
PHYSICAL REVIEW A 106, 022404 (2022)

Quantum simulations of molecular systems with intrinsic atomic orbitals
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Quantum simulations of molecular systems on quantum computers often employ minimal basis sets of
Gaussian orbitals. In comparison with more realistic basis sets, quantum simulations employing minimal basis
sets require fewer qubits and quantum gates but yield results of lower accuracy. A natural strategy to achieve
more accurate results is to increase the basis set size, which, in turn, requires increasing the number of qubits
and quantum gates. Here we explore the use of intrinsic atomic orbitals in quantum simulations of molecules
to improve the accuracy of energies and properties at the same computational cost required by a minimal
basis. We investigate ground-state energies and one- and two-body density operators in the framework of the
variational quantum eigensolver employing and comparing different Ansätze. We also demonstrate the use of
this approach in the calculation of ground- and excited-state energies of small molecules by a combination of
quantum algorithms using IBM quantum computers.
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I. INTRODUCTION

The simulation of quantum many-body systems has long
been recognized as an application for quantum comput-
ers [1–7]. Whereas contemporary quantum devices and
algorithms have enabled the simulation of ground- and
excited-state properties of a variety of systems [8], quan-
tum computing is still an emerging technology with limited
simulation capabilities. In the field of quantum chemistry,
the limitations of quantum devices, classical simulators, and
quantum algorithms have resulted in most quantum electronic
structure simulations reported to date employing minimal
basis sets of Gaussian orbitals [8–10] or active spaces con-
structed on the basis of preliminary correlated classical
simulations [11].

Such simulations have profound theoretical interest and
represent a driving force in the development of quantum
devices, simulators, and algorithms, but they are far from
returning the high-accuracy results needed by the quantum
simulation of molecules.

Achieving this goal typically requires increasing sig-
nificantly the number of qubits and quantum gates and
implementing sophisticated techniques to increase the rep-
resentation accuracy of qubits [12,13]. Techniques that can
improve the accuracy of quantum simulations without extra
quantum resources and without reliance on preliminary clas-
sical simulations, thus, become desirable.

In the present paper, we explore the use of intrinsic atomic
orbitals [14,15] (IAOs) in the quantum simulation of molec-
ular systems. IAOs define atomic core and valence orbitals,
polarized by the molecular environment, which can exactly
represent self-consistent field wave functions, through a re-
markably simple algebraic construction [14] free from input

from correlated many-body calculations. IAOs yielded ac-
curate evaluations of a variety of chemical properties in
different environments and supported the understanding of
molecular properties and the development of computational
techniques [14,16–20].

Using the bond cleavage of several small molecules as
an application, we demonstrate the integration of IAOs in
a variety of quantum algorithms, using classical simulators
of quantum computers and IBM quantum hardware. We dis-
cuss strengths and weaknesses of the migration from minimal
bases to IAOs, and identify the perturbative treatment of dy-
namical correlation from nonvalence virtual orbitals as a way
to further improve quantum simulations based on IAOs.

II. METHODS

A. Intrinsic atomic orbitals

The IAO construction aims at combining the best proper-
ties of a set of molecular orbitals (MOs) |χm〉 = ∑

a Cam|ϕa〉
computed at mean-field level in a large basis set B1 = {ϕa}a,
and of a valence basis B2 = {ρ̃b}b of atomic orbitals (AOs).
Here, given a molecule with geometry G = {(Zk, Rk )}NA

k=1,
where Zk’s are the atomic numbers and Rk’s are the posi-
tions of the constituent atoms, we choose B1 = ⋃

k B(Zk; Rk ),
where B(Zk; Rk ) is a set of Gaussian orbitals for atom k
(e.g., Dunning’s correlation consistent bases with polarized
and multiple valence orbitals, usually abbreviated in cc-
pVxZ [21]). On the other hand, to construct B2, for every atom
in the molecule we perform a single-atom Hartree-Fock cal-
culation with basis B(Zk; Rk ), yielding a set of core, valence,
and external orbitals for that particular atom, and we append
the core and valence orbitals to the basis B2. Since a common

2469-9926/2022/106(2)/022404(15) 022404-1 ©2022 American Physical Society

https://orcid.org/0000-0001-5842-1113
https://orcid.org/0000-0002-1312-1181
https://orcid.org/0000-0003-1647-9864
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.106.022404&domain=pdf&date_stamp=2022-08-09
https://doi.org/10.1103/PhysRevA.106.022404


BARISON, GALLI, AND MOTTA PHYSICAL REVIEW A 106, 022404 (2022)

set of single-atom bases B(Zk; Rk ) is used in the construction
of both B1 and B2, then B2 is a proper subset of B1.

The MOs can, of course, reproduce the mean-field wave
function from which they are defined but cannot be clearly as-
sociated with any atom, which complicates the interpretation
of the wave function and of its properties. The AOs, although
naturally associated with an atom, give an inaccurate repre-
sentation of the MOs as they contain no polarization due to
the molecular environment. The IAO basis is then constructed
by forming a set of polarized AOs {ρb}b that at variance with
the AOs in B2 can exactly express occupied MOs |χi〉. First,
the projectors P = ∑

i |χi〉〈χi|, Q = 1 − P onto occupied and
virtual MOs are defined. This allows to define the projectors,

P12 =
∑

φa,φb∈B1

Sab|φa〉〈φb|,
(1)

P21 =
∑

ρ̃c,ρ̃d ∈B2

S̃cd |ρ̃c〉〈ρ̃d |,

onto the bases B1 and B2, where Sab and S̃cd are the inverse
overlap matrices in B1 and B2, respectively. Then, a set of
depolarized occupied MOs |χ̃i〉 = P12P21|χi〉 is constructed by
projecting the original, polarized, occupied MOs onto the AO
basis B2, and immersing the projected MOs in the original
basis B1. The depolarized occupied MOs are used to define
the projectors P̃ = ∑

i |χ̃i〉〈χ̃i| and Q̃ = 1 − P̃, and the IAOs
are obtained as

|ρb〉 = (PP̃ + QQ̃)P12|ρ̃b〉. (2)

Therefore, IAOs are constructed through a sequence of simple
and natural algebraic operations. In addition to the projec-
tion (2), we orthonormalize the IAO basis to ensure the
satisfaction of canonical anticommutation relations between
second-quantization operators, and we perform a Foster-Boys
localization of the IAOs to enhance their spatial locality [22].

