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Process-optimized phase-covariant quantum cloning

Chloe Kim* and Eric Chitambar †

Department of Electrical and Computer Engineering, Coordinated Science Laboratory,
University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA

(Received 10 October 2021; accepted 18 March 2022; published 9 August 2022)

After the appearance of the no-cloning theorem, approximate quantum cloning machines (QCMs) has become
a well-studied subject in quantum information theory. Among several measures to quantify the performance
of a QCM, single-qudit fidelity and global fidelity have been most widely used. In this paper we compute the
optimal global fidelity for phase-covariant cloning machines via semidefinite programming optimization, thereby
completing a remaining gap in the previous results on QCMs. We also consider optimal simulations of the
cloning and transpose cloning map, both by a direct optimization and by a composition of component-wise
optimal QCMs. For the cloning map the composition method is suboptimal whereas for the transpose cloning
map the method is asymptotically optimal.
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I. INTRODUCTION

The famous no-cloning theorem tells us that there exists no
quantum operation that copies an arbitrary pure state [1–3].
Despite this impossibility, the notion of approximate quantum
cloning machines was introduced in 1996 [4], and the topic
has received extensive development over the past twenty-five
years. The inability to universally copy states is a fundamental
signature of “quantumness” that has significant applications.
In particular, the no-cloning theorem is essential for ensuring
security in cryptographic tasks like quantum key distribution
(QKD) [5] and quantum money [6,7].

A naturally arising question is whether it is possible to
clone a state that is promised to be drawn from a smaller
subset of pure states. For example, a family of states called
phase-covariant states (also called equatorial states) is of
particular interests as certain subsets of this family are used
in quantum cryptography [5], phase estimation [8], and
quantum clocks [9,10]. In fact, the problem of approximate
phase-covariant cloning is closely connected to that of phase
estimation both in terms of their mathematical structures
and also their physical implementations [11]. The cloning of
phase-covariant states has enjoyed a rich history of develop-
ment [11–14]. Our objective here is to shed some new light
on the problem by utilizing the technique of semidefinite pro-
gramming to derive a closed-form expression for an optimal
phase-covariant qudit cloner, which has not been explicitly
documented in previous literature.

An ideal N → M quantum cloner is a nonlinear map

ρ⊗N �→ ρ⊗M

for any density matrix ρ of some d-dimensional system S,
and a quantum cloning machine (QCM) approximates this
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operation via a physically realizable quantum channel. That
is, an N → M QCM is a completely positive trace-preserving
(CPTP) map E satisfying

E (ρ⊗N ) = σS1···SM ≈ ρ⊗M .

Different criteria are used to categorize QCMs. For instance,
the QCM is called symmetric if σSi := TrSi

σ is the same
reduced state for all Si, where TrSi

indicates a partial trace
over all subsystems but Si. An economic QCM is one that
restricts to maps using no ancillary system other than the Si

output systems [11]. Finally, universality of a QCM means
that it clones all the input states equally well, and a QCM
is optimal if the cloning process is simulated optimally with
respect to a given figure of merit [15].

The most commonly used figure of merit for cloning is
the average single-qudit fidelity, which measures the distance
between the input state ρ and the reduced state of each output
copy σSi . Another possible measure evaluates the average
global fidelity between the QCM output state σS1···SM and the
ideal output state ρ⊗M . In Ref. [16], this global fidelity was
called process fidelity, and the authors used the semidefinite
programming (SDP) techniques introduced in Ref. [17] to
optimize the process fidelity for cloning one qubit (d = 2).
The goal of this paper is to extend this result by computing
the optimal process fidelity for cloning qudits (d > 2). In
particular, we consider the cloning of maximally coherent
pure states having the form

|θ〉 = 1√
d

d∑
k=1

eiθk |k〉, (1)

where θ denotes a d tuple of angles (θ1, . . . , θd ), θi ∈ [0, 2π ).
For d = 2, this represents the family of equatorial states on
the Bloch sphere. Up to a unitary transformation, the four
BB84 states {|0〉, |1〉, |±〉 = 1√

2
(|0〉 ± |1〉)} belong to this

family [5].
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TABLE I. Optimal single-qudit fidelity and process fidelity of symmetric UQCM and phase-covariant QCM.

