms of the form
∂

(n+1)
k . All ∂

(n+1)
k act on n + 1 vertices, so in matrix form they

are all of the same dimension. From (3) and (4) we have

∂
(n+1)
k |sk,0〉 =

(
∂

(n)
k 0
0 0

)
|sk,0〉, 1 � k � n, (15)

∂
(n+1)
k |sk,1〉 =

(
0 P(n)

k−1

0 −∂
(n)
k−1

)
|sk,1〉, 1 � k � n + 1. (16)

Now since any |s〉 = ∑
k |sk〉 = ∑

k (|sk,0〉 + |sk,1〉) and the

matrix in (15) takes |sk,1〉 to the null vector,
(

∂
(n)
k 0
0 0

)
|sk,1〉 =

0, while the matrix in (16) similarly takes |sk,0〉 to the null

vector,
(

0 P(n)
k−1

0 −∂
(n)
k−1

)
|sk,0〉 = 0, we can combine (15) and (16)

while paying attention to different values of k:

∂
(n+1)
1 =

(
∂

(n)
1 P(n)

0
0 0

)
, k = 1, (17)

∂
(n+1)
k =

(
∂

(n)
k P(n)

k−1

0 −∂
(n)
k−1

)
, 2 � k � n, (18)

∂
(n+1)
n+1 =

(
0 P(n)

n
0 −∂ (n)

n

)
, k = n + 1, (19)

where P(n)
0 = |0 · · · 0〉〈0 · · · 0| (n zeros) and P(n)

n =
|1 · · · 1〉〈1 · · · 1| (n ones). Note that ∂

(n+1)
n+1 produces no

top left block and ∂
(n+1)
1 produces no bottom right block.

Therefore, the right-hand side of (12) is

n+1∑
k=1

∂
(n+1)
k =

(∑n
k=1 ∂

(n)
k I⊗n

0 −∑n
k=1 ∂

(n)
k

)
(20)

since
∑n

k=0 P(n)
k = I⊗n. Therefore, the right-hand side is equal

to the left-hand side (14). �
With the proof in hand, we now understand why (6) and

its recursive form (10) can produce (1) only in summation
form (9). In particular, ∂k on a simplex with one more po-
tential vertex (n + 1) is related to both ∂k and ∂k−1 on the
original number of vertices (n). Therefore, the full chain of
sums is needed to build up a recursive construction, where
we sequentially add one vertex at a time, which then makes a
quantum-implementable tensor definition possible.

III. UNITARY CIRCUIT

The boundary operator above is not unitary. It is also
not Hermitian, which makes it more difficult to use known
techniques to implement it on a quantum computer. As a first
step we consider a Hermitian version of the boundary operator
constructed by simply adding the Hermitian conjugate. It turns
out that this Hermitian version happens to be a scaled unitary
operator, therefore requiring no further work to obtain a uni-
tary circuit. Naturally, the Hermitian version is not identical
to the non-Hermitian version, but a simple projection-based
reconstruction is discussed below.

022407-4

REPRESENTATION OF THE FERMIONIC BOUNDARY … PHYSICAL REVIEW A 106, 022407 (2022)

Every Q+ in the tensor product now becomes σx = Q+ +
(Q+)†. Hence, the full Hermitian boundary operator is

B = ∂ + ∂† = σz ⊗ . . . ⊗ σz ⊗ σx

+ σz ⊗ . . . ⊗ σz ⊗ σx ⊗ I

...

+ σz ⊗ σx ⊗ I ⊗ . . .

+ σx ⊗ I ⊗ I ⊗ . . .

=
n−1∑
i=0

Qi, (21)

where I denotes the single-qubit identity operator and

Qi := ai + a†
i , (22)

with ai as defined in (7). This Qi is a Kronecker product of
n Pauli matrices, of which the n − (i + 1) leftmost ones are
σz. The goal is now to construct a unitary circuit to implement
either B or exp(iBt) (depending on the application). Towards
this end, it is extremely useful to note the following:

Lemma 1. Qi pairwise anticommute: {Qi, Qj} = 0
for i �= j.