Finally, we consider the Born-Oppenheimer approximation
of the molecular Hamiltonian [23],

H = E0 +
∑

pq
σ

hpqĉ†
pσ ĉqσ +

∑
prqs
στ

(pr|qs)

2
ĉ†

pσ ĉ†
qτ ĉsτ ĉrσ , (3)

where E0 indicates the repulsion between nuclei of the
molecule, hpq is the one-body part of the Hamiltonian, con-
taining kinetic energy of the electron plus the interaction
with the fixed nuclei, and (pr|qs) is the electron-electron
repulsion integral. Once the IAOs are defined, we fold the
Hamiltonian in Eq. (3) through a standard atomic orbitals to
molecular orbitals (ao2mo) transformation from the B1 to the
orthonormalized IAO basis. In this paper, we relied on the
frozen-core approximation since the basis sets we employed
lack core-valence correlation effects.

B. Ground- and excited-state algorithms

We explored the ground and excited states of the Hamil-
tonian (3) with several techniques. Here, we focused on
the the variational quantum eigensolver [24,25] and quan-
tum imaginary-time evolution [26] methods for ground-state
studies. In Appendix B, we also investigate the quantum
equation-of-motion [27] method for excited-state studies.

1. Variational quantum eigensolver

Variational quantum state preparation algorithms are
widely used on contemporary quantum devices. These algo-
rithms define a set of Ansatz states approximating the ground
state of a target Hamiltonian, of the form |�(θ )〉 = Û (θ )|�0〉,
θ ∈ 
 ⊆ Rn. In other words, a parametrized quantum circuit
Û (θ ) is applied to an initial wave-function |�0〉. The best
approximation to the ground state in the set of Ansatz states
is found by minimizing the energy E (θ ) = 〈�(θ )|Ĥ |�(θ )〉
as a function of the parameters θ using a classical optimiza-
tion algorithm [24,25]. This algorithmic work flow, termed
variational quantum eigensolver (VQE) [24] in the quantum
simulation literature, is a heuristic technique for ground-state
approximation. Its accuracy and computational cost are deter-
mined by the form of the circuit Û (θ )’s.

Within VQE, we compare different Ansätze Û (θ ):
(1) The quantum unitary coupled cluster with single and

double excitations (q-UCCSD), where Û (θ ) is a qubit repre-
sentation of the operator [28–31],

Ûq-UCCSD(θ ) = eT̂ −T̂ †
,

(4)
T̂ =

∑
ai

θa
i ĉ†

aĉi +
∑
abi j

θab
i j ĉ†

aĉ†
bĉ j ĉi ,

with i j occupied and ab virtual in the mean-field reference
state. The q-UCCSD quantum circuit is given in Ref. [31].

(2) The hardware-efficient Ry Ansatz with linear connec-
tivity [8] which, for a register of n qubits and an Ansatz of
depth d , takes the form

ÛRy (θ ) =
[

n−1∏
i=0

R̂(i)
y (θd

i )

]
d−1∏
�=0

[
n−2∏
i=0

U ent
i,i+1

n−1∏
i=0

R̂(i)
y (θ�

i )

]
, (5)

where U ent
i,i+1 is an entangler gate of choice, in this case a

controlled-NOT (CNOT) gate with control qubit i and target
qubit i + 1, and R̂(i)

y (θ�
i ) is the �th Y rotation of qubit i by

an angle θ�
i ,

(3) the hardware-efficient SO(4) Ansatz, of the form

ÛSO(4)(θ ) =
d−1∏
�=0

[ ∏
(i j)∈N

ûi j (θ
�
i j )

]
, (6)

where ui j is a two-qubit gate in the SO(4) group. It is well
known [32] that a two-qubit gate in the SO(4) group can be
written (as shown in Fig. 3) as a product of two Hadamard,
four S, two CNOT, and two single-qubit u3 gates. Single-qubit
u3 gates are defined as

u3(θ, φ, λ) = Rz(φ)Rx

(
− π

2

)
Rz(θ )Rx

(
π

2

)
Rz(λ), (7)

where θ, φ, and λ are three angles and Rx,y,z are single-qubit
X , Y , and Z rotations, respectively.

2. Quantum imaginary-time evolution

Quantum imaginary-time evolution (QITE) [26,33–36] is
an alternative and complementary technique to VQE and
other heuristic quantum algorithms for a ground-state search.
QITE is an Ansatz-independent technique that approaches the
ground state of a quantum system by applying the following
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imaginary-time evolution (ITE) map on a trial wave-function
|�T 〉,

|�β〉 = e−βĤ |�T 〉
|e−βĤ�T | . (8)

The ITE is divided in a large number nβ of steps of length
�τ = β/nβ and ITE under a single step is approximated by a
Trotter decomposition,

e−βĤ �
∏

m

e−βĥ[m], (9)

where Ĥ = ∑
m ĥ[m] is a representation of the Hamiltonian

as a sum of local operators. ITE under a single imaginary-
time step and a single local term of the Hamiltonian is
approximated by a unitary transformation, that is, equal to the
exponential of a linear combinations of local operators Pμ,

e−�τ ĥ[μ]|�〉
|e−�τ ĥ[μ]�| � exp

(
i
∑

μ

xμPμ

)
|�〉. (10)

The coefficients xμ are determined [26] solving a linear sys-
tem of the form Ax = b with

Aμν = 〈�|PμPν |�〉, bμ = 〈�|Pμĥ[m]|�〉. (11)

The QITE simulations reported in this paper are carried out
in a two-orbital space. For such a problem, additional sim-
plifications are possible, which are listed and discussed in
Appendix D.

C. Evaluation of density matrices

Once the optimal state |�〉 is found, ground-state proper-
ties can be computed as expectation values of suitable qubit
operators. Here we consider the case of one- and two-body
density matrices,

ρ (σ )
pr = 〈�|ĉ†

pσ ĉrσ |�〉,
(12)

ρ (σ,τ )
prqs = 〈�|ĉ†

pσ ĉ†
qτ ĉsτ ĉrσ |�〉,

which are useful for a variety of applications from computing
correlation functions to understanding electron entanglement,
molecular bonding [37–39], and performing orbital relax-
ation [40–42].