Dimension Type Optimal single-qubit fidelity Optimal process fidelity

1 → 2 qubits Universal 5
6 [4,23–25] 2

3 [4]

1 → 2 qudits Universal d+3
(2d+2) [26] 2/(d + 1) [27]

1 → 2 qubits Phase covariant 1
2 + 1√

8
[18,28–30] 0.75 [16]

1 → 2 qutrits Phase covariant 5+√
17

12 [12,13,20,31] 5/9 (this paper)

1 → 2 qudits Phase covariant 1
d + d−2+

√
d2+4d−4

4d [14] (2d − 1)/d2 (this paper)

A (nonuniversal) QCM whose domain is restricted to the
phase-encoded input states |θ〉 is called a phase-covariant
quantum cloner. Bruß et al. first studied the cloning of
BB84 states [18], and they showed that the optimal map
that clones BB84 states also optimally clones any arbitrary
phase-covariant states on the Bloch sphere. They obtained
an optimal single-qubit fidelity of 1

2 + 1√
8
, which is greater

than that of the universal cloner ( 5
6 ). Subsequent work has

been conducted on the phase-covariant cloning of 1 → M
qubits [19], 1 → 2 qutrits [12,13,20], 1 → M qudits [11,14],
N → M qubits [21], N → M qudits for M = kd + N [11],
optimizing over the single qudit fidelity (see Ref. [22] for
more).

In this paper, we present an explicit formula for an optimal
1 → 2 phase-covariant QCM, using the process fidelity as the
figure of measure. This completes the picture of 1 → 2 opti-
mal QCMs, as summarized in Table I. The organization of this
paper as follows: In Sec. II we specify notation and definitions
related to the process fidelity. In Sec. III we present our main
results on optimal process fidelity of phase-covariant cloning.
We introduce transpose cloning in Sec. IV and provide the
optimal single-qudit and process fidelities. This allows us
to consider in Sec. IV E the modular construction of larger
QCMs by composing smaller ones. Finally, some concluding
remarks are provided in Sec. V.

II. NOTATIONS AND DEFINITIONS

Let B(H) denote the set of bounded operators on a Hilbert
space H. Let D ⊂ B(H) be the set of density operators, i.e.,
positive trace-one elements, Dpure ⊂ D the set of pure states,
i.e., rank-one density operators, and Dθ ⊂ Dpure the set of
states |θ〉〈θ| having the form of (1). The fidelity [32] of any
two ρ, σ ∈ D is given by

F (ρ, σ ) := (Tr
√√

ρσ
√

ρ )2.

Suppose Eideal : B(H) → B(K) is an “ideal” map that is not
necessarily a quantum channel (not even necessarily linear),
i.e, completely positive and trace-preserving (CPTP). We are
interested in approximating Eideal by a physically realizable
quantum channel E , or possibly approximating just the action
of Eideal on some restricted set of inputs S. There are various
approaches to quantifying how well E approximates Eideal, and
here we consider the process fidelity.

Definition 1. Let S ⊂ D be the set of states that are gen-
erated by the action of a compact group G, and let μ be the
Haar measure induced by G. The process fidelity between an

arbitrary ideal map Eideal and a CPTP map E is defined as

Fproc(Eideal, E |S) :=
∫

S
F (Eideal(σ ), E (σ ))dμ(σ ).

If Eideal maps pure state to pure states and S ⊂ Dpure, then the
process fidelity is equivalent to

Fproc(Eideal, E |S) =
∫

S
Tr[Eideal(σ )E (σ )]dμ(σ ). (2)

A key feature of this expression is that the integrand is linear
in E (σ ). This will allow us to exploit symmetry properties of
the Haar measure below. On the other hand, note that Eideal

need not be linear, such as with the cloning map ρ �→ ρ ⊗ ρ.
Definition 2. Let CPTP(H → K) be the set of all quantum

channels mapping B(H) to B(K). The optimal process fidelity
of a map Eideal : B(H) → B(K) is the maximum process fi-
delity over all possible quantum channels, i.e.,

F ∗
proc(Eideal|S) := max

E∈CPTP(H→K)
Fproc(Eideal, E |S).

Given an orthonormal basis {|i〉}d
i=1 for H, the Choi-

Jamiołkowski isomorphism [33,34] establishes an equiva-
lence between every channel E ∈ CPTP(H → K) and an
operator J (E ) ∈ B(H) ⊗ B(K),

E ↔ J (E ) :=
∑
i, j

|i〉〈 j| ⊗ E (|i〉〈 j|). (3)

The operator J (E ) is called the Choi matrix of E and the action
of E can be directly expressed in terms of J (E ) as

E (ρ) = TrH(J (E )(ρT ⊗ 1K)),

where ρT is the transpose of ρ in some fixed basis. When
S ⊂ Dpure and Eideal : Dpure → Dpure, the process fidelity can
be expressed in terms of the Choi matrix as

Fproc(Eideal, E |S) =
∫

S
Tr[J (E )ρT ⊗ Eideal(ρ)]dμ(ρ). (4)

To compute F ∗
proc(Eideal, E |S), the problem then reduces to

finding the Choi matrix J (E ) that maximizes Eq. (4).