Proof. The mixed-product identity for the Kronecker prod-
uct is

(A ⊗ B) · (C ⊗ D) = (AC) ⊗ (BD). (23)

Hence, we have (assuming without loss of generality that i >

j so that there are more σz matrices in Qj)

{Qi, Qj} = {σz ⊗ · · · ⊗ σz︸ ︷︷ ︸
n−(i+1)

⊗ σx ⊗ I ⊗ · · · ⊗ I︸ ︷︷ ︸
i

,

× σz ⊗ · · · ⊗ σz︸ ︷︷ ︸
n−(j+1)

⊗ σx ⊗ I ⊗ · · · ⊗ I︸ ︷︷ ︸
j

}. (24)

Since {σ�, σk} = 2δ�kI and [σk, I] = 0 for any k = x, y, z, (24)
immediately yields the result. �

We now use the fact that any real linear combination of
pairwise anticommuting Pauli operators is unitarily equivalent
to a single Pauli operator, up to some rescaling [46]. One
can think of this as a generalization of the Bloch sphere
to more than three Pauli operators. Moreover, the unitary
that maps the linear combination to the single Pauli operator
can be efficiently constructed. This technique was developed
for the purpose of reducing the number of distinct terms
in Hamiltonians to be simulated using variational quantum
eigensolvers, in which context it is known as unitary parti-
tioning [10,46,50].

For neighboring Q, Qi−1 and Qi,

−iQi−1Qi = −i(σz ⊗ · · · ⊗ σz︸ ︷︷ ︸
n−i

⊗ σx ⊗ I ⊗ . . . ⊗ I︸ ︷︷ ︸
i−1

)

× ·(σz ⊗ · · · ⊗ σz︸ ︷︷ ︸
n−(i+1)

⊗ σx ⊗ I ⊗ . . . ⊗ I︸ ︷︷ ︸
i

)

= −iI⊗[n−(i+1)] ⊗ σzσx ⊗ σx ⊗ I⊗(i−1)

= −iI⊗[n−(i+1)] ⊗ iσy ⊗ σx ⊗ I⊗(i−1)

= YiXi−1, (25)

where Xi−1 and Yi are, respectively,

Xi−1 = I⊗(n−i) ⊗ σx ⊗ I⊗(i−1), (26)

Yi = I⊗[n−(i+1)] ⊗ σy ⊗ I⊗i. (27)

Hence, −iQi−1Qi is itself a Pauli operator and commutes with
all Pauli terms in B except for Qi−1 and Qi. Therefore, a rota-
tion generated by −iQi−1Qi affects only those two terms. For
an arbitrary linear combination αQi + βQi−1 for real α and β,
we define the following rotation generated by −iQi−1Qi:

Ri ≡ exp

(
Qi−1Qi

2
atan2(α, β)

)

= exp

(
iYiXi−1

2
atan2(α, β)

)
. (28)

It can be shown that the adjoint action of Ri on the linear
combination is

Ri(αQi + βQi−1)R†
i =

√
α2 + β2Qi−1. (29)

For details, we refer the reader to the unitary partitioning
papers [10,46,50].

Therefore, we can map B, which, as given in (21), is the
sum of all Qi, to a single Qi via a sequence of such rotations
as follows:

B =
n−1∑
i=0

Qi
Rn−1 with α = 1, β = 1−−−−−−−−−−−−→

√
2Qn−2 +

n−3∑
i=0

Qi

× Rn−2 with α = √
2, β = 1−−−−−−−−−−−−−→

√
3Qn−3 +

n−4∑
i=0

Qi

× Rn−3 with α = √
3, β = 1−−−−−−−−−−−−−→

√
4Qn−4 +

n−5∑
i=0

Qi

...