The operators (12) can be mapped onto qubit operators
using standard techniques. For example, in the Jordan-
Wigner [43–45] representation,

ĉ†
pσ =

{
(S+)pσ

z
p−1 · · · σ z

0 , σ =↑,

(S+)n+pσ
z
n+p−1 · · · σ z

0 σ =↓,
(13)

where

S+ = σ x + iσ y

2
and S− = σ x − iσ y

2
, (14)

n is the size of the IAO basis and σμ with μ ∈ {x, y, z} are the
standard Pauli x, y, and z operators, respectively. Therefore,

ρ (σ ) = 〈�|X σ
pr |�〉, (15)

with

X ↑
pr =

⎧⎨
⎩

(S+)pσ
z
p−1 · · · σ z

r+1(S−)r, if p > r,
1−σ z

p

2 , if p = r,
(S−)rσ

z
r−1 · · · σ z

p+1(S+)p, if p < r,
(16)

and

X ↓
pr =

⎧⎨
⎩

(S+)p+nσ
z
p+n−1 · · · σ z

r+n+1(S−)r, if p > r,
1−σ z

n+p

2 , if p = r,
(S−)r+nσ

z
r−1 · · · σ z

p+n+1(S+)p+n, if p < r.
(17)

In a similar way,

ρ (στ )
prqs = 〈

�|X σ
prX τ

qs|�
〉 − δqrδστ

〈
�|X σ

ps|�
〉
. (18)

D. Variational quantum subspace expansion

Incorporating dynamical correlation from nonvalence vir-
tual orbitals is important to improve the quantitative accuracy
of simulations based on IAOs: Here, we demonstrate how to
partly overcome this limitation using a simplified implemen-
tation of the virtual quantum subspace expansion technique
(VQSE). This technique, proposed by Takeshita et al. [12],
introduces contributions from virtual orbitals lying outside a
chosen active space in a systematic way. The starting point of
VQSE is a reference function �0 constructed in a set of active
orbitals from a large basis. Here, active-space orbitals are
linear combinations of IAOs, denoted with lowercase letters
p ∈ A. Uppercase letters P ∈ B1 denote orthonormal orbitals
in the basis used to construct IAOs.

Next, VQSE introduces a set of expansion operators. Here,
we choose

|�〉 = [α + βPr ĉ†
Pσ ĉrσ + γTuV w ĉ†

T σ ĉ†
V τ ĉwτ ĉuσ ]|�0〉

= [α + βPrEPr + γTuV wETuV w]|�0〉. (19)

Electrons are excited from active to generic orbitals, excitation
operators are summed over spin polarizations σ, τ , and Ein-
stein’s summation convention is used. Note that the reference
wave function has no components outside the active space
A, and, therefore, contraction over orbitals outside A can be
computed analytically using Wick’s theorem.

The amplitudes v = (α β γ )T are real valued and deter-
mined by solving a generalized eigenvalue equation Hv =
ESv.

Detailed calculation to obtain the explicit form of H and
S can be found in Appendix E. The matrix elements of H
and S are evaluated using data from a quantum device and,
subsequently, diagonalized on a classical computer to extract
the lowest eigenvalue. Although we relied on full diagonaliza-
tion and extraction of the lowest eigenvalue for simplicity, a
better scaling with basis size could easily be achieved using
Davidson’s algorithm.

In the present paper, we focused on two-electron problems
where the the explicit forms of H and S are defined by the
active-space one- and two-body density matrices [12] that we
introduced in Sec. II C.

E. Software for classical and quantum simulations

The calculations performed here involved initial prepro-
cessing using the PYSCF quantum chemistry package [46,47].
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TABLE I. Dissociation energy and equilibrium bond length for different molecules using various VQE Ansätze at STO-6G and the IAO-
aug-cc-pVQZ level of theory and from CCSD at the aug-cc-pVQZ level of theory. The table also reports the values obtained with the Full
Configuration Interaction (FCI) method. From here on, except when explicitly stated, the energies are reported in Hartree units (Eh) and atomic
distances in Angstrom units (Å).

H2 HeH+ LiH H2O NH3

Basis Method �E (Eh) Req (Å) �E (Eh) Req (Å) �E (Eh) Req (Å) �E (Eh) Req (Å) �E (Eh) Req (Å)

HF N/A 0.695(9) N/A 0.937(9) N/A 1.482(5) N/A 0.993(1) N/A 1.024(2)
Ry, d = 1 0.2084(9) 0.715(7) 0.0513(3) 0.919(1) 0.0833(7) 1.482(7) 0.1353(1) 0.970(7) 0.1525(7) 1.024(3)

STO-6G SO(4), d = 1 0.2083(9) 0.715(7) 0.0513(3) 0.919(1) 0.0837(6) 1.482(8) 0.1358(4) 0.941(5) 0.1510(6) 1.024(2)
q-UCCSD 0.2083(9) 0.715(7) 0.0513(3) 0.919(1) 0.1079(9) 1.522(1) 0.1625(8) 1.006(5) 0.1694(4) 1.058(2)

FCI 0.2092(2) 0.715(7) 0.0512(7) 0.919(4) 0.1075(5) 1.522(2) 0.1626(0) 1.006(7) 0.1694(4) 1.058(2)
HF N/A 0.716(4) N/A 0.770(4) N/A 1.586(5) N/A 0.949(7) N/A 0.995(1)

Ry, d = 1 0.1721(7) 0.729(9) 0.0822(9) 0.768(4) 0.10589 1.586(6) 0.1755(7) 0.921(9) 0.1774(9) 0.996(3)
IAO SO(4), d = 1 0.1721(7) 0.729(9) 0.0822(9) 0.768(4) 0.1000(2) 1.584(2) 0.1861(8) 0.924(8) 0.1760(6) 0.996(1)

q-UCCSD 0.1760(5) 0.729(9) 0.0822(9) 0.768(4) 0.1362(0) 1.612(9) 0.1978(2) 0.965(6) 0.1849(6) 1.022(1)
FCI 0.1721(7) 0.729(9) 0.0822(6) 0.767(8) 0.1362(0) 1.612(9) 0.1924(2) 0.965(8) 0.1923(4) 1.023(1)

aug-cc-pVQZ CCSD 0.1798(4) 0.719(7) 0.0752(3) 0.774(6) 0.1388(2) 1.572(9) 0.2309(1) 0.959(8) 0.2139(9) 1.007(8)

PYSCF was used to generate optimized mean-field states,
Hamiltonian matrix elements in the IAO basis, and a reaction
path for the NH3 → NH2 + H reaction by a collection of
constrained geometry optimizations performed using Moller-
Plesset perturbation theory [48] in a correlation-consistent
Dunning’s basis, augmented with an extra diffuse function
in each orbital angular momentum (MP2/aug-cc-pVTZ). The
restricted closed-shell Hartree-Fock (RHF) singlet state was
chosen as the initial state for all of the calculations described
here. Intrinsic atomic orbitals are computed as detailed in
Sec. II A, and IAOs obtained from an underlying basis B are
denoted as IAO/B.

Having selected a set of single-electron orbitals for each of
the studied species, quantum computations were performed
with quantum simulators and hardware. We used IBM’s
open-source library for quantum computing QISKIT [49]. In
particular, the library contains implementations of techniques
to map the fermionic Fock space onto the Hilbert space of
a register of qubits, and implementations of VQE and the
quantum equation of motion. In addition, a module for QITE
simulations was composed using QISKIT subroutines. We use
the tapering-off technique [50,51] to account for molecular
point-group symmetries and reduce the number of qubits re-
quired for a simulation whenever possible.