III. PROCESS-OPTIMIZED PHASE-COVARIANT
QUANTUM CLONING

1. Characterization of an average Choi map

The 1 → 2 ideal phase-covariant cloner Eideal is given by
(5)

Eideal(|θ〉〈θ|) = |θ〉〈θ|⊗2 (5)
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for an arbitrary |θ〉〈θ| ∈ Dθ . The goal is to find an optimal
quantum channel E satisfying

Fproc(Eideal, E |Dθ ) = F ∗
proc(Eideal|Dθ ).

It is useful to write |θ〉 as U (θ)|ϕ+
d 〉, where U (θ) =∑d

k=1 eiθk |k〉〈k| and |ϕ+
d 〉 = 1√

d

∑d
k=1 |k〉. By the definition

expressed in (4), the process fidelity for E can be written as

Fproc(Eideal, E |Dθ ) = Tr[|ϕ+
d 〉〈ϕ+

d |⊗3T (J (E ))], (6)

where T (·) denotes the “twirling” operation

T (X ) :=
∫

U (θ) ⊗ U (−θ)⊗2(X )U (−θ) ⊗ U (θ)⊗2dμ(θ).

We exploit the symmetric properties of T (J (E )) to formulate
the constraints of a semidefinite program to obtain maximum
process fidelity. This is a standard trick [35], but we include it
as lemmas for the sake of self-containment.

Let Sd be the permutation group of d elements. Given an
orthonormal basis {|k〉}k , define

Uπ =
d∑

k=1

|π (k)〉〈k|, π ∈ Sd .

In other words, Uπ permutes the basis vectors given a permu-
tation π ∈ Sd . Next, let Vσ be the operator permuting three
subsystems, where σ ∈ S3. For example,

V(23)|ϕ1〉 ⊗ |ϕ2〉 ⊗ |ϕ3〉 = |ϕ1〉 ⊗ |ϕ3〉 ⊗ |ϕ2〉.

Lemma 1. Suppose E is a quantum channel with Choi
matrix J (E ). If we define the average Choi map for the channel
E as

J̃ (E ) := 1

2| ∗ |Sd

∑
π∈Sd

σ∈{id,(23)}

VσU ⊗3
π T (J (E ))U †⊗3

π V †
σ , (7)

then we have
(1) J̃ (E ) is invariant under conjugation by U (−θ) ⊗

U (θ)⊗2 for any θ;
(2) J̃ (E ) is invariant under conjugation by U ⊗3

π for all
π ∈ Sd ;

(3) J̃ (E ) is invariant under conjugation by V(23);
(4) J̃ (E ) is positive and Tr23(J̃ (E )) = 1.
Note that property (iv) of Lemma 1 assures that J̃ (E ) is a

valid Choi matrix of a quantum channel.
Lemma 2. Let Eideal be the ideal phase-covariant cloning

map and E an arbitrary quantum channel. Then

Fproc(Eideal, E |Dθ ) = Tr
[
ϕ+⊗3

d J̃ (E )
]
. (8)

Proof. Let π ′ ∈ Sd . We can observe that

T (X ) = U †⊗3
π ′ T

(
U ⊗3

π ′ XU †⊗3
π ′

)
U ⊗3

π ′ .

Using (ii) of the Lemma 1, it follows that

Fproc(Eideal, E |Dθ ) = Tr
[
ϕ+⊗3

d T (J (E ))
]

= Tr
[
ϕ+⊗3

d U †⊗3
π ′ T

(
U ⊗3

π ′ J (E )U †⊗3
π ′

)
U ⊗3

π ′
]

= Tr

[
ϕ+⊗3

d

1

| ∗ |Sd

∑
π∈Sd

U ⊗3
π T (J (E ))U †⊗3

π

]

= Tr

⎡⎢⎢⎣ϕ+⊗3
d

1

2| ∗ |Sd

∑
π∈Sd

σ∈{id,(23)}

VσU ⊗3
π T (J (E ))U †⊗3

π V †
σ

⎤⎥⎥⎦
= Tr

[
ϕ+⊗3

d J̃ (E )
]
,

where we have used the facts that ϕ+
d is invariant under π ′ and

ϕ+⊗3
d is invariant under V(23). �

In summary, we have

F ∗
proc(Eideal|Dθ ) = max Tr

[
ϕ+⊗3

d X
]
, (9)

in which the maximization is taken over all operators
X ∈ B(Cd )⊗3 satisfying properties (i)–(iv) in Lemma 1.