× R2 with α = √
n − 2, β = 1−−−−−−−−−−−−−−→ √

n − 1Q1 + Q0

× R1 with α = √
n − 1, β = 1−−−−−−−−−−−−−−→ √

nQ0, (30)

where each arrow represents an application of Ri as in (28)
with the given values of α and β. Hence, we map B to√

nQ0 = √
nX0, i.e., a single-qubit Pauli σx, via n − 1 rota-

tions generated by two-qubit Pauli matrices YiXi−1.
Let R denote this entire sequence of rotations, i.e.,

R =
i=1∏

i=(n−1)

Ri. (31)

In terms of R, the above result is

RBR† = √
nX0, (32)

which implies that

B = √
nR†X0R. (33)

This is all that is needed in the QTDA use case. Since R†X0R
is unitary, it can be implemented as a quantum circuit, and
to obtain B the constant of proportionality can be included
during classical postprocessing.

022407-5

ISMAIL YUNUS AKHALWAYA et al. PHYSICAL REVIEW A 106, 022407 (2022)

Extensions. In certain use cases (such as propagators in
differential equations), it may be desired to implement the
time evolution of B. For these cases, in order to implement
the time evolution generated by B for a time t , we can apply
R, then implement the time evolution generated by

√
nX0 for

time t (analytically), and then invert R. This exponentiation is
achieved analytically and therefore does not suffer from any
Trotterization error:

e−iBt = R†e−i
√

nX0t R, (34)

where R and Ri are as defined in (28) and (31). The cost
of implementing this evolution is independent of t since we
can classically precompute

√
nt mod 2π and implement the

rotation generated by X0 through this angle.
Finally, in applications where we require the non-

Hermitian boundary operator ∂k (e.g., computational geom-
etry), we can apply projection operators on either side of
B to compute ∂k = Pk−1BPk; see [41] for details on how to
construct these projectors efficiently on a quantum computer.

IV. DISCUSSION: CIRCUIT DEPTH AND SHOTS

The above unitary form of the boundary operator (33) has
depth O(n) since there are 2(n − 1) rotations and one X0. To
be precise, the dependence on n is contained in R, which is a
sequence of n − 1 two-qubit rotations, so in total we require
2(n − 1) two-qubit rotations. To finalize the O(n) discussion,
we must explain only that each Pauli rotation (involving two
qubits) can be implemented at constant depth. For example,
the standard way to evolve a single Pauli string is to change
the basis of each of the qubits affected by a σx or σy into the σz

basis (we have only two such qubits for each rotation, which
is independent of n), followed by rotation around the z axis
while accounting for parity. Therefore, the two-qubit rotations
are independent of n, and the overall depth of (33) is O(n).

With the boundary operator performed analytically there is
significant savings in the number of shots needed compared
to the approximate method of the original fermionic boundary
operator (21) as used in 	 [41]. In order to account for the
Trotterization error, which for an n-qubit Hamiltonian is writ-
ten as B = ∑n−1

i=0 Qi, we have the first-order approximation

e−i
∑n−1

i=0 Qit = ∏n−1
i=0 e−iQit + O(t2). Therefore, the error due

Trotterization is εT ∼ O(t2). Then the Taylor-series expansion
for the Hamiltonian simulation is given by e−iBt = 1 − iBt −
B2t2/2 + O(B3t3) = 1 − iBt + O(nt2) since B2 = nI . Solv-
ing for B yields B = (e−iBt + i + εT S)/t , where εT S ∼ O(nt2).
Therefore, including εT ,

B =
(

n−1∏
i=0

e−iQit + i + εT S + εT

)
/t .

Next, taking the expectation produces shot noise, εshot ∼ 1√
N

.
Similar to εT and εT S , εshot gets amplified by the fractional t
denominator: εshot/t . Therefore, the overall error is

ε = (εT + εT S + εshot)/t .

Now, each of these errors should be of the same order as
the desired order of the precision ε. Handling each error
independently and solving for t in the stronger Taylor-series

constraint, we have t ∼ O(ε/n). From the shot-noise con-
straint and solving for N , we have N ∼ O(1/(ε2t2)). Finally,
inserting the above t dependence on ε yields N ∼ O(n2/ε4)
for the approximate version of the original fermionic bound-
ary operator [41]. In contrast, for the analytic circuit presented
in this paper, since there is no Trotterization and Taylor expan-
sion error, the number of samples needed is N ∼ O(1

ε2), which
is a quadratic savings (and more for higher moments).