In VQE simulations, we minimized the expectation value
of the Hamiltonian with respect to the parameters in the cir-
cuit. On simulators, optimizations were carried out using the
L-BFGS-B and CG methods [52,53], using the state-vector
simulator of QISKIT. On quantum hardware, optimizations
were carried out using the gradient descent optimization
method described in Appendix C 1. We performed quantum
computations on quantum hardware using various five-qubit
IBM quantum devices, specifically ibmq_rome, ibmq_vigo,
and ibmq_london.

F. Error mitigation techniques

In order to improve the quality of noisy hardware exper-
iments, we referred to readout error mitigation techniques
included in QISKIT [54].

In particular, we used measurement calibration to mitigate
measurement errors. Given a system of N qubits, all 2N basis
input states are prepared, and the probability of measuring
counts in the other basis states is computed. From these re-
sults, a calibration matrix is created and used to improve the
results of subsequent experiments.

All the experiments proposed in this paper required two
qubits and no more than two CNOTs, indicating that the dom-
inant source of noise was measurement error. Running the
four calibration circuits was sufficient to obtain good quality
results.

Computing the calibration matrix becomes quickly unfea-
sible as the number of qubits increases for this reason more
efficient methods have been proposed [55]. When the depth
of the circuit is increased, gate errors will play a significant
role on the quality of the results. In this case, gate error
mitigation techniques can be adopted, such as zero noise,
Richardson extrapolation [54,56–58], or probabilistic error
cancellation [59].

III. RESULTS

A. Comparison between minimal bases and IAO

The migration from minimal to IAO bases in quantum
and classical simulations of molecules has benefits and lim-
itations. On the one hand, use of IAOs reduces basis set
errors at mean-field level because IAOs are designed to repro-
duce mean-field results. Whereas basis set errors still affect
chemical properties, and, particularly, correlation energies
and response functions, their removal at mean-field level can
improve the accuracy of many computational predictions es-
pecially in chemical species that are sensitive to the presence
of polarized and diffuse functions. Furthermore, IAOs are
based on a computationally inexpensive and general-purpose
procedure, that enables accurate calculations of a variety of
chemical properties [14,16–20], and does not resort to pre-
liminary correlated many-body calculations, e.g., of MP2 or
complete active space self-consistent field (CASSCF) type,
which need to be converged and carefully designed to avoid
biasing chemical properties [19,60–63].
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The main limitation stemming from the use of IAOs is
the presence of residual basis set errors, which can only be
removed by simulating orbitals beyond the IAO basis, or with
additional postprocessing. However, unlike minimal bases,
IAO bases are naturally embedded into a larger basis of one-
electron orbitals because they are constructed from such a
basis. As a result, IAOs can be employed to capture static
electronic correlation in a valence space, while dynamical
correlation originating from electronic transitions to orbitals
outside the IAO space can be treated perturbatively as in
classical complete active space second-order perturbation the-
ory (CASPT2) [64–66] and second-order N-electron valence
state perturbation theory calculations (NVPT2) [67–69], or
in recently proposed quantum-computing methods, such as
VQSE [12]. In this sense, the migration from minimal to IAO
bases can constitute an opportunity to integrate techniques to
perturbatively capture dynamical correlation in the work flow
of quantum simulations as well as to compare, demonstrate,
and develop such techniques.

To illustrate the difference between minimal and IAO
bases, in Table I we study the dissociation of a single H
atom from a few molecules, namely, H2, HeH+, LiH, H2O,
and NH3. We evaluate the ground-state energy along the
dissociation path at minimal basis sets STO-6G and IAO/aug-
cc-pVQZ level, using RHF and VQE with Ry, SO(4), and
q-UCCSD Ansätze. As an approximation to the complete
basis set limit, we perform a coupled cluster calculation with
single and double excitations (CCSD) in the aug-cc-pVQZ
basis (CCSD/aug-cc-pVQZ) [70]. Table I reports equilibrium
bond lengths Req and binding energies �E .

For all studied species, FCI/IAO and q-UCCSD/IAO
binding energies are in better agreement with CCSD/aug-
cc-pVQZ binding energies than their counterparts at the
STO-6G level. In particular, the mean absolute devia-
tion |δE (FCI/-)-δECCSD/aug-cc-pVQZ)| between FCI/IAO
and FCI/STO-6G binding energies is 0.015(1) Hartree,
whereas for FCI/STO-6G binding energies it is 0.039(1)
Hartree. The improvement is more modest for hardware-
efficient Ansätze, which is not unexpected, in view of
their heuristic nature. Correspondingly, the mean absolute
deviation |Req(FCI/IAO)-Req(CCSD/aug-cc-pVQZ)| between
FCI/IAO and FCI/STO-6G binding energies is 0.016(1) Å,
whereas for FCI/STO-6G equilibrium bond lengths it is
0.059(1) Å.

In Fig. 1, we report the complete ground-state potential-
energy curve along the NH3 → NH2 + H reaction path.
We observe that VQE/q-UCCSD provides results of FCI-
like accuracy, whereas Ry and SO(4), although describing
in a qualitatively correct way the dissociation limit, produce
results of lower quality at lower computational cost. The
deviation between hardware-efficient Ansatze and only q-
UCCSD is maximal around the valley-ridge inflexion point
R � 1.75 Å, where the wave function has maximally multiref-
erence character.

B. Hardware experiments

In this subsection, we describe hardware experiments. As
an illustrative application, in Fig. 2, the potential-energy sur-
face of H2 is computed using VQE with IAO/aug-cc-pVQZ

−55.5

−55.7

−55.9

−56.1

E
ST

O
-6

G
(R

)
[E

h
]

HF

FCI

q-UCCSD

Ry , d = 1

SO(4), d = 1

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

R [Å]
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FIG. 1. Ground-state potential-energy curve of NH3 along the
NH3 → NH2 + H reaction path, at STO-6G (top) and IAO-aug-cc-
pVQZ (bottom) level using RHF (dashed light blue line), FCI (dark
blue dashed-dot line), VQE with Ry (red circles), SO(4) (dark orange
diamonds), and q-UCCSD Ansätze (orange triangles). d indicates the
depth of the Ansatz.

basis. Simulations required two qubits from the ibmq_rome
device and employed an Ry Ansatz with depth d = 1. Given
the simplicity of this application, VQE results are statistically
compatible with FCI results obtained at the IAO-aug-cc-
pVTZ level (agreement between orange triangles and line). As
discussed in the previous section, improve the prediction of
binding energies and equilibrium bond lengths over STO-6G
(dotted line). The VQE on IAO/aug-cc-pVTZ results corre-
spond to the simulation of the full valence space of H2 but are
not sufficient to recover aug-cc-pVTZ results because virtual
orbitals outside the IAO basis are not included in the sim-
ulation (deviation between orange dashed-dot-dot and dark
blue dashed curves). We illustrate how this limitation can be
overcome by computing VQSE energies, which are statisti-
cally compatible with FCI/aug-cc-pVTZ energies (agreement
between red points and line).