2. Optimization via semidefinite programming

Using the invariant properties of the average Choi matrix
for quantum channel E in Lemma 2, we will construct a
semidefinite program (SDP) to obtain an optimal E that max-
imizes the process fidelity. A particularly nice reference for

applying semidefinite programming to quantum information
problems is [36], and we apply the basic results here.

First, we characterize a d3 × d3 Hermitian operator X �= 0
that satisfies (i)–(iv) in Lemma 1. If we write

X =
∑

i, j,k,l,m,n

xi jklmn|i jk〉〈lmn|,

then the invariance under U (−θ) ⊗ U (θ)⊗2 gives

xi jklmn(1 − ei(−θi+θ j+θk+θl −θm−θn ) ) = 0. (10)

This can be satisfied if and only if xi jklmn = 0 or −θi + θ j +
θk + θl − θm − θn is identically zero. If we next add the in-
variance under under V(23) and U ⊗3

π , then X has the form
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∑9
i=1 xiXi, where xi ∈ C and

X1 =
∑

i

|iii〉〈iii|, X2 =
∑
i �=k

|iik〉〈iik| + |iki〉〈iki|,

X3 =
∑
i �=k

|kii〉〈kii|,

X4 =
∑
i �=k

|kik〉〈iii| + |iii〉〈kik| + |kki〉〈iii| + |iii〉〈kki|,

X5 =
∑
i �=k

|iik〉〈iki| + |iki〉〈iik|, X6 =
∑

i �=k �=�

|ik�〉〈ik�|,

X7 =
∑

i �=k �=�

|kk�〉〈i�i| + |�k�〉〈iik|,

X8 =
∑

i �=k �=�

|kk�〉〈ii�| + |�k�〉〈iki|, X9 =
∑

i �=k �=�

|ik�〉〈i�k|.

If we denote x = (xi ) ∈ C9, then

Tr
[
ϕ+⊗3

d X
] = 1

d2
x1 + (d − 1)

d2
(2x2 + x3 + 4x4 + 2x5)

+ (d − 1)(d − 2)

d2
(x6 + 2x7 + 2x8 + x9).

The condition Tr23X = 1 corresponds to the equality

A(x) := x1 + (d − 1)(2x2 + x3) + (d − 1)(d − 2)x6 = 1.

Finally, the positivity constraint X � 0 allows us to express
(9) in a simplified SDP. Let a = (ai ) where ai is the coefficient
of xi’s in A(x), and c = (ci ) be the coefficient of xi in FE (x).
Define F0 = 0d3×d3 ⊕ [1], Fi = Xi ⊕ [−ai]. Then we have the
primal form of the SDP:

minimize − cT x

subject to F0 +
∑

i

xiFi � 0, aT x = 1. (11)

By Eq. (9), this SDP yields the value of F ∗
proc(Eideal|Dθ ).

Now we present our main results.
Theorem 1 Let Eideal be the ideal 1 → 2 phase-covariant

cloner. Then, the optimal process fidelity of Eideal is

F ∗
proc(Eideal|Dθ ) = 2d − 1

d2
,

where d is the dimension of the input system.
Proof. Define

kd = 1

2d − 1
,

x = (kd , kd , 0, kd , kd , 0, kd , kd , 0),

where d is the dimension. It is straightforward to show that
X = ∑

i xiXi satisfies the positivity and the trace condition. So
this x is a primal feasible solution and it yields FE (x) = 2d−1

d2 .
Consider the dual form

maximize − TrF0Z

subject to TrFiZ = −ci, Z � 0.

We construct Z such that TrF0Z = (2d − 1)/d2 and show that
this Z is dual feasible. By strong duality, this implies that

(2d − 1)/d2 is indeed the optimal solution. Let Z = Ẑ ⊕ z,
where Ẑ = ∑

i biXi, bi ∈ R and z = 2d−1
d2 . Then

TrF0Z = 2d − 1

d2
,

and the constraints of the dual form become

Tr[X1Ẑ] = z − 1

d2
,

Tr[X2Ẑ] = 2Tr[X3Ẑ] = 2(d − 1)z − 2(d − 1)

d2
,

Tr[X4Ẑ] = 2Tr[X5Ẑ] = −4(d − 1)

d2
,

Tr[X6Ẑ] = (d − 1)(d − 2)z − (d − 1)(d − 2)

d2
,

Tr[X7Ẑ] = Tr[X8Ẑ] = 2Tr[X9Ẑ] = −2(d − 1)(d − 2)

d2
.