V. CONCLUSION

In this paper we provided a short-depth, O(n), quan-
tum circuit for the exact, analytical implementation of the
full Hermitian boundary operator on a gate-based quantum
computer. This is a significant improvement over previous
approximate implementations, resulting in at least quadratic
savings in the number of shots. In order to achieve this we
formally proved that the boundary operator can be written
as a sum of fermionic creation and annihilation operators.
This connection between algebraic geometry and fermionic
operators opens a potentially rich vein for further exploration.
The fermionic representation together with the convenient
property of pairwise Pauli anticommutation permits imple-
mentation via a short circuit consisting of a cascade of
two-qubit rotations. With such a short-depth circuit for the
full boundary operator, the door is open for the search for
quantum implementations of many algorithms that have the
boundary operator as a core component, including in the fields
of differential equations and machine learning.

ACKNOWLEDGMENTS

Y.-H.H. would like to thank UK STFC for Grant No.
ST/J00037X/2. V.J. is supported by the South African Re-
search Chairs Initiative of the Department of Science and
Innovation and the National Research Foundation Grant
78554 and by the Simons Foundation Mathematics and Phys-
ical Sciences Targeted Grant, 509116. W.K. is supported by
the National Science Foundation, Grant No. DGE-1842474.

APPENDIX: EXPLICIT EXAMPLES

In this Appendix, we illustrate the formulas in the main
text with the explicit example of n = 3. There are three ver-
tices here, which we will call v0,1,2. We then use binary
degree-lexicographic representation of the eight simplices
constructible from these vertices as follows:

Dimension Binary Representation Simplex
000 ∅

0 001 v0

010 v1

100 v2

1 011 line(v0, v1)
101 line(v0, v2)
110 line(v1, v2)

2 111 triangle(v0, v1, v2)
(A1)

Let us check a few of the boundary operators as defined
in Sec. II A 1. Consider ∂

(3)
1 , which should take a line to its

boundary points, with appropriate ±1 sign depending on the

022407-6

REPRESENTATION OF THE FERMIONIC BOUNDARY … PHYSICAL REVIEW A 106, 022407 (2022)

direction of the edge. Taking |s1〉 = 011, we have only two
terms contributing since the Kronecker δ picks out v1 and v0,
i.e., i = 0, 1,

∂
(3)
1 |s1〉 = (−1)

∑2
j=1 s1(j)v0 + (−1)

∑2
j=2 s1(j)v1

= (−1)1+0v0 + (−1)0v1

= v1 − v0. (A2)

Next, we take |s2〉 = 111 and act upon it with ∂
(3)
2 , whereupon

all three terms in the sum contribute:

∂
(3)
2 |s2〉 = (−1)

∑2
j=1 s2(j)v0 + (−1)

∑2
j=2 s2(j)v1

+ (−1)
∑2

j=3 s2(j)v2

= (−1)1+1v0 + (−1)1v1 + (−1)0v2

= v0 − v1 + v2, (A3)

which says that the boundaries of the triangle are the three
edges with appropriate signs (±1) depending on the directions
of these edge.

1. The boundary operator ∂(n)

We now write down the boundary operator ∂ (n), con-
structed from the pieces ∂

(n)
k given in (6), explicitly. The initial

cases are simply

∂ (1) =
(

0 1
0 0

)
,

∂ (2) = a0 + a1 = σz ⊗ Q+ + Q+ ⊗ I =
(

0 1 0 0
0 0 0 0
0 0 0 −1
0 0 0 0

)
+

(
0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0

)
=

(
0 1 1 0
0 0 0 1
0 0 0 −1
0 0 0 0

)
,

∂ (3) = a0 + a1 + a2 = σz ⊗ σz ⊗ Q+ + σz ⊗ Q+ ⊗ I + Q+ ⊗ I ⊗ I

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 −1 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 −1 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

+

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 −1 0
0 0 0 0 0 0 0 −1
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