As a more interesting application, in the remainder of
this subsection, we present the dissociation of NH3. Studying
the full seven-orbital IAO basis requires 14 qubits using a
second-quantization encoding, which can be reduced to 11

022404-5



BARISON, GALLI, AND MOTTA PHYSICAL REVIEW A 106, 022404 (2022)

0.5 1.0 1.5 2.0 2.5 3.0 3.5

R [Å]
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FIG. 2. Ground-state potential-energy surface of H2 calculated
using VQE and FCI with an IAO/aug-cc-pVTZ basis (orange tri-
angles and dashed-dot-dot lines) and VQSE and FCI with full
aug-cc-pVTZ basis (dark blue circles and dashed line). Statistical
uncertainties on the lowest eigenvalue were obtained by sampling
the active-space density matrices ten times, repeating the embedding,
contraction, and diagonalization procedures for each sample, and
collecting statistics with standard procedures.

or seven using qubit-reduction techniques [50,71]. For illus-
trative purposes and in order to use a number of qubits and
gates compatible with simulation on five-qubit devices, we
constructed an active space from the IAO-aug-cc-pVQZ basis.

Specifically, for every geometry along the reaction path,
we performed an MP2 calculation in the IAO-aug-cc-pVQZ
basis. Structures were relaxed in the estimation of the bind-
ing energies. We constructed an active space using the
highest-unoccupied and the lowest-unoccupied natural or-
bitals (HONO-LUNO active space).

The HONO and LUNO are linear combinations of the
1s-like IAO for H and a 2p-like IAO for N, directed along
the NH2-H axis. Such linear combinations have σ and σ ∗
characters as seen in Fig. 3.

The quantum circuit used to simulate the ground state
of NH3 is shown in Fig. 3. Qubits are entangled through
a SO(4) gate, parametrized leveraging the isomorphism be-
tween SO(4) and SU(2) [32,72]. Parameters are optimized
using a combination of analytical gradient evaluation [73] and
the gradient descent technique as illustrated in Appendix C 1.
The VQE ground-state potential-energy curve is shown in
Fig. 4. As seen, VQE improves significantly over RHF in the
active space and yields results in qualitative agreement with
FCI.

We emphasize that the use of the full-valence IAO basis as
in the H2 application is known to be reasonable from a chem-
ical standpoint. Any other active space construction, as in the
NH3 application, needs to be supported on chemical grounds

FIG. 3. Left: HONO, top and LUNO, bottom natural orbitals
from an MP2 calculation using the IAO/aug-cc-pVQZ basis. Right:
quantum circuit for the VQE calculations with SO(4) Ansatz in the
HONO-LUNO subspace. U3 denotes an SU(2) gate, parametrized
by three Euler angles. σμ and σ ν are Pauli operators appearing
in the qubit representation of the active space Hamiltonian, Ĥ =∑3

μν=0 ημν σμ ⊗ σ ν .

or assessed with numerical data. To assess the accuracy of the
HONO-LUNO active space and of our VQE simulations in
Table II we list active-space equilibrium bond lengths, binding
energies, as well as the mean deviation,

�RHF,VQE =
NR∑
i=1

|ERHF,VQE(Ri ) − EFCI(Ri )|
NR

, (20)

of RHF and VQE results from FCI. Results indicate that
VQE accurately reproduces FCI quantities within the HONO-
LUNO active space. Comparison between Tables I and II, on
the other hand, indicates that the HONO-LUNO active space
leads to a slightly shorter equilibrium bond length than with
the full IAO basis, and to a less accurate binding energy.
This is not unexpected, as the active space approximation
affects the electronic structure to a varying extent along the
dissociation profile.

1. Assessment of accuracy

Besides computing energies, it is important to gain as much
insight as possible into the structure of the ground-state wave
function. To achieve this goal, we compute the total spin
operator S2. Whereas such a quantity is a constant of motion
in simulations conducted on quantum hardware it may feature
significant errors due to decoherence. As seen in Fig. 5, the
VQE wave function is essentially in the singlet manifold
S2 = 0, but is not an eigenfunction of S2. Deviations from
S2 = 0 become slightly more intense for R � 1.5 Å, where
the lowest-energy singlet and triplet states become nearly de-
generate. Furthermore, we perform quantum state tomography

TABLE II. N-H dissociation energy, NH3 equilibrium bond
length, and deviation from FCI from RHF and VQE with depth-1
SO(4) Ansatz using a HONO-LUNO active space determined at
IAO-aug-cc-pVQZ level.

Method �E (Eh) Req (Å) �RHF,VQE (Eh)

RHF N/A 0.995(1) 0.060
VQE, SO(4), d = 1 0.165(3) 1.007(3) 0.0032(17)
FCI 0.180(2) 0.9961(7) N/A
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FIG. 4. Top: ground-state potential-energy surface of NH3 along
the NH3 → NH2 + H reaction path, using a HONO-LUNO active
space based on an MP2 calculation at IAO/aug-cc-pVQZ level from
RHF (dashed light blue line), FCI (blue dashed-dot line) and VQE
with depth-1 SO(4) Ansatz (orange circles). Bottom: deviation of
RHF and VQE energies from FCI.

(QST) [74–77] over the VQE density operator ρVQE,

ρVQE =
3∑

μν=0

Tr[ρVQE(σμ ⊗ σ ν )]

4
(σμ ⊗ σ ν ), (21)

where σμ is a Pauli operator with μ ∈ {id, x, y, z} and σ id

is the identity operator. Using information from QST, we
evaluate the purity P(ρVQE) = Tr(ρ2

VQE) of the VQE density
operator. P(ρ) = 1 if and only if ρ is the projector ρ =
|�〉〈�| onto a pure state �. As seen in Fig. 5, for R � 1.5 Å
we observe P(ρ) � 0.955. The observed decrease in purity
signals decoherent interaction with the environment, that ulti-
mately limits the accuracy of VQE simulations.