Solving these gives b1 = b2 = b3 = b6 = 2(d−1)
d3 , b4 = b5 =

b7 = b8 = b9 = − 1
d3 . We can rewrite Ẑ as a linear combina-

tion of projections

Ẑ = 1

d3

[(
2d − 2 −

√
2
)
X1 +

(
2d − 9

2
− 3

2
√

2
X2

)
+ (2d − 2)X3 + (2d − 3)X6 + 2

√
2PA

+ 2

(
2√
2

+ 1

)
PB + 2PC + 2PD + 2PE

]
,

where we define

PA = − 1
2
√

2
X4 + 1

4 (X1 + X2) + 1
4 (X1 + X5),

PB = 1
2 (X2 − X5), PC = 1

2 (X2 − X7),

PD = 1
2 (X2 − X8), PE = 1

2 (X6 − X9).

When d � 3 all the coefficients are positive, and when d = 2
it can be easily checked that Ẑ � 0. This shows that Z is also
positive, and therefore 2d−1

d2 is indeed the optimal solution. �
Note that one can calculate the single-qudit fidelity using a

map E that is optimal for the process fidelity. Doing so leads
to a single-qudit fidelity of (d + 1)/(2d − 1), which is strictly
smaller than the optimal value [14]. This means that the map
yielding optimal process fidelity does not give optimal single-
qudit fidelity unlike the universal cloners [27].

IV. TRANSPOSITION CLONING

A. Optimal phase-covariant transposition

The transposition map is another famous non-CP map. The
ideal operation of transposition map is given by

Eideal : |ψ〉〈ψ | �→ |ψ〉〈ψ |T ∀ ρ ∈ Dpure, (12)

It has been shown that the optimal fidelity for approximate
transposition channel of arbitrary pure states is 2

d+1 [37].
What happens if we restrict the input states to phase-covariant
states? In this case, Eq. (12) takes the form

Eideal : |θ〉〈θ| �→ |θ〉〈θ|T = | − θ〉〈−θ| ∀ ρ ∈ Dθ , (13)
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where −θ = (−θ1, . . . ,−θd ). To compute the optimal process
fidelity in this restricted case, we can use the same SDP
analysis. The calculation yields to Fproc = 2

d , and the Choi
operator of an optimal map is given as

J̃ (E ) = 1

d − 1

∑
i �= j

(|i j〉〈i j| + |i j〉〈 ji|).

Hence we see that restricting to maximally coherent states |θ〉
only yields an improved process fidelity of 2

d versus 2
d+1 in the

universal case. These have the same asymptotic scaling, yet in
the qubit case perfect transposition can be achieved only for
equatorial states since the map reduces to a π rotation on the
Bloch sphere.

B. Process-optimized universal transposition cloning map

We can also define the ideal transposition cloning operation
as the map that outputs two copies of the transpose of the input
state, i.e.,

Eideal : ρ �→ ρT ⊗ ρT ∀ ρ ∈ Dpure.

Here we compute the process fidelity of the 1 → 2 transpo-
sition cloning map for an arbitrary pure state as its input. Let
μ be the induced Haar measure for the pure states Dpure and
σ be the Haar measure on the set of unitary operators U (H).
Define the average Choi operator as

J̃ (E ) :=
∫
U (H)

U †⊗3J (E )U ⊗3dσ (U ). (14)

Notice that by the Haar invariance we get

Fproc(Eideal, E |Dpure)

=
∫
Dpure

Tr[J (E )(ρT )⊗3]dμ(ρ)

= Tr

[∫
U (H)

J (E )(U |0〉〈0|U †)⊗3dσ (U )

]
= Tr

[∫
U (H)

U †⊗3J (E )U ⊗3dσ (U )|0〉〈0|⊗3

]
= Tr[J̃ (E )|0〉〈0|⊗3].

To find the optimal process fidelity, we exploit the fact that
J̃ (E ) is U ⊗3-invariant. We then obtain the following propo-
sition as a direct consequence of the results from work by
Eggeling and Werner [38]:

Proposition 1. The optimal process fidelity of the 1 → 2
universal transpose cloning map is 6/(d2 + 3d + 2).