+

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 1 0 1 0 0 0
0 0 0 1 0 1 0 0
0 0 0 −1 0 0 1 0
0 0 0 0 0 0 0 1
0 0 0 0 0 −1 −1 0
0 0 0 0 0 0 0 −1
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (A4)

a. Nilpotency

Let us check that the boundary operator is nilpotent, as is required from homology:
Lemma 2. The boundary operator satisfies ∂ (n) · ∂ (n) = 0.
Proof. We can proceed by induction. Immediately, we check that (∂ (1))2 = (∂ (2))2 = (∂ (3))2 = 0, where 0 is the 2n × 2n

matrix of zeros; thus, the initial terms are fine. Next, we assume that (∂ (n))2 = 0 as the induction hypothesis. Now, we have (the
third line uses the so-called mixed-product rule for Kronecker and dot products)

(∂ (n+1))2 = (
∂ (n) ⊗ I + σ⊗n

z ⊗ Q+)2

= (
∂ (n) ⊗ I

)2 + (
σ⊗n

z ⊗ Q+)2 + (∂ (n) ⊗ I) · (σ⊗n
z ⊗ Q+) + (σ⊗n

z ⊗ Q+) · (∂ (n) ⊗ I)

= (∂ (n))2 ⊗ I2 + (
σ⊗n

z

)2 ⊗ (Q+)2 + (∂ (n) · σ⊗n
z) ⊗ (I · Q+)

+ (σ⊗n
z · ∂ (n)) ⊗ (Q+ · I) [since (A ⊗ B) · (C ⊗ D) = (AC) ⊗ (BD), the mixed-product identity]

= 0 + 0 + (σ⊗n
z · ∂ (n) + ∂ (n) · σ⊗n

z) ⊗ v [since (∂ (n))2 = (Q+)2 = 0]. (A5)

022407-7

ISMAIL YUNUS AKHALWAYA et al. PHYSICAL REVIEW A 106, 022407 (2022)

Thus, it suffices to prove the anticommutation

{
σ⊗n

z , ∂ (n)
} = σ⊗n

z · ∂ (n) + ∂ (n) · σ⊗n
z = 0. (A6)

To see this, we set up another, separate induction. Clearly, the
initial terms check out: {∂ (1), σz} = {∂ (2), σ⊗2

z } = 0. Now, let
the induction hypothesis be

{
σ⊗n

z , ∂ (n)
} = 0, (A7)

and consider

{
σ⊗(n+1)

z , ∂ (n)} = {
σ⊗(n+1)

z , ∂ (n) ⊗ I + σ⊗n
z ⊗ Q+}

= {
σ⊗n

z ⊗ σz, ∂ (n) ⊗ I + σ⊗n
z ⊗ Q+}

= {
σ⊗n

z , ∂ (n)
} ⊗ (σz · I) + (σ⊗n

z · σ⊗n
z)

⊗ {
σz, Q+}

. (A8)

Now, the first term vanishes by the induction hypothesis, and
the second term also vanishes since {σz, Q+} = {∂ (1), σz} =
0, the initial term. �

b. Hamiltonian

We can also check the explicit form of the Hamiltonian
exp(iB(n)t) = exp{i[∂ (n) + (∂ (n))†]} against (34).

n = 1.. Here, we have B(1) = ∂ (1) + (∂ (1))† = (0 1
1 0), so

that

exp(iB(1)t) =
(

cos(t) −i sin(t)
−i sin(t) cos(t)

)
. (A9)

On the right-hand side of the theorem, we have R = R0R1,
where R0 = I2 and R1 = exp[1

2 Q0Q1atan2(0,1)] = I2. Hence,
the right-hand side is just exp(−iX0t) = exp(−iσxt). Recall-
ing that for integer n,

σ 2n−1
x = σx =

(
0 1
1 0

)
, σ 2n

x = I2, (A10)

we have equality.
n = 2.. From the forms of ∂ (n) we find

exp(iB(2)t) =

⎛
⎜⎜⎜⎜⎜⎝

cos(
√

2t) − i sin(
√

2t)√
2

− i sin(
√

2t)√
2

0

− i sin(
√

2t)√
2

cos(
√

2t) 0 − i sin(
√

2t)√
2

− i sin(
√

2t)√
2

0 cos(
√

2t) i sin(
√

2t)√
2

0 − i sin(
√

2t)√
2

i sin(
√

2t)√
2

cos(
√

2t)

⎞
⎟⎟⎟⎟⎟⎠. (A11)

We can now cross-check this explicit matrix against Eq. (34). We have, from ∂ (2), that R = R1 = exp[1
2 Q0Q1atan2(

√
2 − 1, 1)].