To elucidate the origin of the deviations from S2 = 0 and
purity P[ρ] = 1, in Fig. 5 we compute these quantities on
a classical simulator with noise model from ibmq_manila.
Whereas noise models capture decoherence only partially, we
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FIG. 5. Expectation values of the total spin operator (top) and
purity of the VQE density operator (bottom) as a function of the
reaction coordinate R, evaluated over the VQE wave function with
the SO(4) Ansatz. Orange and blue symbols denote hardware calcu-
lations carried out on ibmq_rome and on a a classical simulator with
noise model from ibmq_manila, respectively.

regard these data as an indication that the loss of accuracy seen
here is explained by a combination of well-understood [49]
qubit decoherence (amplitude damping, dephasing errors),
measurement, and gate error (coherent and incoherent)
mechanisms. In particular, since qubit decoherence and mea-
surement errors affect these simulations uniformly across
dissociation, the main source of error is represented by gates.

2. Density matrices

The results shown in the previous Sec. III B 1 are mostly
based on QST which, despite many recent theoretical and
algorithmic improvements, remains an expensive operation
with growing number Nq of qubits [78–82].

An alternative way to obtain information about an elec-
tronic quantum state is provided by the one- and two-body
density matrices, which can be obtained measuring up to
O(N5

q ) qubit operators.
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FIG. 6. Spin-resolved one-body density matrix ρ (↑) for NH3 in a HONO-LUNO space from VQE with the SO(4) Ansatz as a function of
N-H distance (left to right, top to bottom).

One- and two-body density matrices are shown in Figs. 6
and 7, respectively. The eigenvalues of the one-body density
matrix evolve from (1,0) to (1/2, 1/2) as R increases, signal-
ing that electrons become increasingly more entangled as the
H atom separates from the NH2 moiety. The same informa-
tion is provided by the spin-resolved two-body density matrix
ρ (↑,↓)

prqs , which for small R is peaked at prqs = 0000, signaling
that the ground state is approximately a single Slater deter-
minant. As R increases, ρ

(↑,↓)
0000 = ρ

(↑,↓)
1111 � 1/2 and ρ

(↑,↓)
0101 =

ρ
(↑,↓)
1010 � −1/2, signaling that the ground state is a linear com-

bination of two closed-shell singlet wave functions.

C. QITE hardware experiments

In Fig. 8, we further investigate the ground-state potential-
energy surface of NH3 using the QITE method using
the five-qubit ibmq_vigo and ibmq_london IBM quantum
hardware. Details of QITE simulations, and especially
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FIG. 7. Spin-resolved two-body density matrix ρ (↑,↓) for NH3 in a HONO-LUNO space, from VQE with the SO(4) Ansatz as a function
of N-H distance (left to right, top to bottom). Numbers 0–3 denote indices (0,0), (0,1), (1,0), and (1,1), respectively.

022404-8



QUANTUM SIMULATIONS OF MOLECULAR SYSTEMS … PHYSICAL REVIEW A 106, 022404 (2022)

−55.9

−56.0

−56.1

−56.2

E
(R

)
[E

h
]

HF

FCI, HONO/LUNO

ibmq-vigo, simple

ibmq-london, mitigated

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

R [Å]
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FIG. 8. Ground-state potential-energy surface of NH3 along the
NH3 → NH2 + H reaction path using quantum imaginary-time
evolution without (orange circles) and with (red triangles) readout
error mitigation on ibmq_vigo and ibmq_london, respectively.

simplifications made possible by the two-qubit nature of the
problem, are given in Appendix D. In Fig. 8 and Table III
we can appreciate the impact of readout error mitigation
techniques [54,57,83,84] on the accuracy of QITE, in terms
of deviations from FCI as well as equilibrium bond length
and binding energy. Readout error mitigation has more pro-
nounced effect on results in the regime R � 1.75 where the
electronic wave function starts acquiring multireference char-
acter and deviating appreciably from the Hartree-Fock state.
Therefore, it does not affect the equilibrium bond length

TABLE III. N-H dissociation energy, NH3 equilibrium bond
length, and deviation from FCI from RHF and QITE with and with-
out error mitigation using a HONO-LUNO active space determined
at the IAO-aug-cc-pVQZ level.

Method �E (Eh) Req (Å) �RHF,QITE (Eh)

RHF N/A 0.995(1) 0.060
QITE, no mitigation 0.195(4) 1.002(9) 0.0169
QITE, mitigation 0.178(2) 0.993(7) 0.0036
FCI 0.180(2) 0.9961(7) N/A

within statistical uncertainties, whereas it affects the binding
energy of the system by ∼0.015Eh.

IV. DISCUSSION

In this paper, we explored the use of intrinsic atomic or-
bitals in lieu of minimal basis sets of Gaussian orbitals in
quantum simulations of molecular systems. Bases of IAOs
have the same size of minimal bases but offer more accurate
estimates of energy differences and equilibrium geometries.
IAOs arise from an exceptionally simple algebraic construc-
tion, require only mean-field calculations in larger basis sets
to be defined, and draw a simple and effective connection
between chemical concepts and numerical simulations. As
such, they are a compelling alternative to minimal basis sets
in quantum simulations, along with other recently proposed
approaches [12,85], until the progress of hardware and clas-
sical simulators of quantum computers will allow to routinely
study larger basis sets from systematic sequences.

The main limitation of IAOs is that electronic correlation
is captured within a valence space. Therefore, perturbative
or full inclusion of virtual orbitals is necessary to cover the
dynamical correlations with methods, such as coupled cluster
and multireference configuration interaction model, and very
important to obtain quantitative agreement with experimental
values especially for sensitive quantities, such as polarizabil-
ities or thermochemical properties. The connection between
IAOs and larger bases can be leveraged to perturbatively in-
clude virtual orbitals beyond the IAO in the simulation as
we demonstrated here using a simplified implementation of
VQSE for two-electron systems.

We expect that the combination of intrinsic atomic orbitals
to partially overcome the limitations of minimal basis sets and
of density operators to diagnose important properties of elec-
tronic wave functions will prove useful tools in the simulation
of chemical species by quantum algorithms on contemporary
quantum devices.