Proof. Eggeling and Werner have shown that any quantum
state ρ satisfying U ⊗3ρU †⊗3 = ρ can be uniquely expressed
as

J̃ (E ) =
∑

i∈{+,−,0,1,2,3}
ciRi, ci ∈ R,

where

R+ = 1

6
(1 + V(12) + V(23) + V(31) + V(123) + V(132)),

R− = 1

6
(1 − V(12) − V(23) − V(31) + V(123) + V(132)),

R0 = 1

3
(2 · 1 − V(123) − V(321)),

R1 = 1

3
(2 · 1 − V(31) − V(12)),

R2 = 1√
3

(V(12) − V(31)), R3 = i√
3

(V(123) − V(321)).

Furthermore, it satisfies the conditions (i) c+, c−, c0 �
0, (ii) c2

1 + c2
2 + c2

3 � c2
0, and (iii) Tr[ρR+] + Tr[ρR−] +

Tr[ρR−] = 1. Let J̃ (E ) be the average Choi operator defined
as (14). Then J̃ (E ) is invariant under U ⊗3 action, and the
preceding statement holds except replacing (iii) with

Tr23[R+J̃ (E ) + R−J̃ (E ) + R0J̃ (E )] = 1.

Suppose J̃ (E ) = ∑
ckRk . Then the objective function to max-

imize becomes

Tr[J̃ (E )|0〉〈0|⊗3] = c+,

while the constraints J̃ (E ) � 0 is equivalent to c+, c−, c0 � 0
and c2

1 + c2
2 + c2

3 � c2
0 and the trace condition TrJ̃ (E ) = d is

equivalent to

d2 + 3d + 2

6
c+ + d2 − 3d + 2

6
c− + 2(d2 − 1)

3
c0 = 1.

Solving this linear programming gives

c− = c0 = c1 = c2 = c3 = 0, c+ = 6

d2 + 3d + 2
.

�
Eggeling and Werner use Schur-Weyl duality to character-

ize U ⊗3-invariant positive matrices, and details of the proof
are in Refs. [39] and [38].

C. Process-optimized phase-covariant
transposition cloning map

We next compare the previous result with the same type of
cloner except with the domain further restricted to Dθ . The
ideal map for phase-covariant transposition cloner is given by

Eideal : |θ〉〈θ| �→ |−θ〉〈−θ|⊗2 ∀ |θ〉〈θ| ∈ Dθ . (15)

Different from the cloning case, the average Choi operator is
defined as

J̃ (E ) := 1

| ∗ |Sd | ∗ |S3

∑
π∈Sd

∑
σ∈S3

VσU ⊗3
π T (J (E ))U †⊗3

π V †
σ ,

where the twirling operation is given by

T (X ) :=
∫

U (−θ)⊗3(X )U (θ)⊗3dμ(θ).

The positivity and trace condition of J̃ remains the same and
its invariance under the permutations of the basis vector also
remains the same. The main difference is that J̃ is invariant
under U (θ)⊗3 instead of U (−θ) ⊗ U (θ)⊗2, and it is also in-
variant under permuting any subsystems instead of just 2 and
3. Despite the difference, how we solve the optimal process
fidelity is analogous to that of the cloning case. Here we just
state the result as a theorem and include the proof in the
Appendix for interested readers.
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FIG. 1. Modular cloning channel and modular transpose cloning channel.

Theorem 2. Let Eideal be given by Eq. (15). Then, the
optimal process fidelity of Eideal is

F ∗
proc(Eideal|Dθ ) =

{
3/4, d = 2
6/d2, d � 3.

D. Phase-covariant hybrid transposition cloning

Now consider a hybrid transposition cloning map

Eideal : |θ〉〈θ| �→ |θ〉〈θ| ⊗ |−θ〉〈−θ| (16)

for any |θ〉〈θ| ∈ Dθ . It is easy to see that the symmetries of
the process fidelity between the optimal map and the above
ideal map are identical to that of the cloning case, except we
permute the system 1 and 3. In other words, we can reuse the
constraints (i)–(iii) in Lemma 1 to construct the average Choi
map for the hybrid cloning and make a modification for (iv)
to be Tr12(J̃ (Eideal )) = 1, instead of taking the partial trace
over systems 2 and 3. In fact, U (−θ) ⊗ U (θ)⊗2 invariance
guarantees the partial trace over any two system of J̃ (E ) to be
a scalar multiple of 1. Hence, we can conclude that the process
fidelity of the hybrid map is (2d − 1)/d2. Furthermore, if
we let Ehybrid denote an optimal approximation of the hybrid
transposition cloner (phase covariant) and Ecloner an optimal
approximation of the 1 → 2 cloner (phase covariant), then

J̃ (Ehybrid) = V(13)J̃ (Eclone)V(13).