Thus,

R = R1 = exp

[
π

8
(a0 + a†

0)(a1 + a†
1)

]
=

⎛
⎜⎜⎝

cos
(

π
8

)
0 0 sin

(
π
8

)
0 cos

(
π
8

)
sin

(
π
8

)
0

0 − sin
(

π
8

)
cos

(
π
8

)
0

− sin
(

π
8

)
0 0 cos

(
π
8

)
⎞
⎟⎟⎠. (A12)

Hence,

R† exp(−i
√

2(a0 + a†
0)t)R =

⎛
⎜⎜⎜⎜⎜⎝

cos(
√

2t) − i sin(
√

2t)√
2

− i sin(
√

2t)√
2

0

− i sin(
√

2t)√
2

cos(
√

2t) 0 − i sin(
√

2t)√
2

− i sin(
√

2t)√
2

0 cos(
√

2t) i sin(
√

2t)√
2

0 − i sin(
√

2t)√
2

i sin(
√

2t)√
2

cos(
√

2t)

⎞
⎟⎟⎟⎟⎟⎠, (A13)

and we have perfect agreement of (A10) and (A12).

[1] R. P. Feynman, Simulating physics with computers, Int. J.
Theor. Phys. 21, 467 (1982).

[2] M. Hirvensalo, Quantum Computing, Natural Computing Se-
ries, 2nd ed. (Springer, Berlin, Heidelberg, 2004).

[3] M. A. Nielsen and I. L. Chuang, Quantum Computation
and Quantum Information (Cambridge University Press, Cam-
bridge, 2010).

[4] J. Biamonte, P. Wittek, N. Pancotti, P. Rebentrost, N. Wiebe,
and S. Lloyd, Quantum machine learning, Nature (London)
549, 195 (2017).

[5] M. Schuld, I. Sinayskiy, and F. Petruccione, An introduction to
quantum machine learning, Contemp. Phys. 56, 172 (2015).

[6] M. Schuld and N. Killoran, Quantum Machine Learning
in Feature Hilbert Spaces, Phys. Rev. Lett. 122, 040504
(2019).

[7] S. Lloyd, S. Garnerone, and P. Zanardi, Quantum algorithms
for topological and geometric analysis of data, Nat. Commun.
7, 10138 (2016).

[8] V. Havlíček, A. D. Córcoles, K. Temme, A. W. Harrow, A.
Kandala, J. M. Chow, and J. M. Gambetta, Supervised learning

022407-8

https://doi.org/10.1007/BF02650179
https://doi.org/10.1038/nature23474
https://doi.org/10.1080/00107514.2014.964942
https://doi.org/10.1103/PhysRevLett.122.040504
https://doi.org/10.1038/ncomms10138

REPRESENTATION OF THE FERMIONIC BOUNDARY … PHYSICAL REVIEW A 106, 022407 (2022)

with quantum-enhanced feature spaces, Nature (London) 567,
209 (2019).

[9] J. Preskill, Quantum computing in the NISQ era and beyond,
Quantum 2, 79 (2018).

[10] A. Zhao, A. Tranter, W. M. Kirby, S. F. Ung, A. Miyake,
and P. J. Love, Measurement reduction in variational quantum
algorithms, Phys. Rev. A 101, 062322 (2020).

[11] S. Aaronson, Read the fine print, Nat. Phys. 11, 291 (2015).
[12] Y. Liu, S. Arunachalam, and K. Temme, A rigorous and robust

quantum speed-up in supervised machine learning, Nat. Phys.
17, 1013 (2021).

[13] C. H. Edwards, D. E. Penney, and D. T. Calvis, Differential
Equations and Boundary Value Problems (Pearson Education,
2016).

[14] D. W. Berry, High-order quantum algorithm for solving linear
differential equations, J. Phys. A 47, 105301 (2014).