The code used to generate the data presented in this paper
can be publicly accessed on GITHUB in Ref. [86].
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APPENDIX A: COMPARISON OF IAO AGAINST
OTHER BASES

In this Appendix, we compare IAO potential-energy
curves along the NH3 dissociation path, as binding ener-
gies, and equilibrium bond lengths against those from active
spaces of low-energy Hartree-Fock, CASSCF orbitals, and
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FIG. 9. CCSD total (top), correlation (middle), and binding (bot-
tom) energies of NH3 along the NH3 → NH2 + H dissociation path
from CCSD/aug-cc-pVQZ (blue crosses), low-energy Hartree-Fock
orbitals (red squares), low-energy CASSCF orbitals (dark orange
circles), high-occupancy MP2 natural orbitals (orange triangles), and
IAO/aug-cc-pVQZ (light blue diamonds).

high-occupancy MP2 natural orbitals. Results are given in
Figs. 9 and 10, using CCSD at the aug-cc-pVQZ and cc-pVTZ
levels. As seen, active spaces of low-energy Hartree-Fock
give a lower-accuracy total, correlation, and binding energies
than the other choices. We reason that the worse perfor-
mance of low-energy Hartree-Fock orbitals is due to the
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FIG. 10. Same as Fig. 9 but for cc-pVTZ.

inclusion of Rydberg, rather than antibonding, orbitals in the
active space. IAO performs similarly to high-occupancy MP2
natural orbitals, and overall, they give binding energies in
better agreement with CCSD/aug-cc-pVQZ than low-energy
Hartree-Fock and CASSCF orbitals.

Compared against minimal bases, IAOs comprise higher-
quality orbitals. Compared against larger basis sets, the main
benefit of IAOs is the reduced number of orbitals and qubits.
Numerical simulations with classical emulators employed
(Nα, Nβ ) = (4, 4) and (4,4) electrons, NIAO = six and seven
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orbitals, and Nqubit = eight and 11 qubits for water and am-
monia, respectively.

APPENDIX B: QUANTUM EQUATION OF MOTION

In this Appendix we turn our attention to electronic
excited states, that we investigate using the quantum
equation-of-motion formalism. The quantum equation-of-
motion (qEOM) [27,87,88] is a technique for approximating
excited states of quantum systems by applying suitable exci-
tation operators to their ground state,

|�I〉 = Ô†
I |�0〉. (B1)

In general, excitation operators are arbitrarily complicated
many-body operators. As in classical coupled-cluster calcu-
lations [89–91], accurate approximations for selected excited
states are obtained assuming that excitation operators are low
rank,

Ô†
I =

∑
μ

XμI Êμ − YμI Ê
†
μ,

(B2)

Êμ ∈
{∑

σ

ĉ†
aσ ĉiσ ,

∑
στ

ĉ†
aσ ĉ†

bτ ĉ jτ ĉiσ

}
,

where indices i j and ab label occupied and virtual orbitals in a
mean-field reference state. The expansion coefficients are de-
termined [27,92] solving a generalized eigenvalue equation of
the form[

M Q
Q∗ M∗

][
XI

YI

]
= �EI

[
V W

−W ∗ −V ∗

][
XI

YI

]
, (B3)

where matrix elements are defined as

Vμν = 〈�|[Ê†
μ, Êν]|�〉

Mμν = 〈�|[Ê†
μ, Ĥ , Êν]|�〉

(B4)
Wμν = −〈�|[Ê†

μ, Ê†
ν ]|�〉

Qμν = −〈�|[Ê†
μ, Ĥ , Ê†

ν ]|�〉,
and triple commutators have the form

[Â, B̂, Ĉ] = [[Â, B̂], Ĉ] + [Â, [B̂, Ĉ]]
2

. (B5)

1. qEOM hardware experiments

In Fig. 11 we show the qEOM energies of excited states in
the HONO-LUNO subspace, using ibmq_rome with readout
error mitigation. We mention that further mitigation of gate
and readout error can be achieved by QST [87], but for the
purpose of the present paper we elected to use the more
standard readout error mitigation implemented in QISKIT and
explained in Sec. II F.

The mean deviations between exact and computed excited-
state energies is 0.019 784, 0.027 757, and 0.029 781 for
the first, second, and third excited states, respectively. Of
course, the use of a two-orbital active space determined the
ability to detect only a subset of excited states, that around
the equilibrium geometry are significantly biased (discontinu-
ities at R � 1 Å). In the long R limit, the ground and lowest
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FIG. 11. Excited-state energies (brown-red, dark-orange, and or-
ange for the first, second, and third excited states) of NH3 along the
NH3 → NH2 + H reaction path using FCI (lines) and qEOM (sym-
bols), on the ibmq_rome IBM quantum hardware. En(M ) indicates
the nth excited state obtained with method M. The blue dashed line
indicates the energy calculated using the VQE on hardware.

excited states of triplet character become degenerate. Due to
such degeneracy, the qEOM eigenvalue equation becomes ill
conditioned as documented below, resulting in excited-state
energies with lower accuracy than in the short R regime.

2. Details of qEOM simulations

Solving the qEOM equation Hui = εiGui where we will
call H and G the “Hamiltonian” and “metric” matrices, re-
spectively, requires the metric matrix G to be numerically
well conditioned, and, in particular, to have |det(G)|  0. In
Fig. 12, we report the determinant det(G) of the metric matrix
as a function of reaction coordinate R along the dissociation of
ammonia. As seen, for R � 2.5, the determinant approaches
zero, signaling the incipient degeneracy of singlet and triplet
states.

APPENDIX C: DETAILS OF VQE SIMULATIONS

1. Optimization on quantum hardware

The variational parameters θ are concentrated, for both
the SO(4) and the Ry Ansätze, in the angles of single-qubit
rotations. Given a unitary Û (θ ) where a parameter θμ appears
in a single-qubit rotation only, it is known [73] that

∂E

∂θμ

(θ ) = E (θ+) − E (θ−),

(C1)

E (θ±) = E

(
· · · θμ ± π

2
· · ·

)
.
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FIG. 12. Determinant of the qEOM metric matrix G as a func-
tion of reaction coordinate, measured on ibmq_rome (dotted, blue
circles). The gray dashed line highlights det(G) = 0.

Thus, the gradient of the VQE energy with the SO(4) Ansatz
can be computed analytically with 12 ngates energy measure-
ments, where ngates is the number of SO(4) gates in the circuit.

In Fig. 13 we demonstrate SO(4) parameter optimization
by gradient descent at reaction coordinate R = 3.0 Å. In the
gradient descent optimization scheme, parameters are ini-
tialized from a configuration θ (0) in our case θ (0) = 0 and
between iterations i and i + 1 are updated as

�θ (i+1) = �θ (i) − λ∗�g(i),

�g(i) = �∇E (�θ (i) ), (C2)

λ∗ = argminλE (�θ (i) − λ �g(i) ).

The gradient �g(i) is computed analytically as detailed above.
The line search is performed manually at each iteration, and
optimization continues until convergence of the energy within
statistical uncertainties.