It is interesting that the two maps

|θ〉〈θ| �→ |θ〉〈θ| ⊗ |−θ〉〈−θ|,
|θ〉〈θ| �→ |θ〉〈θ| ⊗ |θ〉〈θ|

can be approximated with the same process fidelity. One
might not expect this since the second can be obtained from
the first by applying a transpose on the first system, and as
computed above, the transposition itself has a process fidelity
of 2/d . Hence a composition of maps yields a highly nonop-
timal approximation of the 1 → 2 phase-covariant cloner. We
make this comparison more explicitly in the next section.

E. Modular building of quantum cloning machine

In this section we consider a modular approach of simu-
lating some nonphysical process by breaking the latter down
into smaller parts and then simulating each of those. We
have just observed that a 1 → 2 phase-covariant cloner can
be obtained by combining the hybrid cloner [Eq. (16)] with
the transpose map [Eq. (13)]. The construction is depicted
in Fig. 1, and the question we consider here is how well
the combined optimal maps for the individual parts, Ehybrid

and ET , respectively, compare with the optimal map com-
puted in Theorem 1. The composition of Ehybrid : A → BC̃
and ETC : C̃ → C can be expressed in terms of their Choi

matrices as

(ETC ◦ Ehybrid)(ρ) = TrAC̃[(J (Ehybrid)((ρT )A ⊗ 1BC̃ ))TC̃

× ⊗ 1C (J (ET )CC̃ ⊗ 1AB)],

where A, B, C denote the quantum systems indicated in Fig. 1
and the subscript TC̃ denotes the partial transpose of system C̃.

Similarly, the transposition cloning of Eq. (15) can be
obtained by combining the hybrid cloner Ehybrid : A → B̃C
[Eq. (16)] with the transpose map ETB : B̃ → B [Eq. (13)].
The construction is depicted in Fig. 1, and we compare with
the optimal map computed in Theorem 2. The composition of
maps has the form

(ETB ◦ Ehybrid)(ρ) = TrAB̃[(J (Ehybrid)((ρT )A ⊗ 1B̃C ))TB̃

⊗1B(J (ET )BB̃ ⊗ 1AC )],

where A, B, C denote the quantum systems indicated in Fig. 1
and the subscript TB̃ denotes the partial transpose of system B̃.

The process fidelity of both maps are 3d−4
d (d−1)(2d−1) , which

is factor of d smaller than the optimal cloner in Theorem
1. However, it is comparable to that of optimal transposition
cloning channel with process fidelity of 6/d2. Hence in this
case, the modular approach is asymptotically optimal (i.e., as
d → ∞) in the process fidelity.

V. CONCLUSION

We have shown that the optimal process fidelity of the
1 → 2 phase-covariant cloner is 2d−1

d2 . The obtained channel
yields its single-qudit fidelity of (d + 1)/(2d − 1), which is
less than the previously known result by Ref. [14]. Conversely,
the cloner by Ref. [14] also does not yield the optimal process
fidelity. This means that the optimal phase-covariant cloners
do not coincide with two different fidelity measures, as it is
the case for the universal cloner.

We also defined a transpose cloning map, and showed
that the optimal process fidelity for transpose cloning of ar-
bitrary pure states is 6/(d2 + 3d + 2) using the results from
Ref. [38]. In comparison, the optimal fidelity for transpose
cloning of phase-covariant states is 6/d2.

Future work in this direction would include finding an
explicit formula for 1 → M phase-covariant cloners. This
will require a representation-theoretic approach involving
representations of SM with additional positivity and phase-
covariant structure. In general, the 1 → M phase-covariant
cloner is interesting for applications in phase estimation. We
expect that the modular approach presented in Fig. 1 may also
be helpful in simulating such a map and other multisystem
maps like it.
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APPENDIX: SOLVING THE PROCESS FIDELITY FOR
1 → 2 PHASE-COVARIANT TRANSPOSE CLONER

Let Eideal : | − θ〉〈−θ| �→ |θ〉〈θ|⊗2 be the 1 → 2 ideal phase-
covariant transpose cloning map.