[15] S. Lloyd, G. De Palma, C. Gokler, B. Kiani, Z.-W. Liu, M.
Marvian, F. Tennie, and T. Palmer, Quantum algorithm for
nonlinear differential equations, arXiv:2011.06571.

[16] O. C. Zienkiewicz, R. L. Taylor, P. Nithiarasu, and J. Z. Zhu,
The Finite Element Method, (McGraw-Hill, London, 1977),
Vol. 3.

[17] A. Montanaro and S. Pallister, Quantum algorithms and the
finite element method, Phys. Rev. A 93, 032324 (2016).

[18] F. Chung, DIMACS Series in Discrete Mathematics and Theo-
retical Computer Science (Rutgers, NJ, 1993), pp. 21–36.

[19] H. Mo, M. Bai, D. Lin, and J.-C. Roegiers, Study of flow and
transport in fracture network using percolation theory, Appl.
Math. Model. 22, 277 (1998).

[20] A. Muhammad and M. Egerstedt, Control using higher order
Laplacians in network topologies, Proceedings of 17th Inter-
national Symposium on Mathematical Theory of Networks and
System (Citeseer, 2006), pp. 1024–1038.

[21] E. Brisson, Representing geometric structures in d dimensions:
Topology and order, Discrete Comput. Geom. 9, 387 (1993).

[22] A. Zomorodian and G. Carlsson, Computing persistent homol-
ogy, Discrete Comput. Geom. 33, 249 (2005).

[23] R. Jain, R. Kasturi, and B. G. Schunck, Machine Vision, Com-
puter Science Series (McGraw-Hill, New York, 1995).

[24] M. K. Pietikainen, Texture Analysis in Machine Vision, Series
In Machine Perception And Artificial Intelligence (World Sci-
entific Publishing Company, 2000).

[25] H. O. Fattorini, Boundary control systems, SIAM J. Control 6,
349 (1968).

[26] G. Golo, V. Talasila, A. Van Der Schaft, and B. Maschke,
Hamiltonian discretization of boundary control systems,
Automatica 40, 757 (2004).

[27] A. Hatcher, Algebraic Topology (Cambridge University Press,
2002).

[28] J. R. Munkres, Elements of Algebraic Topology (CRC Press,
Boca Raton, FL, 2018).

[29] A. Y. Ng, M. I. Jordan, and Y. Weiss, On spectral clustering:
Analysis and an algorithm, Advances in Neural Information
Processing Systems, edited by T. Dietterich, S. Becker, and Z.
Ghahramani, Vol. 14 (MIT Press, 2002), pp. 849–856.

[30] J. Shi and J. Malik, Normalized cuts and image segmentation,
IEEE Trans. Pattern Anal. Mach. Intell. 22, 888 (2000).

[31] F. Fouss, A. Pirotte, J.-M. Renders, and M. Saerens, Random-
walk computation of similarities between nodes of a graph
with application to collaborative recommendation, IEEE Trans.
Knowl. Data Eng. 19, 355 (2007).

[32] K. Kamvar, S. Sepandar, K. Klein, D. Dan, M. Manning, and
C. Christopher, Spectral learning, Proceedings of 18th Inter-
national Joint Conference on Artificial Intelligence, Acapulco,
Mexico, August 2003 (Stanford InfoLab, Acapulco, Mexico,
2003).

[33] K. Zhang and J. T. Kwok, Clustered Nyström method for large
scale manifold learning and dimension reduction, IEEE Trans.
Neural Networks 21, 1576 (2010).

[34] M. Welling and T. N. Kipf, Semi-supervised classification with
graph convolutional networks, Journal of International Confer-
ence on Learning Representations (ICLR 2017).

[35] J. Zhou, G. Cui, S. Hu, Z. Zhang, C. Yang, Z. Liu, L. Wang, C.
Li, and M. Sun, Graph neural networks: A review of methods
and applications, AI Open 1, 57 (2020).

[36] Z. Yan, T. Ma, L. Gao, Z. Tang, and C. Chen, Proceedings of
the 38th International Conference on Machine Learning, edited
by M. Meila and T. Zhang, Proceedings of Machine Learning
Research, Vol. 139 (PLMR 2021), pp. 11659–11669.