2. Fidelity between VQE and Hartree-Fock states

To gain further insight in the structure of the wave func-
tion, we used information from the measurement of density
matrices to evaluate the fidelity,

F [ρVQE, |�RHF〉〈�RHF|] = 〈�RHF|ρVQE|�RHF〉, (C3)

between the VQE density operator and the projector onto the
RHF state, shown in Fig. 14 as a function of reaction coordi-
nate. Interestingly, both deviations from S2 = 0 and decrease
in purity are concomitant with the decrease in fidelity between
VQE density operator and RHF, starting at R � 1.5 Å, and
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FIG. 13. Analytical gradient evaluation (top) and line search
(bottom) in the gradient-descent optimization of VQE parameters
with the SO(4) Ansatz.

signaling acquisition of multireference character by the VQE
density operator.

APPENDIX D: DETAILS OF QITE SIMULATIONS

In the QITE simulations performed here, we use a time-
step �τ = 0.5Eh and a total projection time β = 7.0Eh.
Since the Hamiltonian Ĥ is a two-qubit operator, we per-
form imaginary-time evolution under the operator Ĥ without
Trotter-Suzuki or similar approximations.

To keep the circuit depth and the number of CNOT gates in
the QITE circuit constant as β increases, we rely on a KAK
decomposition [93]: the QITE unitary for n time-steps Un is
computed on the classical computer and reduced to a quantum
circuit comprising two CNOT gates [93].

Such a technique, used, for example, in the context of
spin simulations [94,95], is specifically designed for two-qubit
systems. Research to generalize these approximations to more
general situations is underway.
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FIG. 14. Fidelity between the VQE density operator and the pro-
jector onto the RHF state as a function of reaction coordinate. The
gray dotted line indicates the ideal result of a state vector simulation.
The blue circles are the results of the experiment on ibmq_rome.

APPENDIX E: VARIATIONAL QUANTUM SUBSPACE
EXPANSION

In this Appendix, we review briefly VQSE technique,
proposed by Takeshita et al. [12], and calculate the explicit
expression of matrix elements for our problem. We show that
all the matrices can be evaluated using data from a quantum
hardware.

As indicated in the main text, the starting point of VQSE
is a reference function �0 constructed in a set of active or-
bitals from a large basis. Here, active-space orbitals are linear
combinations of IAOs, denoted with lowercase letters p ∈ A.
Uppercase letters P ∈ B1 denote orthonormal orbitals in the
basis used to construct IAOs.

Next, VQSE introduces a set of expansion operators. Here,
we choose

|�〉 = [α + βPr ĉ†
Pσ ĉrσ + γTuV w ĉ†

T σ ĉ†
V τ ĉwτ ĉuσ ]|�0〉

= [α + βPrEPr + γTuV wETuV w]|�0〉. (E1)

Electrons are excited from active to generic orbitals,
excitation operators are summed over spin polarizations
σ, τ , and Einstein’s summation convention is used. Note
that the reference wave function has no components out-
side the active space A, and, therefore, contraction over
orbitals outside A can be computed analytically using Wick’s
theorem.

The amplitudes v = (α β γ )T are real valued and deter-
mined by solving a generalized eigenvalue equation Hv =
ESv.

The matrices H and S are defined by the bilinear forms

〈�|�〉 = (α, βQs, γXyZa)

×
⎛
⎝ 1 〈ÊPr〉 〈ÊTuV w〉

〈ÊsQ〉 〈ÊsQEPr〉 〈ÊsQÊTuV w〉
〈ÊyXaZ〉 〈ÊyXaZ EPr〉 〈ÊyXaZ ÊTuV w〉

⎞
⎠

×
⎛
⎝ α

βPr

γTuV w

⎞
⎠,

〈�|Ĥ |�〉 = (α, βQs, γXyZa)

×
⎛
⎝ 〈Ĥ〉 〈Ĥ ÊPr〉 〈Ĥ ÊTuV w〉

〈ÊsQĤ〉 〈ÊsQĤÊPr〉 〈ÊsQĤÊTuV w〉
〈ÊyXaZ Ĥ〉 〈ÊyXaZ ĤÊpr〉 〈ÊyXaZ ĤÊTuV w〉

⎞
⎠

×
⎛
⎝ α

βPr

γTuV w

⎞
⎠. (E2)

Here, Ĥ = TEFGH ĉ†
Eσ ĉ†

Gτ ĉHτ ĉFσ denotes the Hamilto-
nian, written compactly as a two-body operator, and
angular brackets denote expectation values over the reference
state.

In the present paper, we focused on two-electron problems
where the bilinear forms in Eq. (E2) are defined by the full-
basis one- and two-body density matrices, which, in turn,
can be trivially computed given their active-space counter-
parts [12].

A lengthy but straightforward calculation, based on Wick’s
theorem, shows that the bilinear forms in Eq. (E2) are given
by

〈ÊPr〉 = ρPr,

〈ÊTuV w〉 = ρTuV w,

〈ÊsQ〉 = ρsQ,

〈ÊsQÊPr〉 = δPQρsr + ρPrsQ,

〈ÊsQÊTuV w〉 = δQT ρsuV w − δQV ρsuT w,

〈ÊyXaZ〉 = ρaZyX ,

〈ÊyXaZ ÊPr〉 = δXPDaZyr − δZPDyraX ,

〈ÊyXaZ ÊTuV w〉 = [δXT δV Z − δZT δXV ]Dawyu, (E3)

〈Ĥ ÊPr〉 = TEPGHρErGH + TEFGP ρEFGr,

〈Ĥ ÊTuV w〉 = TEV GT ρEwGu + TET GV ρEuGw,

〈ÊsQĤ〉 = TQFGHρGHsF + TEFGHρEFsH ,

〈ÊsQĤÊPr〉 = TQFGPρGrsF + TQPGHρGHsr

+TEFQPρQFsr + TEPQHρErsH ,

〈ÊsQĤÊTuV w〉 = TQT GV ρGwsu + TEV QT ρEwsu

+TQV GT ρGusw + TET QV ρEusw,

〈ÊyXaZ Ĥ〉 = TXFZHρaHyF + TZFXHρaFyH ,

〈ÊyXaZ ĤÊPr〉 = TXFZPρaryF + TZFXPρaFyr

+TZPXHρaryH + TXPZHρaHyr,

〈ÊyXaZ ĤÊTuV w〉 = [TZV XT + TXT ZV ]ρawyu

+[TZT XV + TXV ZT ]ρauyw.
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Importantly, the simplifications in Eq. (E3) hold for two-
electron active spaces. Otherwise, three- and four-body
active-space density matrices are required by VQSE, leading

to an O(N8
o ) computational cost in the number No of active

orbitals. Active-space density matrices were computed with
the techniques seen in the main text and embedded into their
full-basis counterparts.
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