Lemma 3. Let E be a quantum channel. Define the average
Choi operator J̃ for the channel E as

J̃ (E ) := 1

| ∗ |Sd | ∗ |S3

∑
π∈Sd
σ∈S3

VσU ⊗3
π T (J (E ))U †⊗3

π V †
σ ,

where the twirling operation T is defined as

T (X ) :=
∫

U (θ)⊗3(X )U (−θ)⊗3dμ(θ).

then we have
(1) J̃ (E ) is invariant under conjugation by U (θ)⊗3 for any

θ;
(2) J̃ (E ) is invariant under conjugation by U ⊗3

π for all π ∈
Sd ;

(3) J̃ (E ) is invariant under permuting subsystems;

(4) J̃ (E ) is positive and Tr2(J̃ (E )) = 1.
Proof. Property (i) directly follows from

U (θ)⊗3T (J (E ))U (−θ)⊗3 = T (J (E )).

Same as the cloning case, (ii) and (iii) also directly follow
from the definition of J̃ and (iv) follows from the fact that
twirling operation, permutation of basis or the system do not
change the positivity of J (E ). Trace is also invariant under T
and under conjugation by U ⊗3

π or Vσ . �
With the above characterization of J̃ , we can establish the

following in an analogous manner to the cloning case.
Lemma 4. Suppose J̃ is defined as (7) for a quantum chan-

nel E . Then we have

Fproc(Eideal, E |Dθ ) = Tr
[
ϕ+⊗3

d J̃ (E )
]
.

We omit the proof since it is more or less identical to Lemma
2 for the cloning case.

Similar to the cloning case, we characterize a d3 × d3

Hermitian operator X �= 0 that satisfies (i)–(iv) in Lemma 3.
As a result, we can express X as

∑6
i=1 xiXi, where xi ∈ C and

X1 =
∑

i

|iii〉〈iii|, X2 =
∑
i �=k

|iik〉〈iik| + |iki〉〈iki| + |kii〉〈kii|,

X3 =
∑
i �=k

|iik〉〈kii| + |kii〉〈iik| + |kii〉〈iki| + |iik〉〈iki| + |iki〉〈iik|,

X4 =
∑

i �=k �=�

|ik�〉〈ik�|, X5 =
∑

i �=k �=�

|ik�〉〈k�i| + |ik�〉〈�ik|,

X6 =
∑

i �=k �=�

|ik�〉〈ki�| + |ik�〉〈�ki| + |ik�〉〈i�k|.

If we denote x = (xi ) ∈ C6, then

Tr
[
ϕ+⊗3

d X
] = 1

d2
x1 + (d − 1)

d2
(3x2 + 6x3) + (d − 1)(d − 2)

d2
(x4 + 2x5 + 3x6),

and the trace condition

A(x) = x1 + 3(d − 1)x2 + (d − 1)(d − 2)x4 = 1.

We construct the SDP the identical way as (11) to prove the optimality of the process fidelity. Now we present the proof of
the Theorem 2.

Proof. When the dimension d = 2, x = (0, 1/3, 1/3, 0, 0, 0) yields a primal feasible solution of 3/4, and Ẑ ⊕ [3/4] is dual
feasible, where

Ẑ = 1
4 (X1 + X2 + X4) − 1

8 (X3 + X5 + X6).

Let d � 3 and define

kd = 1

(d − 1)(d − 2)
, x = (0, 0, 0, kd , kd , kd ).

It can be easily be checked that the resulting operator satisfies the positivity and trace condition. Analogous to the cloning case,
we prove the optimality of FE by finding a dual feasible Z = Ẑ ⊕ [z], where z = 6/d2 and Ẑ = ∑

i biXi, bi ∈ R. The constraints
TrFiZ = ci yields

Tr[X1Ẑ] − z = − 1

d2
,

Tr[X2Ẑ] − 3(d − 1)z = −3(d − 1)

d2
,

Tr[X3Ẑ] = −6(d − 1)

d2
,
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Tr[X4Ẑ] − (d − 1)(d − 2)z = − (d − 1)(d − 2)

d2
,

Tr[X5Ẑ] = −2(d − 1)(d − 2)

d2
,

Tr[X6Ẑ] = −3(d − 1)(d − 2)

d2
,

and we get

b1 = b2 = b4 = 5

d3
, b3 = b5 = b6 = − 1

d3
.

Next, we rewrite Ẑ as the positive linear combination of projections to show positivity. Define the projections

PA = 2

3
X2 − 1

3
X3,

PB = 1

2

(
1 + 1√

2

)
X4 − 1

4
√

2
X5 − 1

4
√

2
X6.

Then we can write Ẑ as

Ẑ = 5

d3
(X1 + X2 + X4) − 1

d3
(X3 + X5 + X6)

= 1

d3
[3P1 + 4

√
2PB + 5X1 + 3X2 + (3 − 2

√
2)X4],

and hence Ẑ � 0 and also Z � 0. Therefore, 6
d2 is indeed the optimal solution. �
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