[37] R. Ghrist, Barcodes: The persistent topology of data, Bull. Am.
Math. Soc. 45, 61 (2008).

[38] P. Bubenik, Statistical topological data analysis using persis-
tence landscapes, J. Mach. Learn. Res. 16, 77 (2015).

[39] L. Wasserman, Topological data analysis, Annu. Rev. Stat. Its
Appl. 5, 501 (2018).

[40] C. Gyurik, C. Cade, and V. Dunjko, Towards quantum advan-
tage for topological data analysis, arXiv:2005.02607.

[41] S. Ubaru, I. Y. Akhalwaya, M. S. Squillante, K. L. Clarkson,
and L. Horesh, Quantum topological data analysis with linear
depth and exponential speedup, arXiv:2108.02811.

[42] C. Cade and P. M. Crichigno, Complexity of supersymmetric
systems and the cohomology problem, arXiv:2107.00011.

[43] S. Lloyd, Universal quantum simulators, Science 273, 1073
(1996).

[44] J. D. Whitfield, J. Biamonte, and A. Aspuru-Guzik, Simulation
of electronic structure Hamiltonians using quantum computers,
Mol. Phys. 109, 735 (2011).

[45] A. M. Childs, D. Maslov, Y. Nam, N. J. Ross, and Y. Su, Toward
the first quantum simulation with quantum speedup, Proc. Natl.
Acad. Sci. USA 115, 9456 (2018).

[46] A. F. Izmaylov, T.-C. Yen, R. A. Lang, and V. Verteletskyi,
Unitary partitioning approach to the measurement problem in
the variational quantum eigensolver method, J. Chem. Theory
Comput. 16, 190 (2020).

[47] M. Hochbruck and A. Ostermann, Exponential integrators, Acta
Numer. 19, 209 (2010).

[48] P. Jordan and E. Wigner, Über das paulische äquivalenzverbot,
Z. Phys. 47, 631 (1928).

[49] S. B. Bravyi and A. Yu. Kitaev, Fermionic quantum computa-
tion, Ann. Phys. (NY) 298, 210 (2002).

[50] A. Ralli, P. J. Love, A. Tranter, and P. V. Coveney,
Implementation of measurement reduction for the varia-
tional quantum eigensolver, Phys. Rev. Research 3, 033195
(2021).

022407-9

https://doi.org/10.1038/s41586-019-0980-2
https://doi.org/10.22331/q-2018-08-06-79
https://doi.org/10.1103/PhysRevA.101.062322
https://doi.org/10.1038/nphys3272
https://doi.org/10.1038/s41567-021-01287-z
https://doi.org/10.1088/1751-8113/47/10/105301
http://arxiv.org/abs/arXiv:2011.06571
https://doi.org/10.1103/PhysRevA.93.032324
https://doi.org/10.1016/S0307-904X(98)10006-9
https://doi.org/10.1007/BF02189330
https://doi.org/10.1007/s00454-004-1146-y
https://doi.org/10.1137/0306025
https://doi.org/10.1016/j.automatica.2003.12.017
https://doi.org/10.1109/34.868688
https://doi.org/10.1109/TKDE.2007.46
https://doi.org/10.1109/TNN.2010.2064786
https://doi.org/10.1016/j.aiopen.2021.01.001
https://doi.org/10.1090/S0273-0979-07-01191-3
https://doi.org/10.1146/annurev-statistics-031017-100045
http://arxiv.org/abs/arXiv:2005.02607
http://arxiv.org/abs/arXiv:2108.02811
http://arxiv.org/abs/arXiv:2107.00011
https://doi.org/10.1126/science.273.5278.1073
https://doi.org/10.1080/00268976.2011.552441
https://doi.org/10.1073/pnas.1801723115
https://doi.org/10.1021/acs.jctc.9b00791
https://doi.org/10.1017/S0962492910000048
https://doi.org/10.1007/BF01331938
https://doi.org/10.1006/aphy.2002.6254
https://doi.org/10.1103/PhysRevResearch.3.033195

